ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mutation  (141)
  • Protein Structure, Secondary  (46)
  • American Association for the Advancement of Science (AAAS)  (181)
  • 1995-1999  (181)
  • 1996  (181)
Collection
Keywords
Publisher
Years
  • 1995-1999  (181)
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-05-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fu, Y X -- Li, W H -- New York, N.Y. -- Science. 1996 May 31;272(5266):1356-7; author reply 1361-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8650550" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bayes Theorem ; Biological Evolution ; Confidence Intervals ; DNA-Binding Proteins/*genetics ; *Genetics, Population ; Hominidae/*genetics ; Humans ; Introns/*genetics ; Kruppel-Like Transcription Factors ; Male ; Mutation ; Population Density ; Probability ; Time Factors ; Transcription Factors/*genetics ; Y Chromosome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-12-13
    Description: The structure of the Staphylococcus aureus alpha-hemolysin pore has been determined to 1.9 A resolution. Contained within the mushroom-shaped homo-oligomeric heptamer is a solvent-filled channel, 100 A in length, that runs along the sevenfold axis and ranges from 14 A to 46 A in diameter. The lytic, transmembrane domain comprises the lower half of a 14-strand antiparallel beta barrel, to which each protomer contributes two beta strands, each 65 A long. The interior of the beta barrel is primarily hydrophilic, and the exterior has a hydrophobic belt 28 A wide. The structure proves the heptameric subunit stoichiometry of the alpha-hemolysin oligomer, shows that a glycine-rich and solvent-exposed region of a water-soluble protein can self-assemble to form a transmembrane pore of defined structure, and provides insight into the principles of membrane interaction and transport activity of beta barrel pore-forming toxins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, L -- Hobaugh, M R -- Shustak, C -- Cheley, S -- Bayley, H -- Gouaux, J E -- New York, N.Y. -- Science. 1996 Dec 13;274(5294):1859-66.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Chicago, 920 East 58 Street, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8943190" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Toxins/*chemistry/metabolism ; Cell Membrane/chemistry/metabolism ; Crystallography, X-Ray ; Hemolysin Proteins/*chemistry/metabolism ; Hydrogen Bonding ; Lipid Bilayers/*chemistry ; Membrane Potentials ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Staphylococcus aureus/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-11-15
    Description: The initiation of anaphase and exit from mitosis require the activation of a proteolytic system that ubiquitinates and degrades cyclin B. The regulated component of this system is a large ubiquitin ligase complex, termed the anaphase-promoting complex (APC) or cyclosome. Purified Xenopus laevis APC was found to be composed of eight major subunits, at least four of which became phosphorylated in mitosis. In addition to CDC27, CDC16, and CDC23, APC contained a homolog of Aspergillus nidulans BIME, a protein essential for anaphase. Because mutation of bimE can bypass the interphase arrest induced by either nimA mutation or unreplicated DNA, it appears that ubiquitination catalyzed by APC may also negatively regulate entry into mitosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peters, J M -- King, R W -- Hoog, C -- Kirschner, M W -- New York, N.Y. -- Science. 1996 Nov 15;274(5290):1199-201.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8895470" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Anaphase ; Animals ; Aspergillus/chemistry/cytology/metabolism ; Cell Cycle Proteins/*chemistry/metabolism ; Cyclins/metabolism ; Electrophoresis, Polyacrylamide Gel ; Fungal Proteins/analysis/*chemistry/genetics/metabolism ; Ligases/*chemistry/metabolism ; *Mitosis ; Molecular Sequence Data ; Mutation ; Ovum ; Phosphorylation ; Ubiquitin-Protein Ligases ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-02-09
    Description: The RAS guanine nucleotide binding proteins activate multiple signaling events that regulate cell growth and differentiation. In quiescent fibroblasts, ectopic expression of activated H-RAS (H-RASV12, where V12 indicates valine-12) induces membrane ruffling, mitogen-activated protein (MAP) kinase activation, and stimulation of DNA synthesis. A mutant of activated H-RAS, H-RASV12C40 (where C40 indicates cysteine-40), was identified that was defective for MAP kinase activation and stimulation of DNA synthesis, but retained the ability to induce membrane ruffling. Another mutant of activated H-RAS, H-RASV12S35 (where S35 indicates serine-35), which activates MAP kinase, was defective for stimulation of membrane ruffling and induction of DNA synthesis. Expression of both mutants resulted in a stimulation of DNA synthesis that was comparable to that induced by H-RASV12. These results indicate that membrane ruffling and activation of MAP kinase represent distinct RAS effector pathways and that input from both pathways is required for the mitogenic activity of RAS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joneson, T -- White, M A -- Wigler, M H -- Bar-Sagi, D -- CA 55360/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1996 Feb 9;271(5250):810-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook 11794, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8628998" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Division ; Cell Line ; Cell Membrane/*ultrastructure ; DNA/biosynthesis ; Enzyme Activation ; GTP-Binding Proteins/genetics/metabolism ; Microinjections ; Mutation ; Plasmids ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-raf ; Rats ; Signal Transduction ; rac GTP-Binding Proteins ; ras Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-03-01
    Description: HLA-DM (DM) facilitates peptide loading of major histocompatibility complex class II molecules in human cell lines. Mice lacking functional H2-M, the mouse equivalent of DM, have normal amounts of class II molecules at the cell surface, but most of these are associated with invariant chain-derived CLIP peptides. These mice contain large numbers of CD4+ T cells, which is indicative of positive selection in the thymus. Their CD4+ cells were unresponsive to self H2-M-deficient antigen-presenting cells (APCs) but were hyperreactive to wild-type APCs. H2-M-deficient APCs failed to elicit proliferative responses from wild-type T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fung-Leung, W P -- Surh, C D -- Liljedahl, M -- Pang, J -- Leturcq, D -- Peterson, P A -- Webb, S R -- Karlsson, L -- New York, N.Y. -- Science. 1996 Mar 1;271(5253):1278-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉R. W. Johnson Pharmaceutical Research Institute, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638109" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigen Presentation ; Antigen-Presenting Cells/*immunology ; Antigens, Differentiation, B-Lymphocyte/immunology/metabolism ; Base Sequence ; CD4-Positive T-Lymphocytes/*immunology ; Cells, Cultured ; Gene Targeting ; Histocompatibility Antigens Class II/genetics/*immunology/metabolism ; Isoantigens/immunology ; Lymphocyte Activation ; Mice ; Molecular Sequence Data ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1996-08-30
    Description: Upon contact with the eukaryotic cell, Yersinia pseudotuberculosis increased the rate of transcription of virulence genes (yop), as determined by in situ monitoring of light emission from individual bacteria expressing luciferase under the control of the yopE promoter. The microbe-host interaction triggered export of LcrQ, a negative regulator of Yop expression, via the Yop-type III secretion system. The intracellular concentration of LcrQ was thereby lowered, resulting in increased expression of Yops. These results suggest a key role for the type III secretion system of pathogenic bacteria to coordinate secretion with expression of virulence factors after physical contact with the target cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pettersson, J -- Nordfelth, R -- Dubinina, E -- Bergman, T -- Gustafsson, M -- Magnusson, K E -- Wolf-Watz, H -- New York, N.Y. -- Science. 1996 Aug 30;273(5279):1231-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Molecular Biology, University of Umea, S-901 87 Umea, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8703058" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacterial Adhesion ; Bacterial Outer Membrane Proteins/biosynthesis/*genetics/secretion ; Bacterial Proteins/genetics/*secretion ; Calcium/metabolism ; Culture Media ; Cytosol/metabolism ; *Gene Expression Regulation, Bacterial ; HeLa Cells ; Humans ; Mutation ; Up-Regulation ; Virulence/*genetics ; Yersinia pseudotuberculosis/genetics/metabolism/*pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1996-08-09
    Description: STAT proteins (signal transducers and activators of transcription) activate distinct target genes despite having similar DNA binding preferences. The transcriptional specificity of STAT proteins was investigated on natural STAT binding sites near the interferon-gamma gene. These sites are arranged in multiple copies and required cooperative interactions for STAT binding. The conserved amino-terminal domain of STAT proteins was required for cooperative DNA binding, although this domain was not essential for dimerization or binding to a single site. Cooperative binding interactions enabled the STAT proteins to recognize variations of the consensus site. These sites can be specific for the different STAT proteins and may function to direct selective transcriptional activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, X -- Sun, Y L -- Hoey, T -- New York, N.Y. -- Science. 1996 Aug 9;273(5276):794-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tularik, Two Corporate Drive, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8670419" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cell Line ; DNA/*metabolism ; DNA-Binding Proteins/chemistry/immunology/*metabolism ; Interferon-gamma/genetics ; Introns ; Molecular Sequence Data ; Mutation ; Oligodeoxyribonucleotides/metabolism ; Promoter Regions, Genetic ; STAT1 Transcription Factor ; STAT4 Transcription Factor ; Sequence Deletion ; Signal Transduction ; Trans-Activators/chemistry/immunology/*metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-01-12
    Description: The structural features of the G.U wobble pair in Escherichia coli alanine transfer RNA (tRNA(Ala)) that are associated with aminoacylation by alanyl-tRNA synthetase (AlaRS) were investigated in vivo for wild-type tRNA(Ala) and mutant tRNAs with G.U substitutions. tRNA(Ala) with G.U, C.A, or G.A gave similar amounts of charged tRNA(Ala) and supported viability of E. coli lacking chromosomal tRNA(Ala) genes. tRNA(Ala) with G.C was inactive. Recognition of G.U by AlaRS thus requires more than the functional groups on G.U in a regular helix and may involve detection of a helical distortion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gabriel, K -- Schneider, J -- McClain, W H -- GM42123/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jan 12;271(5246):195-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bacteriology, University of Wisconsin, Madison 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8539617" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine-tRNA Ligase/*metabolism ; Anticodon ; Base Composition ; Base Sequence ; Escherichia coli/genetics/growth & development ; Genes, Bacterial ; Guanine/chemistry ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Plasmids ; RNA, Transfer, Ala/chemistry/genetics/*metabolism ; Uracil/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-05-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stasiak, A -- New York, N.Y. -- Science. 1996 May 10;272(5263):828-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Labortatoire d'analyse Ultrastructurale, Batiment de Biologie, Universite de Lausanne, Lausanne-Dorigny, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8629012" target="_blank"〉PubMed〈/a〉
    Keywords: DNA, Single-Stranded/genetics/*metabolism ; DNA, Superhelical/genetics/*metabolism ; Nucleic Acid Conformation ; Peptide Fragments/chemistry/metabolism ; Protein Structure, Secondary ; Rec A Recombinases/chemistry/*metabolism ; *Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1996-05-31
    Description: Missense mutations in the 695-amino acid form of the amyloid precursor protein (APP695) cosegregate with disease phenotype in families with dominantly inherited Alzheimer's disease. These mutations convert valine at position 642 to isoleucine, phenylalanine, or glycine. Expression of these mutant proteins, but not of normal APP695, was shown to induce nucleosomal DNA fragmentation in neuronal cells. Induction of DNA fragmentation required the cytoplasmic domain of the mutants and appeared to be mediated by heterotrimeric guanosine triphosphate-binding proteins (G proteins).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamatsuji, T -- Matsui, T -- Okamoto, T -- Komatsuzaki, K -- Takeda, S -- Fukumoto, H -- Iwatsubo, T -- Suzuki, N -- Asami-Odaka, A -- Ireland, S -- Kinane, T B -- Giambarella, U -- Nishimoto, I -- New York, N.Y. -- Science. 1996 May 31;272(5266):1349-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Research Center, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8650548" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*genetics/metabolism ; Amyloid beta-Peptides/metabolism ; Amyloid beta-Protein Precursor/chemistry/genetics/*physiology ; Animals ; Apoptosis ; Base Sequence ; Culture Media, Conditioned ; DNA/*metabolism ; GTP-Binding Proteins/*physiology ; Humans ; Hybrid Cells ; Mice ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation ; Neurons/cytology/*metabolism ; Nucleosomes/*metabolism ; Peptide Fragments/metabolism ; Rats ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1996-06-21
    Description: ZPR1 is a zinc finger protein that binds to the cytoplasmic tyrosine kinase domain of the epidermal growth factor receptor (EGFR). Deletion analysis demonstrated that this binding interaction is mediated by the zinc fingers of ZPR1 and subdomains X and XI of the EGFR tyrosine kinase. Treatment of mammalian cells with EGF caused decreased binding of ZPR1 to the EGFR and the accumulation of ZPR1 in the nucleus. The effect of EGF to regulate ZPR1 binding is dependent on tyrosine phosphorylation of the EGFR. ZPR1 therefore represents a prototype for a class of molecule that binds to the EGFR and is released from the receptor after activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galcheva-Gargova, Z -- Konstantinov, K N -- Wu, I H -- Klier, F G -- Barrett, T -- Davis, R J -- R01-CA58396/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1996 Jun 21;272(5269):1797-802.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8650580" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/*metabolism/secretion ; Cell Line ; Cell Nucleus/metabolism ; Cloning, Molecular ; Cytoplasm/metabolism ; Epidermal Growth Factor/pharmacology ; Humans ; Immunoblotting ; Male ; Mice ; Molecular Sequence Data ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Structure, Secondary ; RNA, Messenger/genetics/metabolism ; Receptor, Epidermal Growth Factor/chemistry/*metabolism ; Testis/metabolism ; Type C Phospholipases/metabolism ; Vanadates/pharmacology ; *Zinc Fingers ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-01-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carr, A M -- New York, N.Y. -- Science. 1996 Jan 19;271(5247):314-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Cell Mutation Unit, Sussex University, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8553064" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia Mutated Proteins ; *Cell Cycle ; *Cell Cycle Proteins ; Checkpoint Kinase 2 ; *DNA Damage ; DNA Replication ; DNA-Binding Proteins ; Humans ; *Mitosis ; Mutation ; Phosphorylation ; Protein Kinases/genetics/*metabolism ; *Protein-Serine-Threonine Kinases ; Proteins/genetics/metabolism ; Saccharomyces cerevisiae/cytology/metabolism ; *Saccharomyces cerevisiae Proteins ; Schizosaccharomyces/cytology/metabolism ; Signal Transduction ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1996-05-31
    Description: Unesterified sterol modulates the function of eukaryotic membranes. In human cells, sterol is esterified to a storage form by acyl-coenzyme A (CoA): cholesterol acyl transferase (ACAT). Here, two genes are identified, ARE1 and ARE2, that encode ACAT-related enzymes in yeast. The yeast enzymes are 49 percent identical to each other and exhibit 23 percent identity to human ACAT. Deletion of ARE2 reduced sterol ester levels to approximately 25 percent of normal levels, whereas disruption of ARE1 did not affect sterol ester biosynthesis. Deletion of both genes resulted in a viable cell with undetectable esterified sterol. Measurements of [14C]acetate incorporation into saponified lipids indicated down-regulation of sterol biosynthesis in the are1 are2 mutant cells. With the use of a consensus sequence to the yeast and human genes, an additional number of the ACAT gene family was identified in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, H -- Bard, M -- Bruner, D A -- Gleeson, A -- Deckelbaum, R J -- Aljinovic, G -- Pohl, T M -- Rothstein, R -- Sturley, S L -- GM 50237/GM/NIGMS NIH HHS/ -- HG00861/HG/NHGRI NIH HHS/ -- R01 AI38598/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1996 May 31;272(5266):1353-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8650549" target="_blank"〉PubMed〈/a〉
    Keywords: Acetates/metabolism ; Acyltransferases/chemistry/*genetics/metabolism ; Amino Acid Sequence ; Base Sequence ; Cell Membrane/metabolism ; Cholesterol Esters/metabolism ; Cyclin-Dependent Kinase 8 ; *Cyclin-Dependent Kinases ; DNA, Complementary/genetics ; Ergosterol/metabolism ; Esterification ; *Genes, Fungal ; Homeostasis ; Humans ; Molecular Sequence Data ; Mutation ; Oleic Acid ; Oleic Acids/metabolism ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins ; Sterol O-Acyltransferase/*genetics/metabolism ; Sterols/*metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1996-03-15
    Description: Iron must cross biological membranes to reach essential intracellular enzymes. Two proteins in the plasma membrane of yeast--a multicopper oxidase, encoded by the FET3 gene, and a permease, encoded by the FTR1 gene--were shown to mediate high-affinity iron uptake. FET3 expression was required for FTR1 protein to be transported to the plasma membrane. FTR1 expression was required for apo-FET3 protein to be loaded with copper and thus acquire oxidase activity. FTR1 protein also played a direct role in iron transport. Mutations in a conserved sequence motif of FTR1 specifically blocked iron transport.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stearman, R -- Yuan, D S -- Yamaguchi-Iwai, Y -- Klausner, R D -- Dancis, A -- New York, N.Y. -- Science. 1996 Mar 15;271(5255):1552-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Metabolism Branch, National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8599111" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Biological Transport ; Carrier Proteins/chemistry/*genetics/*metabolism ; Cell Membrane/metabolism ; *Ceruloplasmin ; Copper/metabolism/pharmacology ; Endoplasmic Reticulum/metabolism ; Ferric Compounds/metabolism ; Ferritins/chemistry/metabolism ; Ferrous Compounds/metabolism ; Genes, Fungal ; Golgi Apparatus/metabolism ; Iron/*metabolism ; Membrane Transport Proteins/chemistry/*genetics/*metabolism ; Models, Biological ; Molecular Sequence Data ; Multienzyme Complexes/*metabolism ; Mutation ; Open Reading Frames ; Oxidation-Reduction ; Oxidoreductases/*metabolism ; Saccharomyces cerevisiae/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1996-05-31
    Description: In a previous study, an RNA aptamer for the specific recognition of arginine was evolved from a parent sequence that bound citrulline specifically. The two RNAs differ at only 3 positions out of 44. The solution structures of the two aptamers complexed to their cognate amino acids have now been determined by two-dimensional nuclear magnetic resonance spectroscopy. Both aptamers contain two asymmetrical internal loops that are not well ordered in the free RNA but that fold into a compact structure upon ligand binding. Those nucleotides common to both RNAs include a conserved cluster of purine residues, three of which form an uneven plane containing a G:G pair, and two other residues nearly perpendicular to that surface. Two of the three variant nucleotides are stacked on the cluster of purines and form a triple contact to the amino acid side chain, whereas the edge of the third variant nucleotide is capping the binding pocket.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Y -- Kochoyan, M -- Burgstaller, P -- Westhof, E -- Famulok, M -- New York, N.Y. -- Science. 1996 May 31;272(5266):1343-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de Biochimie Structurale (CBS), Unite Mixte de Recherche, CNRS 9955, Montpellier, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8650546" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/chemistry/*metabolism ; Base Composition ; Base Sequence ; Citrulline/chemistry/*metabolism ; Crystallography, X-Ray ; Hydrogen Bonding ; Ligands ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Mutation ; *Nucleic Acid Conformation ; RNA/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1996-07-12
    Description: The three-dimensional structure of the amino-terminal core domain (residues 1 through 151) of the human immunodeficiency virus-type 1 (HIV-1) capsid protein has been solved by multidimensional heteronuclear magnetic resonance spectroscopy. The structure is unlike those of previously characterized viral coat proteins and is composed of seven alpha helices, two beta hairpins, and an exposed partially ordered loop. The domain is shaped like an arrowhead, with the beta hairpins and loop exposed at the trailing edge and the carboxyl-terminal helix projecting from the tip. The proline residue Pro1 forms a salt bridge with a conserved, buried aspartate residue (Asp51), which suggests that the amino terminus of the protein rearranges upon proteolytic maturation. The binding site for cyclophilin A, a cellular rotamase that is packaged into the HIV-1 virion, is located on the exposed loop and encompasses the essential proline residue Pro90. In the free monomeric domain, Pro90 adopts kinetically trapped cis and trans conformations, raising the possibility that cyclophilin A catalyzes interconversion of the cis- and trans-Pro90 loop structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gitti, R K -- Lee, B M -- Walker, J -- Summers, M F -- Yoo, S -- Sundquist, W I -- AI30917/AI/NIAID NIH HHS/ -- CA 42014/CA/NCI NIH HHS/ -- GM 42561/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jul 12;273(5272):231-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21228, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662505" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/metabolism ; Amino Acid Sequence ; Aspartic Acid/chemistry ; Binding Sites ; Capsid/*chemistry/metabolism ; Carrier Proteins/metabolism ; HIV Core Protein p24/*chemistry/metabolism ; HIV-1/*chemistry ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Peptidylprolyl Isomerase ; Proline/chemistry ; Protein Conformation ; Protein Processing, Post-Translational ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Virion/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-05-03
    Description: The recent application of molecular genetic tools to inherited forms of cardiovascular disease has provided important insight into the molecular mechanisms underlying cardiac arrhythmias, cardiomyopathies, and vascular diseases. These studies point to defects in ion channels, contractile proteins, structural proteins, and signaling molecules as key players in disease pathogenesis. Genetic testing is now available for a subset of inherited cardiovascular diseases, and new mechanism-based therapies may be available in the near future. This remarkable progress and the implications it may have for more common forms of cardiovascular disease are reviewed here.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keating, M T -- Sanguinetti, M C -- New York, N.Y. -- Science. 1996 May 3;272(5262):681-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Utah, Salt Lake City, 84112, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8614827" target="_blank"〉PubMed〈/a〉
    Keywords: Arrhythmias, Cardiac/diagnosis/*genetics ; Cardiomyopathies/diagnosis/*genetics ; Contractile Proteins/genetics ; Genetic Predisposition to Disease ; Genetic Testing ; Humans ; Ion Channels/genetics ; Mutation ; Myocardium/metabolism ; Prognosis ; Risk Factors ; Vascular Diseases/diagnosis/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1996-11-22
    Description: The Caenorhabditis elegans dauer larva is specialized for dispersal without growth and is formed under conditions of overcrowding and limited food. The daf-7 gene, required for transducing environmental cues that support continuous development with plentiful food, encodes a transforming growth factor-beta (TGF-beta) superfamily member. A daf-7 reporter construct is expressed in the ASI chemosensory neurons. Dauer-inducing pheromone inhibits daf-7 expression and promotes dauer formation, whereas food reactivates daf-7 expression and promotes recovery from the dauer state. When the food/pheromone ratio is high, the level of daf-7 mRNA peaks during the L1 larval stage, when commitment to non-dauer development is made.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ren, P -- Lim, C S -- Johnsen, R -- Albert, P S -- Pilgrim, D -- Riddle, D L -- HD11239/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 22;274(5291):1389-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Program and Division of Biological Sciences, 311 Tucker Hall, University of Missouri, Columbia, MO 65211, USA. riddle@biosci.mbp.missouri.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8910282" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Caenorhabditis elegans/genetics/*growth & development/metabolism ; *Caenorhabditis elegans Proteins ; Genes, Helminth ; Genes, Reporter ; Green Fluorescent Proteins ; Helminth Proteins/chemistry/genetics/*physiology ; Humans ; Larva/growth & development/metabolism ; Ligands ; Luminescent Proteins/genetics ; Molecular Sequence Data ; Mutation ; Neurons, Afferent/*metabolism ; Phenotype ; Pheromones/pharmacology ; Temperature ; Transforming Growth Factor beta/chemistry/genetics/*physiology ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1996-10-25
    Description: A cytosolic yeast karyopherin, Kap104p, was isolated and shown to function in the nuclear import of a specific class of proteins. The protein bound directly to repeat-containing nucleoporins and to a cytosolic pool of two nuclear messenger RNA (mRNA) binding proteins, Nab2p and Nab4p. Depletion of Kap104p resulted in a rapid shift of Nab2p from the nucleus to the cytoplasm without affecting the localization of other nuclear proteins tested. This finding suggests that the major function of Kap104p lies in returning mRNA binding proteins to the nucleus after mRNA export.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aitchison, J D -- Blobel, G -- Rout, M P -- New York, N.Y. -- Science. 1996 Oct 25;274(5287):624-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA. blobel@rockvax.rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8849456" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biological Transport ; Carrier Proteins/chemistry/isolation & purification/*metabolism ; Cell Nucleus/*metabolism ; Cytosol/chemistry/metabolism ; Fungal Proteins/*metabolism ; *Karyopherins ; Membrane Proteins/metabolism ; Molecular Sequence Data ; Mutation ; Nuclear Envelope/metabolism ; *Nuclear Pore Complex Proteins ; Nuclear Proteins/*metabolism ; *Nucleocytoplasmic Transport Proteins ; RNA, Messenger/genetics/metabolism ; RNA-Binding Proteins/*metabolism ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/*metabolism ; *Saccharomyces cerevisiae Proteins ; Temperature ; beta Karyopherins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-06-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosch, P -- Willbold, D -- New York, N.Y. -- Science. 1996 Jun 14;272(5268):1672.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biopolymers, University of Bayreuth, Germany. paul.rosch@uni-bayreuth.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658146" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Gene Products, tat/*chemistry ; Homeodomain Proteins/*chemistry ; Infectious Anemia Virus, Equine/*chemistry ; Magnetic Resonance Spectroscopy ; Molecular Sequence Data ; Protein Structure, Secondary ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-10-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J -- New York, N.Y. -- Science. 1996 Oct 11;274(5285):177-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8927978" target="_blank"〉PubMed〈/a〉
    Keywords: *Alzheimer Disease/genetics/metabolism/pathology ; Amyloid beta-Peptides/blood/metabolism ; Amyloid beta-Protein Precursor/*genetics ; Animals ; Brain/pathology ; Brain Chemistry ; *Disease Models, Animal ; Learning Disorders/etiology ; Memory Disorders/etiology ; Mice ; Mice, Inbred C57BL ; *Mice, Transgenic ; Mutation ; Peptide Fragments/blood/metabolism ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1996-08-30
    Description: During neurogenesis in Drosophila both neurons and nonneuronal cells are produced from a population of initially equivalent cells. The kuzbanian (kuz) gene described here is essential for the partitioning of neural and nonneuronal cells during development of both the central and peripheral nervous systems in Drosophila. Mosaic analyses indicated that kuz is required for cells to receive signals inhibiting the neural fate. These analyses further revealed that the development of a neuron requires a kuz-mediated positive signal from neighboring cells. The kuz gene encodes a metalloprotease-disintegrin protein with a highly conserved bovine homolog, raising the possibility that kuz homologs may act in similar processes during mammalian neurogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rooke, J -- Pan, D -- Xu, T -- Rubin, G M -- New York, N.Y. -- Science. 1996 Aug 30;273(5279):1227-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8703057" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cloning, Molecular ; Disintegrins/chemistry/genetics/*physiology ; Drosophila/cytology/embryology/*genetics/physiology ; *Drosophila Proteins ; *Genes, Insect ; Metalloendopeptidases/chemistry/genetics/*physiology ; Molecular Sequence Data ; Mosaicism ; Mutation ; Nervous System/embryology ; Neurons/*cytology ; Photoreceptor Cells, Invertebrate/cytology/embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1996-03-15
    Description: Diffusible factors of several protein families control appendage outgrowth and patterning in both insects and vertebrates. In Drosophila wing development, the gene decapentaplegic (dpp) is expressed along the anteroposterior compartment boundary. Early wingless (wg) expression is involved in setting up the dorsoventral boundary. Interaction between dpp- and wg-expressing cells promotes appendage outgrowth. Here, it is shown that optomotor-blind (omb) expression is required for distal wing development and is controlled by both dpp and wg. Ectopic omb expression can lead to the growth of additional wings. Thus, omb is essential for wing development and is controlled by two signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grimm, S -- Pflugfelder, G O -- New York, N.Y. -- Science. 1996 Mar 15;271(5255):1601-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Theodor-Boveri-Institut (Biozentrum), Lehrstuhl fur Genetik, Universitat Wurzburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8599120" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA-Binding Proteins/*genetics/physiology ; Drosophila/*genetics/growth & development ; *Drosophila Proteins ; *Gene Expression Regulation, Developmental ; Genes, Insect ; Insect Hormones/*genetics/physiology ; Larva/genetics/growth & development ; Mutation ; Nerve Tissue Proteins/*genetics/physiology ; Phenotype ; Proto-Oncogene Proteins/*genetics/physiology ; Signal Transduction ; *T-Box Domain Proteins ; Wings, Animal/*growth & development ; Wnt1 Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1996-07-12
    Description: Rapamycin, a potent immunosuppressive agent, binds two proteins: the FK506-binding protein (FKBP12) and the FKBP-rapamycin-associated protein (FRAP). A crystal structure of the ternary complex of human FKBP12, rapamycin, and the FKBP12-rapamycin-binding (FRB) domain of human FRAP at a resolution of 2.7 angstroms revealed the two proteins bound together as a result of the ability of rapamycin to occupy two different hydrophobic binding pockets simultaneously. The structure shows extensive interactions between rapamycin and both proteins, but fewer interactions between the proteins. The structure of the FRB domain of FRAP clarifies both rapamycin-independent and -dependent effects observed for mutants of FRAP and its homologs in the family of proteins related to the ataxia-telangiectasia mutant gene product, and it illustrates how a small cell-permeable molecule can mediate protein dimerization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, J -- Chen, J -- Schreiber, S L -- Clardy, J -- CA59021/CA/NCI NIH HHS/ -- GM38625/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jul 12;273(5272):239-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662507" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Carrier Proteins/chemistry/genetics/*metabolism ; Crystallography, X-Ray ; DNA-Binding Proteins/chemistry/*metabolism ; Heat-Shock Proteins/chemistry/*metabolism ; Humans ; *Immunophilins ; Models, Molecular ; Mutation ; *Phosphotransferases (Alcohol Group Acceptor) ; Polyenes/*chemistry/*metabolism ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; Sirolimus ; TOR Serine-Threonine Kinases ; Tacrolimus Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-04-19
    Description: Many retinal functions are circadian, but in most instances the location of the clock that drives the rhythm is not known. Cultured neural retinas of the golden hamster (Mesocricetus auratus) exhibited circadian rhythms of melatonin synthesis for at least 5 days at 27 degrees celsius. The rhythms were entrained by light cycles applied in vitro and were free-running in constant darkness. Retinas from hamsters homozygous for the circadian mutation tau, which shortens the free-running period of the circadian activity rhythm by 4 hours, showed a shortened free-running period of melatonin synthesis. The mammalian retina contains a genetically programmed circadian oscillator that regulates its synthesis of melatonin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tosini, G -- Menaker, M -- HD13162/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1996 Apr 19;272(5260):419-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8602533" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Clocks ; *Circadian Rhythm/genetics ; Cricetinae ; Culture Techniques ; Darkness ; Genes ; Light ; Melatonin/*biosynthesis ; Mesocricetus ; Mutation ; Retina/metabolism/*physiology ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1996-04-05
    Description: Spiders produce a variety of silks that range from Lycra-like elastic fibers to Kevlar-like superfibers. A gene family from the spider Araneus diadematus was found to encode silk-forming proteins (fibroins) with different proportions of amorphous glycine-rich domains and crystal domains built from poly(alanine) and poly(glycine-alanine) repeat motifs. Spiders produce silks of different composition by gland-specific expression of this gene family, which allows for a range of mechanical properties according to the crystal-forming potential of the constituent fibroins. These principles of fiber property control may be important in the development of genetically engineered structural proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guerette, P A -- Ginzinger, D G -- Weber, B H -- Gosline, J M -- New York, N.Y. -- Science. 1996 Apr 5;272(5258):112-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8600519" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/analysis ; Animals ; Base Sequence ; Blotting, Northern ; Crystallization ; DNA, Complementary/genetics ; Exocrine Glands/*metabolism ; Fibroins/*chemistry/genetics ; Gene Expression Regulation ; Gene Library ; *Insect Proteins ; Molecular Sequence Data ; Peptides/analysis ; Proline/analysis ; Protein Structure, Secondary ; Proteins/chemistry/genetics ; *Silk ; Spiders/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1996-12-20
    Description: Enoyl reductase (ENR), an enzyme involved in fatty acid biosynthesis, is the target for antibacterial diazaborines and the front-line antituberculosis drug isoniazid. Analysis of the structures of complexes of Escherichia coli ENR with nicotinamide adenine dinucleotide and either thienodiazaborine or benzodiazaborine revealed the formation of a covalent bond between the 2' hydroxyl of the nicotinamide ribose and a boron atom in the drugs to generate a tight, noncovalently bound bisubstrate analog. This analysis has implications for the structure-based design of inhibitors of ENR, and similarities to other oxidoreductases suggest that mimicking this molecular linkage may have generic applications in other areas of medicinal chemistry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldock, C -- Rafferty, J B -- Sedelnikova, S E -- Baker, P J -- Stuitje, A R -- Slabas, A R -- Hawkes, T R -- Rice, D W -- New York, N.Y. -- Science. 1996 Dec 20;274(5295):2107-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK. D.Rice@sheffield.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8953047" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/*metabolism/pharmacology ; Binding Sites ; Boron Compounds/*metabolism/pharmacology ; Crystallography, X-Ray ; Drug Design ; Drug Resistance, Microbial ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) ; Enzyme Inhibitors/*metabolism/pharmacology ; Escherichia coli/enzymology ; Escherichia coli Proteins ; Fatty Acid Synthase, Type II ; Fatty Acid Synthases/antagonists & inhibitors/*chemistry/metabolism ; Hydrogen Bonding ; Models, Molecular ; NAD/*metabolism ; Oxidoreductases/antagonists & inhibitors/*chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-05-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morell, V -- New York, N.Y. -- Science. 1996 May 17;272(5264):953-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638139" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Drosophila/genetics/*physiology ; Female ; Genes, Insect ; Male ; Mutation ; Reproduction ; Sex Characteristics ; Sexual Behavior, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1996-11-15
    Description: An approach is described to monitor directly at the level of individual residues the formation of structure during protein folding. A two-dimensional heteronuclear nuclear magnetic resonance (NMR) spectrum was recorded after the rapid initiation of the refolding of a protein labeled with nitrogen-15. The intensities and line shapes of the cross peaks in the spectrum reflected the kinetic time course of the folding events that occurred during the spectral accumulation. The method was used to demonstrate the cooperative nature of the acquisition of the native main chain fold of apo bovine alpha-lactalbumin. The general approach, however, should be applicable to the investigation of a wide range of chemical reactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balbach, J -- Forge, V -- Lau, W S -- van Nuland, N A -- Brew, K -- Dobson, C M -- New York, N.Y. -- Science. 1996 Nov 15;274(5290):1161-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Oxford Centre for Molecular Sciences, New Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8895458" target="_blank"〉PubMed〈/a〉
    Keywords: Circular Dichroism ; Fourier Analysis ; Hydrogen-Ion Concentration ; Kinetics ; Lactalbumin/*chemistry ; *Magnetic Resonance Spectroscopy ; Nitrogen Isotopes ; *Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Spectrometry, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-01-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roush, W -- New York, N.Y. -- Science. 1996 Jan 5;271(5245):33.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8539595" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*embryology/genetics ; *Caenorhabditis elegans Proteins ; *Embryonic Development ; Female ; Fertilization ; Genes, Helminth ; Helminth Proteins/genetics/*physiology ; Male ; Mutation ; *Nuclear Proteins ; Oocytes/physiology ; Spermatozoa/*chemistry/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-05-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trudeau, M C -- Warmke, J W -- Ganetzky, B -- Robertson, G A -- New York, N.Y. -- Science. 1996 May 24;272(5265):1087.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638148" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Humans ; Mutation ; Potassium Channels/*genetics ; *Potassium Channels, Inwardly Rectifying
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-02-09
    Description: The reaper gene (rpr) is important for the activation of apoptosis in Drosophila. To investigate whether rpr expression is sufficient to induce apoptosis, transgenic flies were generated that express rpr complementary DNA or the rpr open reading frame in cells that normally live. Transcription of rpr from a heat-inducible promoter rapidly caused wide-spread ectopic apoptosis and organismal death. Ectopic overexpression of rpr in the developing retina resulted in eye ablation. The occurrence of cell death was highly sensitive to the dosage of the transgene. Because cell death induced by the protein encoded by rpr (RPR) could be blocked by the baculovirus p35 protein, RPR appears to activate a death program mediated by a ced-3/ICE (interleukin-1 converting enzyme)-like protease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉White, K -- Tahaoglu, E -- Steller, H -- New York, N.Y. -- Science. 1996 Feb 9;271(5250):805-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8628996" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; *Apoptosis ; Caspase 1 ; Cysteine Endopeptidases/metabolism ; DNA, Complementary/genetics ; Drosophila/cytology/embryology/*genetics ; *Drosophila Proteins ; Gene Dosage ; Gene Expression ; *Genes, Insect ; Hot Temperature ; Inhibitor of Apoptosis Proteins ; Mutation ; Open Reading Frames ; Peptides/*genetics/physiology ; Photoreceptor Cells, Invertebrate/cytology ; Transgenes ; Viral Proteins/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-06-07
    Description: Genetic analysis has implicated SPT6, an essential gene of Saccharomyces cerevisiae, in the control of chromatin structure. Mutations in SPT6 and particular mutations in histone genes are able to overcome transcriptional defects in strains lacking the Snf/Swi protein complex. Here it is shown that an spt6 mutation causes changes in chromatin structure in vivo. In addition, both in vivo and in vitro experiments provide evidence that Spt6p interacts directly with histones and primarily with histone H3. Consistent with these findings, Spt6p is capable of nucleosome assembly in vitro.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bortvin, A -- Winston, F -- GM32967/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jun 7;272(5267):1473-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8633238" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatin/chemistry/genetics/metabolism/*ultrastructure ; DNA, Fungal/metabolism ; Fungal Proteins/genetics/metabolism/*physiology ; Histones/chemistry/genetics/*metabolism ; Humans ; Mutation ; Nuclear Proteins/genetics/metabolism/*physiology ; Nucleosomes/metabolism ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/*genetics/metabolism ; *Saccharomyces cerevisiae Proteins ; Transcription, Genetic ; Transcriptional Elongation Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-03-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Brien, C -- New York, N.Y. -- Science. 1996 Mar 22;271(5256):1672.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596927" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Chromosome Mapping ; Chromosomes, Human, Pair 21/*genetics ; Cystatin B ; Cystatins/*genetics ; Cysteine Proteinase Inhibitors/*genetics ; Epilepsies, Myoclonic/*genetics ; Female ; Humans ; Male ; Mutation ; Pedigree ; RNA, Messenger/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1996-07-05
    Description: The Caenorhabditis elegans LIN-12 and GLP-1 proteins are members of the LIN-12/Notch family of receptors for intercellular signals that specify cell fate. Evidence presented here suggests that the intracellular domains of LIN-12 and GLP-1 interact with the C. elegans EMB-5 protein and that the emb-5 gene functions in the same pathway as the lin-12 and glp-1 genes. EMB-5 is similar in sequence to a yeast protein that controls chromatin structure. Hence, a direct consequence of LIN-12 or GLP-1 activation may be an alteration of chromatin structure that produces changes in transcriptional activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hubbard, E J -- Dong, Q -- Greenwald, I -- GM37602/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jul 5;273(5271):112-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658178" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*cytology/embryology/genetics/*metabolism ; *Caenorhabditis elegans Proteins ; Cell Lineage ; Chromatin/metabolism ; Gene Expression Regulation, Developmental ; Genes, Helminth ; Helminth Proteins/genetics/*metabolism ; Meiosis ; Membrane Proteins/genetics/*metabolism ; Mitosis ; Mutation ; Receptors, Notch ; *Signal Transduction ; Temperature ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-09-27
    Description: Reactive oxygen intermediates (ROIs) regulate apoptosis during normal development and disease in animals. ROIs are also implicated in hypersensitive resistance responses of plants against pathogens. Arabidopsis lsd1 mutants exhibited impaired control of cell death in the absence of pathogen and could not control the spread of cell death once it was initiated. Superoxide was necessary and sufficient to initiate lesion formation; it accumulated before the onset of cell death and subsequently in live cells adjacent to spreading lsd1 lesions. Thus, runaway cell death seen in lsd1 plants reflected abnormal accumulation of superoxide and lack of responsiveness to signals derived from it.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jabs, T -- Dietrich, R A -- Dangl, J L -- New York, N.Y. -- Science. 1996 Sep 27;273(5283):1853-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Delbruck Laboratory, Carl von Linne Weg 10, 50829 Koln, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8791589" target="_blank"〉PubMed〈/a〉
    Keywords: *Apoptosis ; Arabidopsis/*cytology/genetics/metabolism ; Cell Membrane/enzymology ; Enzyme Inhibitors/pharmacology ; Gene Expression Regulation, Plant ; Genes, Plant ; Glutathione Transferase/genetics/metabolism ; Mutation ; NADH, NADPH Oxidoreductases/antagonists & inhibitors/metabolism ; NADPH Oxidase ; Onium Compounds/pharmacology ; Peroxidases/genetics/metabolism ; Plant Leaves/cytology/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; Reactive Oxygen Species/metabolism ; Superoxide Dismutase/genetics ; Superoxides/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-12-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Engelman, D M -- New York, N.Y. -- Science. 1996 Dec 13;274(5294):1850-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics, Yale University, New Haven, CT 06520, USA. don@paradigm.csb.yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8984645" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Toxins/*chemistry/metabolism ; Colicins/chemistry ; Hemolysin Proteins/*chemistry/metabolism ; Hydrogen Bonding ; Lipid Bilayers/*chemistry/metabolism ; Membrane Proteins/*chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-05-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacobson, R H -- Tjian, R -- New York, N.Y. -- Science. 1996 May 10;272(5263):827-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, Berkeley 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8629011" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallography, X-Ray ; DNA/*chemistry/metabolism ; DNA-Binding Proteins/*chemistry/metabolism ; Humans ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Secondary ; TATA Box ; TATA-Box Binding Protein ; Transcription Factor TFIIA ; Transcription Factor TFIID ; Transcription Factors/*chemistry/genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-03-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, N -- New York, N.Y. -- Science. 1996 Mar 8;271(5254):1365-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596907" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Game Theory ; Genes ; Genetics, Population ; Humans ; *Models, Biological ; Models, Genetic ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-10-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1996 Oct 18;274(5286):342-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8927990" target="_blank"〉PubMed〈/a〉
    Keywords: Adenovirus E1B Proteins/*genetics/metabolism ; Adenoviruses, Human/genetics/*physiology ; Animals ; Clinical Trials, Phase I as Topic ; Cytopathogenic Effect, Viral ; Genes, Viral ; *Genes, p53 ; Head and Neck Neoplasms/*therapy/virology ; Humans ; Mice ; Mutation ; Neoplasm Transplantation ; Neoplasms, Experimental/*therapy/virology ; Tumor Suppressor Protein p53/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1996-01-05
    Description: The molecular origin of the exceptional mechanical properties of spider silk is unclear. This paper presents solid-state 2H nuclear magnetic resonance data from unoriented, oriented, and supercontracted fibers, indicating that the crystalline fraction of dragline silk consists of two types of alanine-rich regions, one that is highly oriented and one that is poorly oriented and less densely packed. A new model for the molecular-level structure of individual silk molecules and their arrangement in the fibers is proposed. These data suggest that it will be necessary to control the secondary structure of individual polymer molecules in order to obtain optimum properties in bio-inspired polymers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simmons, A H -- Michal, C A -- Jelinski, L W -- New York, N.Y. -- Science. 1996 Jan 5;271(5245):84-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Advanced Technology in Biotechnology, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8539605" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/analysis ; Algorithms ; Amino Acid Sequence ; Animals ; Crystallization ; Crystallography, X-Ray ; *Fibroins ; Glycine/analysis ; *Insect Proteins ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Peptides/analysis ; Protein Conformation ; Protein Structure, Secondary ; Proteins/*chemistry ; Silk ; Spiders/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1996-10-25
    Description: Caulobacter crescentus undergoes asymmetric cell division, resulting in a stalked cell and a motile swarmer cell. The genes encoding external components of the flagellum are expressed in the swarmer compartment of the predivisional cell through the localized activation of the transcription factor FlbD. The mechanisms responsible for the temporal and spatial activation of FlbD were determined through identification of FlbE, a histidine kinase required for FlbD activity. FlbE is asymmetrically distributed in the predivisional cell. It is located at the pole of the stalked compartment and at the site of cell division in the swarmer compartment. These findings suggest that FlbE and FlbD are activated in response to a morphological change in the cell resulting from cell division events.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wingrove, J A -- Gober, J W -- GM-07104/GM/NIGMS NIH HHS/ -- GM48417/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Oct 25;274(5287):597-601.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8849449" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/genetics/*metabolism ; Caulobacter crescentus/cytology/*genetics/physiology ; Cell Division ; DNA-Binding Proteins/genetics/*metabolism ; Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Mutation ; Phosphorylation ; Promoter Regions, Genetic ; Protein Kinases/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Transcription Factors/genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-05-03
    Description: Heart formation requires complex interactions among cells from multiple embryonic origins. Recent studies have begun to reveal the genetic pathways that control cardiac morphogenesis. Many of the genes within these pathways are conserved across vast phylogenetic distances, which has allowed cardiac development to be dissected in organisms ranging from flies to mammals. Studies of cardiac development have also revealed the molecular defects underlying several congenital cardiac malformations in humans and may ultimately provide opportunities for genetic testing and intervention.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olson, E N -- Srivastava, D -- New York, N.Y. -- Science. 1996 May 3;272(5262):671-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas, 75235-9148, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8614825" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; *Gene Expression Regulation, Developmental ; Genes ; Genes, Regulator ; Heart/*embryology ; Heart Conduction System/embryology ; Heart Defects, Congenital/embryology/*genetics/pathology ; Humans ; Morphogenesis ; Mutation ; Myocardium/cytology ; Neural Crest/cytology ; Transcription Factors/physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-05-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1996 May 17;272(5264):949-50.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638138" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*genetics ; Animals ; Biological Clocks/*genetics ; Caenorhabditis elegans/*genetics/physiology ; *Genes, Helminth ; Longevity/genetics ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1996-02-09
    Description: Bruton's tyrosine kinase (BTK) is pivotal in B cell activation and development through its participation in the signaling pathways of multiple hematopoietic receptors. The mechanisms controlling BTK activation were studied here by examination of the biochemical consequences of an interaction between BTK and SRC family kinases. This interaction of BTK with SRC kinases transphosphorylated BTK on tyrosine at residue 551, which led to BTK activation. BTK then autophosphorylated at a second site. The same two sites were phosphorylated upon B cell antigen receptor cross-linking. The activated BTK was predominantly membrane-associated, which suggests that BTK integrates distinct receptor signals resulting in SRC kinase activation and BTK membrane targeting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rawlings, D J -- Scharenberg, A M -- Park, H -- Wahl, M I -- Lin, S -- Kato, R M -- Fluckiger, A C -- Witte, O N -- Kinet, J P -- AR01912/AR/NIAMS NIH HHS/ -- AR36834/AR/NIAMS NIH HHS/ -- CA09120-20/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1996 Feb 9;271(5250):822-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90095-1662, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8629002" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; B-Lymphocytes/*enzymology ; Cell Line, Transformed ; Cell Membrane/enzymology ; Enzyme Activation ; Immunoglobulin M/immunology ; Lymphocyte Activation ; Mice ; Mutation ; Phosphopeptides/analysis ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/chemistry/genetics/*metabolism ; Receptors, Antigen, B-Cell/metabolism ; Signal Transduction ; src-Family Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-01-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayhew, M -- Hartl, F U -- New York, N.Y. -- Science. 1996 Jan 12;271(5246):161-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8539614" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Chaperonin 10/*chemistry/metabolism ; Chaperonin 60/metabolism ; Crystallography, X-Ray ; Mycobacterium leprae/*chemistry ; *Protein Conformation ; *Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 1996-02-23
    Description: Transmembrane signaling by bacterial chemotaxis receptors appears to require a conformational change within a receptor dimer. Dimers were engineered of the cytoplasmic domain of the Escherichia coli aspartate receptor that stimulated the kinase CheA in vitro. The folding free energy of the leucine-zipper dimerization domain was harnessed to twist the dimer interface of the receptor, which markedly affected the extent of CheA activation. Response to this twist was attenuated by modification of receptor regulatory sites, in the same manner as adaptation resets sensitivity to ligand in vivo. These results suggest that the normal allosteric activation of the chemotaxis receptor has been mimicked in a system that lacks both ligand-binding and transmembrane domains. The most stimulatory receptor dimer formed a species of tetrameric size.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cochran, A G -- Kim, P S -- T32 AI07348-07/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1996 Feb 23;271(5252):1113-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8599087" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/chemistry/*metabolism ; Chemoreceptor Cells ; Chemotaxis ; Cytoplasm/metabolism ; Enzyme Activation ; Escherichia coli/*metabolism ; *Escherichia coli Proteins ; Leucine Zippers ; Ligands ; Membrane Proteins/chemistry/*metabolism ; Methylation ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation ; Protein Kinases/metabolism ; Protein Structure, Secondary ; Receptors, Amino Acid/chemistry/*metabolism ; *Receptors, Cell Surface ; Recombinant Fusion Proteins/chemistry/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-01-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tautz, D -- New York, N.Y. -- Science. 1996 Jan 12;271(5246):160-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Zoologisches Institut, Universitat Munchen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8539613" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; DNA-Binding Proteins/*genetics ; Drosophila/drug effects/*genetics ; *Drosophila Proteins ; Ether/pharmacology ; *Genes, Homeobox ; Genes, Insect ; *Genes, Regulator ; Homeodomain Proteins/*genetics ; Homeostasis ; Mutation ; *Polymorphism, Genetic ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-04-19
    Description: Many of the cell fate decisions in precursor B cells and more mature B cells are controlled by membrane immunoglobulin (Ig)M heavy chain (mu) and the Ig alpha-Ig beta signal transducers. The role of Ig beta in regulating early B cell development was examined in mice that lack Ig beta (Ig beta-/-). These mice had a complete block in B cell development at the immature CD43+B220+ stage. Immunoglobulin heavy chain diversity (DH) and joining (JH) segments rearranged, but variable (VH) to DJH recombination and immunoglobulin messenger RNA expression were compromised. These experiments define an unexpected, early requirement for Ig(beta) to produce B cells that can complete VDJH recombination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gong, S -- Nussenzweig, M C -- New York, N.Y. -- Science. 1996 Apr 19;272(5260):411-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8602530" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/genetics/*physiology ; Antigens, CD79 ; B-Lymphocytes/cytology/*immunology ; Gene Expression ; *Gene Rearrangement, B-Lymphocyte, Heavy Chain ; Gene Targeting ; Genes, Immunoglobulin ; Immunoglobulin Heavy Chains/*genetics ; Immunoglobulin Joining Region/genetics ; Immunoglobulin Light Chains/*genetics ; Immunoglobulin Variable Region/genetics ; Immunoglobulin mu-Chains/biosynthesis/genetics/physiology ; Lymph Nodes ; Mice ; Mice, Inbred C57BL ; Mutation ; RNA, Messenger/genetics ; Receptors, Antigen, B-Cell/physiology ; *Recombination, Genetic ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 1996-08-09
    Description: The mechanism by which Golgi membrane proteins are retained within the Golgi complex in the midst of a continuous flow of protein and lipid is not yet understood. The diffusional mobilities of mammalian Golgi membrane proteins fused with green fluorescent protein from Aequorea victoria were measured in living HeLa cells with the fluorescence photobleaching recovery technique. The diffusion coefficients ranged from 3 x 10(-9) square centimeters per second to 5 x 10(-9) square centimeters per second, with greater than 90 percent of the chimeric proteins mobile. Extensive lateral diffusion of the chimeric proteins occurred between Golgi stacks. Thus, the chimeras diffuse rapidly and freely in Golgi membranes, which suggests that Golgi targeting and retention of these molecules does not depend on protein immobilization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cole, N B -- Smith, C L -- Sciaky, N -- Terasaki, M -- Edidin, M -- Lippincott-Schwartz, J -- R37 AI14584/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1996 Aug 9;273(5276):797-801.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Building 18T, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8670420" target="_blank"〉PubMed〈/a〉
    Keywords: Aluminum Compounds/pharmacology ; Diffusion ; Endoplasmic Reticulum/metabolism ; Fluorides/pharmacology ; Golgi Apparatus/*metabolism ; Green Fluorescent Proteins ; HeLa Cells ; Humans ; Intracellular Membranes/metabolism ; Luminescent Proteins ; Mannosidases/*metabolism ; Membrane Proteins/*metabolism ; Microscopy, Confocal ; Mutation ; N-Acetyllactosamine Synthase/*metabolism ; Receptors, Peptide/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-07-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Corey, D P -- Garcia-Anoveros, J -- New York, N.Y. -- Science. 1996 Jul 19;273(5273):323-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8685718" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Caenorhabditis elegans/genetics/*physiology ; Genes, Helminth ; Helminth Proteins/chemistry/genetics/*physiology ; Molecular Sequence Data ; Muscle Contraction ; Mutation ; Phenotype ; Sensation/genetics/*physiology ; Sodium Channels/chemistry/genetics/*physiology ; Touch/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1996-03-08
    Description: Glutamic acid-203 of the alpha subunit of transducin (alphaT) resides within a domain that undergoes a guanosine triphosphate (GTP)-induced conformational change that is essential for effector recognition. Changing the glutamic acid to an alanine in bovine alpha(T) yielded an alpha subunit (alpha(T)E203A) that was fully dependent on rhodopsin for GTP-guanosine diphosphate (GDP) exchange and showed GTP hydrolytic activity similar to that measured for wild-type alpha(T). However, unlike the wild-type protein, the GDP-bound form of alpha(T)E203A was constitutively active toward the effector of transducin, the cyclic guanosine monophosphate phosphodiesterase. Thus, the alpha(T)E203A mutant represents a short-circuited protein switch that no longer requires GTP for the activation of the effector target phosphodiesterase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mittal, R -- Erickson, J W -- Cerione, R A -- New York, N.Y. -- Science. 1996 Mar 8;271(5254):1413-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Cornell University, Ithaca, NY 14853-6401, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596913" target="_blank"〉PubMed〈/a〉
    Keywords: 3',5'-Cyclic-GMP Phosphodiesterases/*metabolism ; Adenosine Diphosphate Ribose/metabolism ; Alanine/chemistry ; Animals ; Base Sequence ; Cattle ; Enzyme Activation ; Glutamic Acid/chemistry ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/*metabolism ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins ; Rhodopsin/metabolism ; Transducin/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-11-08
    Description: Mutations in the p53 tumor suppressor are among the most frequently observed genetic alterations in human cancer and map to the 200-amino acid core domain of the protein. The core domain contains the sequence-specific DNA binding activity and the in vitro 53BP2 protein binding activity of p53. The crystal structure of the p53 core domain bound to the 53BP2 protein, which contains an SH3 (Src homology 3) domain and four ankyrin repeats, revealed that (i) the SH3 domain binds the L3 loop of p53 in a manner distinct from that of previously characterized SH3-polyproline peptide complexes, and (ii) an ankyrin repeat, which forms an L-shaped structure consisting of a beta hairpin and two alpha helices, binds the L2 loop of p53. The structure of the complex shows that the 53BP2 binding site on the p53 core domain consists of evolutionarily conserved regions that are frequently mutated in cancer and that it overlaps the site of DNA binding. The six most frequently observed p53 mutations disrupt 53BP2 binding in vitro. The structure provides evidence that the 53BP2-p53 complex forms in vivo and may have a critical role in the p53 pathway of tumor suppression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gorina, S -- Pavletich, N P -- CA65698/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 8;274(5289):1001-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8875926" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Ankyrins/*chemistry ; Apoptosis Regulatory Proteins ; Binding Sites ; Carrier Proteins/*chemistry/metabolism ; Crystallography, X-Ray ; DNA/metabolism ; Humans ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Neoplasms/genetics ; Protein Binding ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Tumor Suppressor Protein p53/*chemistry/genetics/metabolism ; *src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 1996-05-03
    Description: A mouse model of familial hypertrophic cardiomyopathy (FHC) was generated by the introduction of an Arg 403 --〉 Gln mutation into the alpha cardiac myosin heavy chain (MHC) gene. Homozygous alpha MHC 403/403 mice died 7 days after birth, and sedentary heterozygous alpha MHC 403/+ mice survived for 1 year. Cardiac histopathology and dysfunction in the alpha MHC 403/+ mice resembled human FHC. Cardiac dysfunction preceded histopathologic changes, and myocyte disarray, hypertrophy, and fibrosis increased with age. Young male alpha MHC 403/+ mice showed more evidence of disease than did their female counterparts. Preliminary results suggested that exercise capacity may have been compromised in the alpha MHC 403/+ mice. This mouse model may help to define the natural history of FHC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geisterfer-Lowrance, A A -- Christe, M -- Conner, D A -- Ingwall, J S -- Schoen, F J -- Seidman, C E -- Seidman, J G -- New York, N.Y. -- Science. 1996 May 3;272(5262):731-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8614836" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cardiac Output ; Cardiomyopathy, Hypertrophic/*genetics/pathology/physiopathology ; *Disease Models, Animal ; Female ; Gene Transfer Techniques ; Heart/*physiopathology ; Heterozygote ; Homozygote ; Humans ; Male ; Mice ; Mice, Mutant Strains ; Molecular Sequence Data ; Mutation ; Myocardium/chemistry/*pathology ; Myosin Heavy Chains/*genetics ; Physical Exertion ; Sex Characteristics ; Ventricular Function, Left
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1996-08-30
    Description: Pycnodysostosis, an autosomal recessive osteochondrodysplasia characterized by osteosclerosis and short stature, maps to chromosome 1q21. Cathepsin K, a cysteine protease gene that is highly expressed in osteoclasts, localized to the pycnodysostosis region. Nonsense, missense, and stop codon mutations in the gene encoding cathepsin K were identified in patients. Transient expression of complementary DNA containing the stop codon mutation resulted in messenger RNA but no immunologically detectable protein. Thus, pycnodysostosis results from gene defects in a lysosomal protease with highest expression in osteoclasts. These findings suggest that cathepsin K is a major protease in bone resorption, providing a possible rationale for the treatment of disorders such as osteoporosis and certain forms of arthritis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gelb, B D -- Shi, G P -- Chapman, H A -- Desnick, R J -- R01 DK31775/DK/NIDDK NIH HHS/ -- R01 HL44816/HL/NHLBI NIH HHS/ -- R37 DK34045/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1996 Aug 30;273(5279):1236-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics and Division of Pediatric Cardiology, Mount Sinai School of Medicine, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8703060" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Bone Matrix/metabolism ; Bone Resorption ; Cathepsin K ; Cathepsins/deficiency/*genetics/metabolism ; Chromosome Mapping ; Chromosomes, Human, Pair 1 ; Codon, Terminator ; Dinucleoside Phosphates/genetics ; Humans ; Lysosomal Storage Diseases/enzymology/*genetics ; Lysosomes/*enzymology ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation ; Osteochondrodysplasias/enzymology/*genetics ; Osteoclasts/*enzymology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-11-08
    Description: Although cytokinin plays a central role in plant development, little is known about cytokinin signal transduction. Five Arabidopsis thaliana mutants that exhibit typical cytokinin responses, including rapid cell division and shoot formation in tissue culture in the absence of exogenous cytokinin, were isolated by activation transferred DNA tagging. A gene, CKI1, which was tagged in four of the five mutants and induced typical cytokinin responses after introduction and overexpression in plants, was cloned. CKI1 encodes a protein similar to the two-component regulators. These results suggest that CKI1 is involved in cytokinin signal transduction, possibly as a cytokinin receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kakimoto, T -- New York, N.Y. -- Science. 1996 Nov 8;274(5289):982-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8875940" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*physiology ; *Arabidopsis Proteins ; Cloning, Molecular ; Cytokinins/pharmacology/*physiology ; DNA, Bacterial/genetics ; DNA, Complementary/genetics ; DNA, Plant/genetics ; Ethylenes/metabolism ; Genes, Plant ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Plant Proteins/chemistry/metabolism ; Polymorphism, Restriction Fragment Length ; Protein Kinases/chemistry/genetics/*physiology ; *Receptors, Cell Surface ; Sequence Homology, Amino Acid ; *Signal Transduction ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1996-02-02
    Description: Hydrogen-deuterium exchange of 39 amide protons of Bacillus amyloliquefaciens ribonuclease (barnase) was analyzed by two-dimensional nuclear magnetic resonance in the presence of micromolar concentrations of the molecular chaperones GroEL and SecB. Both chaperones bound to native barnase under physiological conditions and catalyzed exchange of deeply buried amide protons with solvent. Such exchange required complete unfolding of barnase, which occurred in the complex with the chaperones. Subsequent collapse of unfolded barnase to the exchange-protected folding intermediate was markedly slowed in the presence of GroEL or SecB. Thus, both chaperones have the potential to correct misfolding in proteins by annealing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zahn, R -- Perrett, S -- Stenberg, G -- Fersht, A R -- New York, N.Y. -- Science. 1996 Feb 2;271(5249):642-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8571125" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/pharmacology ; Amides ; Bacterial Proteins/*metabolism ; Catalysis ; Chaperonin 60/*metabolism ; Hydrogen-Ion Concentration ; Kinetics ; Magnetic Resonance Spectroscopy ; Molecular Chaperones/*metabolism ; Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; *Protons ; Ribonucleases/*chemistry/metabolism ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1996-05-31
    Description: A second gene for autosomal dominant polycystic kidney disease was identified by positional cloning. Nonsense mutations in this gene (PKD2) segregated with the disease in three PKD2 families. The predicted 968-amino acid sequence of the PKD2 gene product has six transmembrane spans with intracellular amino- and carboxyl-termini. The PKD2 protein has amino acid similarity with PKD1, the Caenorhabditis elegans homolog of PKD1, and the family of voltage-activated calcium (and sodium) channels, and it contains a potential calcium-binding domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mochizuki, T -- Wu, G -- Hayashi, T -- Xenophontos, S L -- Veldhuisen, B -- Saris, J J -- Reynolds, D M -- Cai, Y -- Gabow, P A -- Pierides, A -- Kimberling, W J -- Breuning, M H -- Deltas, C C -- Peters, D J -- Somlo, S -- DK02015/DK/NIDDK NIH HHS/ -- DK48383/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1996 May 31;272(5266):1339-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Renal Division, Department of Medicine and Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8650545" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Caenorhabditis elegans/chemistry/genetics ; Calcium Channels/chemistry/genetics ; Chromosome Mapping ; Chromosomes, Human, Pair 4 ; Cloning, Molecular ; Consensus Sequence ; Crystallography, X-Ray ; Female ; Glycosylation ; Humans ; Male ; Membrane Proteins/chemistry/*genetics/physiology ; Molecular Sequence Data ; Mutation ; Pedigree ; Phenotype ; Polycystic Kidney, Autosomal Dominant/*genetics ; Polymorphism, Single-Stranded Conformational ; Proteins/chemistry/genetics ; Sodium Channels/chemistry/genetics ; TRPP Cation Channels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roush, W -- New York, N.Y. -- Science. 1996 Dec 20;274(5295):2011.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8984660" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning ; *Drosophila Proteins ; Drosophila melanogaster/embryology/*genetics ; Fibroblast Growth Factors/chemistry ; Gene Expression Regulation, Developmental ; *Genes, Insect ; Insect Proteins/chemistry/*genetics/metabolism/physiology ; Larva/growth & development ; Morphogenesis ; Mutation ; *Protein-Tyrosine Kinases ; Receptors, Fibroblast Growth Factor/genetics/metabolism ; Trachea/embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-11-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roush, W -- New York, N.Y. -- Science. 1996 Nov 22;274(5291):1304-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8966601" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; Carcinoma, Basal Cell/genetics/therapy ; Hedgehog Proteins ; Humans ; Membrane Proteins/genetics/*metabolism ; Mutation ; Proteins/*metabolism ; Receptors, Cell Surface/*metabolism/physiology ; *Receptors, G-Protein-Coupled ; Signal Transduction ; Skin Neoplasms/genetics/therapy ; *Trans-Activators
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1996-03-29
    Description: In Drosophila, the Wingless and Notch signaling pathways function in m any of the same developmental patterning events. Genetic analysis demonstrates that the dishevelled gene, which encodes a molecule previously implicated in implementation of the Winglass signal, interacts antagonistically with Notch and one of its known ligands, Delta. A direct physical interaction between Dishevelled and the Notch carboxyl terminus, distal to the cdc10/ankyrin repeats, suggests a mechanism for this interaction. It is proposed that Dishevelled, in addition to transducing the Wingless signal, blocks Notch signaling directly, thus providing a molecular mechanism for the inhibitory cross talk observed between these pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Axelrod, J D -- Matsuno, K -- Artavanis-Tsakonas, S -- Perrimon, N -- New York, N.Y. -- Science. 1996 Mar 29;271(5257):1826-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596950" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Clone Cells ; Drosophila/genetics/growth & development/*metabolism ; *Drosophila Proteins ; Genes, Insect ; Intracellular Signaling Peptides and Proteins ; Membrane Proteins/antagonists & inhibitors/genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Phenotype ; *Phosphoproteins ; Proteins/genetics/*metabolism ; Proto-Oncogene Proteins/genetics/*metabolism ; Pupa/metabolism ; Receptors, Notch ; *Signal Transduction ; Wings, Animal/cytology/growth & development ; Wnt1 Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1996-11-22
    Description: Liver regeneration stimulated by a loss of liver mass leads to hepatocyte and nonparenchymal cell proliferation and rapid restoration of liver parenchyma. Mice with targeted disruption of the interleukin-6 (IL-6) gene had impaired liver regeneration characterized by liver necrosis and failure. There was a blunted DNA synthetic response in hepatocytes of these mice but not in nonparenchymal liver cells. Furthermore, there were discrete G1 phase (prereplicative stage in the cell cycle) abnormalities including absence of STAT3 (signal transducer and activator of transcription protein 3) activation and depressed AP-1, Myc, and cyclin D1 expression. Treatment of IL-6-deficient mice with a single preoperative dose of IL-6 returned STAT3 binding, gene expression, and hepatocyte proliferation to near normal and prevented liver damage, establishing that IL-6 is a critical component of the regenerative response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cressman, D E -- Greenbaum, L E -- DeAngelis, R A -- Ciliberto, G -- Furth, E E -- Poli, V -- Taub, R -- DK44237/DK/NIDDK NIH HHS/ -- DK49210/DK/NIDDK NIH HHS/ -- DK49629/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1996 Nov 22;274(5291):1379-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Medicine, University of Pennsylvania School of Medicine, 705a Stellar-Chance, 422 Curie Boulevard, Philadelphia, PA 19104-6145, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8910279" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cyclin D1 ; Cyclins/biosynthesis ; DNA/biosynthesis/metabolism ; DNA-Binding Proteins/metabolism ; G1 Phase ; Gene Expression Regulation ; Gene Targeting ; Genes, Immediate-Early ; Hepatectomy ; Interleukin-6/deficiency/genetics/pharmacology/*physiology ; Liver/*cytology/metabolism/pathology ; Liver Failure/*etiology/pathology ; *Liver Regeneration ; Mice ; Mice, Inbred C57BL ; Mitosis ; Mutation ; Necrosis ; Oncogene Proteins/biosynthesis ; Proto-Oncogene Proteins c-myc/biosynthesis ; STAT3 Transcription Factor ; Trans-Activators/metabolism ; Transcription Factor AP-1/biosynthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1996-03-29
    Description: Upon contacting its postsynaptic target, a neuronal growth cone transforms into a presynaptic terminal. A membrane component on the growth cone that facilitates synapse formation was identified by means of a complementary DNA-based screen followed by genetic analysis. The late bloomer (lbl) gene in Drosophila encodes a member of the tetraspanin family of cell surface proteins. LBL protein is transiently expressed on motor axons, growth cones, and terminal arbors. In lbl mutant embryos, the growth cone of the RP3 motoneuron contacts its target muscles, but synapse formation is delayed and neighboring motoneurons display an increase in ectopic sprouting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kopczynski, C C -- Davis, G W -- Goodman, C S -- New York, N.Y. -- Science. 1996 Mar 29;271(5257):1867-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, Berkeley 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596956" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Axons/metabolism/ultrastructure ; Cloning, Molecular ; Drosophila/embryology/genetics/physiology ; *Drosophila Proteins ; *Genes, Insect ; Membrane Proteins/chemistry/genetics/*physiology ; Molecular Sequence Data ; Motor Neurons/cytology/metabolism/*physiology ; Muscles/innervation ; Mutation ; Nerve Tissue Proteins/chemistry/genetics/*physiology ; Neuromuscular Junction/*physiology ; Presynaptic Terminals/*physiology/ultrastructure ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-02-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morell, V -- New York, N.Y. -- Science. 1996 Feb 2;271(5249):596.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8571120" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Distemper/transmission/*virology ; Distemper Virus, Canine/classification/*genetics ; Dogs ; *Genome, Viral ; Humans ; Lions/*virology ; Mutation ; Species Specificity ; Tanzania
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 1996-05-24
    Description: The crystal structure of bovine heart cytochrome c oxidase at 2.8 A resolution with an R value of 19.9 percent reveals 13 subunits, each different from the other, five phosphatidyl ethanolamines, three phosphatidyl glycerols and two cholates, two hemes A, and three copper, one magnesium, and one zinc. Of 3606 amino acid residues in the dimer, 3560 have been converged to a reasonable structure by refinement. A hydrogen-bonded system, including a propionate of a heme A (heme a), part of peptide backbone, and an imidazole ligand of CuA, could provide an electron transfer pathway between CuA and heme a. Two possible proton pathways for pumping, each spanning from the matrix to the cytosolic surfaces, were identified, including hydrogen bonds, internal cavities likely to contain water molecules, and structures that could form hydrogen bonds with small possible conformational change of amino acid side chains. Possible channels for chemical protons to produce H2O, for removing the produced water, and for O2, respectively, were identified.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsukihara, T -- Aoyama, H -- Yamashita, E -- Tomizaki, T -- Yamaguchi, H -- Shinzawa-Itoh, K -- Nakashima, R -- Yaono, R -- Yoshikawa, S -- New York, N.Y. -- Science. 1996 May 24;272(5265):1136-44.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Protein Research, Osaka University, Suita, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638158" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cattle ; Cell Nucleus/genetics ; Copper/analysis ; Crystallography, X-Ray ; Electron Transport ; Electron Transport Complex IV/*chemistry/genetics/metabolism ; Heme/analogs & derivatives/analysis ; Hydrogen Bonding ; Iron/analysis ; Membrane Proteins/chemistry ; Mitochondria, Heart/genetics ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Myocardium/enzymology ; Nucleotides/metabolism ; Oxidation-Reduction ; Oxygen/metabolism ; Phospholipids/analysis ; *Protein Conformation ; Protein Structure, Secondary ; Proton Pumps ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 1996-01-19
    Description: About 90 percent of human pancreatic carcinomas show allelic loss at chromosome 18q. To identify candidate tumor suppressor genes on 18q, a panel of pancreatic carcinomas were analyzed for convergent sites of homozygous deletion. Twenty-five of 84 tumors had homozygous deletions at 18q21.1, a site that excludes DCC (a candidate suppressor gene for colorectal cancer) and includes DPC4, a gene similar in sequence to a Drosophila melanogaster gene (Mad) implicated in a transforming growth factor-beta (TGF-beta)-like signaling pathway. Potentially inactivating mutations in DPC4 were identified in six of 27 pancreatic carcinomas that did not have homozygous deletions at 18q21.1. These results identify DPC4 as a candidate tumor suppressor gene whose inactivation may play a role in pancreatic and possibly other human cancers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hahn, S A -- Schutte, M -- Hoque, A T -- Moskaluk, C A -- da Costa, L T -- Rozenblum, E -- Weinstein, C L -- Fischer, A -- Yeo, C J -- Hruban, R H -- Kern, S E -- CA62924/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1996 Jan 19;271(5247):350-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8553070" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Division ; Chromosome Mapping ; *Chromosomes, Human, Pair 18 ; *DNA-Binding Proteins ; Gene Deletion ; Gene Expression ; *Genes, Tumor Suppressor ; Genetic Markers ; Humans ; Mice ; Molecular Sequence Data ; Mutation ; Neoplasm Transplantation ; Pancreatic Neoplasms/*genetics/pathology ; Proteins/chemistry/*genetics/physiology ; Signal Transduction ; Smad4 Protein ; *Trans-Activators ; Transforming Growth Factor beta/physiology ; Transplantation, Heterologous ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 1996-03-15
    Description: Cyclins regulate the major cell cycle transitions in eukaryotes through association with cyclin-dependent protein kinases (CDKs). In yeast, G1 cyclins are essential, rate-limiting activators of cell cycle initiation. G1-specific accumulation of one G1 cyclin, Cln2, results from periodic gene expression coupled with rapid protein turnover. Site-directed mutagenesis of CLN2 revealed that its phosphorylation provides a signal that promotes rapid degradation. Cln2 phosphorylation is dependent on the Cdc28 protein kinase, the CDK that it activates. These findings suggest that Cln2 is rendered self-limiting by virtue of its ability to activate its cognate CDK subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lanker, S -- Valdivieso, M H -- Wittenberg, C -- GM43487/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Mar 15;271(5255):1597-601.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8599119" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; CDC28 Protein Kinase, S cerevisiae/*metabolism ; Cyclins/genetics/*metabolism ; Enzyme Activation ; Fungal Proteins/genetics/metabolism ; *G1 Phase ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation ; Phenotype ; Phosphorylation ; Saccharomyces cerevisiae/cytology/metabolism ; Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-04-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Russell, D W -- New York, N.Y. -- Science. 1996 Apr 19;272(5260):370-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235-9046, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8602524" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/chemistry ; Arabidopsis/genetics/*growth & development/metabolism ; *Arabidopsis Proteins ; Brassinosteroids ; Cholestanols/*metabolism ; Cytochrome P-450 Enzyme System/genetics/metabolism ; *Genes, Plant ; Light ; Mutation ; Plant Growth Regulators/biosynthesis/*metabolism ; Plant Proteins/chemistry/*genetics/metabolism ; Steroids, Heterocyclic/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1996 Oct 25;274(5287):500-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8928002" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/genetics/physiology ; Cyclic AMP/*physiology ; Inositol Phosphates/physiology ; Ion Channels/genetics/*physiology ; Mice ; Mice, Knockout ; Mutation ; Neurons, Afferent/physiology ; Odors ; Olfactory Receptor Neurons/*physiology ; Sensation/*physiology ; Sexual Behavior, Animal ; Signal Transduction ; Smell/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-03-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mount, S M -- New York, N.Y. -- Science. 1996 Mar 22;271(5256):1690-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Maryland, College Park 20742-4415, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596928" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Base Sequence ; Consensus Sequence ; Humans ; *Introns ; Molecular Sequence Data ; Mutation ; RNA Precursors/*genetics/metabolism ; *RNA Splicing ; RNA, Small Nuclear/metabolism ; Spliceosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1996-04-26
    Description: Hox genes regulate patterning during limb development. It is believed that they function in the determination of the timing and extent of local growth rates. Here, it is demonstrated that synpolydactyly, an inherited human abnormality of the hands and feet, is caused by expansions of a polyalanine stretch in the amino-terminal region of HOXD13. The homozygous phenotype includes the transformation of metacarpal and metatarsal bones to short carpal- and tarsal-like bones. The mutations identify the polyalanine stretch outside of the DNA binding domain of HOXD13 as a region necessary for proper protein function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muragaki, Y -- Mundlos, S -- Upton, J -- Olsen, B R -- AR36819/AR/NIAMS NIH HHS/ -- AR36820/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Apr 26;272(5261):548-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8614804" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Chromosome Mapping ; Chromosomes, Human, Pair 2 ; Cloning, Molecular ; Female ; Fingers/*abnormalities/embryology ; *Genes, Homeobox ; Genetic Linkage ; Homeodomain Proteins/chemistry/*genetics/physiology ; Humans ; Male ; Molecular Sequence Data ; Morphogenesis ; Multigene Family ; Mutation ; Pedigree ; Peptides/chemistry ; Polydactyly/embryology/*genetics/radiography ; Polymerase Chain Reaction ; Syndactyly/embryology/*genetics/radiography ; Toes/*abnormalities/embryology ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-01-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dewji, N N -- Singer, S J -- New York, N.Y. -- Science. 1996 Jan 12;271(5246):159-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Medicine, University of California at San Diego, La Jolla 92093-0322, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8539612" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*genetics/metabolism ; Amyloid beta-Peptides/biosynthesis ; Amyloid beta-Protein Precursor/*genetics/metabolism ; Animals ; Brain/metabolism ; Caenorhabditis elegans/growth & development ; *Caenorhabditis elegans Proteins ; Drosophila/genetics/growth & development ; *Drosophila Proteins ; Eye Proteins/metabolism ; Female ; Helminth Proteins/genetics/metabolism ; Humans ; Membrane Glycoproteins/metabolism ; Membrane Proteins/*genetics/metabolism ; Mutation ; Neurons/metabolism ; Photoreceptor Cells, Invertebrate/growth & development/metabolism ; Presenilin-1 ; Presenilin-2 ; *Receptor Protein-Tyrosine Kinases ; Receptors, Notch ; *Receptors, Peptide ; Signal Transduction ; Vulva/growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-03-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1996 Mar 1;271(5253):1233-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638101" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*metabolism ; Glyceraldehyde-3-Phosphate Dehydrogenases/antagonists & inhibitors/*metabolism ; Glycolysis ; Humans ; Huntington Disease/genetics/*metabolism ; Mutation ; Nerve Tissue Proteins/chemistry/genetics/*metabolism ; Nervous System Diseases/metabolism ; Nuclear Proteins/chemistry/genetics/*metabolism ; Peptides/metabolism ; Repetitive Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 1996-01-19
    Description: Mutants of the Saccharomyces cerevisiae ataxia telangiectasia mutated (ATM) homolog MEC1/SAD3/ESR1 were identified that could live only if the RAD53/SAD1 checkpoint kinase was overproduced. MEC1 and a structurally related gene, TEL1, have overlapping functions in response to DNA damage and replication blocks that in mutants can be provided by overproduction of RAD53. Both MEC1 and TEL1 were found to control phosphorylation of Rad53p in response to DNA damage. These results indicate that RAD53 is a signal transducer in the DNA damage and replication checkpoint pathways and functions downstream of two members of the ATM lipid kinase family. Because several members of this pathway are conserved among eukaryotes, it is likely that a RAD53-related kinase will function downstream of the human ATM gene product and play an important role in the mammalian response to DNA damage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez, Y -- Desany, B A -- Jones, W J -- Liu, Q -- Wang, B -- Elledge, S J -- DK07696/DK/NIDDK NIH HHS/ -- GM44664/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jan 19;271(5247):357-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Mars McLean Department of Biochemistry, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8553072" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia Mutated Proteins ; Base Sequence ; *Cell Cycle ; *Cell Cycle Proteins ; Checkpoint Kinase 2 ; *DNA Damage ; DNA Replication ; DNA-Binding Proteins ; Fungal Proteins/*genetics/metabolism ; Gene Expression Regulation, Fungal ; *Genes, Fungal ; Intracellular Signaling Peptides and Proteins ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Protein Kinases/*genetics/metabolism ; *Protein-Serine-Threonine Kinases ; Proteins/genetics/metabolism ; Saccharomyces cerevisiae/cytology/*genetics/metabolism ; *Saccharomyces cerevisiae Proteins ; Signal Transduction ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-02-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1996 Feb 16;271(5251):913.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8584929" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/biosynthesis/chemistry/*genetics ; Chromosome Mapping ; Cloning, Molecular ; Diabetes Mellitus/*genetics ; Humans ; Leptin ; Mice ; Mutation ; Obesity/*genetics ; Proteins/genetics ; RNA, Messenger/genetics ; Rats ; *Receptors, Cell Surface ; Receptors, Cytokine/biosynthesis/chemistry/*genetics ; Receptors, Leptin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-12-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hasegawa, M -- Fitch, W M -- New York, N.Y. -- Science. 1996 Dec 6;274(5293):1750; author reply 1751-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8984636" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Evolution, Molecular ; Models, Statistical ; Mutation ; Proteins/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1996-05-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Donnelly, P -- Tavare, S -- Balding, D J -- Griffiths, R C -- GM36232/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 May 31;272(5266):1357-9; author reply 1361-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8650551" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA-Binding Proteins/*genetics ; *Genetics, Population ; Hominidae/*genetics ; Humans ; Introns/*genetics ; Kruppel-Like Transcription Factors ; Male ; Mutation ; Polymorphism, Genetic ; Population Density ; Probability ; Time Factors ; Transcription Factors/*genetics ; Y Chromosome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-11-01
    Description: The RepA protein of plasmid pC194 initiates and terminates rolling circle replication. At initiation, it forms a 5'-phosphotyrosyl DNA link, whereas at termination, a glutamate residue directs hydrolytic cleavage of the newly synthesized origin, and the resulting 3'-hydroxyl group undergoes transesterification with the phosphotyrosine link. The protein is thus released from DNA, and the termination is uncoupled from reinitiation of replication. Replacement of the glutamate with tyrosine in RepA altered this mechanism, so that termination occurred by two successive transesterifications and became coupled to reinitiation. This result suggests that various enzymes involved in DNA cleavage and rejoining may have similar mechanistic and evolutionary roots.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Noirot-Gros, M F -- Ehrlich, S D -- New York, N.Y. -- Science. 1996 Nov 1;274(5288):777-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genetique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8864116" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage phi X 174 ; Binding Sites ; *DNA Helicases ; *DNA Replication ; DNA, Bacterial/*metabolism ; DNA, Single-Stranded/metabolism ; DNA, Viral/metabolism ; *DNA-Binding Proteins ; Esterification ; Evolution, Molecular ; Glutamic Acid/metabolism ; Hydrolysis ; Mutation ; Plasmids ; Proteins/chemistry/genetics/*metabolism ; *Trans-Activators ; Tyrosine/metabolism ; Viral Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-05-10
    Description: The molecular structure of the Escherichia coli RecA protein in the absence of DNA revealed two disordered or mobile loops that were proposed to be DNA binding sites. A short peptide spanning one of these loops was shown to carry out the key reaction mediated by the whole RecA protein: pairing (targeting) of a single-stranded DNA to its homologous site on a duplex DNA. In the course of the reaction the peptide bound to both substrate DNAs, unstacked the single-stranded DNA, and assumed a beta structure. These events probably recapitulate the underlying molecular pathway or mechanism used by homologous recombination proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Voloshin, O N -- Wang, L -- Camerini-Otero, R D -- New York, N.Y. -- Science. 1996 May 10;272(5263):868-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1810, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8629021" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; DNA, Single-Stranded/chemistry/genetics/*metabolism ; DNA, Superhelical/chemistry/genetics/*metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; Peptide Fragments/chemistry/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Rec A Recombinases/chemistry/*metabolism ; *Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1996-04-12
    Description: The enzyme that catalyzes the synthesis of the major structural component of the yeast cell wall, beta(1--〉3)-D-glucan synthase (also known as 1,3-beta-glucan synthase), requires a guanosine triphosphate (GTP) binding protein for activity. The GTP binding protein was identified as Rho1p. The rho1 mutants were defective in GTP stimulation of glucan synthase, and the defect was corrected by addition of purified or recombinant Rho1p. A protein missing in purified preparations from a rho1 strain was identified as Rho1p. Rho1p also regulates protein kinase C, which controls a mitogen-activated protein kinase cascade. Experiments with a dominant positive PKC1 gene showed that the two effects of Rho1p are independent of each other. The colocalization of Rho1p with actin patches at the site of bud emergence and the role of Rho1p in cell wall synthesis emphasize the importance of Rho1p in polarized growth and morphogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drgonova, J -- Drgon, T -- Tanaka, K -- Kollar, R -- Chen, G C -- Ford, R A -- Chan, C S -- Takai, Y -- Cabib, E -- New York, N.Y. -- Science. 1996 Apr 12;272(5259):277-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory od Biochemistry and Metabolism, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8602514" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Polarity ; Cell Wall/metabolism ; GTP Phosphohydrolases/*metabolism ; GTP-Binding Proteins/genetics/*metabolism ; Glucans/biosynthesis ; Glucosyltransferases/*metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology ; Guanosine Triphosphate/metabolism ; *Membrane Proteins ; Morphogenesis ; Mutation ; Protein Kinase C/metabolism ; Recombinant Proteins/pharmacology ; Saccharomyces cerevisiae/cytology/genetics/growth & development/*metabolism ; Saccharomyces cerevisiae Proteins ; *Schizosaccharomyces pombe Proteins ; Temperature ; *beta-Glucans ; *rho GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1996-12-06
    Description: Cpr6 and Cpr7, the Saccharomyces cerevisiae homologs of cyclophilin-40 (CyP-40), were shown to form complexes with Hsp90, a protein chaperone that functions in several signal transduction pathways. Deletion of CPR7 caused severe growth defects when combined with mutations that decrease the amount of Hsp90 or Sti1, another component of the Hsp90 chaperone machinery. The activities of two heterologous Hsp90-dependent signal transducers expressed in yeast, glucocorticoid receptor and pp60(v-src) kinase, were adversely affected by cpr7 null mutations. These results suggest that CyP-40 cyclophilins play a general role in Hsp90-dependent signal transduction pathways under normal growth conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duina, A A -- Chang, H C -- Marsh, J A -- Lindquist, S -- Gaber, R F -- GM25874/GM/NIGMS NIH HHS/ -- GM45739/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Dec 6;274(5293):1713-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2153 Sheridan Road, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8939862" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/genetics/metabolism/*physiology ; Carrier Proteins/genetics/metabolism/*physiology ; *Cyclophilins ; Fungal Proteins/genetics/metabolism/*physiology ; HSP90 Heat-Shock Proteins/genetics/metabolism/*physiology ; Heat-Shock Proteins ; Molecular Chaperones/genetics/metabolism/*physiology ; Mutation ; Oncogene Protein pp60(v-src)/metabolism ; *Peptidylprolyl Isomerase ; Proto-Oncogene Proteins pp60(c-src)/metabolism ; Receptors, Glucocorticoid/metabolism ; Saccharomyces cerevisiae/genetics/growth & development/metabolism/*physiology ; Saccharomyces cerevisiae Proteins ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 1996-11-01
    Description: Photoperiodic responses, such as the daylength-dependent control of reproductive development, are associated with a circadian biological clock. The photoperiod-insensitive early-flowering 3 (elf3) mutant of Arabidopsis thaliana lacks rhythmicity in two distinct circadian-regulated processes. This defect was apparent only when plants were assayed under constant light conditions. elf3 mutants retain rhythmicity in constant dark and anticipate light/dark transitions under most light/dark regimes. The conditional arrhythmic phenotype suggests that the circadian pacemaker is intact in darkness in elf3 mutant plants, but the transduction of light signals to the circadian clock is impaired.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hicks, K A -- Millar, A J -- Carre, I A -- Somers, D E -- Straume, M -- Meeks-Wagner, D R -- Kay, S A -- 1R01GM46006/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 1;274(5288):790-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8864121" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/growth & development/*physiology ; *Circadian Rhythm ; Darkness ; Gene Expression Regulation, Plant ; Genes, Plant ; *Light ; Movement ; Mutation ; Phenotype ; *Photoperiod ; Photosynthetic Reaction Center Complex Proteins/genetics ; Plant Leaves/physiology ; Plants, Genetically Modified
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 1996-03-01
    Description: Monotherapy with (-)2',3'-dideoxy-3'-thiacytidine (3TC) leads to the appearance of a drug-resistant variant of human immunodeficiency virus-type 1 (HIV-1) with the methionine-184 --〉 valine (M184V) substitution in the reverse transcriptase (RT). Despite resulting drug resistance, treatment for more than 48 weeks is associated with a lower plasma viral burden than that at baseline. Studies to investigate this apparent contradiction revealed the following. (i) Titers of HIV-neutralizing antibodies remained stable in 3TC-treated individuals in contrast to rapid declines in those treated with azidothymidine (AZT). (ii) Unlike wild-type HIV, growth of M184V HIV in cell culture in the presence of d4T, AZT, Nevirapine, Delavirdine, or Saquinavir did not select for variants displaying drug resistance. (iii) There was an increase in fidelity of nucleotide insertion by the M184V mutant compared with wild-type enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wainberg, M A -- Drosopoulos, W C -- Salomon, H -- Hsu, M -- Borkow, G -- Parniak, M -- Gu, Z -- Song, Q -- Manne, J -- Islam, S -- Castriota, G -- Prasad, V R -- P30 AI-27741/AI/NIAID NIH HHS/ -- R01 AI0-30861/AI/NIAID NIH HHS/ -- UO1AI-24845/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1996 Mar 1;271(5253):1282-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McGill AIDS Centre, Jewish General Hospital, Montreal, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638110" target="_blank"〉PubMed〈/a〉
    Keywords: Antiviral Agents/*pharmacology/therapeutic use ; Base Composition ; Base Sequence ; Deoxyribonucleotides/metabolism ; Drug Resistance, Microbial ; HIV Antibodies/blood/immunology ; HIV Infections/drug therapy/*virology ; HIV Protease Inhibitors/pharmacology ; HIV Reverse Transcriptase ; HIV-1/drug effects/*enzymology/genetics/immunology/physiology ; Humans ; Isoquinolines/pharmacology ; Lamivudine ; Molecular Sequence Data ; Mutation ; Neutralization Tests ; Quinolines/pharmacology ; RNA-Directed DNA Polymerase/drug effects/*genetics/metabolism ; Reverse Transcriptase Inhibitors/*pharmacology/therapeutic use ; Saquinavir ; Virus Replication/drug effects ; Zalcitabine/*analogs & derivatives/pharmacology/therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-11-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benner, S A -- Geroff, D L -- Rozzell, J D -- New York, N.Y. -- Science. 1996 Nov 29;274(5292):1448-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8966608" target="_blank"〉PubMed〈/a〉
    Keywords: *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-04-05
    Description: Mathematical models, which are based on a firm understanding of biological interactions, can provide nonintuitive insights into the dynamics of host responses to infectious agents and can suggest new avenues for experimentation. Here, a simple mathematical approach is developed to explore the relation between antiviral immune responses, virus load, and virus diversity. The model results are compared to data on cytotoxic T cell responses and viral diversity in infections with the human T cell leukemia virus (HTLV-1) and the human immunodeficiency virus (HIV-1).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nowak, M A -- Bangham, C R -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1996 Apr 5;272(5258):74-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Oxford, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8600540" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Viral/immunology ; Antigenic Variation ; Antigens, Viral/immunology ; Cytokines/immunology ; Cytotoxicity, Immunologic ; Epitopes/immunology ; Genetic Variation ; HIV Infections/immunology/virology ; HIV-1/immunology/physiology ; HTLV-I Infections/immunology/virology ; Human T-lymphotropic virus 1/genetics/immunology/physiology ; Humans ; *Models, Biological ; Mutation ; Population Dynamics ; T-Lymphocytes, Cytotoxic/*immunology ; Virus Diseases/*immunology/virology ; Virus Physiological Phenomena ; Virus Replication ; Viruses/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-06-28
    Description: Vibrio cholerae, the causative agent of cholera, requires two coordinately regulated factors for full virulence: cholera toxin (CT), a potent enterotoxin, and toxin-coregulated pili (TCP), surface organelles required for intestinal colonization. The structural genes for CT are shown here to be encoded by a filamentous bacteriophage (designated CTXphi), which is related to coliphage M13. The CTXphi genome chromosomally integrated or replicated as a plasmid. CTXphi used TCP as its receptor and infected V. cholerae cells within the gastrointestinal tracts of mice more efficiently than under laboratory conditions. Thus, the emergence of toxigenic V. cholerae involves horizontal gene transfer that may depend on in vivo gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Waldor, M K -- Mekalanos, J J -- AI01321/AI/NIAID NIH HHS/ -- AI18045/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1996 Jun 28;272(5270):1910-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Shipley Institute of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658163" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacteriophages/*genetics/physiology ; Base Sequence ; Cholera/*microbiology ; Cholera Toxin/*genetics ; DNA Primers ; Digestive System/microbiology ; Fimbriae, Bacterial/physiology/virology ; Gene Expression ; Genes, Bacterial ; *Lysogeny ; Mice ; Molecular Sequence Data ; Morphogenesis ; Mutation ; Transduction, Genetic ; Vibrio cholerae/genetics/*pathogenicity/*virology ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 1996-08-16
    Description: The plant hormone auxin regulates various developmental processes including root formation, vascular development, and gravitropism. Mutations within the AUX1 gene confer an auxin-resistant root growth phenotype and abolish root gravitropic curvature. Polypeptide sequence similarity to amino acid permeases suggests that AUX1 mediates the transport of an amino acid-like signaling molecule. Indole-3-acetic acid, the major form of auxin in higher plants, is structurally similar to tryptophan and is a likely substrate for the AUX1 gene product. The cloned AUX1 gene can restore the auxin-responsiveness of transgenic aux1 roots. Spatially, AUX1 is expressed in root apical tissues that regulate root gravitropic curvature.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bennett, M J -- Marchant, A -- Green, H G -- May, S T -- Ward, S P -- Millner, P A -- Walker, A R -- Schulz, B -- Feldmann, K A -- New York, N.Y. -- Science. 1996 Aug 16;273(5277):948-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8688077" target="_blank"〉PubMed〈/a〉
    Keywords: 2,4-Dichlorophenoxyacetic Acid/pharmacology ; Amino Acid Sequence ; Amino Acid Transport Systems ; Amino Acids/metabolism ; Arabidopsis/chemistry/*genetics/growth & development/metabolism ; *Arabidopsis Proteins ; Biological Transport ; Cloning, Molecular ; DNA, Bacterial/genetics ; *Genes, Plant ; Genetic Complementation Test ; *Gravitropism ; Indoleacetic Acids/metabolism/pharmacology ; Membrane Transport Proteins/chemistry ; Molecular Sequence Data ; Molecular Weight ; Mutation ; Plant Proteins/chemistry/*genetics/metabolism ; Plant Roots/*growth & development/metabolism ; Sequence Alignment ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-01-19
    Description: Exposure of eukaryotic cells to agents that generate DNA damage results in transient arrest of progression through the cell cycle. In fission yeast, the DNA damage checkpoint associated with cell cycle arrest before mitosis requires the protein kinase p56chk1. DNA damage induced by ultraviolet light, gamma radiation, or a DNA-alkylating agent has now been shown to result in phosphorylation of p56chk1. This phosphorylation decreased the mobility of p56chk1 on SDS-polyacrylamide gel electrophoresis and was abolished by a mutation in the p56chk1 catalytic domain, suggesting that it might represent autophosphorylation. Phosphorylation of p56chk1 did not occur when other checkpoint genes were inactive. Thus, p56chk1 appears to function downstream of several of the known Schizosaccharomyces pombe checkpoint gene products, including that encoded by rad3+, a gene with sequence similarity to the ATM gene mutated in patients with ataxia telangiectasia. The phosphorylation of p56chk1 provides an assayable biochemical response to activation of the DNA damage checkpoint in the G2 phase of the cell cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walworth, N C -- Bernards, R -- New York, N.Y. -- Science. 1996 Jan 19;271(5247):353-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8553071" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/genetics ; Ataxia Telangiectasia Mutated Proteins ; Base Sequence ; Cell Cycle Proteins ; *DNA Damage ; DNA Helicases/genetics ; DNA Replication ; DNA, Fungal/metabolism/radiation effects ; DNA-Binding Proteins ; Electrophoresis, Polyacrylamide Gel ; *G2 Phase ; Genes, Fungal ; Humans ; *Mitosis ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Protein Kinases/chemistry/genetics/*metabolism ; *Protein-Serine-Threonine Kinases ; Proteins/genetics ; Recombinant Fusion Proteins/chemistry/metabolism ; Saccharomyces cerevisiae Proteins ; Schizosaccharomyces/*cytology/genetics/radiation effects ; Tumor Suppressor Proteins ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 1996-10-11
    Description: The CDC13 gene has previously been implicated in the maintenance of telomere integrity in Saccharomyces cerevisiae. With the use of two classes of mutations, here it is shown that CDC13 has two discrete roles at the telomere. The cdc13-2est mutation perturbs a function required in vivo for telomerase regulation but not in vitro for enzyme activity, whereas cdc13-1ts defines a separate essential role at the telomere. In vitro, purified Cdc13p binds to single-strand yeast telomeric DNA. Therefore, Cdc13p is a telomere-binding protein required to protect the telomere and mediate access of telomerase to the chromosomal terminus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nugent, C I -- Hughes, T R -- Lue, N F -- Lundblad, V -- New York, N.Y. -- Science. 1996 Oct 11;274(5285):249-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Human Genetics and Cell and Molecular Biology Program, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8824190" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Base Sequence ; Cloning, Molecular ; Cyclin B ; Cyclins/genetics/*metabolism ; DNA, Fungal/metabolism ; DNA, Single-Stranded/metabolism ; DNA-Binding Proteins/*metabolism ; Fungal Proteins/genetics ; Genes, Fungal ; Molecular Sequence Data ; Mutation ; Phenotype ; Saccharomyces cerevisiae/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; Telomerase/genetics/*metabolism ; Telomere/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 1996-03-01
    Description: The lac operon of Escherichia coli is the paradigm for gene regulation. Its key component is the lac repressor, a product of the lacI gene. The three-dimensional structures of the intact lac repressor, the lac repressor bound to the gratuitous inducer isopropyl-beta-D-1-thiogalactoside (IPTG) and the lac repressor complexed with a 21-base pair symmetric operator DNA have been determined. These three structures show the conformation of the molecule in both the induced and repressed states and provide a framework for understanding a wealth of biochemical and genetic information. The DNA sequence of the lac operon has three lac repressor recognition sites in a stretch of 500 base pairs. The crystallographic structure of the complex with DNA suggests that the tetrameric repressor functions synergistically with catabolite gene activator protein (CAP) and participates in the quaternary formation of repression loops in which one tetrameric repressor interacts simultaneously with two sites on the genomic DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lewis, M -- Chang, G -- Horton, N C -- Kercher, M A -- Pace, H C -- Schumacher, M A -- Brennan, R G -- Lu, P -- 2-T32-GM082745/GM/NIGMS NIH HHS/ -- GM44617/GM/NIGMS NIH HHS/ -- P41-RR06017/RR/NCRR NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1996 Mar 1;271(5253):1247-54.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Johnson Research Foundation, University of Pennsylvania, Philadelphia 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638105" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Bacterial Proteins/*chemistry/genetics/metabolism ; Base Sequence ; Binding Sites ; Crystallography, X-Ray ; Cyclic AMP Receptor Protein/metabolism ; DNA, Bacterial/chemistry/*metabolism ; *Escherichia coli Proteins ; Hydrogen Bonding ; Isopropyl Thiogalactoside/*metabolism ; *Lac Operon ; Lac Repressors ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Operator Regions, Genetic ; Point Mutation ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Repressor Proteins/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 1996-07-19
    Description: Yersinia pestis, the cause of bubonic plague, is transmitted by the bites of infected fleas. Biological transmission of plague depends on blockage of the foregut of the flea by a mass of plague bacilli. Blockage was found to be dependent on the hemin storage (hms) locus. Yersinia pestis hms mutants established long-term infection of the flea's midgut but failed to colonize the proventriculus, the site in the foregut where blockage normally develops. Thus, the hms locus markedly alters the course of Y. pestis infection in its insect vector, leading to a change in blood-feeding behavior and to efficient transmission of plague.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hinnebusch, B J -- Perry, R D -- Schwan, T G -- New York, N.Y. -- Science. 1996 Jul 19;273(5273):367-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662526" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Adhesion ; Digestive System/microbiology ; Female ; *Genes, Bacterial ; Hemin/*metabolism ; Insect Vectors/*microbiology ; Male ; Mutation ; Plague/*transmission ; Proventriculus/microbiology ; Siphonaptera/*microbiology ; Virulence ; Yersinia pestis/genetics/growth & development/metabolism/*pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-08-02
    Description: Protein structures in nature often exhibit a high degree of regularity (for example, secondary structure and tertiary symmetries) that is absent from random compact conformations. With the use of a simple lattice model of protein folding, it was demonstrated that structural regularities are related to high "designability" and evolutionary stability. The designability of each compact structure is measured by the number of sequences that can design the structure-that is, sequences that possess the structure as their nondegenerate ground state. Compact structures differ markedly in terms of their designability; highly designable structures emerge with a number of associated sequences much larger than the average. These highly designable structures possess "proteinlike" secondary structure and even tertiary symmetries. In addition, they are thermodynamically more stable than other structures. These results suggest that protein structures are selected in nature because they are readily designed and stable against mutations, and that such a selection simultaneously leads to thermodynamic stability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, H -- Helling, R -- Tang, C -- Wingreen, N -- New York, N.Y. -- Science. 1996 Aug 2;273(5275):666-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NEC Research Institute, 4 Independence Way, Princeton, NJ 08540, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662562" target="_blank"〉PubMed〈/a〉
    Keywords: *Amino Acid Sequence ; Evolution, Molecular ; *Models, Molecular ; Mutation ; *Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemistry/genetics ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1996-04-19
    Description: Although steroid hormones are important for animal development, the physiological role of plant steroids is unknown. The Arabidopsis DET2 gene encodes a protein that shares significant sequence identity with mammalian steroid 5 alpha-reductases. A mutation of glutamate 204, which is absolutely required for the activity of human steroid reductase, abolishes the in vivo activity of DET2 and leads to defects in light-regulated development that can be ameliorated by application of a plant steroid, brassinolide. Thus, DET2 may encode a reductase in the brassinolide biosynthetic pathway, and brassinosteroids may constitute a distinct class of phytohormones with an important role in light-regulated development of higher plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, J -- Nagpal, P -- Vitart, V -- McMorris, T C -- Chory, J -- New York, N.Y. -- Science. 1996 Apr 19;272(5260):398-401.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Biology Laboratory, Salk Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8602526" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/chemistry ; Amino Acid Sequence ; Animals ; Arabidopsis/genetics/*growth & development/metabolism ; *Arabidopsis Proteins ; Brassinosteroids ; Cholestanols/*metabolism/pharmacology ; Chromosome Mapping ; *Genes, Plant ; Humans ; Light ; Molecular Sequence Data ; Mutation ; Oxidation-Reduction ; Phenotype ; Plant Growth Regulators/biosynthesis/*metabolism ; Plant Proteins/*genetics ; Rats ; Sequence Alignment ; Signal Transduction ; Steroids, Heterocyclic/*metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 1996-10-04
    Description: Patients with human severe combined immunodeficiency (SCID) can be divided into those with B lymphocytes (B+ SCID) and those without (B- SCID). Although several genetic causes are known for B+ SCID, the etiology of B- SCID has not been defined. Six of 14 B- SCID patients tested were found to carry a mutation of the recombinase activating gene 1 (RAG-1), RAG-2, or both. This mutation resulted in a functional inability to form antigen receptors through genetic recombination and links a defect in one of the site-specific recombination systems to a human disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwarz, K -- Gauss, G H -- Ludwig, L -- Pannicke, U -- Li, Z -- Lindner, D -- Friedrich, W -- Seger, R A -- Hansen-Hagge, T E -- Desiderio, S -- Lieber, M R -- Bartram, C R -- New York, N.Y. -- Science. 1996 Oct 4;274(5284):97-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Molecular Biology, University of Ulm, D-89070 Ulm, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8810255" target="_blank"〉PubMed〈/a〉
    Keywords: B-Lymphocytes/immunology ; Cell Line ; Consanguinity ; *DNA-Binding Proteins ; Female ; Genes, Immunoglobulin ; Genes, Recessive ; *Homeodomain Proteins ; Humans ; Immunophenotyping ; Male ; Mutation ; Nuclear Proteins ; Polymorphism, Single-Stranded Conformational ; Proteins/*genetics ; Receptors, Antigen, T-Cell/genetics ; Recombination, Genetic ; Sequence Deletion ; Severe Combined Immunodeficiency/*genetics/immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 1996-02-23
    Description: The alpha subunit of p21(RAS) farnesyltransferase (FNTA), which is also shared by geranylgeranyltransferase, was isolated as a specific cytoplasmic interactor of the transforming growth factor-beta (TGF-beta) and activin type I receptors with the use of the yeast two-hybrid system. FNTA interacts specifically with ligand-free TGF-beta type l receptor but is phosphorylated and released upon ligand binding. Furthermore, the release is dependent on the kinase activity of the TGF-beta type II receptor. Thus, the growth inhibitory and differentiative pathways activated by TGF-beta and activin involve novel mechanisms of serine-threonine receptor phosphorylation-dependent release of cytoplasmic interactors and regulation of the activation of small G proteins, such as p21(RAS).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, T -- Danielson, P D -- Li, B Y -- Shah, P C -- Kim, S D -- Donahoe, P K -- HD28138/HD/NICHD NIH HHS/ -- R01 HD3081/HD/NICHD NIH HHS/ -- R01 HD32112/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1996 Feb 23;271(5252):1120-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8599089" target="_blank"〉PubMed〈/a〉
    Keywords: Activin Receptors ; *Activin Receptors, Type I ; Activins ; *Alkyl and Aryl Transferases ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Humans ; Inhibins/*metabolism ; Ligands ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Receptors, Growth Factor/metabolism ; Receptors, Transforming Growth Factor beta/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transferases/*metabolism ; Transforming Growth Factor beta/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 1996-06-21
    Description: Peridinin-chlorophyll-protein, a water-soluble light-harvesting complex that has a blue-green absorbing carotenoid as its main pigment, is present in most photosynthetic dinoflagellates. Its high-resolution (2.0 angstrom) x-ray structure reveals a noncrystallographic trimer in which each polypeptide contains an unusual jellyroll fold of the alpha-helical amino- and carboxyl-terminal domains. These domains constitute a scaffold with pseudo-twofold symmetry surrounding a hydrophobic cavity filled by two lipid, eight peridinin, and two chlorophyll a molecules. The structural basis for efficient excitonic energy transfer from peridinin to chlorophyll is found in the clustering of peridinins around the chlorophylls at van der Waals distances.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hofmann, E -- Wrench, P M -- Sharples, F P -- Hiller, R G -- Welte, W -- Diederichs, K -- New York, N.Y. -- Science. 1996 Jun 21;272(5269):1788-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fakultat fur Biologie, Universitat Konstanz, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8650577" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carotenoids/*chemistry ; Chlorophyll/chemistry ; Crystallography, X-Ray ; Dinoflagellida/*chemistry/metabolism ; Energy Transfer ; Hydrogen Bonding ; Models, Molecular ; Molecular Conformation ; Photosynthesis ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protozoan Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-03-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Brien, C -- New York, N.Y. -- Science. 1996 Mar 29;271(5257):1798.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596943" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Brain/pathology ; Cattle ; Creutzfeldt-Jakob Syndrome/genetics/pathology/*transmission ; Encephalopathy, Bovine Spongiform/*transmission ; Food Contamination ; Humans ; *Meat ; Mutation ; Prions/genetics ; Zoonoses
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 1996-12-13
    Description: A subset of B lymphocytes present primarily in the peritoneal and pleural cavities is defined by the expression of CD5 and is elevated in autoimmune diseases. Upon signaling through membrane immunoglobulin M (mIgM), splenic B lymphocytes (B-2) proliferate, whereas peritoneal B cells (B-1) undergo apoptosis. However, in CD5-deficient mice, B-1 cells responded to mIgM crosslinking by developing a resistance to apoptosis and entering the cell cycle. In wild-type B-1 cells, prevention of association between CD5 and mIgM rescued their growth response to mIgM crosslinking. Thus the B cell receptor-mediated signaling is negatively regulated by CD5 in normal B-1 cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bikah, G -- Carey, J -- Ciallella, J R -- Tarakhovsky, A -- Bondada, S -- AG05731/AG/NIA NIH HHS/ -- AI21490/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1996 Dec 13;274(5294):1906-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology and Center on Aging, University of Kentucky, Lexington, KY 40536, USA. sbonda@pop.uky.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8943203" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD5/*physiology ; Apoptosis ; B-Lymphocyte Subsets/*cytology/*immunology/metabolism ; Calcium/metabolism ; Cell Division ; Cell Nucleus/metabolism ; Cross-Linking Reagents ; Female ; Immunoglobulin M/immunology/metabolism ; *Lymphocyte Activation ; Male ; Mice ; Mice, Inbred C57BL ; Mutation ; NF-kappa B/metabolism ; Peritoneal Cavity/cytology ; Receptors, Antigen, B-Cell/immunology/metabolism/*physiology ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1996-12-20
    Description: Adipocyte differentiation is an important component of obesity and other metabolic diseases. This process is strongly inhibited by many mitogens and oncogenes. Several growth factors that inhibit fat cell differentiation caused mitogen-activated protein (MAP) kinase-mediated phosphorylation of the dominant adipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) and reduction of its transcriptional activity. Expression of PPARgamma with a nonphosphorylatable mutation at this site (serine-112) yielded cells with increased sensitivity to ligand-induced adipogenesis and resistance to inhibition of differentiation by mitogens. These results indicate that covalent modification of PPARgamma by serum and growth factors is a major regulator of the balance between cell growth and differentiation in the adipose cell lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, E -- Kim, J B -- Sarraf, P -- Spiegelman, B M -- R37DK31405/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1996 Dec 20;274(5295):2100-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8953045" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Adipocytes/*cytology/metabolism ; Animals ; Blood ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors/*metabolism ; Cell Differentiation ; Cell Line ; Enzyme Inhibitors/pharmacology ; Epidermal Growth Factor/pharmacology ; Flavonoids/pharmacology ; Insulin/pharmacology ; Ligands ; Mice ; Mitogens/pharmacology ; Mutation ; Phosphorylation ; Rats ; Receptors, Cytoplasmic and Nuclear/chemistry/genetics/*metabolism ; Tetradecanoylphorbol Acetate/pharmacology ; Transcription Factors/chemistry/genetics/*metabolism ; Transcription, Genetic/drug effects ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 1996-01-26
    Description: A subset of individuals with familial amyotrophic lateral sclerosis (FALS) possesses dominantly inherited mutations in the gene that encodes copper-zinc superoxide dismutase (CuZnSOD). A4V and G93A, two of the mutant enzymes associated with FALS, were shown to catalyze the oxidation of a model substrate (spin trap 5,5'-dimethyl-1-pyrroline N-oxide) by hydrogen peroxide at a higher rate than that seen with the wild-type enzyme. Catalysis of this reaction by A4V and G93A was more sensitive to inhibition by the copper chelators diethyldithiocarbamate and penicillamine than was catalysis by wild-type CuZnSOD. The same two chelators reversed the apoptosis-inducing effect of mutant enzymes expressed in a neural cell line. These results suggest that oxidative reactions catalyzed by mutant CuZnSOD enzymes initiate the neuropathologic changes in FALS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wiedau-Pazos, M -- Goto, J J -- Rabizadeh, S -- Gralla, E B -- Roe, J A -- Lee, M K -- Valentine, J S -- Bredesen, D E -- AG12282/AG/NIA NIH HHS/ -- DK46828/DK/NIDDK NIH HHS/ -- GM28222/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jan 26;271(5248):515-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, Los Angeles 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8560268" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/*enzymology/genetics ; Animals ; Apoptosis/drug effects ; Binding Sites ; Catalysis ; Cell Line ; Chelating Agents/pharmacology ; Copper/metabolism ; Cyclic N-Oxides/metabolism ; Ditiocarb/pharmacology ; Humans ; Hydrogen Peroxide/metabolism ; Mutation ; Oxidation-Reduction ; Penicillamine/pharmacology ; Rats ; Superoxide Dismutase/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...