ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4,607)
  • Atomic, Molecular and Optical Physics  (2,918)
  • Cell Line
  • Molecular Sequence Data
  • 2015-2019  (170)
  • 1990-1994  (2,978)
  • 1980-1984  (1,459)
  • 1945-1949
  • Chemistry and Pharmacology  (4,607)
  • Computer Science  (1,595)
Collection
  • Articles  (4,607)
Keywords
Years
Year
Topic
  • 1
    Publication Date: 1994-02-25
    Description: Activation of the serine-threonine kinase p34cdc2 at an inappropriate time during the cell cycle leads to cell death that resembles apoptosis. Premature activation of p34cdc2 was shown to be required for apoptosis induced by a lymphocyte granule protease. The kinase was rapidly activated and tyrosine dephosphorylated at the initiation of apoptosis. DNA fragmentation and nuclear collapse could be prevented by blocking p34cdc2 activity with excess peptide substrate, or by inactivating p34cdc2 in a temperature-sensitive mutant. Premature p34cdc2 activation may be a general mechanism by which cells induced to undergo apoptosis initiate the disruption of the nucleus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, L -- Nishioka, W K -- Th'ng, J -- Bradbury, E M -- Litchfield, D W -- Greenberg, A H -- New York, N.Y. -- Science. 1994 Feb 25;263(5150):1143-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8108732" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; CDC2 Protein Kinase/*metabolism ; DNA Damage ; Deoxyribonucleases/pharmacology ; Enzyme Activation ; Enzyme Induction ; Membrane Glycoproteins/pharmacology ; Mice ; Mitosis ; Molecular Sequence Data ; Perforin ; Phosphorylation ; Pore Forming Cytotoxic Proteins ; Serine Endopeptidases/pharmacology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-02
    Description: Multicellularity is often considered a prerequisite for morphological complexity, as seen in the camera-type eyes found in several groups of animals. A notable exception exists in single-celled eukaryotes called dinoflagellates, some of which have an eye-like 'ocelloid' consisting of subcellular analogues to a cornea, lens, iris, and retina. These planktonic cells are uncultivated and rarely encountered in environmental samples, obscuring the function and evolutionary origin of the ocelloid. Here we show, using a combination of electron microscopy, tomography, isolated-organelle genomics, and single-cell genomics, that ocelloids are built from pre-existing organelles, including a cornea-like layer made of mitochondria and a retinal body made of anastomosing plastids. We find that the retinal body forms the central core of a network of peridinin-type plastids, which in dinoflagellates and their relatives originated through an ancient endosymbiosis with a red alga. As such, the ocelloid is a chimaeric structure, incorporating organelles with different endosymbiotic histories. The anatomical complexity of single-celled organisms may be limited by the components available for differentiation, but the ocelloid shows that pre-existing organelles can be assembled into a structure so complex that it was initially mistaken for a multicellular eye. Although mitochondria and plastids are acknowledged chiefly for their metabolic roles, they can also be building blocks for greater structural complexity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gavelis, Gregory S -- Hayakawa, Shiho -- White, Richard A 3rd -- Gojobori, Takashi -- Suttle, Curtis A -- Keeling, Patrick J -- Leander, Brian S -- England -- Nature. 2015 Jul 9;523(7559):204-7. doi: 10.1038/nature14593. Epub 2015 Jul 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada. ; 1] Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [2] Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [3] Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan. ; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada. ; 1] Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan [2] Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. ; 1] Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [2] Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [3] Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [4] Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada. ; 1] Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [2] Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada. ; 1] Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [2] Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [3] Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26131935" target="_blank"〉PubMed〈/a〉
    Keywords: Dinoflagellida/*genetics/physiology/*ultrastructure ; Genome, Protozoan/genetics ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Mitochondria/metabolism/ultrastructure ; Molecular Sequence Data ; Plastids/metabolism/ultrastructure ; Protozoan Proteins/genetics ; Rhodophyta/genetics ; *Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-25
    Description: In response to DNA damage, tissue homoeostasis is ensured by protein networks promoting DNA repair, cell cycle arrest or apoptosis. DNA damage response signalling pathways coordinate these processes, partly by propagating gene-expression-modulating signals. DNA damage influences not only the abundance of messenger RNAs, but also their coding information through alternative splicing. Here we show that transcription-blocking DNA lesions promote chromatin displacement of late-stage spliceosomes and initiate a positive feedback loop centred on the signalling kinase ATM. We propose that initial spliceosome displacement and subsequent R-loop formation is triggered by pausing of RNA polymerase at DNA lesions. In turn, R-loops activate ATM, which signals to impede spliceosome organization further and augment ultraviolet-irradiation-triggered alternative splicing at the genome-wide level. Our findings define R-loop-dependent ATM activation by transcription-blocking lesions as an important event in the DNA damage response of non-replicating cells, and highlight a key role for spliceosome displacement in this process.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501432/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501432/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tresini, Maria -- Warmerdam, Daniel O -- Kolovos, Petros -- Snijder, Loes -- Vrouwe, Mischa G -- Demmers, Jeroen A A -- van IJcken, Wilfred F J -- Grosveld, Frank G -- Medema, Rene H -- Hoeijmakers, Jan H J -- Mullenders, Leon H F -- Vermeulen, Wim -- Marteijn, Jurgen A -- 10-0594/Worldwide Cancer Research/United Kingdom -- 233424/European Research Council/International -- 340988/European Research Council/International -- P01 AG017242/AG/NIA NIH HHS/ -- England -- Nature. 2015 Jul 2;523(7558):53-8. doi: 10.1038/nature14512. Epub 2015 Jun 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands. ; Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands. ; Department of Cell Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands. ; Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands. ; Erasmus MC Proteomics Center, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands. ; Erasmus Center for Biomics, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26106861" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing/physiology ; Ataxia Telangiectasia Mutated Proteins/*metabolism ; Cell Line ; Chromatin/metabolism ; DNA Damage/*physiology ; DNA-Directed RNA Polymerases/metabolism ; Enzyme Activation ; Humans ; *Signal Transduction ; Spliceosomes/*metabolism ; Ultraviolet Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-07-15
    Description: Surface polysaccharides are important for bacterial interactions with multicellular organisms, and some are virulence factors in pathogens. In the legume-rhizobium symbiosis, bacterial exopolysaccharides (EPS) are essential for the development of infected root nodules. We have identified a gene in Lotus japonicus, Epr3, encoding a receptor-like kinase that controls this infection. We show that epr3 mutants are defective in perception of purified EPS, and that EPR3 binds EPS directly and distinguishes compatible and incompatible EPS in bacterial competition studies. Expression of Epr3 in epidermal cells within the susceptible root zone shows that the protein is involved in bacterial entry, while rhizobial and plant mutant studies suggest that Epr3 regulates bacterial passage through the plant's epidermal cell layer. Finally, we show that Epr3 expression is inducible and dependent on host perception of bacterial nodulation (Nod) factors. Plant-bacterial compatibility and bacterial access to legume roots is thus regulated by a two-stage mechanism involving sequential receptor-mediated recognition of Nod factor and EPS signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawaharada, Y -- Kelly, S -- Nielsen, M Wibroe -- Hjuler, C T -- Gysel, K -- Muszynski, A -- Carlson, R W -- Thygesen, M B -- Sandal, N -- Asmussen, M H -- Vinther, M -- Andersen, S U -- Krusell, L -- Thirup, S -- Jensen, K J -- Ronson, C W -- Blaise, M -- Radutoiu, S -- Stougaard, J -- England -- Nature. 2015 Jul 16;523(7560):308-12. doi: 10.1038/nature14611. Epub 2015 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark. ; 1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark [3] Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand. ; 1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Chemistry, University of Copenhagen, Frederiksberg 1871 C, Denmark. ; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA. ; 1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26153863" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Carbohydrate Sequence ; Lipopolysaccharides/chemistry/*metabolism ; Lotus/genetics/*metabolism/*microbiology ; Molecular Sequence Data ; Mutation/genetics ; Phenotype ; Plant Epidermis/metabolism/microbiology ; Plant Proteins/chemistry/genetics/*metabolism ; Plant Root Nodulation ; Protein Kinases/chemistry/genetics/metabolism ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Rhizobium/*metabolism ; Root Nodules, Plant/metabolism/microbiology ; Signal Transduction ; Species Specificity ; Suppression, Genetic/genetics ; *Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-03-25
    Description: Wing polyphenism is an evolutionarily successful feature found in a wide range of insects. Long-winged morphs can fly, which allows them to escape adverse habitats and track changing resources, whereas short-winged morphs are flightless, but usually possess higher fecundity than the winged morphs. Studies on aphids, crickets and planthoppers have revealed that alternative wing morphs develop in response to various environmental cues, and that the response to these cues may be mediated by developmental hormones, although research in this area has yielded equivocal and conflicting results about exactly which hormones are involved. As it stands, the molecular mechanism underlying wing morph determination in insects has remained elusive. Here we show that two insulin receptors in the migratory brown planthopper Nilaparvata lugens, InR1 and InR2, have opposing roles in controlling long wing versus short wing development by regulating the activity of the forkhead transcription factor Foxo. InR1, acting via the phosphatidylinositol-3-OH kinase (PI(3)K)-protein kinase B (Akt) signalling cascade, leads to the long-winged morph if active and the short-winged morph if inactive. InR2, by contrast, functions as a negative regulator of the InR1-PI(3)K-Akt pathway: suppression of InR2 results in development of the long-winged morph. The brain-secreted ligand Ilp3 triggers development of long-winged morphs. Our findings provide the first evidence of a molecular basis for the regulation of wing polyphenism in insects, and they are also the first demonstration--to our knowledge--of binary control over alternative developmental outcomes, and thus deepen our understanding of the development and evolution of phenotypic plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Hai-Jun -- Xue, Jian -- Lu, Bo -- Zhang, Xue-Chao -- Zhuo, Ji-Chong -- He, Shu-Fang -- Ma, Xiao-Fang -- Jiang, Ya-Qin -- Fan, Hai-Wei -- Xu, Ji-Yu -- Ye, Yu-Xuan -- Pan, Peng-Lu -- Li, Qiao -- Bao, Yan-Yuan -- Nijhout, H Frederik -- Zhang, Chuan-Xi -- England -- Nature. 2015 Mar 26;519(7544):464-7. doi: 10.1038/nature14286. Epub 2015 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China. ; Department of Biology, Duke University, Durham, North Carolina 27708, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799997" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Forkhead Transcription Factors/deficiency/metabolism ; Hemiptera/*anatomy & histology/enzymology/genetics/*metabolism ; Insulin/metabolism ; Male ; Molecular Sequence Data ; Phosphatidylinositol 3-Kinases/metabolism ; Proto-Oncogene Proteins c-akt/metabolism ; Receptor, Insulin/deficiency/*metabolism ; Signal Transduction ; Wings, Animal/anatomy & histology/enzymology/*growth & development/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-11-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delude, Cathryn M -- England -- Nature. 2015 Nov 5;527(7576):S14-5. doi: 10.1038/527S14a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26536218" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/genetics ; Cell Line ; Datasets as Topic ; Diabetes Mellitus/genetics ; Disease/*genetics ; Disease Models, Animal ; Genetics, Medical/*trends ; Genomics/trends ; Humans ; Mice ; Mice, Knockout ; Multifactorial Inheritance/genetics ; *Phenotype ; Precision Medicine/trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-11-10
    Description: Gene expression is regulated by transcription factors (TFs), proteins that recognize short DNA sequence motifs. Such sequences are very common in the human genome, and an important determinant of the specificity of gene expression is the cooperative binding of multiple TFs to closely located motifs. However, interactions between DNA-bound TFs have not been systematically characterized. To identify TF pairs that bind cooperatively to DNA, and to characterize their spacing and orientation preferences, we have performed consecutive affinity-purification systematic evolution of ligands by exponential enrichment (CAP-SELEX) analysis of 9,400 TF-TF-DNA interactions. This analysis revealed 315 TF-TF interactions recognizing 618 heterodimeric motifs, most of which have not been previously described. The observed cooperativity occurred promiscuously between TFs from diverse structural families. Structural analysis of the TF pairs, including a novel crystal structure of MEIS1 and DLX3 bound to their identified recognition site, revealed that the interactions between the TFs were predominantly mediated by DNA. Most TF pair sites identified involved a large overlap between individual TF recognition motifs, and resulted in recognition of composite sites that were markedly different from the individual TF's motifs. Together, our results indicate that the DNA molecule commonly plays an active role in cooperative interactions that define the gene regulatory lexicon.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jolma, Arttu -- Yin, Yimeng -- Nitta, Kazuhiro R -- Dave, Kashyap -- Popov, Alexander -- Taipale, Minna -- Enge, Martin -- Kivioja, Teemu -- Morgunova, Ekaterina -- Taipale, Jussi -- England -- Nature. 2015 Nov 19;527(7578):384-8. doi: 10.1038/nature15518. Epub 2015 Nov 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biosciences and Nutrition, Karolinska Institutet, SE 141 83, Sweden. ; European Synchrotron Radiation Facility, 38043 Grenoble, France. ; Genome-Scale Biology Program, University of Helsinki, P.O. Box 63, FI-00014, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26550823" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites/genetics ; Crystallography, X-Ray ; DNA/*genetics/*metabolism ; Gene Expression Regulation/genetics ; Humans ; Molecular Sequence Data ; Nucleotide Motifs/genetics ; Reproducibility of Results ; *Substrate Specificity/genetics ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-09-10
    Description: Somaclonal variation arises in plants and animals when differentiated somatic cells are induced into a pluripotent state, but the resulting clones differ from each other and from their parents. In agriculture, somaclonal variation has hindered the micropropagation of elite hybrids and genetically modified crops, but the mechanism responsible remains unknown. The oil palm fruit 'mantled' abnormality is a somaclonal variant arising from tissue culture that drastically reduces yield, and has largely halted efforts to clone elite hybrids for oil production. Widely regarded as an epigenetic phenomenon, 'mantling' has defied explanation, but here we identify the MANTLED locus using epigenome-wide association studies of the African oil palm Elaeis guineensis. DNA hypomethylation of a LINE retrotransposon related to rice Karma, in the intron of the homeotic gene DEFICIENS, is common to all mantled clones and is associated with alternative splicing and premature termination. Dense methylation near the Karma splice site (termed the Good Karma epiallele) predicts normal fruit set, whereas hypomethylation (the Bad Karma epiallele) predicts homeotic transformation, parthenocarpy and marked loss of yield. Loss of Karma methylation and of small RNA in tissue culture contributes to the origin of mantled, while restoration in spontaneous revertants accounts for non-Mendelian inheritance. The ability to predict and cull mantling at the plantlet stage will facilitate the introduction of higher performing clones and optimize environmentally sensitive land resources.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ong-Abdullah, Meilina -- Ordway, Jared M -- Jiang, Nan -- Ooi, Siew-Eng -- Kok, Sau-Yee -- Sarpan, Norashikin -- Azimi, Nuraziyan -- Hashim, Ahmad Tarmizi -- Ishak, Zamzuri -- Rosli, Samsul Kamal -- Malike, Fadila Ahmad -- Bakar, Nor Azwani Abu -- Marjuni, Marhalil -- Abdullah, Norziha -- Yaakub, Zulkifli -- Amiruddin, Mohd Din -- Nookiah, Rajanaidu -- Singh, Rajinder -- Low, Eng-Ti Leslie -- Chan, Kuang-Lim -- Azizi, Norazah -- Smith, Steven W -- Bacher, Blaire -- Budiman, Muhammad A -- Van Brunt, Andrew -- Wischmeyer, Corey -- Beil, Melissa -- Hogan, Michael -- Lakey, Nathan -- Lim, Chin-Ching -- Arulandoo, Xaviar -- Wong, Choo-Kien -- Choo, Chin-Nee -- Wong, Wei-Chee -- Kwan, Yen-Yen -- Alwee, Sharifah Shahrul Rabiah Syed -- Sambanthamurthi, Ravigadevi -- Martienssen, Robert A -- R01 GM067014/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Sep 24;525(7570):533-7. doi: 10.1038/nature15365. Epub 2015 Sep 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia. ; Orion Genomics, 4041 Forest Park Avenue, St Louis, Missouri 63108, USA. ; United Plantations Berhad, Jendarata Estate, 36009 Teluk Intan, Perak, Malaysia. ; Applied Agricultural Resources Sdn Bhd, No. 11, Jalan Teknologi 3/6, Taman Sains Selangor 1, 47810 Kota Damansara, Petaling Jaya, Selangor, Malaysia. ; FELDA Global Ventures R&D Sdn Bhd, c/o FELDA Biotechnology Centre, PT 23417, Lengkuk Teknologi, 71760 Bandar Enstek, Negeri Sembilan, Malaysia. ; Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26352475" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Alternative Splicing/genetics ; Arecaceae/*genetics/metabolism ; *DNA Methylation ; Epigenesis, Genetic/*genetics ; *Epigenomics ; Fruit/genetics ; Genes, Homeobox/genetics ; Genetic Association Studies ; Genome, Plant/*genetics ; Introns/genetics ; Molecular Sequence Data ; *Phenotype ; Plant Oils/analysis/metabolism ; RNA Splice Sites/genetics ; RNA, Small Interfering/genetics ; Retroelements/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-05-29
    Description: Genome sequencing has uncovered a new mutational phenomenon in cancer and congenital disorders called chromothripsis. Chromothripsis is characterized by extensive genomic rearrangements and an oscillating pattern of DNA copy number levels, all curiously restricted to one or a few chromosomes. The mechanism for chromothripsis is unknown, but we previously proposed that it could occur through the physical isolation of chromosomes in aberrant nuclear structures called micronuclei. Here, using a combination of live cell imaging and single-cell genome sequencing, we demonstrate that micronucleus formation can indeed generate a spectrum of genomic rearrangements, some of which recapitulate all known features of chromothripsis. These events are restricted to the mis-segregated chromosome and occur within one cell division. We demonstrate that the mechanism for chromothripsis can involve the fragmentation and subsequent reassembly of a single chromatid from a micronucleus. Collectively, these experiments establish a new mutational process of which chromothripsis is one extreme outcome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742237/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742237/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Cheng-Zhong -- Spektor, Alexander -- Cornils, Hauke -- Francis, Joshua M -- Jackson, Emily K -- Liu, Shiwei -- Meyerson, Matthew -- Pellman, David -- GM083299-18/GM/NIGMS NIH HHS/ -- R01 GM061345/GM/NIGMS NIH HHS/ -- R01 GM083299/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jun 11;522(7555):179-84. doi: 10.1038/nature14493. Epub 2015 May 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [3] Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA [4] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. ; 1] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA. ; 1] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA. ; 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA [3] Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA [4] Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. ; 1] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA [3] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [4] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26017310" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cell Survival ; *Chromosome Breakage ; Chromosome Segregation/genetics ; DNA Copy Number Variations/genetics ; *DNA Damage ; Gene Rearrangement/genetics ; Genomic Instability/genetics ; Humans ; *Micronuclei, Chromosome-Defective ; Mutation/genetics ; Neoplasms/genetics ; S Phase/genetics ; Single-Cell Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-06-05
    Description: The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and autophagy has an important role in this process. However, its underlying regulatory mechanisms remain unexplained. Here we show that members of the FAM134 reticulon protein family are ER-resident receptors that bind to autophagy modifiers LC3 and GABARAP, and facilitate ER degradation by autophagy ('ER-phagy'). Downregulation of FAM134B protein in human cells causes an expansion of the ER, while FAM134B overexpression results in ER fragmentation and lysosomal degradation. Mutant FAM134B proteins that cause sensory neuropathy in humans are unable to act as ER-phagy receptors. Consistently, disruption of Fam134b in mice causes expansion of the ER, inhibits ER turnover, sensitizes cells to stress-induced apoptotic cell death and leads to degeneration of sensory neurons. Therefore, selective ER-phagy via FAM134 proteins is indispensable for mammalian cell homeostasis and controls ER morphology and turnover in mice and humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khaminets, Aliaksandr -- Heinrich, Theresa -- Mari, Muriel -- Grumati, Paolo -- Huebner, Antje K -- Akutsu, Masato -- Liebmann, Lutz -- Stolz, Alexandra -- Nietzsche, Sandor -- Koch, Nicole -- Mauthe, Mario -- Katona, Istvan -- Qualmann, Britta -- Weis, Joachim -- Reggiori, Fulvio -- Kurth, Ingo -- Hubner, Christian A -- Dikic, Ivan -- England -- Nature. 2015 Jun 18;522(7556):354-8. doi: 10.1038/nature14498. Epub 2015 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany. ; Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Kollegiengasse 10, 07743 Jena, Germany. ; 1] Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands [2] Department of Cell Biology, University Medical Center Utrecht, University of Groningen, Antonious Deusinglaan 1, 3713 AV Groningen, The Netherlands. ; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany. ; Electron Microscopy Center, Jena University Hospital, Friedrich-Schiller-University Jena, Ziegelmuhlenweg 1, 07743 Jena, Germany. ; Institute for Biochemistry I, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany. ; Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany. ; 1] Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany [2] Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany [3] Institute of Immunology, School of Medicine University of Split, Mestrovicevo setaliste bb, 21 000 Split, Croatia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26040720" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Apoptosis ; Autophagy/*physiology ; Biomarkers/metabolism ; Cell Line ; Endoplasmic Reticulum/chemistry/*metabolism ; Female ; Gene Deletion ; Humans ; Lysosomes/metabolism ; Male ; Membrane Proteins/deficiency/genetics/*metabolism ; Mice ; Microtubule-Associated Proteins/metabolism ; Neoplasm Proteins/deficiency/genetics/*metabolism ; Phagosomes/metabolism ; Protein Binding ; Sensory Receptor Cells/metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-06-18
    Description: Cell-to-cell variation is a universal feature of life that affects a wide range of biological phenomena, from developmental plasticity to tumour heterogeneity. Although recent advances have improved our ability to document cellular phenotypic variation, the fundamental mechanisms that generate variability from identical DNA sequences remain elusive. Here we reveal the landscape and principles of mammalian DNA regulatory variation by developing a robust method for mapping the accessible genome of individual cells by assay for transposase-accessible chromatin using sequencing (ATAC-seq) integrated into a programmable microfluidics platform. Single-cell ATAC-seq (scATAC-seq) maps from hundreds of single cells in aggregate closely resemble accessibility profiles from tens of millions of cells and provide insights into cell-to-cell variation. Accessibility variance is systematically associated with specific trans-factors and cis-elements, and we discover combinations of trans-factors associated with either induction or suppression of cell-to-cell variability. We further identify sets of trans-factors associated with cell-type-specific accessibility variance across eight cell types. Targeted perturbations of cell cycle or transcription factor signalling evoke stimulus-specific changes in this observed variability. The pattern of accessibility variation in cis across the genome recapitulates chromosome compartments de novo, linking single-cell accessibility variation to three-dimensional genome organization. Single-cell analysis of DNA accessibility provides new insight into cellular variation of the 'regulome'.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4685948/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4685948/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buenrostro, Jason D -- Wu, Beijing -- Litzenburger, Ulrike M -- Ruff, Dave -- Gonzales, Michael L -- Snyder, Michael P -- Chang, Howard Y -- Greenleaf, William J -- 5U54HG00455805/HG/NHGRI NIH HHS/ -- P50 HG007735/HG/NHGRI NIH HHS/ -- P50HG007735/HG/NHGRI NIH HHS/ -- T32 HG000044/HG/NHGRI NIH HHS/ -- T32HG000044/HG/NHGRI NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U19AI057266/AI/NIAID NIH HHS/ -- U54 HG004558/HG/NHGRI NIH HHS/ -- UH2 AR067676/AR/NIAMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 23;523(7561):486-90. doi: 10.1038/nature14590. Epub 2015 Jun 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA [2] Program in Epithelial Biology and the Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA. ; Program in Epithelial Biology and the Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA. ; Fluidigm Corporation, South San Francisco, California 94080, USA. ; 1] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Applied Physics, Stanford University, Stanford, California 94025, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26083756" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Compartmentation ; Cell Cycle/genetics ; Cell Line ; Cells/classification/*metabolism ; Chromatin/*genetics/*metabolism ; DNA/genetics/metabolism ; Epigenesis, Genetic ; *Epigenomics ; Genome, Human/genetics ; Humans ; Microfluidics ; Signal Transduction ; Single-Cell Analysis/*methods ; Transcription Factors/metabolism ; Transposases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-01-21
    Description: The gut microbiota plays a crucial role in the maturation of the intestinal mucosal immune system of its host. Within the thousand bacterial species present in the intestine, the symbiont segmented filamentous bacterium (SFB) is unique in its ability to potently stimulate the post-natal maturation of the B- and T-cell compartments and induce a striking increase in the small-intestinal Th17 responses. Unlike other commensals, SFB intimately attaches to absorptive epithelial cells in the ileum and cells overlying Peyer's patches. This colonization does not result in pathology; rather, it protects the host from pathogens. Yet, little is known about the SFB-host interaction that underlies the important immunostimulatory properties of SFB, because SFB have resisted in vitro culturing for more than 50 years. Here we grow mouse SFB outside their host in an SFB-host cell co-culturing system. Single-celled SFB isolated from monocolonized mice undergo filamentation, segmentation, and differentiation to release viable infectious particles, the intracellular offspring, which can colonize mice to induce signature immune responses. In vitro, intracellular offspring can attach to mouse and human host cells and recruit actin. In addition, SFB can potently stimulate the upregulation of host innate defence genes, inflammatory cytokines, and chemokines. In vitro culturing thereby mimics the in vivo niche, provides new insights into SFB growth requirements and their immunostimulatory potential, and makes possible the investigation of the complex developmental stages of SFB and the detailed dissection of the unique SFB-host interaction at the cellular and molecular levels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schnupf, Pamela -- Gaboriau-Routhiau, Valerie -- Gros, Marine -- Friedman, Robin -- Moya-Nilges, Maryse -- Nigro, Giulia -- Cerf-Bensussan, Nadine -- Sansonetti, Philippe J -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Apr 2;520(7545):99-103. doi: 10.1038/nature14027. Epub 2015 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Unite de Pathogenie Microbienne Moleculaire and Institut national de la sante et de la recherche medicale (INSERM) unit U786, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France [2] INSERM, UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 24, Boulevard du Montparnasse, 75015 Paris, France. ; 1] INSERM, UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 24, Boulevard du Montparnasse, 75015 Paris, France [2] Institut national de la recherche agronomique (INRA) Micalis UMR1319, 78350 Jouy-en-Josas, France [3] Universite Paris Descartes-Sorbonne Paris Cite and Institut Imagine, 75015 Paris, France. ; 1] Universite Paris Descartes-Sorbonne Paris Cite and Institut Imagine, 75015 Paris, France [2] Ecole Normale Superieure de Lyon, Department of Biology, 69007 Lyon, France. ; Unite de Pathogenie Microbienne Moleculaire and Institut national de la sante et de la recherche medicale (INSERM) unit U786, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France. ; Imagopole, Ultrastructural Microscopy Platform, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France. ; 1] INSERM, UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 24, Boulevard du Montparnasse, 75015 Paris, France [2] Universite Paris Descartes-Sorbonne Paris Cite and Institut Imagine, 75015 Paris, France. ; 1] Unite de Pathogenie Microbienne Moleculaire and Institut national de la sante et de la recherche medicale (INSERM) unit U786, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France [2] Microbiologie et Maladies Infectieuses, College de France, 11 Marcelin Berthelot Square, 75005 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25600271" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Bacteria/cytology/*growth & development/*immunology ; Cell Line ; Coculture Techniques/*methods ; Escherichia coli/cytology/growth & development/immunology ; Feces/microbiology ; Female ; Germ-Free Life ; Humans ; Immunity, Mucosal/immunology ; Intestinal Mucosa/cytology/immunology/microbiology ; Intestines/cytology/*immunology/*microbiology ; Lymphocytes/cytology/*immunology ; Male ; Mice ; Microbial Viability ; Peyer's Patches/immunology ; Symbiosis/*immunology ; Th17 Cells/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-07-23
    Description: The human lens is comprised largely of crystallin proteins assembled into a highly ordered, interactive macro-structure essential for lens transparency and refractive index. Any disruption of intra- or inter-protein interactions will alter this delicate structure, exposing hydrophobic surfaces, with consequent protein aggregation and cataract formation. Cataracts are the most common cause of blindness worldwide, affecting tens of millions of people, and currently the only treatment is surgical removal of cataractous lenses. The precise mechanisms by which lens proteins both prevent aggregation and maintain lens transparency are largely unknown. Lanosterol is an amphipathic molecule enriched in the lens. It is synthesized by lanosterol synthase (LSS) in a key cyclization reaction of a cholesterol synthesis pathway. Here we identify two distinct homozygous LSS missense mutations (W581R and G588S) in two families with extensive congenital cataracts. Both of these mutations affect highly conserved amino acid residues and impair key catalytic functions of LSS. Engineered expression of wild-type, but not mutant, LSS prevents intracellular protein aggregation of various cataract-causing mutant crystallins. Treatment by lanosterol, but not cholesterol, significantly decreased preformed protein aggregates both in vitro and in cell-transfection experiments. We further show that lanosterol treatment could reduce cataract severity and increase transparency in dissected rabbit cataractous lenses in vitro and cataract severity in vivo in dogs. Our study identifies lanosterol as a key molecule in the prevention of lens protein aggregation and points to a novel strategy for cataract prevention and treatment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Ling -- Chen, Xiang-Jun -- Zhu, Jie -- Xi, Yi-Bo -- Yang, Xu -- Hu, Li-Dan -- Ouyang, Hong -- Patel, Sherrina H -- Jin, Xin -- Lin, Danni -- Wu, Frances -- Flagg, Ken -- Cai, Huimin -- Li, Gen -- Cao, Guiqun -- Lin, Ying -- Chen, Daniel -- Wen, Cindy -- Chung, Christopher -- Wang, Yandong -- Qiu, Austin -- Yeh, Emily -- Wang, Wenqiu -- Hu, Xun -- Grob, Seanna -- Abagyan, Ruben -- Su, Zhiguang -- Tjondro, Harry Christianto -- Zhao, Xi-Juan -- Luo, Hongrong -- Hou, Rui -- Perry, J Jefferson P -- Gao, Weiwei -- Kozak, Igor -- Granet, David -- Li, Yingrui -- Sun, Xiaodong -- Wang, Jun -- Zhang, Liangfang -- Liu, Yizhi -- Yan, Yong-Bin -- Zhang, Kang -- England -- Nature. 2015 Jul 30;523(7562):607-11. doi: 10.1038/nature14650. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [3] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. ; BGI-Shenzhen, Shenzhen 518083, China. ; 1] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [2] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. ; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] CapitalBio Genomics Co., Ltd., Dongguan 523808, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China. ; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, USA. ; Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA. ; King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia. ; Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China. ; Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [3] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [4] Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA [5] Veterans Administration Healthcare System, San Diego, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200341" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Amyloid/chemistry/drug effects/metabolism/ultrastructure ; Animals ; Base Sequence ; Cataract/congenital/*drug therapy/genetics/*metabolism/pathology ; Cell Line ; Child ; Crystallins/chemistry/genetics/metabolism/ultrastructure ; Dogs ; Female ; Humans ; Lanosterol/administration & dosage/*pharmacology/*therapeutic use ; Lens, Crystalline/drug effects/metabolism/pathology ; Male ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/metabolism/ultrastructure ; Pedigree ; Protein Aggregates/*drug effects ; Protein Aggregation, Pathological/*drug therapy/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-02-18
    Description: The BCR-ABL1 fusion gene is a driver oncogene in chronic myeloid leukaemia and 30-50% of cases of adult acute lymphoblastic leukaemia. Introduction of ABL1 kinase inhibitors (for example, imatinib) has markedly improved patient survival, but acquired drug resistance remains a challenge. Point mutations in the ABL1 kinase domain weaken inhibitor binding and represent the most common clinical resistance mechanism. The BCR-ABL1 kinase domain gatekeeper mutation Thr315Ile (T315I) confers resistance to all approved ABL1 inhibitors except ponatinib, which has toxicity limitations. Here we combine comprehensive drug sensitivity and resistance profiling of patient cells ex vivo with structural analysis to establish the VEGFR tyrosine kinase inhibitor axitinib as a selective and effective inhibitor for T315I-mutant BCR-ABL1-driven leukaemia. Axitinib potently inhibited BCR-ABL1(T315I), at both biochemical and cellular levels, by binding to the active form of ABL1(T315I) in a mutation-selective binding mode. These findings suggest that the T315I mutation shifts the conformational equilibrium of the kinase in favour of an active (DFG-in) A-loop conformation, which has more optimal binding interactions with axitinib. Treatment of a T315I chronic myeloid leukaemia patient with axitinib resulted in a rapid reduction of T315I-positive cells from bone marrow. Taken together, our findings demonstrate an unexpected opportunity to repurpose axitinib, an anti-angiogenic drug approved for renal cancer, as an inhibitor for ABL1 gatekeeper mutant drug-resistant leukaemia patients. This study shows that wild-type proteins do not always sample the conformations available to disease-relevant mutant proteins and that comprehensive drug testing of patient-derived cells can identify unpredictable, clinically significant drug-repositioning opportunities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pemovska, Tea -- Johnson, Eric -- Kontro, Mika -- Repasky, Gretchen A -- Chen, Jeffrey -- Wells, Peter -- Cronin, Ciaran N -- McTigue, Michele -- Kallioniemi, Olli -- Porkka, Kimmo -- Murray, Brion W -- Wennerberg, Krister -- England -- Nature. 2015 Mar 5;519(7541):102-5. doi: 10.1038/nature14119. Epub 2015 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland. ; La Jolla Laboratories, Pfizer Worldwide Research &Development, San Diego, California 92121, USA. ; Hematology Research Unit Helsinki, University of Helsinki, and Helsinki University Hospital Comprehensive Cancer Center, Department of Hematology, 00290 Helsinki, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686603" target="_blank"〉PubMed〈/a〉
    Keywords: Angiogenesis Inhibitors/chemistry/pharmacology/therapeutic use ; Cell Line ; Cell Proliferation/drug effects ; Crystallization ; Crystallography, X-Ray ; Drug Repositioning ; Drug Resistance, Neoplasm/genetics ; Drug Screening Assays, Antitumor ; Fusion Proteins, bcr-abl/*antagonists & inhibitors/*chemistry/genetics/metabolism ; Humans ; Imidazoles/*chemistry/*pharmacology/therapeutic use ; Indazoles/*chemistry/*pharmacology/therapeutic use ; Kidney Neoplasms/drug therapy ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy/genetics/metabolism ; Models, Molecular ; Molecular Conformation ; Phosphorylation/drug effects ; Protein Binding ; Protein Kinase Inhibitors/chemistry/pharmacology/therapeutic use ; Proto-Oncogene Proteins c-abl/antagonists & ; inhibitors/chemistry/genetics/metabolism ; Vascular Endothelial Growth Factor Receptor-2/antagonists & ; inhibitors/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-11-13
    Description: Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (〉16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetium genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a 'near-complete' draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. The Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉VanBuren, Robert -- Bryant, Doug -- Edger, Patrick P -- Tang, Haibao -- Burgess, Diane -- Challabathula, Dinakar -- Spittle, Kristi -- Hall, Richard -- Gu, Jenny -- Lyons, Eric -- Freeling, Michael -- Bartels, Dorothea -- Ten Hallers, Boudewijn -- Hastie, Alex -- Michael, Todd P -- Mockler, Todd C -- England -- Nature. 2015 Nov 26;527(7579):508-11. doi: 10.1038/nature15714. Epub 2015 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA. ; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720, USA. ; Department of Horticulture, Michigan State University, East Lansing, Michigan 48823, USA. ; iPlant Collaborative, School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA. ; Center for Genomics and Biotechnology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Fuzhou 350002, China. ; IMBIO, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany. ; Pacific Biosciences, Menlo Park, California 94025, USA. ; BioNano Genomics, San Diego, California 92121, USA. ; Ibis Biosciences, Carlsbad, California 92008, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26560029" target="_blank"〉PubMed〈/a〉
    Keywords: Acclimatization/genetics ; Contig Mapping ; Dehydration ; Desiccation ; Droughts ; Genes, Plant/genetics ; Genome, Plant/*genetics ; Genomics ; Molecular Sequence Data ; Poaceae/*genetics ; Sequence Analysis, DNA/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-01-22
    Description: Low-molecular-mass thiols in organisms are well known for their redox-relevant role in protection against various endogenous and exogenous stresses. In eukaryotes and Gram-negative bacteria, the primary thiol is glutathione (GSH), a cysteinyl-containing tripeptide. In contrast, mycothiol (MSH), a cysteinyl pseudo-disaccharide, is dominant in Gram-positive actinobacteria, including antibiotic-producing actinomycetes and pathogenic mycobacteria. MSH is equivalent to GSH, either as a cofactor or as a substrate, in numerous biochemical processes, most of which have not been characterized, largely due to the dearth of information concerning MSH-dependent proteins. Actinomycetes are able to produce another thiol, ergothioneine (EGT), a histidine betaine derivative that is widely assimilated by plants and animals for variable physiological activities. The involvement of EGT in enzymatic reactions, however, lacks any precedent. Here we report that the unprecedented coupling of two bacterial thiols, MSH and EGT, has a constructive role in the biosynthesis of lincomycin A, a sulfur-containing lincosamide (C8 sugar) antibiotic that has been widely used for half a century to treat Gram-positive bacterial infections. EGT acts as a carrier to template the molecular assembly, and MSH is the sulfur donor for lincomycin maturation after thiol exchange. These thiols function through two unusual S-glycosylations that program lincosamide transfer, activation and modification, providing the first paradigm for EGT-associated biochemical processes and for the poorly understood MSH-dependent biotransformations, a newly described model that is potentially common in the incorporation of sulfur, an element essential for life and ubiquitous in living systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Qunfei -- Wang, Min -- Xu, Dongxiao -- Zhang, Qinglin -- Liu, Wen -- England -- Nature. 2015 Feb 5;518(7537):115-9. doi: 10.1038/nature14137. Epub 2015 Jan 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. ; Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China. ; 1] State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China [2] Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25607359" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/*biosynthesis ; Biological Products/metabolism ; Biosynthetic Pathways/genetics ; Biotransformation ; Cysteine/chemistry/*metabolism ; Ergothioneine/chemistry/*metabolism ; Glycopeptides/chemistry/*metabolism ; Glycosylation ; Inositol/chemistry/*metabolism ; Lincomycin/*biosynthesis ; Lincosamides/metabolism ; Molecular Sequence Data ; Streptomyces/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-06-23
    Description: Although CRISPR-Cas9 nucleases are widely used for genome editing, the range of sequences that Cas9 can recognize is constrained by the need for a specific protospacer adjacent motif (PAM). As a result, it can often be difficult to target double-stranded breaks (DSBs) with the precision that is necessary for various genome-editing applications. The ability to engineer Cas9 derivatives with purposefully altered PAM specificities would address this limitation. Here we show that the commonly used Streptococcus pyogenes Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design. These altered PAM specificity variants enable robust editing of endogenous gene sites in zebrafish and human cells not currently targetable by wild-type SpCas9, and their genome-wide specificities are comparable to wild-type SpCas9 as judged by GUIDE-seq analysis. In addition, we identify and characterize another SpCas9 variant that exhibits improved specificity in human cells, possessing better discrimination against off-target sites with non-canonical NAG and NGA PAMs and/or mismatched spacers. We also find that two smaller-size Cas9 orthologues, Streptococcus thermophilus Cas9 (St1Cas9) and Staphylococcus aureus Cas9 (SaCas9), function efficiently in the bacterial selection systems and in human cells, suggesting that our engineering strategies could be extended to Cas9s from other species. Our findings provide broadly useful SpCas9 variants and, more importantly, establish the feasibility of engineering a wide range of Cas9s with altered and improved PAM specificities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540238/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540238/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kleinstiver, Benjamin P -- Prew, Michelle S -- Tsai, Shengdar Q -- Topkar, Ved V -- Nguyen, Nhu T -- Zheng, Zongli -- Gonzales, Andrew P W -- Li, Zhuyun -- Peterson, Randall T -- Yeh, Jing-Ruey Joanna -- Aryee, Martin J -- Joung, J Keith -- DP1 GM105378/DP/NCCDPHP CDC HHS/ -- DP1 GM105378/GM/NIGMS NIH HHS/ -- R01 GM088040/GM/NIGMS NIH HHS/ -- R01 GM107427/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jul 23;523(7561):481-5. doi: 10.1038/nature14592. Epub 2015 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Molecular Pathology Unit &Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [3] Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Molecular Pathology Unit &Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. ; 1] Molecular Pathology Unit &Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-171 77, Sweden. ; 1] Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Broad Institute, Cambridge, Massachusetts 02142, USA. ; Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. ; 1] Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Molecular Pathology Unit &Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26098369" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution/genetics ; Animals ; CRISPR-Associated Proteins/*genetics/*metabolism ; CRISPR-Cas Systems ; Cell Line ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics ; Directed Molecular Evolution ; Genome/genetics ; Humans ; Mutation/genetics ; *Nucleotide Motifs ; Protein Engineering/*methods ; Staphylococcus aureus/enzymology ; Streptococcus pyogenes/*enzymology ; Streptococcus thermophilus/enzymology ; Substrate Specificity/genetics ; Zebrafish/embryology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-10-13
    Description: The most abundant mRNA post-transcriptional modification is N(6)-methyladenosine (m(6)A), which has broad roles in RNA biology. In mammalian cells, the asymmetric distribution of m(6)A along mRNAs results in relatively less methylation in the 5' untranslated region (5'UTR) compared to other regions. However, whether and how 5'UTR methylation is regulated is poorly understood. Despite the crucial role of the 5'UTR in translation initiation, very little is known about whether m(6)A modification influences mRNA translation. Here we show that in response to heat shock stress, certain adenosines within the 5'UTR of newly transcribed mRNAs are preferentially methylated. We find that the dynamic 5'UTR methylation is a result of stress-induced nuclear localization of YTHDF2, a well-characterized m(6)A 'reader'. Upon heat shock stress, the nuclear YTHDF2 preserves 5'UTR methylation of stress-induced transcripts by limiting the m(6)A 'eraser' FTO from demethylation. Remarkably, the increased 5'UTR methylation in the form of m(6)A promotes cap-independent translation initiation, providing a mechanism for selective mRNA translation under heat shock stress. Using Hsp70 mRNA as an example, we demonstrate that a single m(6)A modification site in the 5'UTR enables translation initiation independent of the 5' end N(7)-methylguanosine cap. The elucidation of the dynamic features of 5'UTR methylation and its critical role in cap-independent translation not only expands the breadth of physiological roles of m(6)A, but also uncovers a previously unappreciated translational control mechanism in heat shock response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Jun -- Wan, Ji -- Gao, Xiangwei -- Zhang, Xingqian -- Jaffrey, Samie R -- Qian, Shu-Bing -- DA037150/DA/NIDA NIH HHS/ -- DP2OD006449/OD/NIH HHS/ -- R01AG042400/AG/NIA NIH HHS/ -- England -- Nature. 2015 Oct 22;526(7574):591-4. doi: 10.1038/nature15377. Epub 2015 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA. ; Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York City, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26458103" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions/genetics ; Adenosine/*analogs & derivatives/metabolism ; Animals ; Cell Line ; Cell Nucleus/metabolism ; Fibroblasts/cytology/metabolism ; *Gene Expression Regulation ; HSP70 Heat-Shock Proteins/genetics ; *Heat-Shock Response/genetics ; *Methylation ; Mice ; Mixed Function Oxygenases/antagonists & inhibitors/metabolism ; Oxo-Acid-Lyases/antagonists & inhibitors/metabolism ; *Peptide Chain Initiation, Translational ; RNA Caps/metabolism ; RNA, Messenger/genetics/*metabolism ; RNA-Binding Proteins/metabolism ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-01-28
    Description: Infectious agents develop intricate mechanisms to interact with host cell pathways and hijack their genetic and epigenetic machinery to change host cell phenotypic states. Among the Apicomplexa phylum of obligate intracellular parasites, which cause veterinary and human diseases, Theileria is the only genus that transforms its mammalian host cells. Theileria infection of bovine leukocytes induces proliferative and invasive phenotypes associated with activated signalling pathways, notably JNK and AP-1 (ref. 2). The transformed phenotypes are reversed by treatment with the theilericidal drug buparvaquone. We used comparative genomics to identify a homologue of the peptidyl-prolyl isomerase PIN1 in T. annulata (TaPIN1) that is secreted into the host cell and modulates oncogenic signalling pathways. Here we show that TaPIN1 is a bona fide prolyl isomerase and that it interacts with the host ubiquitin ligase FBW7, leading to its degradation and subsequent stabilization of c-JUN, which promotes transformation. We performed in vitro and in silico analysis and in vivo zebrafish xenograft experiments to demonstrate that TaPIN1 is directly inhibited by the anti-parasite drug buparvaquone (and other known PIN1 inhibitors) and is mutated in a drug-resistant strain. Prolyl isomerization is thus a conserved mechanism that is important in cancer and is used by Theileria parasites to manipulate host oncogenic signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401560/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401560/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marsolier, J -- Perichon, M -- DeBarry, J D -- Villoutreix, B O -- Chluba, J -- Lopez, T -- Garrido, C -- Zhou, X Z -- Lu, K P -- Fritsch, L -- Ait-Si-Ali, S -- Mhadhbi, M -- Medjkane, S -- Weitzman, J B -- 08-0111/Worldwide Cancer Research/United Kingdom -- R01 CA167677/CA/NCI NIH HHS/ -- R01CA167677/CA/NCI NIH HHS/ -- England -- Nature. 2015 Apr 16;520(7547):378-82. doi: 10.1038/nature14044. Epub 2015 Jan 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universite Paris Diderot, Sorbonne Paris Cite, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France. ; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA. ; Universite Paris Diderot, Sorbonne Paris Cite, Molecules Therapeutiques in silico, INSERM UMR-S 973, 75013 Paris, France. ; 1] INSERM, UMR 866, Equipe labellisee Ligue contre le Cancer and Laboratoire d'Excellence LipSTIC, 21000 Dijon, France [2] University of Burgundy, Faculty of Medicine and Pharmacy, 21000 Dijon, France. ; 1] INSERM, UMR 866, Equipe labellisee Ligue contre le Cancer and Laboratoire d'Excellence LipSTIC, 21000 Dijon, France [2] University of Burgundy, Faculty of Medicine and Pharmacy, 21000 Dijon, France [3] Centre anticancereux George Francois Leclerc, CGFL, 21000 Dijon, France. ; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA. ; Laboratoire de Parasitologie, Ecole Nationale de Medecine Veterinaire, Universite de la Manouba, 2020 Sidi Thabet, Tunisia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25624101" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Cell Line ; *Cell Transformation, Neoplastic/drug effects ; Drug Resistance/genetics ; *Host-Parasite Interactions ; Humans ; Leukocytes/drug effects/parasitology/*pathology ; Naphthoquinones/pharmacology ; Parasites/drug effects/enzymology/pathogenicity ; Peptidylprolyl Isomerase/antagonists & inhibitors/genetics/*metabolism/*secretion ; Protein Stability ; Proto-Oncogene Proteins c-jun/metabolism ; SKP Cullin F-Box Protein Ligases/metabolism ; Signal Transduction/drug effects ; Theileria/drug effects/*enzymology/genetics/*pathogenicity ; Transcription Factor AP-1/metabolism ; Ubiquitination ; Xenograft Model Antitumor Assays ; Zebrafish/embryology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-04-22
    Description: Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections, and comprise nearly 8% of the human genome. The most recently acquired human ERV is HERVK(HML-2), which repeatedly infected the primate lineage both before and after the divergence of the human and chimpanzee common ancestor. Unlike most other human ERVs, HERVK retained multiple copies of intact open reading frames encoding retroviral proteins. However, HERVK is transcriptionally silenced by the host, with the exception of in certain pathological contexts such as germ-cell tumours, melanoma or human immunodeficiency virus (HIV) infection. Here we demonstrate that DNA hypomethylation at long terminal repeat elements representing the most recent genomic integrations, together with transactivation by OCT4 (also known as POU5F1), synergistically facilitate HERVK expression. Consequently, HERVK is transcribed during normal human embryogenesis, beginning with embryonic genome activation at the eight-cell stage, continuing through the emergence of epiblast cells in preimplantation blastocysts, and ceasing during human embryonic stem cell derivation from blastocyst outgrowths. Remarkably, we detected HERVK viral-like particles and Gag proteins in human blastocysts, indicating that early human development proceeds in the presence of retroviral products. We further show that overexpression of one such product, the HERVK accessory protein Rec, in a pluripotent cell line is sufficient to increase IFITM1 levels on the cell surface and inhibit viral infection, suggesting at least one mechanism through which HERVK can induce viral restriction pathways in early embryonic cells. Moreover, Rec directly binds a subset of cellular RNAs and modulates their ribosome occupancy, indicating that complex interactions between retroviral proteins and host factors can fine-tune pathways of early human development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503379/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503379/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grow, Edward J -- Flynn, Ryan A -- Chavez, Shawn L -- Bayless, Nicholas L -- Wossidlo, Mark -- Wesche, Daniel J -- Martin, Lance -- Ware, Carol B -- Blish, Catherine A -- Chang, Howard Y -- Pera, Renee A Reijo -- Wysocka, Joanna -- 1F30CA189514-01/CA/NCI NIH HHS/ -- 1S10RR02678001/RR/NCRR NIH HHS/ -- 1S10RR02933801/RR/NCRR NIH HHS/ -- DP2 AI112193/AI/NIAID NIH HHS/ -- DP2AI11219301/AI/NIAID NIH HHS/ -- F30 CA189514/CA/NCI NIH HHS/ -- P01GM099130/GM/NIGMS NIH HHS/ -- P50-HG007735/HG/NHGRI NIH HHS/ -- R01 GM112720/GM/NIGMS NIH HHS/ -- T32 HG000044/HG/NHGRI NIH HHS/ -- U01 HL100397/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jun 11;522(7555):221-5. doi: 10.1038/nature14308. Epub 2015 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA. ; Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [2] Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [3] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health &Science University, Beaverton, Oregon 97006, USA. ; Stanford Immunology, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA [2] Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [3] Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA. ; Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA. ; Department of Comparative Medicine, University of Washington, Seattle, Washington 98195-8056, USA. ; Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA [2] Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [3] Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [4] Department of Cell Biology and Neurosciences, Montana State University, Bozeman, Montana 59717, USA. ; 1] Institute for Stem Cell Biology &Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA [2] Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA [3] Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25896322" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Differentiation/metabolism ; Blastocyst/cytology/metabolism/*virology ; Cell Line ; DNA Methylation ; Endogenous Retroviruses/genetics/*metabolism ; Female ; Gene Products, gag/metabolism ; Humans ; Male ; Octamer Transcription Factor-3/metabolism ; Open Reading Frames/genetics ; Pluripotent Stem Cells/cytology/metabolism/*virology ; RNA, Messenger/genetics/metabolism ; Ribosomes/genetics/metabolism ; Terminal Repeat Sequences/genetics ; Transcription, Genetic/genetics ; Transcriptional Activation ; Viral Envelope Proteins/genetics/metabolism ; *Virus Activation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-08-11
    Description: The sudden appearance of the neural crest and neurogenic placodes in early branching vertebrates has puzzled biologists for over a century. These embryonic tissues contribute to the development of the cranium and associated sensory organs, which were crucial for the evolution of the vertebrate "new head". A previous study suggests that rudimentary neural crest cells existed in ancestral chordates. However, the evolutionary origins of neurogenic placodes have remained obscure owing to a paucity of embryonic data from tunicates, the closest living relatives to those early vertebrates. Here we show that the tunicate Ciona intestinalis exhibits a proto-placodal ectoderm (PPE) that requires inhibition of bone morphogenetic protein (BMP) and expresses the key regulatory determinant Six1/2 and its co-factor Eya, a developmental process conserved across vertebrates. The Ciona PPE is shown to produce ciliated neurons that express genes for gonadotropin-releasing hormone (GnRH), a G-protein-coupled receptor for relaxin-3 (RXFP3) and a functional cyclic nucleotide-gated channel (CNGA), which suggests dual chemosensory and neurosecretory activities. These observations provide evidence that Ciona has a neurogenic proto-placode, which forms neurons that appear to be related to those derived from the olfactory placode and hypothalamic neurons of vertebrates. We discuss the possibility that the PPE-derived GnRH neurons of Ciona resemble an ancestral cell type, a progenitor to the complex neuronal circuit that integrates sensory information and neuroendocrine functions in vertebrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abitua, Philip Barron -- Gainous, T Blair -- Kaczmarczyk, Angela N -- Winchell, Christopher J -- Hudson, Clare -- Kamata, Kaori -- Nakagawa, Masashi -- Tsuda, Motoyuki -- Kusakabe, Takehiro G -- Levine, Michael -- NS076542/NS/NINDS NIH HHS/ -- England -- Nature. 2015 Aug 27;524(7566):462-5. doi: 10.1038/nature14657. Epub 2015 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Integrative Genomics, Division of Genetics, Genomics and Development, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA. ; Sorbonne Universites, Universite Pierre et Marie Curie, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Observatoire Oceanologique, 06230 Villefranche-sur-mer, France. ; Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan. ; Institute for Integrative Neurobiology and Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26258298" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning ; Bone Morphogenetic Proteins ; Ciona intestinalis/*cytology/*embryology/genetics/metabolism ; Ectoderm/metabolism ; Gonadotropin-Releasing Hormone/metabolism ; HEK293 Cells ; Homeodomain Proteins/metabolism ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; Larva/cytology/metabolism ; Molecular Sequence Data ; Neurons/*cytology/metabolism ; Protein Tyrosine Phosphatases/metabolism ; Receptors, G-Protein-Coupled/metabolism ; Vertebrates/*anatomy & histology/*embryology/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-07-16
    Description: Recent studies into the global causes of severe diarrhoea in young children have identified the protozoan parasite Cryptosporidium as the second most important diarrhoeal pathogen after rotavirus. Diarrhoeal disease is estimated to be responsible for 10.5% of overall child mortality. Cryptosporidium is also an opportunistic pathogen in the contexts of human immunodeficiency virus (HIV)-caused AIDS and organ transplantation. There is no vaccine and only a single approved drug that provides no benefit for those in gravest danger: malnourished children and immunocompromised patients. Cryptosporidiosis drug and vaccine development is limited by the poor tractability of the parasite, which includes a lack of systems for continuous culture, facile animal models, and molecular genetic tools. Here we describe an experimental framework to genetically modify this important human pathogen. We established and optimized transfection of C. parvum sporozoites in tissue culture. To isolate stable transgenics we developed a mouse model that delivers sporozoites directly into the intestine, a Cryptosporidium clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, and in vivo selection for aminoglycoside resistance. We derived reporter parasites suitable for in vitro and in vivo drug screening, and we evaluated the basis of drug susceptibility by gene knockout. We anticipate that the ability to genetically engineer this parasite will be transformative for Cryptosporidium research. Genetic reporters will provide quantitative correlates for disease, cure and protection, and the role of parasite genes in these processes is now open to rigorous investigation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640681/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640681/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vinayak, Sumiti -- Pawlowic, Mattie C -- Sateriale, Adam -- Brooks, Carrie F -- Studstill, Caleb J -- Bar-Peled, Yael -- Cipriano, Michael J -- Striepen, Boris -- R01 AI112427/AI/NIAID NIH HHS/ -- R01AI112427/AI/NIAID NIH HHS/ -- T32 AI060546/AI/NIAID NIH HHS/ -- T32AI060546/AI/NIAID NIH HHS/ -- England -- Nature. 2015 Jul 23;523(7561):477-80. doi: 10.1038/nature14651. Epub 2015 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Tropical and Emerging Global Diseases, University of Georgia, Paul D. Coverdell Center, 500 D.W. Brooks Drive, Athens, Georgia 30602, USA. ; 1] Center for Tropical and Emerging Global Diseases, University of Georgia, Paul D. Coverdell Center, 500 D.W. Brooks Drive, Athens, Georgia 30602, USA [2] Department of Cellular Biology, University of Georgia, Paul D. Coverdell Center, 500 D.W. Brooks Drive, Athens, Georgia 30602, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26176919" target="_blank"〉PubMed〈/a〉
    Keywords: Aminoglycosides/pharmacology ; Animals ; Antimalarials/pharmacology ; CRISPR-Cas Systems ; Cell Line ; Cryptosporidiosis/complications/*parasitology ; Cryptosporidium parvum/enzymology/*genetics/growth & development ; Diarrhea/complications/*parasitology ; Drug Evaluation, Preclinical ; Drug Resistance ; Female ; Gene Deletion ; Gene Knockout Techniques ; Genes, Reporter ; Genetic Engineering/*methods ; Humans ; Intestines/parasitology ; Mice ; Models, Animal ; Sporozoites ; Thymidine Kinase/deficiency/genetics ; Transfection/methods ; Trimethoprim/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-02-03
    Description: The alternative non-homologous end-joining (NHEJ) machinery facilitates several genomic rearrangements, some of which can lead to cellular transformation. This error-prone repair pathway is triggered upon telomere de-protection to promote the formation of deleterious chromosome end-to-end fusions. Using next-generation sequencing technology, here we show that repair by alternative NHEJ yields non-TTAGGG nucleotide insertions at fusion breakpoints of dysfunctional telomeres. Investigating the enzymatic activity responsible for the random insertions enabled us to identify polymerase theta (Poltheta; encoded by Polq in mice) as a crucial alternative NHEJ factor in mammalian cells. Polq inhibition suppresses alternative NHEJ at dysfunctional telomeres, and hinders chromosomal translocations at non-telomeric loci. In addition, we found that loss of Polq in mice results in increased rates of homology-directed repair, evident by recombination of dysfunctional telomeres and accumulation of RAD51 at double-stranded breaks. Lastly, we show that depletion of Poltheta has a synergistic effect on cell survival in the absence of BRCA genes, suggesting that the inhibition of this mutagenic polymerase represents a valid therapeutic avenue for tumours carrying mutations in homology-directed repair genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718306/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718306/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mateos-Gomez, Pedro A -- Gong, Fade -- Nair, Nidhi -- Miller, Kyle M -- Lazzerini-Denchi, Eros -- Sfeir, Agnel -- AG038677/AG/NIA NIH HHS/ -- P30 CA016087/CA/NCI NIH HHS/ -- R01 AG038677/AG/NIA NIH HHS/ -- England -- Nature. 2015 Feb 12;518(7538):254-7. doi: 10.1038/nature14157. Epub 2015 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York 10016, USA. ; Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin. 2506 Speedway Stop A5000, Austin, Texas 78712, USA. ; Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25642960" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Death/genetics ; Cell Line ; Chromosome Aberrations ; Chromosomes, Mammalian/genetics/*metabolism ; *DNA Breaks, Double-Stranded ; *DNA End-Joining Repair ; DNA-Directed DNA Polymerase/deficiency/*metabolism ; Genes, BRCA1 ; Genes, BRCA2 ; HeLa Cells ; Humans ; Mice ; Poly(ADP-ribose) Polymerases/genetics/metabolism ; Rad51 Recombinase/metabolism ; *Recombination, Genetic/genetics ; Recombinational DNA Repair/genetics ; Telomere/*genetics/*metabolism ; Translocation, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-03-13
    Description: Stochastic processes in cells are associated with fluctuations in mRNA, protein production and degradation, noisy partition of cellular components at division, and other cell processes. Variability within a clonal population of cells originates from such stochastic processes, which may be amplified or reduced by deterministic factors. Cell-to-cell variability, such as that seen in the heterogeneous response of bacteria to antibiotics, or of cancer cells to treatment, is understood as the inevitable consequence of stochasticity. Variability in cell-cycle duration was observed long ago; however, its sources are still unknown. A central question is whether the variance of the observed distribution originates from stochastic processes, or whether it arises mostly from a deterministic process that only appears to be random. A surprising feature of cell-cycle-duration inheritance is that it seems to be lost within one generation but to be still present in the next generation, generating poor correlation between mother and daughter cells but high correlation between cousin cells. This observation suggests the existence of underlying deterministic factors that determine the main part of cell-to-cell variability. We developed an experimental system that precisely measures the cell-cycle duration of thousands of mammalian cells along several generations and a mathematical framework that allows discrimination between stochastic and deterministic processes in lineages of cells. We show that the inter- and intra-generation correlations reveal complex inheritance of the cell-cycle duration. Finally, we build a deterministic nonlinear toy model for cell-cycle inheritance that reproduces the main features of our data. Our approach constitutes a general method to identify deterministic variability in lineages of cells or organisms, which may help to predict and, eventually, reduce cell-to-cell heterogeneity in various systems, such as cancer cells under treatment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sandler, Oded -- Mizrahi, Sivan Pearl -- Weiss, Noga -- Agam, Oded -- Simon, Itamar -- Balaban, Nathalie Q -- England -- Nature. 2015 Mar 26;519(7544):468-71. doi: 10.1038/nature14318. Epub 2015 Mar 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel. ; 1] Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel [2] Racah Institute of Physics, Edmond J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel. ; Racah Institute of Physics, Edmond J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25762143" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Cell Cycle/drug effects/*genetics ; Cell Division/drug effects/genetics ; Cell Line ; *Cell Lineage ; Mammals ; Models, Biological ; Stochastic Processes ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-11-27
    Description: Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be a two-step process catalysed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetically advantageous. This functional separation has puzzled microbiologists for a century. Here we report on the discovery and cultivation of a completely nitrifying bacterium from the genus Nitrospira, a globally distributed group of nitrite oxidizers. The genome of this chemolithoautotrophic organism encodes the pathways both for ammonia and nitrite oxidation, which are concomitantly activated during growth by ammonia oxidation to nitrate. Genes affiliated with the phylogenetically distinct ammonia monooxygenase and hydroxylamine dehydrogenase genes of Nitrospira are present in many environments and were retrieved on Nitrospira-contigs in new metagenomes from engineered systems. These findings fundamentally change our picture of nitrification and point to completely nitrifying Nitrospira as key components of nitrogen-cycling microbial communities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Daims, Holger -- Lebedeva, Elena V -- Pjevac, Petra -- Han, Ping -- Herbold, Craig -- Albertsen, Mads -- Jehmlich, Nico -- Palatinszky, Marton -- Vierheilig, Julia -- Bulaev, Alexandr -- Kirkegaard, Rasmus H -- von Bergen, Martin -- Rattei, Thomas -- Bendinger, Bernd -- Nielsen, Per H -- Wagner, Michael -- England -- Nature. 2015 Dec 24;528(7583):504-9. doi: 10.1038/nature16461. Epub 2015 Nov 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria. ; Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia. ; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark. ; Helmholtz-Centre for Environmental Research - UFZ, Department of Proteomics, Permoserstrasse 15, 04318 Leipzig, Germany. ; Helmholtz-Centre for Environmental Research - UFZ, Department of Metabolomics, Permoserstrasse 15, 04318 Leipzig, Germany. ; Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria. ; DVGW-Forschungsstelle TUHH, Hamburg University of Technology, 21073 Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26610024" target="_blank"〉PubMed〈/a〉
    Keywords: Ammonia/*metabolism ; Bacteria/enzymology/genetics/growth & development/*metabolism ; Evolution, Molecular ; Genome, Bacterial/genetics ; Molecular Sequence Data ; Nitrates/*metabolism ; *Nitrification/genetics ; Nitrites/*metabolism ; Oxidation-Reduction ; Oxidoreductases/genetics/metabolism ; Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-04-22
    Description: About half of human genes use alternative cleavage and polyadenylation (ApA) to generate messenger RNA transcripts that differ in the length of their 3' untranslated regions (3' UTRs) while producing the same protein. Here we show in human cell lines that alternative 3' UTRs differentially regulate the localization of membrane proteins. The long 3' UTR of CD47 enables efficient cell surface expression of CD47 protein, whereas the short 3' UTR primarily localizes CD47 protein to the endoplasmic reticulum. CD47 protein localization occurs post-translationally and independently of RNA localization. In our model of 3' UTR-dependent protein localization, the long 3' UTR of CD47 acts as a scaffold to recruit a protein complex containing the RNA-binding protein HuR (also known as ELAVL1) and SET to the site of translation. This facilitates interaction of SET with the newly translated cytoplasmic domains of CD47 and results in subsequent translocation of CD47 to the plasma membrane via activated RAC1 (ref. 5). We also show that CD47 protein has different functions depending on whether it was generated by the short or long 3' UTR isoforms. Thus, ApA contributes to the functional diversity of the proteome without changing the amino acid sequence. 3' UTR-dependent protein localization has the potential to be a widespread trafficking mechanism for membrane proteins because HuR binds to thousands of mRNAs, and we show that the long 3' UTRs of CD44, ITGA1 and TNFRSF13C, which are bound by HuR, increase surface protein expression compared to their corresponding short 3' UTRs. We propose that during translation the scaffold function of 3' UTRs facilitates binding of proteins to nascent proteins to direct their transport or function--and this role of 3' UTRs can be regulated by ApA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697748/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697748/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berkovits, Binyamin D -- Mayr, Christine -- DRR-24-13/Damon Runyon Cancer Research Foundation/ -- P30 CA008748/CA/NCI NIH HHS/ -- U01 CA164190/CA/NCI NIH HHS/ -- U01-CA164190/CA/NCI NIH HHS/ -- England -- Nature. 2015 Jun 18;522(7556):363-7. doi: 10.1038/nature14321. Epub 2015 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25896326" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/*genetics ; Antigens, CD47/*genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism ; ELAV Proteins/metabolism ; ELAV-Like Protein 1 ; Endoplasmic Reticulum/metabolism ; Genes, Reporter ; Histone Chaperones/metabolism ; Humans ; Membrane Proteins/*metabolism ; Polyadenylation ; Protein Transport ; RNA Isoforms/*genetics/metabolism ; RNA, Messenger/chemistry/genetics/metabolism ; Transcription Factors/metabolism ; rac1 GTP-Binding Protein/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-03-25
    Description: The first step in the biogenesis of microRNAs is the processing of primary microRNAs (pri-miRNAs) by the microprocessor complex, composed of the RNA-binding protein DGCR8 and the type III RNase DROSHA. This initial event requires recognition of the junction between the stem and the flanking single-stranded RNA of the pri-miRNA hairpin by DGCR8 followed by recruitment of DROSHA, which cleaves the RNA duplex to yield the pre-miRNA product. While the mechanisms underlying pri-miRNA processing have been determined, the mechanism by which DGCR8 recognizes and binds pri-miRNAs, as opposed to other secondary structures present in transcripts, is not understood. Here we find in mammalian cells that methyltransferase-like 3 (METTL3) methylates pri-miRNAs, marking them for recognition and processing by DGCR8. Consistent with this, METTL3 depletion reduced the binding of DGCR8 to pri-miRNAs and resulted in the global reduction of mature miRNAs and concomitant accumulation of unprocessed pri-miRNAs. In vitro processing reactions confirmed the sufficiency of the N(6)-methyladenosine (m(6)A) mark in promoting pri-miRNA processing. Finally, gain-of-function experiments revealed that METTL3 is sufficient to enhance miRNA maturation in a global and non-cell-type-specific manner. Our findings reveal that the m(6)A mark acts as a key post-transcriptional modification that promotes the initiation of miRNA biogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475635/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475635/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alarcon, Claudio R -- Lee, Hyeseung -- Goodarzi, Hani -- Halberg, Nils -- Tavazoie, Sohail F -- T32 CA009673/CA/NCI NIH HHS/ -- England -- Nature. 2015 Mar 26;519(7544):482-5. doi: 10.1038/nature14281. Epub 2015 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Systems Cancer Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799998" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/metabolism ; Base Sequence ; Cell Line ; Gene Expression Regulation ; Humans ; Methylation ; Methyltransferases/deficiency/metabolism ; MicroRNAs/*chemistry/*metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; *RNA Processing, Post-Transcriptional ; RNA-Binding Proteins/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1990-08-10
    Description: The stimulation of phospholipase A2 by thrombin and type 2 (P2)-purinergic receptor agonists in Chinese hamster ovary cells is mediated by the G protein Gi. To delineate alpha chain regulatory regions responsible for control of phospholipase A2, chimeric cDNAs were constructed in which different lengths of the alpha subunit of Gs (alpha s) were replaced with the corresponding sequence of the Gi alpha subunit (alpha i2). When a carboxyl-terminal chimera alpha s-i(38), which has the last 38 amino acids of alpha s substituted with the last 36 residues of alpha i2, was expressed in Chinese hamster ovary cells, the receptor-stimulated phospholipase A2 activity was inhibited, although the chimera could still activate adenylyl cyclase. Thus, alpha s-i(38) is an active alpha s, but also a dominant negative alpha i molecule, indicating that the last 36 amino acids of alpha i2 are a critical domain for G protein regulation of phospholipase A2 activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gupta, S K -- Diez, E -- Heasley, L E -- Osawa, S -- Johnson, G L -- DK37871/DK/NIDDK NIH HHS/ -- GM30324/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 10;249(4969):662-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Basic Sciences, National Jewish Center for Immunology and Respiratory Medicine, Denver, CO 80206.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2166341" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/pharmacology ; Animals ; Arachidonic Acid ; Arachidonic Acids/metabolism ; Cell Line ; Chlorides/pharmacology ; Enzyme Activation ; GTP-Binding Proteins/*genetics/metabolism ; Inositol Phosphates/metabolism ; Kinetics ; Lithium/pharmacology ; Lithium Chloride ; Macromolecular Substances ; *Mutation ; Phospholipases/*metabolism ; Phospholipases A/*metabolism ; Phospholipases A2 ; Receptors, Purinergic/drug effects/*physiology ; Restriction Mapping ; Thrombin/antagonists & inhibitors/*pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1990-08-17
    Description: The transcription factor C/EBP uses a bipartite structural motif to bind DNA. Two protein chains dimerize through a set of amphipathic alpha helices termed the leucine zipper. Highly basic polypeptide regions emerge from the zipper to form a linked set of DNA contact surfaces. In the recently proposed a "scissors grip" model, the paired set of basic regions begin DNA contact at a central point and track in opposite directions along the major groove, forming a molecular clamp around DNA. This model predicts that C/EBP must undertake significant changes in protein conformation as it binds and releases DNA. The basic region of ligand-free C/EBP is highly sensitive to protease digestion. Pronounced resistance to proteolysis occurred when C/EBP associated with its specific DNA substrate. Sequencing of discrete proteolytic fragments showed that prominent sites for proteolysis occur at two junction points predicted by the "scissors grip" model. One junction corresponds to the cleft where the basic regions emerge from the leucine zipper. The other corresponds to a localized nonhelical segment that has been hypothesized to contain an N-cap and facilitate the sharp angulation necessary for the basic region to track continuously in the major groove of DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shuman, J D -- Vinson, C R -- McKnight, S L -- New York, N.Y. -- Science. 1990 Aug 17;249(4970):771-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Research Laboratories, Department of Embryology, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2202050" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; CCAAT-Enhancer-Binding Proteins ; Chromatography, High Pressure Liquid ; DNA/*metabolism ; DNA-Binding Proteins/metabolism ; Kinetics ; Leucine ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/*metabolism ; Peptide Fragments/metabolism ; Peptide Hydrolases/*metabolism ; Protein Conformation ; Transcription Factors/*metabolism ; Trypsin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1990-10-12
    Description: The mechanism by which phytohormones, like abscisic acid (ABA), regulate gene expression is unknown. An activity in nuclear extracts that interacts with the ABA response element (ABRE) from the 5' regulatory region of the wheat Em gene was identified. A complementary DNA clone was isolated whose product is a DNA binding protein (EmBP-1) that interacts specifically with an 8-base pair (bp) sequence (CACGTGGC) in the ABRE. A 2-bp mutation in this sequence prevented binding of EmBP-1. The same mutation reduced the ability of the ABRE to confer ABA responsiveness on a viral promoter in a transient assay. The 8-bp EmBP-1 target sequence was found to be conserved in several other ABA-responsive promoters and in promoters from plants that respond to signals other than ABA. Similar sequences are found in promoters from mammals, yeast, and in the major late promoter of adenovirus. The deduced amino acid sequence of EmBP-1 contains conserved basic and leucine zipper domains found in transcription factors in plants, yeast, and mammals. EmBP-1 may be a member of a highly conserved family of proteins that recognize a core sequence found in the regulatory regions of various genes that are integrated into a number of different response pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guiltinan, M J -- Marcotte, W R Jr -- Quatrano, R S -- New York, N.Y. -- Science. 1990 Oct 12;250(4978):267-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of North Carolina, Chapel Hill 27599-3280.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2145628" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*metabolism ; Amino Acid Sequence ; Base Sequence ; Cell Nucleus/metabolism ; DNA/*genetics ; DNA-Binding Proteins/genetics/metabolism ; *Gene Expression Regulation ; *Leucine Zippers/genetics ; Molecular Sequence Data ; Oligonucleotide Probes ; Plants/*genetics ; Sequence Homology, Nucleic Acid ; Triticum/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-02-02
    Description: The RNA moiety of the ribonucleoprotein enzyme telomerase from the ciliate Euplotes crassus was identified and its gene was sequenced. Functional analysis, in which oligonucleotides complementary to portions of the telomerase RNA were tested for their ability to prime telomerase in vitro, showed that the sequence 5' CAAAACCCCAAA 3' in this RNA is the template for synthesis of telomeric TTTTGGGG repeats by the Euplotes telomerase. The data provide a direct demonstration of a template function for a telomerase RNA and demarcate the outer boundaries of the telomeric template. Telomerase can now be defined as a specialized reverse transcriptase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shippen-Lentz, D -- Blackburn, E H -- New York, N.Y. -- Science. 1990 Feb 2;247(4942):546-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1689074" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Ciliophora/enzymology/*genetics ; DNA Nucleotidylexotransferase/*genetics ; Genes ; Molecular Sequence Data ; Oligonucleotide Probes ; RNA/*genetics ; Sequence Homology, Nucleic Acid ; *Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1990-07-06
    Description: Oligonucleotides equipped with EDTA-Fe can bind specifically to duplex DNA by triple-helix formation and produce double-strand cleavage at binding sites greater than 12 base pairs in size. To demonstrate that oligonucleotide-directed triple-helix formation is a viable chemical approach for the site-specific cleavage of large genomic DNA, an oligonucleotide with EDTA-Fe at the 5' and 3' ends was targeted to a 20-base pair sequence in the 340-kilobase pair chromosome III of Saccharomyces cerevisiae. Double-strand cleavage products of the correct size and location were observed, indicating that the oligonucleotide bound and cleaved the target site among almost 14 megabase pairs of DNA. Because oligonucleotide-directed triple-helix formation has the potential to be a general solution for DNA recognition, this result has implications for physical mapping of chromosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strobel, S A -- Dervan, P B -- GM 42966/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 6;249(4964):73-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Arnold and Mabel Beckman Laboratories of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2195655" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Chromosomes, Fungal/*metabolism ; DNA, Fungal/*genetics/metabolism ; Densitometry ; Hydrogen-Ion Concentration ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleic Acid Hybridization ; Oligonucleotides/*genetics/metabolism ; Saccharomyces cerevisiae/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1990-11-02
    Description: Voltage-gated sodium channels are transmembrane proteins of approximately 2000 amino acids and consist of four homologous domains (I through IV). In current topographical models, domains III and IV are linked by a highly conserved cytoplasmic sequence of amino acids. Disruptions of the III-IV linker by cleavage or antibody binding slow inactivation, the depolarization-induced closed state characteristic of sodium channels. This linker might be the positively charged "ball" that is thought to cause inactivation by occluding the open channel. Therefore, groups of two or three contiguous lysines were neutralized or a glutamate was substituted for an arginine in the III-IV linker of type III rat brain sodium channels. In all cases, inactivation occurred more rapidly rather than more slowly, contrary to predictions. Furthermore, activation was delayed in the arginine to glutamate mutation. Hence, the III-IV linker does not simply act as a charged blocker of the channel but instead influences all aspects of sodium channel gating.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moorman, J R -- Kirsch, G E -- Brown, A M -- Joho, R H -- HL-36930/HL/NHLBI NIH HHS/ -- KL-01858/PHS HHS/ -- NS-23877/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 2;250(4981):688-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Texas Medical Branch, Galveston 77550.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2173138" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cytoplasm/physiology ; Molecular Sequence Data ; *Mutation ; RNA, Messenger/analysis ; Sodium Channels/chemistry/genetics/*physiology ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1990-02-09
    Description: The control of cellular senescence by specific human chromosomes was examined in interspecies cell hybrids between diploid human fibroblasts and an immortal, Syrian hamster cell line. Most such hybrids exhibited a limited life span comparable to that of the human fibroblasts, indicating that cellular senescence is dominant in these hybrids. Karyotypic analyses of the hybrid clones that did not senesce revealed that all these clones had lost both copies of human chromosome 1, whereas all other human chromosomes were observed in at least some of the immortal hybrids. The application of selective pressure for retention of human chromosome 1 to the cell hybrids resulted in an increased percentage of hybrids that senesced. Further, the introduction of a single copy of human chromosome 1 to the hamster cells by microcell fusion caused typical signs of cellular senescence. Transfer of chromosome 11 had no effect on the growth of the cells. These findings indicate that human chromosome 1 may participate in the control of cellular senescence and further support a genetic basis for cellular senescence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sugawara, O -- Oshimura, M -- Koi, M -- Annab, L A -- Barrett, J C -- New York, N.Y. -- Science. 1990 Feb 9;247(4943):707-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2300822" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Survival/*genetics ; Chromosome Mapping ; *Chromosomes, Human, Pair 1 ; Clone Cells ; Cricetinae ; Diploidy ; Fibroblasts/*cytology ; Humans ; Hybrid Cells/*cytology ; Hypoxanthine Phosphoribosyltransferase/genetics ; Karyotyping ; Mice ; Ploidies ; Transfection ; Translocation, Genetic ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1990-08-31
    Description: The protein encoded by the wild-type p53 proto-oncogene has been shown to suppress transformation, whereas certain mutations that alter p53 become transformation competent. Fusion proteins between p53 and the GAL4 DNA binding domain were made to anchor p53 to a DNA target sequence and to allow measurement of transcriptional activation of a reporter plasmid. The wild-type p53 stimulated transcription in this assay, but two transforming mutations in p53 were unable to act as transcriptional activators. Therefore, p53 can activate transcription, and transformation-activating mutations result in a loss of function of the p53 protein. The inability of the p53 mutant proteins to activate transcription may enable them to be transformation competent.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935288/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935288/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raycroft, L -- Wu, H Y -- Lozano, G -- CA16672/CA/NCI NIH HHS/ -- CA47296/CA/NCI NIH HHS/ -- R01 CA047296/CA/NCI NIH HHS/ -- R01 CA047296-12/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 31;249(4972):1049-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Texas, M. D. Anderson Cancer Center, Department of Molecular Genetics, Houston 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2144364" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Cell Transformation, Neoplastic ; *Gene Expression Regulation ; HeLa Cells/metabolism ; Humans ; Molecular Sequence Data ; *Mutation ; Nuclear Proteins/genetics ; Oligonucleotide Probes ; Oncogene Proteins/*genetics ; Phosphoproteins/*genetics ; *Proto-Oncogenes ; RNA, Messenger/genetics ; Suppression, Genetic ; Transcription Factors/*genetics ; *Transcription, Genetic ; Tumor Suppressor Protein p53
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1990-01-05
    Description: A nonlysosomal pathway exists for the degradation of newly synthesized proteins retained within the endoplasmic reticulum (ER). This pathway is extremely selective: whereas some proteins are rapidly degraded, others survive for long periods in the ER. The question of whether this selectivity is due to the presence within the sensitive proteins of definable peptide sequences that are sufficient to target them for degradation has been addressed. Deletion of a carboxyl-terminal sequence, comprising the transmembrane domain and short cytoplasmic tail of the alpha chain of the T cell antigen receptor (TCR-alpha), prevented the rapid degradation of this polypeptide. Fusion of this carboxyl-terminal sequence to the extracellular domain of the Tac antigen, a protein that is normally transported to the cell surface where it survives long-term, resulted in the retention and rapid degradation of the chimeric protein in the ER. Additional mutagenesis revealed that the transmembrane domain of TCR-alpha alone was sufficient to cause degradation within the ER. This degradation was not a direct consequence of retention in the ER, as blocking transport of newly synthesized proteins out of the ER with brefeldin A did not lead to degradation of the normal Tac antigen. It is proposed that a 23-amino acid sequence, comprising the transmembrane domain of TCR-alpha, contains information that determines targeting for degradation within the ER system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonifacino, J S -- Suzuki, C K -- Klausner, R D -- New York, N.Y. -- Science. 1990 Jan 5;247(4938):79-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2294595" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Endoplasmic Reticulum/*metabolism ; Humans ; Molecular Sequence Data ; Peptide Fragments/*metabolism ; Proteins/*metabolism ; Receptors, Antigen, T-Cell/metabolism ; Receptors, Interleukin-2/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-08-10
    Description: Heterokaryon studies suggest that senescent and quiescent human diploid fibroblasts (HDF) contain a common inhibitor of entry into S phase. DNA synthesis can be induced in senescent and quiescent HDF by fusing them with cells containing DNA viral oncogenes such as SV40 T antigen, adenovirus E1A, or human papillomavirus E7. Both senescent and quiescent HDF contained the unphosphorylated form (p110Rb) of the retinoblastoma protein, a putative inhibitor of proliferation. After serum stimulation, senescent HDF did not phosphorylate p110Rb and did not enter S phase, whereas quiescent HDF phosphorylated p110Rb and entered S phase. These findings, combined with the observations that T antigen, E1A, and E7 form complexes with, and presumably inactivate, unphosphorylated p110Rb, suggest that failure to phosphorylate p110Rb may be an immediate cause of failure to enter S phase in senescent HDF.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stein, G H -- Beeson, M -- Gordon, L -- AG 00947/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 10;249(4969):666-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2166342" target="_blank"〉PubMed〈/a〉
    Keywords: Adenovirus Early Proteins ; Antigens, Polyomavirus Transforming/genetics ; Cell Division ; Cell Line ; Fibroblasts/cytology/metabolism ; Humans ; Interphase ; Molecular Weight ; Nuclear Proteins/*metabolism ; Oncogene Proteins, Viral/metabolism ; Oncogenes ; Papillomaviridae/genetics ; Phosphoproteins/isolation & purification/*metabolism ; Phosphorylation ; Retinoblastoma Protein ; Simian virus 40/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1990-01-12
    Description: The murine white spotting locus (W) is allelic with the proto-oncogene c-kit, which encodes a transmembrane tyrosine protein kinase receptor for an unknown ligand. Mutations at the W locus affect various aspects of hematopoiesis and the proliferation and migration of primordial germ cells and melanoblasts during development to varying degrees of severity. The W42 mutation has a particularly severe effect in both the homozygous and the heterozygous states. The molecular basis of the W42 mutation was determined. The c-kit protein products in homozygous mutant mast cells were expressed normally but displayed a defective tyrosine kinase activity in vitro. Nucleotide sequence analysis of mutant complementary DNAs revealed a missense mutation that replaces aspartic acid with asparagine at position 790 in the c-kit protein product. Aspartic acid-790 is a conserved residue in all protein kinases. These results provide an explanation for the dominant nature of the W42 mutation and provide insight into the mechanism of c-kit-mediated signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tan, J C -- Nocka, K -- Ray, P -- Traktman, P -- Besmer, P -- P01-CA-16599/CA/NCI NIH HHS/ -- R01-CA-32926/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Jan 12;247(4939):209-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Program, Sloan Kettering Institute, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1688471" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cells, Cultured ; DNA/genetics ; Gene Expression ; Homozygote ; Liver/analysis/cytology/embryology ; Mast Cells/metabolism ; Mice ; Molecular Sequence Data ; *Mutation ; *Phenotype ; Polymerase Chain Reaction ; Protein-Tyrosine Kinases/*genetics ; Proto-Oncogene Proteins/*genetics ; Proto-Oncogene Proteins c-kit ; RNA/analysis ; Receptors, Cell Surface/genetics ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1990-07-27
    Description: There is currently a need for vaccine development to improve the immunogenicity of protective epitopes, which themselves are often poorly immunogenic. Although the immunogenicity of these epitopes can be enhanced by linking them to highly immunogenic carriers, such carriers derived from current vaccines have not proven to be generally effective. One reason may be related to epitope-specific suppression, in which prior vaccination with a protein can inhibit the antibody response to new epitopes linked to the protein. To circumvent such inhibition, a peptide from tetanus toxoid was identified that, when linked to a B cell epitope and injected into tetanus toxoid-primed recipients, retained sequences for carrier but not suppressor function. The antibody response to the B cell epitope was enhanced. This may be a general method for taking advantage of previous vaccinations in the development of new vaccines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Etlinger, H M -- Gillessen, D -- Lahm, H W -- Matile, H -- Schonfeld, H J -- Trzeciak, A -- New York, N.Y. -- Science. 1990 Jul 27;249(4967):423-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Central Research Unit F. Hoffmann-La Roche, Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1696030" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, Protozoan/*immunology ; B-Lymphocytes/immunology ; Epitopes/*immunology ; Humans ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Peptide Fragments/immunology ; Plasmodium falciparum/*immunology ; T-Lymphocytes/immunology ; T-Lymphocytes, Helper-Inducer/immunology ; T-Lymphocytes, Regulatory/immunology ; Tetanus Toxoid/*immunology ; *Vaccination ; Vaccines/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 1990-06-01
    Description: The amyloid beta peptide (A beta P) is a small fragment of the much larger, broadly distributed amyloid precursor protein (APP). Abundant A beta P deposition in the brains of patients with Alzheimer's disease suggests that altered APP processing may represent a key pathogenic event. Direct protein structural analyses showed that constitutive processing in human embryonic kidney 293 cells cleaves APP in the interior of the A beta P, thus preventing A beta P deposition. A deficiency of this processing event may ultimately prove to be the etiological event in Alzheimer's disease that gives rise to senile plaque formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Esch, F S -- Keim, P S -- Beattie, E C -- Blacher, R W -- Culwell, A R -- Oltersdorf, T -- McClure, D -- Ward, P J -- New York, N.Y. -- Science. 1990 Jun 1;248(4959):1122-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Athena Neurosciences, Incorporated, South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2111583" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amyloid/isolation & purification/*metabolism ; Amyloid beta-Protein Precursor ; Humans ; Molecular Sequence Data ; Peptide Fragments/isolation & purification ; Protein Precursors/isolation & purification/*metabolism ; Protein Processing, Post-Translational/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-04-27
    Description: Light-dependent expression of rbcS, the gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase, which is the key enzyme involved in carbon fixation in higher plants, is regulated at the transcriptional level. Sequence analysis of the gene has uncovered a conserved GT motif in the -150 to -100 region of many rbcS promoters. This motif serves as the binding site of a nuclear factor, designated GT-1. Analysis of site-specific mutants of pea rbcS-3A promoter demonstrated that GT-1 binding in vitro is correlated with light-responsive expression of the rbcS promoter in transgenic plants. However, it is not known whether factors other than GT-1 might also be required for activation of transcription by light. A synthetic tetramer of box II (TGTGTGGTTAATATG), the GT-1 binding site located between -152 to -138 of the rbcS-3A promoter, inserted upstream of a truncated cauliflower mosaic virus 35S promoter is sufficient to confer expression in leaves of transgenic tobacco. This expression occurs principally in chloroplast-containing cells, is induced by light, and is correlated with the ability of box II to bind GT-1 in vitro. The data show that the binding site for GT-1 is likely to be a part of the molecular light switch for rbcS activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lam, E -- Chua, N H -- New York, N.Y. -- Science. 1990 Apr 27;248(4954):471-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Plant Molecular Biology, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2330508" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Chloramphenicol O-Acetyltransferase/genetics ; Cloning, Molecular ; DNA-Binding Proteins/*metabolism ; Gene Expression Regulation/*physiology ; Genetic Vectors ; *Light ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/*metabolism ; Plant Proteins/*metabolism ; *Plants, Toxic ; Promoter Regions, Genetic/genetics ; Ribulose-Bisphosphate Carboxylase/*genetics ; Tobacco/enzymology/*genetics ; Transcription, Genetic/radiation effects ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1990-06-29
    Description: The human immunodeficiency virus (HIV) tat protein (Tat) is a positive regulator of virus gene expression and replication. Biotinylated Tat was used as a probe to screen a lambda gt11 fusion protein library, and a complementary DNA encoding a protein that interacts with Tat was cloned. Expression of this protein, designated TBP-1 (for Tat binding protein-1), was observed in a variety of cell lines, with expression being highest in human cells. TBP-1 was localized predominantly in the nucleus, which is consistent with the nuclear localization of Tat. In cotransfection experiments, expression of TBP-1 was able to specifically suppress Tat-mediated transactivation. The strategy described may be useful for direct identification and cloning of genes encoding proteins that associate with other proteins to modulate their activity in a positive or negative fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nelbock, P -- Dillon, P J -- Perkins, A -- Rosen, C A -- New York, N.Y. -- Science. 1990 Jun 29;248(4963):1650-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology and Virology, Roche Institute of Molecular Biology, Hoffmann-La Roche Inc., Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2194290" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cloning, Molecular ; DNA, Neoplasm/genetics ; DNA-Binding Proteins/*genetics/metabolism ; Escherichia coli/genetics ; Gene Expression ; Gene Library ; Gene Products, tat/*metabolism ; HIV/genetics ; Humans ; Molecular Sequence Data ; Plasmids ; Polymerase Chain Reaction ; *Proteasome Endopeptidase Complex ; Recombinant Fusion Proteins/metabolism ; Trans-Activators/*metabolism ; Transcriptional Activation ; Transfection ; tat Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 1990-03-09
    Description: An antibody to a platelet integral membrane glycoprotein was found to cross-react with the previously identified CD31 myelomonocytic differentiation antigen and with hec7, an endothelial cell protein that is enriched at intercellular junctions. This antibody identified a complementary DNA clone from an endothelial cell library. The 130-kilodalton translated sequence contained six extracellular immunoglobulin (Ig)-like domains and was most similar to the cell adhesion molecule (CAM) subgroup of the Ig superfamily. This is the only known member of the CAM family on platelets. Its cell surface distribution suggests participation in cellular recognition events.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Newman, P J -- Berndt, M C -- Gorski, J -- White, G C 2nd -- Lyman, S -- Paddock, C -- Muller, W A -- HL-40926/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 9;247(4947):1219-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Blood Center of Southeastern Wisconsin, Milwaukee 53233.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1690453" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal ; Antigens, CD31 ; Antigens, Differentiation, Myelomonocytic/*genetics ; Cell Adhesion Molecules/*genetics ; *Cloning, Molecular ; DNA/analysis ; Endothelium, Vascular/analysis/immunology ; Epitopes/immunology ; *Genes, Immunoglobulin ; Humans ; Immunoblotting ; Immunoglobulins ; Immunosorbent Techniques ; Molecular Sequence Data ; Platelet Membrane Glycoproteins/immunology ; Protein Conformation ; Repetitive Sequences, Nucleic Acid ; Sequence Homology, Nucleic Acid ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1990-07-13
    Description: The heterotrimeric guanine nucleotide-binding regulatory proteins act at the inner surface of the plasma membrane to relay information from cell surface receptors to effectors inside the cell. These G proteins are not integral membrane proteins, yet are membrane associated. The processing and function of the gamma subunit of the yeast G protein involved in mating-pheromone signal transduction was found to be affected by the same mutations that block ras processing. The nature of these mutations implied that the gamma subunit was polyisoprenylated and that this modification was necessary for membrane association and biological activity. A microbial screen was developed for pharmacological agents that inhibit polyisoprenylation and that have potential application in cancer therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finegold, A A -- Schafer, W R -- Rine, J -- Whiteway, M -- Tamanoi, F -- CA 41996/CA/NCI NIH HHS/ -- GM 07183/GM/NIGMS NIH HHS/ -- GM 35827/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 13;249(4965):165-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1695391" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Membrane/metabolism ; Cloning, Molecular ; Epitopes/genetics ; GTP-Binding Proteins/genetics/*metabolism ; Hemagglutinins, Viral/immunology ; Lovastatin/pharmacology ; Mevalonic Acid/pharmacology ; Molecular Sequence Data ; Mutation ; Oncogene Protein p21(ras)/genetics/*metabolism ; Orthomyxoviridae/immunology ; Protein Processing, Post-Translational ; Saccharomyces cerevisiae/*genetics/metabolism ; Signal Transduction ; Suppression, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1990-08-24
    Description: The protein Felix was designed de novo to fold into an antiparallel four-helix bundle of specific topology. Its sequence of 79 amino acid residues is not homologous to any known protein sequence, but is "native-like" in that it is nonrepetitive and contains 19 of the 20 naturally occurring amino acids. Felix has been expressed from a synthetic gene cloned in Escherichia coli, and the protein has been purified to homogeneity. Physical characterization of the purified protein indicates that Felix (i) is monomeric in solution, (ii) is predominantly alpha-helical, (iii) contains a designed intramolecular disulfide bond linking the first and fourth helices, and (iv) buries its single tryptophan in an apolar environment and probably in close proximity with the disulfide bond. These physical properties rule out several alternative structures and indicate that Felix indeed folds into approximately the designed three-dimensional structure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hecht, M H -- Richardson, J S -- Richardson, D C -- Ogden, R C -- New York, N.Y. -- Science. 1990 Aug 24;249(4971):884-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Duke University, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2392678" target="_blank"〉PubMed〈/a〉
    Keywords: *Amino Acid Sequence ; Base Sequence ; DNA/genetics ; *Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Denaturation ; *Proteins ; *Recombinant Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1990-07-27
    Description: The major autophosphorylation sites of the rat beta II isozyme of protein kinase C were identified. The modified threonine and serine residues were found in the amino-terminal peptide, the carboxyl-terminal tail, and the hinge region between the regulatory lipid-binding domain and the catalytic kinase domain. Because this autophosphorylation follows an intrapeptide mechanism, extraordinary flexibility of the protein is necessary to phosphorylate the three regions. Comparison of the sequences surrounding the modified residues showed no obvious recognition motif nor any similarity to substrate phosphorylation sites, suggesting that proximity to the active site may be the primary criterion for their phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flint, A J -- Paladini, R D -- Koshland, D E Jr -- DK09765/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 27;249(4967):408-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2377895" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Brain/enzymology ; Cloning, Molecular ; Isoenzymes/genetics/*metabolism ; Molecular Sequence Data ; Peptide Fragments/isolation & purification/metabolism ; Phosphorylation ; Protein Conformation ; Protein Kinase C/genetics/*metabolism ; Rats ; Recombinant Proteins/metabolism ; Signal Transduction ; Trypsin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 1990-11-09
    Description: High sequence selectivity in DNA-protein interactions was analyzed by measuring discrimination by Eco RI endonuclease between the recognition site GAATTC and systematically altered DNA sites. Base analogue substitutions that preserve the sequence-dependent conformational motif of the GAATTC site permit deletion of single sites of protein-base contact at a cost of +1 to +2 kcal/mol. However, the introduction of any one incorrect natural base pair costs +6 to +13 kcal/mol in transition state interaction energy, the resultant of the following interdependent factors: deletion of one or two hydrogen bonds between the protein and a purine base; unfavourable steric apposition between a group on the protein and an incorrectly placed functional group on a base; disruption of a pyrimidine contact with the protein; loss of some crucial interactions between protein and DNA phosphates; and an increased energetic cost of attaining the required DNA conformation in the transition state complex. Eco RI endonuclease thus achieves stringent discrimination by both "direct readout" (protein-base contracts) and "indirect readout" (protein-phosphate contacts and DNA conformation) of the DNA sequence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lesser, D R -- Kurpiewski, M R -- Jen-Jacobson, L -- GM-29207/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 9;250(4982):776-86.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, University of Pittsburgh, PA 15260.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2237428" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; DNA/chemistry/genetics/*metabolism ; Deoxyribonuclease EcoRI/chemistry/*metabolism ; Energy Transfer ; Molecular Sequence Data ; Nucleic Acid Conformation ; Phosphates/metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 1990-05-11
    Description: Chronic granulomatous diseases (CGDs) are characterized by recurrent infections resulting from impaired superoxide production by a phagocytic cell, nicotinamide adenine dinucleotide phosphate (reduced) (NADPH) oxidase. Complementary DNAs were cloned that encode the 67-kilodalton (kD) cytosolic oxidase factor (p67), which is deficient in 5% of CGD patients. Recombinant p67 (r-p67) partially restored NADPH oxidase activity to p67-deficient neutrophil cytosol from these patients. The p67 cDNA encodes a 526-amino acid protein with acidic middle and carboxyl-terminal domains that are similar to a sequence motif found in the noncatalytic domain of src-related tyrosine kinases. This motif was recently noted in phospholipase C-gamma, nonerythroid alpha-spectrin (fodrin), p21ras-guanosine triphophatase-activating protein (GAP), myosin-1 isoforms, yeast proteins cdc-25 and fus-1, and the 47-kD phagocyte oxidase factor (p47), which suggests the possibility of common regulatory features.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leto, T L -- Lomax, K J -- Volpp, B D -- Nunoi, H -- Sechler, J M -- Nauseef, W M -- Clark, R A -- Gallin, J I -- Malech, H L -- I01 BX000513/BX/BLRD VA/ -- New York, N.Y. -- Science. 1990 May 11;248(4956):727-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1692159" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cloning, Molecular ; Granulomatous Disease, Chronic/blood/enzymology/genetics ; Humans ; Molecular Sequence Data ; NADH, NADPH Oxidoreductases/blood/*genetics ; NADPH Oxidase ; Neutrophils/*enzymology ; Protein-Tyrosine Kinases/genetics ; Proto-Oncogene Proteins/*genetics ; Proto-Oncogene Proteins pp60(c-src) ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1990-08-03
    Description: Phosphoenolpyruvate carboxykinase (PEPCK) governs the rate-limiting step in gluconeogenesis. Glucocorticoids and adenosine 3',5'-monophosphate (cAMP) increase PEPCK gene transcription and gluconeogenesis, whereas insulin has the opposite effect. Insulin is dominant, since it prevents cAMP and glucocorticoid-stimulated transcription. Glucocorticoid and cAMP response elements have been located in the PEPCK gene and now a 15-base pair insulin-responsive sequence (IRS) is described. Evidence for a binding activity that recognizes this sequence is presented.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Brien, R M -- Lucas, P C -- Forest, C D -- Magnuson, M A -- Granner, D K -- DK 20593/DK/NIDDK NIH HHS/ -- DK 35107/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 3;249(4968):533-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN 37232-0615.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2166335" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line ; Chloramphenicol O-Acetyltransferase/genetics/metabolism ; Cyclic AMP/analogs & derivatives/physiology ; Dexamethasone/pharmacology ; *Genes, Regulator ; Insulin/*pharmacology ; Molecular Sequence Data ; Phosphoenolpyruvate Carboxykinase (GTP)/*genetics/metabolism ; RNA, Messenger/drug effects/genetics ; Recombinant Fusion Proteins/metabolism ; Thionucleotides ; Transcription, Genetic/*drug effects ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 1990-11-30
    Description: Conducting gramicidin channels form predominantly by the transmembrane association of monomers, one from each side of a lipid bilayer. In single-channel experiments in planar bilayers the two gramicidin analogs, [Val1]gramicidin A (gA) and [4,4,4-F3-Val1]gramicidin A (F3gA), form dimeric channels that are structurally equivalent and have characteristically different conductances. When these gramicidins were added asymmetrically, one to each side of a preformed bilayer, the predominant channel type was the hybrid channel, formed between two chemically dissimilar monomers. These channels formed by the association of monomers residing in each half of the membrane. These results also indicate that the hydrophobic gramicidins are surprisingly membrane impermeant, a conclusion that was confirmed in experiments in which gA was added asymmetrically and symmetrically to preformed bilayers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Connell, A M -- Koeppe, R E 2nd -- Andersen, O S -- GM21342/GM/NIGMS NIH HHS/ -- GM34968/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 30;250(4985):1256-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, Cornell University Medical College, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1700867" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Membrane Permeability ; Chemistry, Physical ; Electric Conductivity ; Gramicidin/*chemistry/metabolism ; Ion Channels/*chemistry/physiology ; Kinetics ; Lipid Bilayers/*chemistry ; Macromolecular Substances ; Molecular Sequence Data ; Physicochemical Phenomena ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 1990-06-22
    Description: The vast repertoire of immunoglobulins and T cell receptors is generated, in part, by V(D)J recombination, a series of genomic rearrangements that occur specifically in developing lymphocytes. The recombination activating gene, RAG-1, which is a gene expressed exclusively in maturing lymphoid cells, was previously isolated. RAG-1 inefficiently induced V(D)J recombinase activity when transfected into fibroblasts, but cotransfection with an adjacent gene, RAG-2, has resulted in at least a 1000-fold increase in the frequency of recombination. The 2.1-kilobase RAG-2 complementary DNA encodes a putative protein of 527 amino acids whose sequence is unrelated to that of RAG-1. Like RAG-1, RAG-2 is conserved between species that carry out V(D)J recombination, and its expression pattern correlates precisely with that of V(D)J recombinase activity. In addition to being located just 8 kilobases apart, these convergently transcribed genes are unusual in that most, if not all, of their coding and 3' untranslated sequences are contained in single exons. RAG-1 and RAG-2 might activate the expression of the V(D)J recombinase but, more likely, they directly participate in the recombination reaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oettinger, M A -- Schatz, D G -- Gorka, C -- Baltimore, D -- GM39458/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jun 22;248(4962):1517-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2360047" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Biological Evolution ; Cattle ; Cell Line ; Chickens ; Cricetinae ; DNA/*genetics ; DNA Nucleotidyltransferases/*genetics ; *DNA-Binding Proteins ; Dogs ; Female ; *Gene Rearrangement, B-Lymphocyte ; *Gene Rearrangement, T-Lymphocyte ; *Homeodomain Proteins ; Humans ; Male ; Mice ; Molecular Sequence Data ; *Multigene Family ; Nuclear Proteins ; Nucleic Acid Hybridization ; Opossums ; Proteins/*genetics ; Rabbits ; Recombination, Genetic/*genetics ; Restriction Mapping ; Transfection ; Turtles ; VDJ Recombinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1990-01-05
    Description: Cosmid clones containing human DNA inserts have been mapped on chromosome 11 by fluorescence in situ hybridization under conditions that suppress signal from repetitive DNA sequences. Thirteen known genes, one chromosome 11-specific DNA repeat, and 36 random clones were analyzed. High-resolution mapping was facilitated by using digital imaging microscopy and by analyzing extended (prometaphase) chromosomes. The map coordinates established by in situ hybridization showed a one to one correspondence with those determined by Southern (DNA) blot analysis of hybrid cell lines containing fragments of chromosome 11. Furthermore, by hybridizing three or more cosmids simultaneously, gene order on the chromosome could be established unequivocally. These results demonstrate the feasibility of rapidly producing high-resolution maps of human chromosomes by in situ hybridization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lichter, P -- Tang, C J -- Call, K -- Hermanson, G -- Evans, G A -- Housman, D -- Ward, D C -- GM-27882/GM/NIGMS NIH HHS/ -- GM-33868/GM/NIGMS NIH HHS/ -- HD-18012/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1990 Jan 5;247(4938):64-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, Yale University School of Medicine, New Haven, CT 06510.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2294592" target="_blank"〉PubMed〈/a〉
    Keywords: Blotting, Southern ; Cell Line ; *Chromosome Mapping ; *Chromosomes, Human, Pair 11 ; Cloning, Molecular ; Cosmids/*genetics ; DNA/*genetics ; DNA Probes ; Fluorescent Dyes ; Humans ; Hybrid Cells ; Microscopy, Fluorescence ; *Nucleic Acid Hybridization ; Repetitive Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1990-08-10
    Description: The interaction of the T cell receptor for antigen (TCR) with its antigen-major histocompatibility complex ligand is difficult to study because both are cell surface multimers. The TCR consists of two chains (alpha and beta) that are complexed to the five or more nonpolymorphic CD3 polypeptides. A soluble form of the TCR was engineered by replacing the carboxyl termini of alpha and beta with signal sequences from lipid-linked proteins, making them susceptible to enzymatic cleavage. In this manner, TCR heterodimers can be expressed independently of the CD3 polypeptides and in significant quantities (0.5 milligram per week). This technique seems generalizable to biochemical and structural studies of many other cell surface molecules as well.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, A Y -- Devaux, B -- Green, A -- Sagerstrom, C -- Elliott, J F -- Davis, M M -- New York, N.Y. -- Science. 1990 Aug 10;249(4969):677-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University School of Medicine, CA 94305-5402.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1696397" target="_blank"〉PubMed〈/a〉
    Keywords: Alkaline Phosphatase/genetics ; Amino Acid Sequence ; Animals ; Antigens, CD3 ; Antigens, CD55 ; Antigens, Differentiation, T-Lymphocyte/genetics ; Cell Line ; Complement Inactivator Proteins/genetics ; Female ; Humans ; Macromolecular Substances ; Membrane Proteins/genetics ; Molecular Sequence Data ; Placenta/enzymology ; Pregnancy ; Protein Sorting Signals/genetics ; Receptors, Antigen, T-Cell/*genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 1990-08-24
    Description: Soluble antigens (Ags) in the extracellular fluids are excluded from the class I major histocompatibility complex (MHC)-restricted pathway of Ag presentation in most cells. However, an exogenous Ag can be internalized, processed, and presented in association with class I MHC molecules on specialized Ag-presenting cells (APCs). These APCs express class II molecules and can simultaneously present exogenous Ags to both class I and class II MHC-restricted T cells. These APCs may be important participants in the regulation of host immune responses. This APC activity may explain several phenomena of cytotoxic T lymphocyte (CTL) priming in vivo and might be exploited for eliciting CTL responses to protein vaccines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rock, K L -- Gamble, S -- Rothstein, L -- AI-20248/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 24;249(4971):918-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2392683" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Presenting Cells/*immunology ; Azides/pharmacology ; Cell Line ; Histocompatibility Antigens Class I/*immunology ; Histocompatibility Antigens Class II/immunology ; Mice ; Mice, Inbred C57BL ; Ovalbumin/*immunology ; Spleen/immunology ; T-Lymphocytes/drug effects/immunology ; T-Lymphocytes, Cytotoxic/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-08-17
    Description: A class of transcriptional regulator proteins bind to DNA at dyad-symmetric sites through a motif consisting of (i) a "leucine zipper" sequence that associates into noncovalent, parallel, alpha-helical dimers and (ii) a covalently connected basic region necessary for binding DNA. The basic regions are predicted to be disordered in the absence of DNA and to form alpha helices when bound to DNA. These helices bind in the major groove forming multiple hydrogen-bonded and van der Waals contacts with the nucleotide bases. To test this model, two peptides were designed that were identical to natural leucine zipper proteins only at positions hypothesized to be critical for dimerization and DNA recognition. The peptides form dimers that bind specifically to DNA with their basic regions in alpha-helical conformations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Neil, K T -- Hoess, R H -- DeGrado, W F -- New York, N.Y. -- Science. 1990 Aug 17;249(4970):774-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Central Research and Development Department, E.I. du Pont de Nemours & Co., Wilmington, DE 19880-0328.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2389143" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Chemistry, Physical ; Circular Dichroism ; Computer Simulation ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; Hydrogen Bonding ; *Leucine ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Physicochemical Phenomena ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 1990-09-21
    Description: Thyrotropin (TSH), luteinizing hormone (LH), and chorionic gonadotropin (CG) are structurally related glycoprotein hormones, which bind to receptors that share a high degree of sequence similarity. However, comparison of the primary amino acid sequences of the TSH and LH-CG receptors reveals two unique insertions of 8 and 50 amino acids in the extracellular domain of the TSH receptor. The functional significance of these insertions were determined by site-directed mutagenesis. Deletion of the 50-amino acid tract (residues 317 to 366) had no effect on TSH binding or on TSH and thyroid-stimulating immunoglobulin (TSI) biological activities. In contrast, either deletion or substitution of the eight-amino acid region (residues 38 to 45) abolished these activities. This eight-amino acid tract near the amino terminus of the TSH receptor appears to be an important site of interaction for both TSH and TSI.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wadsworth, H L -- Chazenbalk, G D -- Nagayama, Y -- Russo, D -- Rapoport, B -- DK-19289/DK/NIDDK NIH HHS/ -- DK-36182/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 21;249(4975):1423-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Veterans Administration Medical Center, San Francisco, CA 94121.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2169649" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cell Line ; Chromosome Deletion ; Clone Cells ; Cyclic AMP/metabolism ; Humans ; Molecular Sequence Data ; Mutation ; Oligonucleotide Probes ; Receptors, Thyrotropin/*genetics/metabolism ; Thyrotropin/*metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-12-07
    Description: Insertion of bacteriophage coat proteins into the membrane of infected bacterial cells can be studied as a model system of protein translocation across membranes. The coat protein of the filamentous bacteriophage Pf3--which infects Pseudomonas aeruginosa--is 44 amino acids in length and has the same basic structure as the coat protein of bacteriophage M13, which infects Escherichia coli. However, unlike the Pf3 coat protein, the M13 coat protein is synthesized as a precursor (procoat) with a typical leader (signal) sequence, which is cleaved after membrane insertion. Nevertheless, when the gene encoding the Pf3 coat protein is expressed in E. coli, the protein is translocated across the membrane. Hybrid M13 and Pf3 coat proteins were constructed in an attempt to understand how the Pf3 coat protein is translocated without a leader sequence. These studies demonstrated that the extracellular regions of the proteins determined their cellular location. When three charged residues in this region were neutralized, the leader-free M13 coat protein was also inserted into the membrane. Differences in the water shell surrounding these residues may account for efficient membrane insertion of the protein without a leader sequence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rohrer, J -- Kuhn, A -- New York, N.Y. -- Science. 1990 Dec 7;250(4986):1418-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Microbiology Department, University of Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2124001" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriophages/*genetics/metabolism ; Capsid/*genetics/metabolism ; Cell Membrane/metabolism/physiology ; Coliphages/genetics/metabolism ; Escherichia coli/genetics/metabolism/physiology ; Genes, Viral ; Membrane Potentials ; Molecular Sequence Data ; Plasmids ; Protein Sorting Signals/*metabolism ; Pseudomonas aeruginosa/*genetics/metabolism ; Recombinant Proteins/metabolism ; Viral Structural Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1990-06-22
    Description: Homologous or agonist-specific desensitization of beta-adrenergic receptors is thought to be mediated by a specific kinase, the beta-adrenergic receptor kinase (beta ARK). However, recent data suggest that a cofactor is required for this kinase to inhibit receptor function. The complementary DNA for such a cofactor was cloned and found to encode a 418-amino acid protein homologous to the retinal protein arrestin. The protein, termed beta-arrestin, was expressed and partially purified. It inhibited the signaling function of beta ARK-phosphorylated beta-adrenergic receptors by more than 75 percent, but not that of rhodopsin. It is proposed that beta-arrestin in concert with beta ARK effects homologous desensitization of beta-adrenergic receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lohse, M J -- Benovic, J L -- Codina, J -- Caron, M G -- Lefkowitz, R J -- DK19318/DK/NIDDK NIH HHS/ -- HL16037/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Jun 22;248(4962):1547-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Medicine, Biochemistry and Cell Biology, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2163110" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens/*genetics/isolation & purification/pharmacology ; Arrestin ; Blotting, Northern ; Chromatography, Ion Exchange ; Cloning, Molecular ; *Cyclic AMP-Dependent Protein Kinases ; DNA/genetics ; Eye Proteins/*genetics/isolation & purification/pharmacology ; Gene Expression Regulation ; Molecular Sequence Data ; Phosphodiesterase Inhibitors/*pharmacology ; Phosphorylation ; Protein Kinases/*pharmacology ; RNA, Messenger/analysis ; Receptors, Adrenergic, beta/*drug effects/physiology ; Transfection ; beta-Adrenergic Receptor Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1990-09-14
    Description: Fusion of the DNA-binding domain of yeast GAL4 protein to the amino terminus of bacteriophage T7 RNA polymerase yields a chimera that retains the characteristics of its components. The presence of the GAL4 peptide allows the chimeric enzyme to anchor itself on the DNA template, and this anchoring in turn drives the formation of a supercoiled DNA loop, in linear or circular templates, when RNA synthesis at the polymerase site forces a translocation of the DNA relative to the site. Nonspecific interaction between the chimeric enzyme and DNA appears to be sufficient to effect supercoiling during transcription. Transcription by the chimeric polymerase is strictly dependent on the presence of a T7 promoter; thus it provides a tool in vitro and in vivo for specifically supercoiling DNA segments containing T7 promoter sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ostrander, E A -- Benedetti, P -- Wang, J C -- GM24544/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 14;249(4974):1261-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2399463" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; DNA, Superhelical/*metabolism ; DNA-Binding Proteins/*physiology ; DNA-Directed RNA Polymerases/*physiology ; Fungal Proteins/*metabolism ; Macromolecular Substances ; Molecular Sequence Data ; Promoter Regions, Genetic/physiology ; Recombinant Fusion Proteins/metabolism ; *Saccharomyces cerevisiae Proteins ; T-Phages/*enzymology ; Transcription Factors/physiology ; Transcription, Genetic/*physiology ; Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1990-05-04
    Description: A cell line has been established in continuous culture of human cerebral cortical neurons obtained from a patient with unilateral megalencephaly, a disorder associated with continued proliferation of immature neuronal cells. When differentiated in the presence of nerve growth factor, 1-isobutyl-3-methylxanthine, and dibutyryl adenosine 3',5'-monophosphate (cAMP), the cells display mature neuronal morphology with numerous long, extensively branched processes with spines and varicosities. The cells stain positively for neurofilament protein and neuron-specific enolase (selective neuronal markers) but are negative for glial markers, such as glial fibrillary acidic protein, S-100, and myelin basic protein. The cells also stain positively for the neurotransmitters gamma-aminobutyric acid (GABA), glutamate, somatostatin, cholecystokinin-8, and vasoactive intestinal polypeptide. These cells may facilitate characterization of neurons in the human central nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ronnett, G V -- Hester, L D -- Nye, J S -- Connors, K -- Snyder, S H -- DA 00074/DA/NIDA NIH HHS/ -- DA 00266/DA/NIDA NIH HHS/ -- MH 18501/MH/NIMH NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1990 May 4;248(4955):603-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1692158" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Methyl-3-isobutylxanthine/pharmacology ; Brain Diseases/*pathology ; Bucladesine/pharmacology ; Cell Differentiation/drug effects ; Cell Line ; Cerebral Cortex/*pathology ; Culture Techniques/methods ; Female ; Humans ; Infant ; Nerve Growth Factors/pharmacology ; Nerve Tissue Proteins/analysis ; Neurons/cytology/drug effects/*pathology ; Neurotransmitter Agents/analysis ; gamma-Aminobutyric Acid/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-04-20
    Description: Cytotoxic T lymphocytes (CTLs) recognize class I major histocompatibility complex (MHC) molecules associated with antigenic peptides derived from endogenously synthesized proteins. Binding to such peptides is a requirement for class I assembly in the endoplasmic reticulum (ER). A mutant human cell line, T2, assembles and transports to its surface some, but not all, class I MHC molecules. The class I molecules expressed on the surface of T2 do not present peptides derived from cytosolic antigens, although they can present exogenously added peptides to CTL. The transported class I molecules may interact weakly with an unknown retaining factor in the ER such that they can assemble despite the relative shortage of peptides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hosken, N A -- Bevan, M J -- AI-19335/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1990 Apr 20;248(4953):367-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2326647" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Presenting Cells/*immunology ; Antigens/immunology ; Antigens, Viral/immunology ; B-Lymphocytes/immunology ; Capsid/immunology ; Cell Line ; Endoplasmic Reticulum/immunology ; Gene Expression ; H-2 Antigens/genetics/immunology ; HLA Antigens/genetics ; Histocompatibility Antigens Class I/*immunology ; Histocompatibility Antigens Class II/genetics ; Humans ; Mice ; Mutation ; Ovalbumin/immunology ; Peptides/immunology ; T-Lymphocytes, Cytotoxic/immunology ; Transfection ; Tumor Cells, Cultured ; Viral Core Proteins/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1990-11-09
    Description: Cytokine synthesis inhibitory factor (CSIF; interleukin-10), a product of mouse TH2 T cell clones that inhibits synthesis of cytokines by mouse TH1 T cell clones, exhibits extensive sequence similarity to an uncharacterized open reading frame in the Epstein-Barr virus BCRF1. Recombinant BCRF1 protein mimics the activity of interleukin-10, suggesting that BCRF1 may have a role in the interaction of the virus with the host's immune system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hsu, D H -- de Waal Malefyt, R -- Fiorentino, D F -- Dang, M N -- Vieira, P -- de Vries, J -- Spits, H -- Mosmann, T R -- Moore, K W -- New York, N.Y. -- Science. 1990 Nov 9;250(4982):830-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, DNAX Research Institute, Palo Alto, CA 94304.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2173142" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; DNA, Viral/genetics ; Electrophoresis, Polyacrylamide Gel ; *Gene Expression Regulation, Viral ; Herpesvirus 4, Human/genetics/*immunology ; Humans ; Interleukin-10 ; Interleukins/*biosynthesis ; Killer Cells, Natural/immunology ; Mice ; Radioimmunoprecipitation Assay ; T-Lymphocytes/immunology ; Viral Proteins/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1990-12-07
    Description: A genetic system was developed in Escherichia coli to study leucine zippers with the amino-terminal domain of bacteriophage lambda repressor as a reporter for dimerization. This system was used to analyze the importance of the amino acid side chains at eight positions that form the hydrophobic interface of the leucine zipper dimer from the yeast transcriptional activator, GCN4. When single amino acid substitutions were analyzed, most functional variants contained hydrophobic residues at the dimer interface, while most nonfunctional sequence variants contained strongly polar or helix-breaking residues. In multiple randomization experiments, however, many combinations of hydrophobic residues were found to be nonfunctional, and leucines in the heptad repeat were shown to have a special function in leucine zipper dimerization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, J C -- O'Shea, E K -- Kim, P S -- Sauer, R T -- AI15706/AI/NIAID NIH HHS/ -- GM11117/GM/NIGMS NIH HHS/ -- GM44162/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 7;250(4986):1400-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2147779" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriophage lambda/*genetics ; DNA-Binding Proteins/*genetics ; Escherichia coli/*genetics ; Fungal Proteins/*genetics ; Genetic Variation ; Leucine Zippers/*genetics ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Phenotype ; Protein Conformation ; *Protein Kinases ; Random Allocation ; Recombinant Fusion Proteins/metabolism ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 1990-09-28
    Description: The erbB2 oncogene encodes a 185-kilodalton transmembrane protein whose sequence is similar to the epidermal growth factor receptor (EGFR). A 30-kilodalton factor (gp30) secreted from MDA-MB-231 human breast cancer cells was shown to be a ligand for p185erbB2. An antibody to EGFR abolished the tyrosine phosphorylation induced by EGF and transforming growth factor-alpha (TGF-alpha) but only partially blocked that produced by gp30 in SK-BR-3 breast cancer cells. In two cell lines that overexpress erbB2 but do not expresss EGFR (MDA-MB-453 breast cancer cells and a Chinese hamster ovary cell line that had been transfected with erbB2), phosphorylation of p185erbB2 was induced only by gp30. The gp30 specifically inhibited the growth of cells that overexpressed p185erbB2. An antibody to EGFR had no effect on the inhibition of SK-BR-3 cell colony formation obtained with gp30. Thus, it appeared that gp30 interacted directly with the EGFR and erbB2. Direct binding of gp30 to p185erbB2 was confirmed by binding competition experiments, where gp30 was found to displace the p185erbB2 binding of a specific antibody to p185erbB2. The evidence described here suggests that gp30 is a ligand for p185erbB2.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lupu, R -- Colomer, R -- Zugmaier, G -- Sarup, J -- Shepard, M -- Slamon, D -- Lippman, M E -- New York, N.Y. -- Science. 1990 Sep 28;249(4976):1552-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vincent T. Lombardi Cancer Research Center, Georgetown University Medical Center, Washington, DC 20007.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2218496" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; Binding, Competitive ; Breast Neoplasms ; Cell Line ; Chromatography, Affinity ; Female ; Humans ; Kinetics ; Ligands ; Molecular Weight ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Proto-Oncogene Proteins/genetics/immunology/*metabolism ; Proto-Oncogenes ; Receptor, Epidermal Growth Factor/isolation & purification/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 1990-02-16
    Description: In view of the current interest in in vivo murine models for acquired immunodeficiency syndrome (AIDS), the interaction between human immunodeficiency virus type 1 (HIV-1) and endogenous murine leukemia virus (MuLV)-related retroviruses was investigated with a human leukemic T cell line (PF-382x) that acquired xenotropic MuLV (X-MuLV) after in vivo passage in immunosuppressed mice. Despite similar levels of membrane CD4 expression and HIV-1 125I-labeled gp 120 binding, a dramatic acceleration in the time course of HIV-1 infection was observed in PF-382x compared to its X-MuLV-negative counterpart (PF-382). Moreover, PF-382 cells coinfected by X-MuLV and HIV-1 generated a progeny of phenotypically mixed viral particles, enabling HIV-1 to productively infect a panel of CD4- human cells, including B lymphoid cells and purified normal peripheral blood CD4-/CD8+ T lymphocytes. Mixed viral phenotypes were also produced by human CD4+ T cells coinfected with an amphotropic MuLV-related retrovirus (A-MuLV) and HIV-1. These data show that endogenous MuLV acquired by human cells transplanted into mice can significantly interact with HIV-1, thereby inducing important alterations of HIV-1 biological properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lusso, P -- di Marzo Veronese, F -- Ensoli, B -- Franchini, G -- Jemma, C -- DeRocco, S E -- Kalyanaraman, V S -- Gallo, R C -- New York, N.Y. -- Science. 1990 Feb 16;247(4944):848-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Tumor Cell Biology, National Cancer Institute, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2305256" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/immunology ; Animals ; Antibodies, Monoclonal ; Antigens, CD4/analysis ; Cell Line ; Cell Transformation, Viral ; Disease Models, Animal ; HIV-1/*genetics/physiology ; Hematopoietic Stem Cells/cytology/microbiology ; Humans ; Mice ; Phenotype ; Retroviridae/*genetics ; Viral Proteins/analysis ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 1990-11-16
    Description: The Wilms tumor locus on chromosome 11p13 has been mapped to a region defined by overlapping, tumor-specific deletions. Complementary DNA clones representing transcripts of 2.5 (WIT-1) and 3.5 kb (WIT-2) mapping to this region were isolated from a kidney complementary DNA library. Expression of WIT-1 and WIT-2 was restricted to kidney and spleen. RNase protection revealed divergent transcription of WIT-1 and WIT-2, originating from a DNA region of less than 600 bp. Both transcripts were present at high concentrations in fetal kidney and at much reduced amounts in 5-year-old and adult kidneys. Eleven of 12 Wilms tumors classified as histopathologically heterogeneous exhibited absent or reduced expression of WIT-2, whereas only 4 of 14 histopathologically homogeneous tumors showed reduced expression. These data demonstrate a molecular basis for the pathogenetic heterogeneity in Wilms tumorigenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, A -- Campbell, C E -- Bonetta, L -- McAndrews-Hill, M S -- Chilton-MacNeill, S -- Coppes, M J -- Law, D J -- Feinberg, A P -- Yeger, H -- Williams, B R -- New York, N.Y. -- Science. 1990 Nov 16;250(4983):991-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Hospital for Sick Children, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2173145" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Blotting, Northern ; DNA/genetics ; Genes, Wilms Tumor/*genetics ; Humans ; Kidney Neoplasms/*genetics ; Molecular Sequence Data ; Transcription, Genetic ; Wilms Tumor/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-05-04
    Description: The amino acid sequences of three fragments of cyanogen bromide-digested human placental inositol 1,2-cyclic phosphate 2-phosphohydrolase, an enzyme of the phosphatidylinositol signaling pathway, are identical to sequences within lipocortin III, a member of a family of homologous calcium- and phospholipid-binding proteins that do not have defined physiological functions. Lipocortin III has also been previously identified as placental anticoagulant protein III (PAP III) and calcimedin 35 alpha. Antibodies to PAP III detected PAP III and inositol 1,2-cyclic phosphate 2-phosphohydrolase with identical reactivity on immunoblotting. In addition, inositol 1,2-cyclic phosphate 2-phosphohydrolase was stimulated by the same acidic phospholipids that bind lipocortins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ross, T S -- Tait, J F -- Majerus, P W -- HLBI 14147/HL/NHLBI NIH HHS/ -- HLBI 16634/HL/NHLBI NIH HHS/ -- HLBI 40801/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 May 4;248(4955):605-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2159184" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Annexin A3 ; Annexins ; Calcium-Binding Proteins/*genetics ; Female ; Humans ; Immunoblotting ; Kinetics ; Molecular Sequence Data ; Phosphoric Diester Hydrolases/*genetics/isolation & purification/metabolism ; Placenta/*enzymology ; Pregnancy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-10-26
    Description: The yeast protein RAP1, initially described as a transcriptional regulator, binds in vitro to sequences found in a number of seemingly unrelated genomic loci. These include the silencers at the transcriptionally repressed mating-type genes, the promoters of many genes important for cell growth, and the poly[(cytosine)1-3 adenine] [poly(C1-3A)] repeats of telomeres. Because RAP1 binds in vitro to the poly(C1-3A) repeats of telomeres, it has been suggested that RAP1 may be involved in telomere function in vivo. In order to test this hypothesis, the telomere tract lengths of yeast strains that contained conditionally lethal (ts) rap1 mutations were analyzed. Several rap1ts alleles reduced telomere length in a temperature-dependent manner. In addition, plasmids that contain small, synthetic telomeres with intact or mutant RAP1 binding sites were tested for their ability to function as substrates for poly(C1-3A) addition in vivo. Mutations in the RAP1 binding sites reduced the efficiency of the addition reaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lustig, A J -- Kurtz, S -- Shore, D -- GM 40094/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Oct 26;250(4980):549-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2237406" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Chromosomes, Fungal/metabolism/*ultrastructure ; DNA-Binding Proteins/metabolism ; Fungal Proteins/genetics/*metabolism ; *Genes, Fungal ; *Genes, Mating Type, Fungal ; Molecular Sequence Data ; Mutation ; Plasmids ; Poly A/metabolism ; Poly C/metabolism ; Repetitive Sequences, Nucleic Acid ; Saccharomyces cerevisiae/*genetics ; Temperature ; *Transcription Factors ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 1990-08-10
    Description: Somatic mutations in a subset of growth hormone (GH)-secreting pituitary tumors convert the gene for the alpha polypeptide chain (alpha s) of Gs into a putative oncogene, termed gsp. These mutations, which activate alpha s by inhibiting its guanosine triphosphatase (GTPase) activity, are found in codons for either of two amino acids, each of which is completely conserved in all known G protein alpha chains. The likelihood that similar mutations would activate other G proteins prompted a survey of human tumors for mutations that replace either of these two amino acids in other G protein alpha chain genes. The first gene so far tested, which encodes the alpha chain of Gi2, showed mutations that replaced arginine-179 with either cysteine or histidine in 3 of 11 tumors of the adrenal cortex and 3 of 10 endocrine tumors of the ovary. The mutant alpha i2 gene is a putative oncogene, referred to as gip2. In addition, gsp mutations were found in 18 of 42 GH-secreting pituitary tumors and in an autonomously functioning thyroid adenoma. These findings suggest that human tumors may harbor oncogenic mutations in various G protein alpha chain genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lyons, J -- Landis, C A -- Harsh, G -- Vallar, L -- Grunewald, K -- Feichtinger, H -- Duh, Q Y -- Clark, O H -- Kawasaki, E -- Bourne, H R -- New York, N.Y. -- Science. 1990 Aug 10;249(4969):655-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, Cetus Corporation, Emeryville CA 94608.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2116665" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; DNA, Neoplasm/genetics ; Endocrine System Diseases/*genetics ; Female ; GTP Phosphohydrolases/genetics/metabolism ; GTP-Binding Proteins/*genetics/metabolism ; Humans ; Male ; Molecular Sequence Data ; *Mutation ; Neoplasms/*genetics ; Oligonucleotide Probes ; *Oncogenes ; Pituitary Neoplasms/*genetics ; Polymerase Chain Reaction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 1990-07-20
    Description: Minor histocompatibility (H) antigens can be peptides derived from cellular proteins that are presented on the cell surface by major histocompatibility complex (MHC) class I molecules. This is similar to viral antigens, because in both cases cytotoxic T lymphocytes (CTLs) recognize artificially produced peptides loaded on target cells. Naturally processed minor H peptides were found to be similar to those artificial CTL-epitopes, as far as size and hydrophobicity is concerned. The peptides studied were isolated from a transfectant that expressed a model CTL-defined antigen, beta-galactosidase, from male cells that express H-Y, which has been known operationally since 1955, and from cells that express H-4, known since 1961.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rotzschke, O -- Falk, K -- Wallny, H J -- Faath, S -- Rammensee, H G -- New York, N.Y. -- Science. 1990 Jul 20;249(4966):283-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biologie, Abteilung Immungenetik, Tubingen, Federal Republic of Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1695760" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Epitopes/isolation & purification ; Female ; H-Y Antigen/*analysis/immunology ; Male ; Mice ; Mice, Inbred Strains ; Minor Histocompatibility Antigens/*analysis/immunology ; Molecular Sequence Data ; Peptides/chemical synthesis ; Species Specificity ; Spleen/immunology ; T-Lymphocytes, Cytotoxic/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1990-07-27
    Description: The enzymatic degradation of cellulose is an important process, both ecologically and commercially. The three-dimensional structure of a cellulase, the enzymatic core of CBHII from the fungus Trichoderma reesei reveals an alpha-beta protein with a fold similar to but different from the widely occurring barrel topology first observed in triose phosphate isomerase. The active site of CBHII is located at the carboxyl-terminal end of a parallel beta barrel, in an enclosed tunnel through which the cellulose threads. Two aspartic acid residues, located in the center of the tunnel are the probable catalytic residues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rouvinen, J -- Bergfors, T -- Teeri, T -- Knowles, J K -- Jones, T A -- New York, N.Y. -- Science. 1990 Jul 27;249(4967):380-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, BMC, Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2377893" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cellulose/metabolism ; Cellulose 1,4-beta-Cellobiosidase ; Chemistry, Physical ; Crystallization ; Crystallography ; *Glycoside Hydrolases/metabolism ; Glycosylation ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Mitosporic Fungi/*enzymology ; Molecular Sequence Data ; Molecular Structure ; Physicochemical Phenomena ; Protein Conformation ; Trichoderma/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-09-28
    Description: To understand why proteins adopt particular three-dimensional structures, it is important to elucidate the hierarchy of interactions that stabilize the native state. Proteins in partly folded states can be used to dissect protein organizational hierarchies. A partly folded apomyoglobin intermediate has now been characterized structurally by trapping slowly exchanging peptide NH protons and analyzing them by two-dimensional 1H-NMR (nuclear magnetic resonance). Protons in the A, G, and H helix regions are protected from exchange, while protons in the B and E helix regions exchange freely. On the basis of these results and the three-dimensional structure of native myoglobin, a structural model is presented for the partly folded intermediate in which a compact subdomain retains structure while the remainder of the protein is essentially unfolded.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughson, F M -- Wright, P E -- Baldwin, R L -- DK34909/DK/NIDDK NIH HHS/ -- GM19988/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 28;249(4976):1544-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Beckman Center, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2218495" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Apoproteins/chemistry/*metabolism ; Hydrogen-Ion Concentration ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Myoglobin/chemistry/*metabolism ; Protein Conformation ; Spectrophotometry, Ultraviolet
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1990-08-31
    Description: The isocitrate dehydrogenase of Escherichia coli is an example of a ubiquitous class of enzymes that are regulated by covalent modification. In the three-dimensional structure of the enzyme-substrate complex, isocitrate forms a hydrogen bond with Ser113, the site of regulatory phosphorylation. The structures of Asp113 and Glu113 mutants, which mimic the inactivation of the enzyme by phosphorylation, show minimal conformational changes from wild type, as in the phosphorylated enzyme. Calculations based on observed structures suggest that the change in electrostatic potential when a negative charge is introduced either by phosporylation or site-directed mutagenesis is sufficient to inactivate the enzyme. Thus, direct interaction at a ligand binding site is an alternative mechanism to induced conformational changes from an allosteric site in the regulation of protein activity by phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hurley, J H -- Dean, A M -- Sohl, J L -- Koshland, D E Jr -- Stroud, R M -- GM 24485/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 31;249(4972):1012-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2204109" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Escherichia coli/*enzymology/genetics ; Homeostasis ; Isocitrate Dehydrogenase/genetics/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 1990-08-03
    Description: Comparison of the 2.4 angstrom resolution crystal structures of dimeric clam hemoglobin in the deoxygenated and carbon-monoxide liganded states shows how radically different the structural basis for cooperative oxygen binding is from that operative in mammalian hemoglobins. Heme groups are in direct communication across a novel subunit interface formed by the E and F helices. The conformational changes at this interface that accompany ligand binding are more dramatic at a tertiary level but more subtle at a quaternary level than those in mammalian hemoglobins. These findings suggest a cooperative mechanism that links ligation at one subunit with potentiation of affinity at the second subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Royer, W E Jr -- Hendrickson, W A -- Chiancone, E -- New York, N.Y. -- Science. 1990 Aug 3;249(4968):518-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2382132" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carboxyhemoglobin/metabolism ; Hemoglobins/*metabolism ; Ligands ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Mollusca ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 1990-09-28
    Description: Heparin-binding growth factor-1 (HBGF-1) is an angiogenic polypeptide mitogen for mesoderm- and neuroectoderm-derived cells in vitro and remains biologically active after truncation of the amino-terminal domain (HBGF-1 alpha) of the HBGF-1 beta precursor. Polymerase chain reaction mutagenesis and prokaryotic expression systems were used to prepare a mutant of HBGF-1 alpha lacking a putative nuclear translocation sequence (amino acid residues 21 to 27; HBGF-1U). Although HBGF-1U retains its ability to bind to heparin, HBGF-1U fails to induce DNA synthesis and cell proliferation at concentrations sufficient to induce intracellular receptor-mediated tyrosine phosphorylation and c-fos expression. Attachment of the nuclear translocation sequence from yeast histone 2B at the amino terminus of HBGF-1U yields a chimeric polypeptide (HBGF-1U2) with mitogenic activity in vitro and indicates that nuclear translocation is important for this biological response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Imamura, T -- Engleka, K -- Zhan, X -- Tokita, Y -- Forough, R -- Roeder, D -- Jackson, A -- Maier, J A -- Hla, T -- Maciag, T -- HL 32348/HL/NHLBI NIH HHS/ -- HL 35627/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 28;249(4976):1567-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, Jerome H. Holland Laboratory for the Biomedical Sciences, American Red Cross, Rockville, MD 20855.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1699274" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding, Competitive ; Cattle ; Cell Division/drug effects ; Cell Line ; Cell Nucleus/metabolism ; Cells, Cultured ; DNA Replication/drug effects ; Endothelium, Vascular/drug effects/metabolism ; Fibroblast Growth Factor 1/*genetics/metabolism/pharmacology ; Kinetics ; Mice ; Mitogens/pharmacology ; Molecular Sequence Data ; *Mutation ; Oligonucleotide Probes ; Receptors, Mitogen/metabolism ; Receptors, Vascular Endothelial Growth Factor ; Recombinant Proteins/metabolism/pharmacology ; Transcription, Genetic/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 1990-11-02
    Description: The function of the c-myc gene and its role in tumorigenesis are poorly understood. In order to elucidate the role of c-myc oncogene activation in B cell malignancy, the phenotypic changes caused by the expression of c-myc oncogenes in human B lymphoblastoid cells immortalized by Epstein-Barr virus were analyzed. C-myc oncogenes caused the down-regulation of lymphocyte function-associated antigen-1 (LFA-1) adhesion molecules (alpha L/beta 2 integrin) and loss of homotypic B cell adhesion in vitro. Down-regulation of LFA-1 occurred by (i) posttranscriptional modulation of LFA-1 alpha L-chain RNA soon after acute c-myc induction, and (ii) transcriptional modulation in cells that chronically express c-myc oncogenes. Analogous reductions in LFA-1 expression were detectable in Burkitt lymphoma cells carrying activated c-myc oncogenes. Since LFA-1 is involved in B cell adhesion to cytotoxic T cells, natural killer cells, and vascular endothelium, these results imply functions for c-myc in normal B cell development and lymphomagenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Inghirami, G -- Grignani, F -- Sternas, L -- Lombardi, L -- Knowles, D M -- Dalla-Favera, R -- CA 37165/CA/NCI NIH HHS/ -- CA 37295/CA/NCI NIH HHS/ -- CA 48236/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1990 Nov 2;250(4981):682-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2237417" target="_blank"〉PubMed〈/a〉
    Keywords: B-Lymphocytes/*immunology ; Cell Line ; Cell Transformation, Neoplastic ; Down-Regulation ; Humans ; Lymphocyte Function-Associated Antigen-1/*analysis/genetics/physiology ; Plasminogen Inactivators ; Proto-Oncogene Proteins c-myc/*genetics ; *Proto-Oncogenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1990-05-25
    Description: A subline of U937 cells (U937D) was obtained in which creatine kinase B (CK-B) messenger RNA was present and bound to ribosomes, but CK activity was undetectable. Transformation of U937D cells with retrovirus vectors that contain the 3' untranslated region (3' UTR) of CK-B messenger RNA exhibited CK activity with no change in abundance of CK-B mRNA. The 3' UTR formed a complex in vitro with a component of S100 extracts from wild-type cells. This binding activity was not detectable in S100 extracts from cells that expressed CK activity after transformation with the 3' UTR-containing vector. These results suggest that translation of CK-B is repressed by binding of a soluble factor or factors to the 3' UTR.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ch'ng, J L -- Shoemaker, D L -- Schimmel, P -- Holmes, E W -- GM34366/GM/NIGMS NIH HHS/ -- R01-CA 47631-02/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 May 25;248(4958):1003-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Duke University, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2343304" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cloning, Molecular ; Creatine Kinase/*genetics ; *Gene Expression Regulation ; Humans ; Hypoxanthine Phosphoribosyltransferase/genetics ; Polyribosomes/metabolism ; *Protein Biosynthesis ; RNA, Messenger/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-06-29
    Description: Soluble and hydrophobic lipid breakdown products have a variety of important signaling roles in cells. Here sphingoid bases derived in cells from sphingolipid breakdown are shown to have a potent and direct effect in mediating calcium release from intracellular stores. Sphingosine must be enzymically converted within the cell to a product believed to be sphingosine-1-phosphate, which thereafter effects calcium release from a pool including the inositol 1,4,5-trisphosphate-sensitive calcium pool. The sensitivity, molecular specificity, and reversibility of the effect on calcium movements closely parallel sphingoid base-mediated inhibition of protein kinase C. Generation of sphingoid bases in cells may activate a dual signaling pathway involving regulation of calcium and protein kinase C, comparable perhaps to the phosphatidylinositol and calcium signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghosh, T K -- Bian, J -- Gill, D L -- NS19304/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jun 29;248(4963):1653-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of Maryland School of Medicine, Baltimore 21201.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2163543" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/pharmacology ; Animals ; Calcimycin/pharmacology ; Calcium/*metabolism ; Cell Line ; Kinetics ; Phosphoric Monoester Hydrolases/metabolism ; Phosphorylcholine/analogs & derivatives/pharmacology ; Protein Kinase C/metabolism ; Second Messenger Systems/drug effects ; Sphingosine/*analogs & derivatives/*pharmacology ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1990-03-09
    Description: Comparison of a lambda repressor-operator complex and a 434 repressor-operator complex reveals that three conserved residues in the helix-turn-helix (HTH) region make similar contacts in each of the crystallographically determined structures. These conserved residues and their interactions with phosphodiester oxygens help establish a frame of reference within which other HTH residues make contacts that are critical for site-specific recognition. Such "positioning contacts" may be important conserved features within families of HTH proteins. In contrast, the structural comparisons appear to rule out any simple "recognition code" at the level of detailed side chain-base pair interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pabo, C O -- Aggarwal, A K -- Jordan, S R -- Beamer, L J -- Obeysekare, U R -- Harrison, S C -- GM 29109/GM/NIGMS NIH HHS/ -- GM 31471/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 9;247(4947):1210-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2315694" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Asparagine ; Base Composition ; Base Sequence ; Binding Sites ; *DNA-Binding Proteins ; Glutamine ; Hydrogen Bonding ; Molecular Sequence Data ; Molecular Structure ; *Operator Regions, Genetic ; Protein Conformation ; Repressor Proteins/*metabolism ; Transcription Factors/*metabolism ; Viral Proteins ; Viral Regulatory and Accessory Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1990-01-19
    Description: Interleukin-3 (IL-3) binds to its receptor with high and low affinities, induces tyrosine phosphorylation, and promotes the proliferation and differentiation of hematopoietic cells. A binding component of the IL-3 receptor was cloned. Fibroblasts transfected with the complementary DNA bound IL-3 with a low affinity [dissociation constant (Kd) of 17.9 +/- 3.6 nM]. No consensus sequence for a tyrosine kinase was present in the cytoplasmic domain. Thus, additional components are required for a functional high affinity IL-3 receptor. A sequence comparison of the IL-3 receptor with other cytokine receptors (erythropoietin, IL-4, IL-6, and the beta chain IL-2 receptor) revealed a common motif of a distinct receptor gene family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Itoh, N -- Yonehara, S -- Schreurs, J -- Gorman, D M -- Maruyama, K -- Ishii, A -- Yahara, I -- Arai, K -- Miyajima, A -- New York, N.Y. -- Science. 1990 Jan 19;247(4940):324-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA 94304.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2404337" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Cloning, Molecular ; DNA/genetics ; DNA Probes ; Escherichia coli/genetics ; Fibroblasts/metabolism ; Interleukin-3/metabolism ; Mice ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Plasmids ; Protein-Tyrosine Kinases/metabolism ; Receptors, Immunologic/*genetics/metabolism ; Receptors, Interleukin-3 ; Sequence Homology, Nucleic Acid ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1990-04-06
    Description: A complementary DNA (cDNA) clone that encodes inositol 1,4,5-trisphosphate 3-kinase was isolated from a rat brain cDNA expression library with the use of monoclonal antibodies. This clone had an open reading frame that would direct the synthesis of a protein consisting of 449 amino acids and with a molecular mass of 49,853 daltons. The putative protein revealed a potential calmodulin-binding site and six regions with amino acid compositions (PEST regions) common to proteins that are susceptible to calpain. Expression of the cDNA in COS cells resulted in an approximately 150-fold increase in inositol 1,4,5-trisphosphate 3-kinase activity of these cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, K Y -- Kim, H K -- Lee, S Y -- Moon, K H -- Sim, S S -- Kim, J W -- Chung, H K -- Rhee, S G -- New York, N.Y. -- Science. 1990 Apr 6;248(4951):64-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2157285" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Brain/enzymology ; Calcium/metabolism ; Calmodulin/metabolism ; Calpain/antagonists & inhibitors/pharmacology ; Cell Line ; *Cloning, Molecular ; Codon ; DNA/*genetics ; *Gene Expression ; Molecular Sequence Data ; Molecular Weight ; Phosphotransferases/*genetics/metabolism ; *Phosphotransferases (Alcohol Group Acceptor) ; Plasmids ; Rats ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 1990-11-30
    Description: The gene designated gamma 134.5 maps in the inverted repeats flanking the long unique sequence of herpes simplex virus-1 (HSV-1) DNA, and therefore it is present in two copies per genome. This gene is not essential for viral growth in cell culture. Four recombinant viruses were genetically engineered to test the function of this gene. These were (i) a virus from which both copies of the gene were deleted, (ii) a virus containing a stop codon in both copies of the gene, (iii) a virus containing after the first codon an insert encoding a 16-amino acid epitope known to react with a specific monoclonal antibody, and (iv) a virus in which the deleted sequences were restored. The viruses from which the gene was deleted or which carried stop codons were avirulent on intracerebral inoculation of mice. The virus with the gene tagged by the sequence encoding the epitope was moderately virulent, whereas the restored virus reacquired the phenotype of the parent virus. Significant amounts of virus were recovered only from brains of animals inoculated with virulent viruses. Inasmuch as the product of the gamma 134.5 gene extended the host range of the virus by enabling it to replicate and destroy brain cells, it is a viral neurovirulence factor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chou, J -- Kern, E R -- Whitley, R J -- Roizman, B -- AI 1588-11/AI/NIAID NIH HHS/ -- AI 24009/AI/NIAID NIH HHS/ -- CA 47451/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1990 Nov 30;250(4985):1262-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, IL 60637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2173860" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal ; Antigens, Viral/genetics/immunology ; Base Sequence ; Chromosome Deletion ; *Chromosome Mapping ; Codon ; DNA, Viral/genetics ; Encephalitis/*microbiology ; *Genes, Viral ; Herpes Simplex/*microbiology ; Humans ; *Immediate-Early Proteins ; Molecular Sequence Data ; Rabbits ; Repetitive Sequences, Nucleic Acid ; Simplexvirus/*genetics/growth & development/pathogenicity ; Thymidine Kinase/genetics ; Transfection ; Viral Proteins/*genetics ; Viral Regulatory and Accessory Proteins/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 1990-07-20
    Description: The crystallographic structure of a recombinant hirudin-thrombin complex has been solved at 2.3 angstrom (A) resolution. Hirudin consists of an NH2-terminal globular domain and a long (39 A) COOH-terminal extended domain. Residues Ile1 to Tyr3 of hirudin form a parallel beta-strand with Ser214 to Glu217 of thrombin with the nitrogen atom of Ile1 making a hydrogen bond with Ser195 O gamma atom of the catalytic site, but the specificity pocket of thrombin is not involved in the interaction. The COOH-terminal segment makes numerous electrostatic interactions with an anion-binding exosite of thrombin, whereas the last five residues are in a helical loop that forms many hydrophobic contacts. In all, 27 of the 65 residues of hirudin have contacts less than 4.0 A with thrombin (10 ion pairs and 23 hydrogen bonds). Such abundant interactions may account for the high affinity and specificity of hirudin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rydel, T J -- Ravichandran, K G -- Tulinsky, A -- Bode, W -- Huber, R -- Roitsch, C -- Fenton, J W 2nd -- HL13160/HL/NHLBI NIH HHS/ -- HL43229/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 20;249(4966):277-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Michigan State University, East Lansing 48824.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2374926" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Hirudins/*metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Recombinant Proteins/metabolism ; Thrombin/*metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-08-10
    Description: A metalloantibody has been constructed with a coordination site for metals in the antigen binding pocket. The Zn(II) binding site from carbonic anhydrase B was used as a model. Three histidine residues have been placed in the light chain complementarity determining regions of a single chain antibody molecule. In contrast to the native protein, the mutant displayed metal-dependent fluorescence-quenching behavior. This response was interpreted as evidence for metal binding in the three-histidine site with relative affinities in the order Cu(II) greater than Zn(II) greater than Cd(II). The presence of metal cofactors in immunoglobulins should facilitate antibody catalysis of redox and hydrolytic reactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iverson, B L -- Iverson, S A -- Roberts, V A -- Getzoff, E D -- Tainer, J A -- Benkovic, S J -- Lerner, R A -- F32GM-1204702/GM/NIGMS NIH HHS/ -- IGM 37684/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 10;249(4969):659-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2116666" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Binding Sites, Antibody ; Cadmium ; Carbonic Anhydrases/*immunology ; Copper ; Fluoresceins ; Immunoglobulin Heavy Chains ; Immunoglobulin Light Chains ; Ligands ; *Metals ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Spectrometry, Fluorescence ; Zinc
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-10-12
    Description: Voltage-dependent ion channels are responsible for electrical signaling in neurons and other cells. The main classes of voltage-dependent channels (sodium-, calcium-, and potassium-selective channels) have closely related molecular structures. For one member of this superfamily, the transiently voltage-activated Shaker H4 potassium channel, specific amino acid residues have now been identified that affect channel blockade by the small ion tetraethylammonium, as well as the conduction of ions through the pore. Furthermore, variation at one of these amino acid positions among naturally occurring potassium channels may account for most of their differences in sensitivity to tetraethylammonium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacKinnon, R -- Yellen, G -- GM 43949/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Oct 12;250(4978):276-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Physiology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2218530" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Electric Conductivity ; Kinetics ; Membrane Potentials/drug effects ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligonucleotide Probes ; Potassium Channels/drug effects/genetics/*physiology ; Tetraethylammonium ; Tetraethylammonium Compounds/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 1990-03-02
    Description: Cold-sensitive mutations in the SPB genes (spb1-spb7) of Saccharomyces cerevisiae suppress the inhibition of translation initiation resulting from deletion of the poly(A)-binding protein gene (PAB1). The SPB4 protein belongs to a family of adenosine triphosphate (ATP)-dependent RNA helicases. The aberrant production of 25S ribosomal RNA (rRNA) occurring in spb4-1 mutants or the deletion of SPB2 (RPL46) permits the deletion of PAB1. These data suggest that mutations affecting different steps of 60S subunit formation can allow PAB-independent translation, and they indicate that further characterization of the spb mutations could lend insight into the biogenesis of the ribosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sachs, A B -- Davis, R W -- R37 GM 21891/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 2;247(4946):1077-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Stanford Medical Center, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2408148" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Carrier Proteins/genetics/metabolism ; DEAD-box RNA Helicases ; Molecular Sequence Data ; Mutation ; Poly(A)-Binding Proteins ; *Protein Biosynthesis ; RNA Nucleotidyltransferases/genetics/*metabolism ; RNA Processing, Post-Transcriptional ; RNA, Fungal/genetics/metabolism ; RNA, Ribosomal/genetics/*metabolism ; Ribosomal Proteins/genetics/*metabolism ; Ribosomes/*metabolism ; Saccharomyces cerevisiae/enzymology/*genetics ; *Saccharomyces cerevisiae Proteins ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 1990-05-25
    Description: An active site, cofactor-containing peptide has been obtained in high yield from bovine serum amine oxidase. Sequencing of this pentapeptide indicates: Leu-Asn-X-Asp-Tyr. Analysis of the peptide by mass spectrometry, ultraviolet-visible spectroscopy, and proton nuclear magnetic resonance leads to the identification of X as 6-hydroxydopa. This result indicates that, contrary to previous proposals, pyrroloquinoline quinone is not the active site cofactor in mammalian copper amine oxidases. Although 6-hydroxydopa has been implicated in neurotoxicity, the data presented suggest that this compound has a functional role at an enzyme active site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janes, S M -- Mu, D -- Wemmer, D -- Smith, A J -- Kaur, S -- Maltby, D -- Burlingame, A L -- Klinman, J P -- GM 39296/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 May 25;248(4958):981-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2111581" target="_blank"〉PubMed〈/a〉
    Keywords: *Amine Oxidase (Copper-Containing) ; Amino Acid Sequence ; Animals ; Binding Sites ; Cattle ; Copper ; Dihydroxyphenylalanine/*analogs & derivatives/metabolism ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Molecular Sequence Data ; Oxidoreductases/metabolism ; Oxidoreductases Acting on CH-NH Group Donors/blood/*metabolism ; Peptide Fragments/analysis/chemical synthesis ; Quinones/metabolism ; Spectrophotometry, Ultraviolet
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1990-08-10
    Description: After actively entering its host cells, the protozoan parasite Toxoplasma gondii resides in an intracellular vacuole that is completely unable to fuse with other endocytic or biosynthetic organelles. The fusion blocking requires entry of viable organisms but is irreversible: fusion competence of the vacuole is not restored if the parasite is killed after entry. The fusion block can be overcome, however, by altering the parasite's route of entry. Thus, phagocytosis of viable antibody-coated T. gondii by Chinese hamster ovary cells transfected with macrophage-lymphocyte Fc receptors results in the formation of vacuoles that are capable of both fusion and acidification. Phagocytosis and fusion appear to involve a domain of the Fc receptor cytoplasmic tail distinct from that required for localization at clathrin-coated pits. These results suggest that the mechanism of fusion inhibition is likely to reflect a modification of the vacuole membrane at the time of its formation, as opposed to the secretion of a soluble inhibitor by the parasite.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joiner, K A -- Fuhrman, S A -- Miettinen, H M -- Kasper, L H -- Mellman, I -- New York, N.Y. -- Science. 1990 Aug 10;249(4969):641-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Yale University School of Medicine, New Haven, CT 06510.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2200126" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Fibroblasts/parasitology/physiology/ultrastructure ; Fluorescent Antibody Technique ; Lysosomes/physiology/ultrastructure ; Macrophages/immunology ; Membrane Fusion ; Mice ; Mice, Inbred BALB C ; Phagocytosis ; Receptors, Fc/genetics/*physiology ; Toxoplasma/growth & development/*physiology ; *Transfection ; Vacuoles/*parasitology/physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 1990-12-14
    Description: The principal neutralizing determinant (PND) of human immunodeficiency virus (HIV)-1 resides within the V3 loop of the envelope protein. Antibodies elicited by peptides of this region were able to neutralize diverse isolates. Serum from one of three animals immunized with the human T cell lymphoma virus (HTLV)-IIIMN PND peptide, RP142, neutralized MN and the sequence-divergent HTLV-IIIB isolate. Serum from one of three animals immunized with a 13-amino acid IIIB PND peptide (RP337) also neutralized both of these isolates. Characterization of these sera revealed that the cross-neutralizing antibodies bound the amino acid sequence GlyProGlyArgAlaPhe (GPGRAF) that is present in both isolates. This sequence is frequently found in the PNDs analyzed in randomly selected HIV-1 isolates. Sera from two rabbits immunized with a peptide containing only the GPGRAF residues neutralized divergent isolates, including IIIB and MN.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Javaherian, K -- Langlois, A J -- LaRosa, G J -- Profy, A T -- Bolognesi, D P -- Herlihy, W C -- Putney, S D -- Matthews, T J -- New York, N.Y. -- Science. 1990 Dec 14;250(4987):1590-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, Duke University Medical School, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1703322" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/microbiology ; Amino Acid Sequence ; Animals ; Enzyme-Linked Immunosorbent Assay ; Epitopes/*immunology ; Guinea Pigs ; HIV Antibodies/*immunology ; HIV Antigens/*immunology ; HIV-1/*immunology ; Humans ; Immune Sera/immunology ; Immunization ; Molecular Sequence Data ; Neutralization Tests ; Rabbits ; Viral Envelope Proteins/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 1990-04-27
    Description: Affinity-purified, polyclonal antibodies to the gamma subunit of the dihydropyridine (DHP)-sensitive, voltage-dependent calcium channel have been used to isolate complementary DNAs to the rabbit skeletal muscle protein from an expression library. The deduced primary structure indicates that the gamma subunit is a 25,058-dalton protein that contains four transmembrane domains and two N-linked glycosylation sites, consistent with biochemical analyses showing that the gamma subunit is a glycosylated hydrophobic protein. Nucleic acid hybridization studies indicate that there is a 1200-nucleotide transcript in skeletal muscle but not in brain or heart. The gamma subunit may play a role in assembly, modulation, or the structure of the skeletal muscle calcium channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jay, S D -- Ellis, S B -- McCue, A F -- Williams, M E -- Vedvick, T S -- Harpold, M M -- Campbell, K P -- HL-14388/HL/NHLBI NIH HHS/ -- HL-37187/HL/NHLBI NIH HHS/ -- HL-39265/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Apr 27;248(4954):490-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Iowa College of Medicine, Iowa City 52242.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2158672" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Calcium Channels/drug effects/physiology ; DNA/isolation & purification ; Dihydropyridines/*pharmacology ; Disulfides ; Electrophoresis, Polyacrylamide Gel ; Immunoassay ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Weight ; Muscles/*analysis ; Nucleic Acid Hybridization ; Protein Conformation ; RNA, Messenger/analysis ; Rabbits ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-12-07
    Description: The mammalian olfactory system may transduce odorant information via a G protein-mediated adenosine 3',5'-monophosphate (cAMP) cascade. A newly discovered adenylyl cyclase, termed type III, has been cloned, and its expression was localized to olfactory neurons. The type III protein resides in the sensory neuronal cilia, which project into the nasal lumen and are accessible to airborne odorants. The enzymatic activity of the type III adenylyl cyclase appears to differ from nonsensory cyclases. The large difference seen between basal and stimulated activity for the type III enzyme could allow considerable modulation of the intracellular cAMP concentration. This property may represent one mechanism of achieving sensitivity in odorant perception.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bakalyar, H A -- Reed, R R -- 5T32CA09339/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 7;250(4986):1403-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2255909" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/genetics/*physiology ; Amino Acid Sequence ; Animals ; Brain/enzymology/physiology ; Cell Line ; Clone Cells ; Cloning, Molecular ; Gene Library ; Glycosylation ; Isoenzymes/genetics/*physiology ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Weight ; Neurons, Afferent/enzymology/physiology ; Nose/enzymology/physiology ; *Odors ; Protein Conformation ; Rats ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 1990-06-15
    Description: Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen responsible for considerable morbidity in the general population. The results presented herein establish the basic fibroblast growth factor (FGF) receptor as a means of entry of HSV-1 into vertebrate cells. Inhibitors of basic FGF binding to its receptor and competitive polypeptide antagonists of basic FGF prevented HSV-1 uptake. Chinese hamster ovary (CHO) cells that do not express FGF receptors are resistant to HSV-1 entry; however, HSV-1 uptake is dramatically increased in CHO cells transfected with a complementary DNA encoding a basic FGF receptor. The distribution of this integral membrane protein in vivo may explain the tissue and cell tropism of HSV-1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaner, R J -- Baird, A -- Mansukhani, A -- Basilico, C -- Summers, B D -- Florkiewicz, R Z -- Hajjar, D P -- P01 DK 18811/DK/NIDDK NIH HHS/ -- P01 HD 96601/HD/NICHD NIH HHS/ -- P50 HL 18828/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1990 Jun 15;248(4961):1410-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2162560" target="_blank"〉PubMed〈/a〉
    Keywords: Adsorption ; Amino Acid Sequence ; Animals ; Binding, Competitive ; Cell Line ; Cell Membrane/microbiology ; Cricetinae ; DNA/genetics ; Fibroblast Growth Factors/antagonists & inhibitors/metabolism/pharmacology ; Heparitin Sulfate/metabolism ; Molecular Sequence Data ; Peptide Fragments/pharmacology ; Receptors, Cell Surface/genetics/*physiology ; Receptors, Fibroblast Growth Factor ; Simplexvirus/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1990-06-01
    Description: Transmembrane proteins serve important biological functions, yet precise information on their secondary and tertiary structure is very limited. The boundaries and structures of membrane-embedded domains in integral membrane proteins can be determined by a method based on a combination of site-specific mutagenesis and nitroxide spin labeling. The application to one polypeptide segment in bacteriorhodopsin, a transmembrane chromoprotein that functions as a light-driven proton pump is described. Single cysteine residues were introduced at 18 consecutive positions (residues 125 to 142). Each mutant was reacted with a specific spin label and reconstituted into vesicles that were shown to be functional. The relative collision frequency of each spin label with freely diffusing oxygen and membrane-impermeant chromium oxalate was estimated with power saturation EPR (electron paramagnetic resonance) spectroscopy. The results indicate that residues 129 to 131 form a short water-exposed loop, while residues 132 to 142 are membrane-embedded. The oxygen accessibility for positions 131 to 138 varies with a periodicity of 3.6 residues, thereby providing a striking demonstration of an alpha helix. The orientation of this helical segment with respect to the remainder of the protein was determined.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Altenbach, C -- Marti, T -- Khorana, H G -- Hubbell, W L -- AI 11479/AI/NIAID NIH HHS/ -- EY05216/EY/NEI NIH HHS/ -- GM28289/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jun 1;248(4959):1088-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jules Stein Eye Institute, University of California, Los Angeles 90024-7008.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2160734" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Bacteriorhodopsins/genetics ; Cysteine/genetics ; Electron Spin Resonance Spectroscopy ; *Membrane Proteins/genetics ; Molecular Sequence Data ; Mutation ; Oxalates ; Oxalic Acid ; Oxygen ; Protein Conformation ; Spin Labels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 1990-03-02
    Description: Human T cell leukemia virus type I (HTLV-I) is the etiological agent for adult T cell leukemia (ATL). The HTLV-I trans-activator protein Tax can activate the expression of its own long terminal repeat (LTR) and many cellular and viral genes. Tax down-regulated the expression of human beta-polymerase (hu beta-pol), a cellular enzyme involved in host cell DNA repair. This finding suggests a possible correlation between HTLV-I infection and host chromosomal damage, which is often seen in ATL cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jeang, K T -- Widen, S G -- Semmes, O J 4th -- Wilson, S H -- New York, N.Y. -- Science. 1990 Mar 2;247(4946):1082-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2309119" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Line ; Cell Line, Transformed ; DNA Polymerase I/*genetics ; DNA, Viral/genetics ; Gene Expression Regulation, Enzymologic ; Gene Expression Regulation, Viral ; Human T-lymphotropic virus 1/*genetics ; Humans ; Molecular Sequence Data ; Plasmids ; Promoter Regions, Genetic ; RNA, Messenger/biosynthesis ; Repetitive Sequences, Nucleic Acid ; Repressor Proteins/biosynthesis/*genetics ; Trans-Activators/biosynthesis/*genetics ; Transcription Factors/*genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-09-21
    Description: During the development of a vertebrate embryo, cell fate is determined by inductive signals passing between neighboring tissues. Such determinative interactions have been difficult to characterize fully without knowledge of the molecular mechanisms involved. Mutations of Drosophila and the nematode Caenorhabditis elegans have been isolated that define a family of related gene products involved in similar types of cellular inductions. One of these genes, the Notch gene from Drosophila, is involved with cell fate choices in the neurogenic region of the blastoderm, in the developing nervous system, and in the eye-antennal imaginal disc. Complementary DNA clones were isolated from Xenopus embryos with Notch DNA in order to investigate whether cell-cell interactions in vertebrate embryos also depend on Notch-like molecules. This approach identified a Xenopus molecule, Xotch, which is remarkably similar to Drosophila Notch in both structure and developmental expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coffman, C -- Harris, W -- Kintner, C -- New York, N.Y. -- Science. 1990 Sep 21;249(4975):1438-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California, La Jolla 92093.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2402639" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Drosophila/*genetics ; Embryo, Nonmammalian/physiology ; *Genes ; Molecular Sequence Data ; Nervous System/embryology ; Sequence Homology, Nucleic Acid ; Xenopus/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 1990-02-23
    Description: Identification of a mutant epidermal growth factor (EGF) receptor that does not undergo downregulation has provided a genetic probe to investigate the role of internalization in ligand-induced mitogenesis. Contact-inhibited cells expressing this internalization-defective receptor exhibited a normal mitogenic response at significantly lower ligand concentrations than did cells expressing wild-type receptors. A transformed phenotype and anchorage-independent growth were observed at ligand concentrations that failed to elicit these responses in cells expressing wild-type receptors. These findings imply that activation of the protein tyrosine kinase activity at the cell membrane is sufficient for the growth-enhancing effects of EGF. Thus, downregulation can serve as an attenuation mechanism, without which transformation ensues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wells, A -- Welsh, J B -- Lazar, C S -- Wiley, H S -- Gill, G N -- Rosenfeld, M G -- DDK 13149/DK/NIDDK NIH HHS/ -- DDK 18477/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1990 Feb 23;247(4945):962-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of California-San Diego, La Jolla 92093.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2305263" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Division ; Cell Line ; Down-Regulation ; *Endocytosis ; Enzyme Activation ; Epidermal Growth Factor/pharmacology ; Genetic Vectors ; Moloney murine leukemia virus/genetics ; Mutation ; Phenotype ; Protein-Tyrosine Kinases/metabolism ; Receptor, Epidermal Growth Factor/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 1990-03-16
    Description: Many proteins are initially synthesized as part of a large precursor. The role of the pro-region in the biosynthesis of transforming growth factor--beta 1 (TGF-beta 1) and activin A, two structurally related disulfide-linked homodimers synthesized as large precursors, was studied. Vectors that expressed either the pro-region or the mature regions of these molecules were used in complementation experiments, only when the pro-region was coexpressed with the mature region did intracellular dimerization and secretion of biologically active homodimers occur. The pro-regions of activin A and TGF-beta 1, therefore, aid the folding, disulfide bond formation, and export of their respective homodimers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gray, A M -- Mason, A J -- New York, N.Y. -- Science. 1990 Mar 16;247(4948):1328-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2315700" target="_blank"〉PubMed〈/a〉
    Keywords: Activins ; Amino Acid Sequence ; Cells, Cultured ; Genetic Complementation Test ; Humans ; Inhibins/*biosynthesis/ultrastructure ; Macromolecular Substances ; Molecular Sequence Data ; Protein Processing, Post-Translational ; Protein Sorting Signals/physiology ; Transfection ; Transforming Growth Factors/*biosynthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 1991-03-08
    Description: The two mouse genes, En-1 and En-2, that are homologs of the Drosophila segmentation gene engrailed, show overlapping spatially restricted patterns of expression in the neural tube during embryogenesis, suggestive of a role in regional specification. Mice homozygous for a targeted mutation that deletes the homeobox were viable and showed no obvious defects in embryonic development. This may be due to functional redundancy of En-2 and the related En-1 gene product during embryogenesis. Consistent with this hypothesis, the mutant mice showed abnormal foliation in the adult cerebellum, where En-2, and not En-1, is normally expressed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joyner, A L -- Herrup, K -- Auerbach, B A -- Davis, C A -- Rossant, J -- HD25334/HD/NICHD NIH HHS/ -- NS18381/NS/NINDS NIH HHS/ -- NS20591/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Mar 8;251(4998):1239-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1672471" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst ; Cell Line ; Cerebellum/*anatomy & histology/embryology/pathology ; Chimera ; *Chromosome Deletion ; Female ; *Genes, Homeobox ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Nervous System/embryology ; Phenotype
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1991-09-13
    Description: Three-dimensional (3-D) structural models of RNA are essential for understanding of the cellular roles played by RNA. Such models have been obtained by a technique based on a constraint satisfaction algorithm that allows for the facile incorporation of secondary and other structural information. The program generates 3-D structures of RNA with atomic-level resolution that can be refined by numerical techniques such as energy minimization. The precision of this technique was evaluated by comparing predicted transfer RNA loop and RNA pseudoknot structures with known or consensus structures. The root-mean-square deviation (2.0 to 3.0 angstroms before minimization) between predicted and control structures reveal this system to be an effective method in modeling RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Major, F -- Turcotte, M -- Gautheret, D -- Lapalme, G -- Fillion, E -- Cedergren, R -- New York, N.Y. -- Science. 1991 Sep 13;253(5025):1255-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departement d'Informatique et de Recherche Operationnelle, Universite de Montreal, Quebec, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1716375" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Anticodon/chemistry ; Base Sequence ; *Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA/*chemistry ; RNA, Transfer/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 1991-03-29
    Description: Derivatives of the sunY self-splicing intron efficiently catalyzed the synthesis of complementary strand RNA by template-directed assembly of oligonucleotides. These ribozymes were separated into three short RNA fragments that formed active catalytic complexes. One of the multisubunit sunY derivatives catalyzed the synthesis of a strand of RNA complementary to one of its own subunits. These results suggest that prebiotically synthesized oligonucleotides might have been able to assemble into a complex capable of self-replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doudna, J A -- Couture, S -- Szostak, J W -- New York, N.Y. -- Science. 1991 Mar 29;251(5001):1605-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston 02114.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1707185" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Base Sequence ; *Introns ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligoribonucleotides/metabolism ; RNA/*biosynthesis/genetics ; RNA Splicing ; RNA, Catalytic/*metabolism ; Templates, Genetic ; Tetrahymena/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...