ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Base Sequence  (2,328)
  • *Biological Evolution  (1,717)
  • Cell & Developmental Biology
  • Engineering
  • SPACE SCIENCES
  • American Association for the Advancement of Science (AAAS)  (3,504)
  • Nature Publishing Group (NPG)  (542)
  • Santa Barbara, CA  (18)
Collection
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    Historical Diving Society U.S.A. | Santa Barbara, CA
    In:  http://aquaticcommons.org/id/eprint/15004 | 29 | 2014-05-15 19:57:07 | 15004 | Historical Diving Society U.S.A.
    Publication Date: 2021-06-30
    Description: Official publication of the Historical Diving Society U.S.A. and affiliated societies. Succeeded by the Journal of Diving History with issue no. 55 (2008).
    Keywords: Engineering ; SCUBA diving ; hard hat diving ; hardhat diving ; history
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 32
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Historical Diving Society U.S.A. | Santa Barbara, CA
    In:  http://aquaticcommons.org/id/eprint/15006 | 29 | 2014-05-15 20:05:09 | 15006 | Historical Diving Society U.S.A.
    Publication Date: 2021-06-30
    Description: Official publication of the Historical Diving Society U.S.A. and affiliated societies. Succeeded by the Journal of Diving History with issue no. 55 (2008).
    Keywords: Engineering ; SCUBA diving ; hard hat diving ; hardhat diving ; history
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 56
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Historical Diving Society U.S.A. | Santa Barbara, CA
    In:  http://aquaticcommons.org/id/eprint/14990 | 29 | 2014-05-14 18:29:08 | 14990 | Historical Diving Society U.S.A.
    Publication Date: 2021-06-30
    Description: Official publication of the Historical Diving Society U.S.A. Succeeded by the Journal of Diving History with issue no. 55 (2008).
    Keywords: Engineering ; SCUBA diving ; hard hat diving ; hardhat diving ; history
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 40
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Historical Diving Society U.S.A. | Santa Barbara, CA
    In:  http://aquaticcommons.org/id/eprint/14991 | 29 | 2014-05-14 20:06:10 | 14991 | Historical Diving Society U.S.A.
    Publication Date: 2021-06-30
    Description: Official publication of the Historical Diving Society U.S.A. Succeeded by the Journal of Diving History with issue no. 55 (2008).
    Keywords: Engineering ; SCUBA diving ; hard hat diving ; hardhat diving ; history
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 28
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Historical Diving Society U.S.A. | Santa Barbara, CA
    In:  http://aquaticcommons.org/id/eprint/14994 | 29 | 2014-05-14 22:44:21 | 14994 | Historical Diving Society U.S.A.
    Publication Date: 2021-06-30
    Description: Official publication of the Historical Diving Society U.S.A. Succeeded by the Journal of Diving History with issue no. 55 (2008).
    Keywords: Engineering ; SCUBA diving ; hard hat diving ; hardhat diving ; history
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 32
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Historical Diving Society U.S.A. | Santa Barbara, CA
    In:  http://aquaticcommons.org/id/eprint/14995 | 29 | 2014-05-14 22:53:04 | 14995 | Historical Diving Society U.S.A.
    Publication Date: 2021-06-30
    Description: Official publication of the Historical Diving Society U.S.A. Succeeded by the Journal of Diving History with issue no. 55 (2008).
    Keywords: Engineering ; SCUBA diving ; hard hat diving ; hardhat diving ; history
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 36
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Historical Diving Society U.S.A. | Santa Barbara, CA
    In:  http://aquaticcommons.org/id/eprint/14993 | 29 | 2014-05-14 20:46:51 | 14993 | Historical Diving Society U.S.A.
    Publication Date: 2021-06-30
    Description: Official publication of the Historical Diving Society U.S.A. Succeeded by the Journal of Diving History with issue no. 55 (2008).
    Keywords: Engineering ; SCUBA diving ; hard hat diving ; hardhat diving ; history
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 32
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Historical Diving Society U.S.A. | Santa Barbara, CA
    In:  http://aquaticcommons.org/id/eprint/14992 | 29 | 2014-05-14 20:16:35 | 14992 | Historical Diving Society U.S.A.
    Publication Date: 2021-06-30
    Description: Official publication of the Historical Diving Society U.S.A. Succeeded by the Journal of Diving History with issue no. 55 (2008).
    Keywords: Engineering ; SCUBA diving ; hard hat diving ; hardhat diving ; history
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 28
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Historical Diving Society U.S.A. | Santa Barbara, CA
    In:  http://aquaticcommons.org/id/eprint/15003 | 29 | 2014-05-15 19:39:42 | 15003 | Historical Diving Society U.S.A.
    Publication Date: 2021-06-30
    Description: Official publication of the Historical Diving Society U.S.A. and affiliated societies. Succeeded by the Journal of Diving History with issue no. 55 (2008).
    Keywords: Engineering ; SCUBA diving ; hard hat diving ; hardhat diving ; history
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 32
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Historical Diving Society U.S.A. | Santa Barbara, CA
    In:  http://aquaticcommons.org/id/eprint/15000 | 29 | 2014-05-15 17:26:47 | 15000 | Historical Diving Society U.S.A.
    Publication Date: 2021-06-30
    Description: Official publication of the Historical Diving Society U.S.A. and affiliated societies. Succeeded by the Journal of Diving History with issue no. 55 (2008).
    Keywords: Engineering ; SCUBA diving ; hard hat diving ; hardhat diving ; history
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 32
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Historical Diving Society U.S.A. | Santa Barbara, CA
    In:  http://aquaticcommons.org/id/eprint/15005 | 29 | 2014-05-15 20:01:21 | 15005 | Historical Diving Society U.S.A.
    Publication Date: 2021-06-30
    Description: Official publication of the Historical Diving Society U.S.A. and affiliated societies. Succeeded by the Journal of Diving History with issue no. 55 (2008).
    Keywords: Engineering ; SCUBA diving ; hard hat diving ; hardhat diving ; history
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 44
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Historical Diving Society U.S.A. | Santa Barbara, CA
    In:  http://aquaticcommons.org/id/eprint/14998 | 29 | 2014-05-15 17:17:41 | 14998 | Historical Diving Society U.S.A.
    Publication Date: 2021-06-30
    Description: Official publication of the Historical Diving Society U.S.A. Succeeded by the Journal of Diving History with issue no. 55 (2008).
    Keywords: Engineering ; SCUBA diving ; hard hat diving ; hardhat diving ; history
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 32
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Historical Diving Society U.S.A. | Santa Barbara, CA
    In:  http://aquaticcommons.org/id/eprint/14999 | 29 | 2014-05-15 17:23:16 | 14999 | Historical Diving Society U.S.A.
    Publication Date: 2021-06-30
    Description: Official publication of the Historical Diving Society U.S.A. and affiliated societies. Succeeded by the Journal of Diving History with issue no. 55 (2008).
    Keywords: Engineering ; SCUBA diving ; hard hat diving ; hardhat diving ; history
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 32
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Historical Diving Society U.S.A. | Santa Barbara, CA
    In:  http://aquaticcommons.org/id/eprint/15002 | 29 | 2014-05-15 17:58:03 | 15002 | Historical Diving Society U.S.A.
    Publication Date: 2021-06-30
    Description: Official publication of the Historical Diving Society U.S.A. and affiliated societies. Succeeded by the Journal of Diving History with issue no. 55 (2008).
    Keywords: Engineering ; SCUBA diving ; hard hat diving ; hardhat diving ; history
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 40
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Historical Diving Society U.S.A. | Santa Barbara, CA
    In:  http://aquaticcommons.org/id/eprint/15001 | 29 | 2014-05-15 17:51:37 | 15001 | Historical Diving Society U.S.A.
    Publication Date: 2021-06-30
    Description: Official publication of the Historical Diving Society U.S.A. and affiliated societies. Succeeded by the Journal of Diving History with issue no. 55 (2008).
    Keywords: Engineering ; SCUBA diving ; hard hat diving ; hardhat diving ; history
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 56
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Historical Diving Society U.S.A. | Santa Barbara, CA
    In:  http://aquaticcommons.org/id/eprint/15008 | 29 | 2014-05-20 19:15:31 | 15008 | Historical Diving Society U.S.A.
    Publication Date: 2021-06-30
    Description: Official publication of the Historical Diving Society U.S.A. and affiliated societies. Succeeded by the Journal of Diving History with issue no. 55 (2008).
    Keywords: Engineering ; SCUBA diving ; hard hat diving ; hardhat diving ; history
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 48
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Historical Diving Society U.S.A. | Santa Barbara, CA
    In:  http://aquaticcommons.org/id/eprint/15007 | 29 | 2014-05-20 19:06:45 | 15007 | Historical Diving Society U.S.A.
    Publication Date: 2021-06-30
    Description: Official publication of the Historical Diving Society U.S.A. and affiliated societies. Succeeded by the Journal of Diving History with issue no. 55 (2008).
    Keywords: Engineering ; SCUBA diving ; hard hat diving ; hardhat diving ; history
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 48
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Historical Diving Society U.S.A. | Santa Barbara, CA
    In:  http://aquaticcommons.org/id/eprint/14997 | 29 | 2014-05-14 23:05:10 | 14997 | Historical Diving Society U.S.A.
    Publication Date: 2021-06-30
    Description: Official publication of the Historical Diving Society U.S.A. Succeeded by the Journal of Diving History with issue no. 55 (2008).
    Keywords: Engineering ; SCUBA diving ; hard hat diving ; hardhat diving ; history
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 40
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-17
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-17
    Description: Polyamide thickness and roughness have been identified as critical properties that affect thin-film composite membrane performance for reverse osmosis. Conventional formation methodologies lack the ability to control these properties independently with high resolution or precision. An additive approach is presented that uses electrospraying to deposit monomers directly onto a substrate, where they react to form polyamide. The small droplet size coupled with low monomer concentrations result in polyamide films that are smoother and thinner than conventional polyamides, while the additive nature of the approach allows for control of thickness and roughness. Polyamide films are formed with a thickness that is controllable down to 4-nanometer increments and a roughness as low as 2 nanometers while still exhibiting good permselectivity relative to a commercial benchmarking membrane.
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-09-07
    Description: Zeolitic imidazolate framework (ZIF) membranes are emerging as a promising energy-efficient separation technology. However, their reliable and scalable manufacturing remains a challenge. We demonstrate the fabrication of ZIF nanocomposite membranes by means of an all-vapor-phase processing method based on atomic layer deposition (ALD) of ZnO in a porous support followed by ligand-vapor treatment. After ALD, the obtained nanocomposite exhibits low flux and is not selective, whereas after ligand-vapor (2-methylimidazole) treatment, it is partially transformed to ZIF and shows stable performance with high mixture separation factor for propylene over propane (an energy-intensive high-volume separation) and high propylene flux. Membrane synthesis through ligand-induced permselectivation of a nonselective and impermeable deposit is shown to be simple and highly reproducible and holds promise for scalability.
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-09-14
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-09-14
    Description: Insects are among the most agile natural flyers. Hypotheses on their flight control cannot always be validated by experiments with animals or tethered robots. To this end, we developed a programmable and agile autonomous free-flying robot controlled through bio-inspired motion changes of its flapping wings. Despite being 55 times the size of a fruit fly, the robot can accurately mimic the rapid escape maneuvers of flies, including a correcting yaw rotation toward the escape heading. Because the robot’s yaw control was turned off, we showed that these yaw rotations result from passive, translation-induced aerodynamic coupling between the yaw torque and the roll and pitch torques produced throughout the maneuver. The robot enables new methods for studying animal flight, and its flight characteristics allow for real-world flight missions.
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-04-27
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-09-14
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-03-09
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-01-19
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2017-06-23
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2017-06-23
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2017-06-16
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-06-23
    Description: Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy cost during walking. Optimized torque patterns from an exoskeleton worn on one ankle reduced metabolic energy consumption by 24.2 ± 7.4% compared to no torque. The approach was effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during running, and when optimizing muscle activity. Finding a good generic assistance pattern, customizing it to individual needs, and helping users learn to take advantage of the device all contributed to improved economy. Optimization methods with these features can substantially improve performance.
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2017-11-24
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2017-12-01
    Description: Kim et al . (Reports, 28 April 2017, p. 430) presented results for the solar-driven harvesting of water from air via metal-organic frameworks as a prodigious potential advance toward remedying global water shortages. Basic thermodynamics and a survey of multiple off-the-shelf technologies show that their approach is vastly inferior in efficiency (and thereby in feasibility) to available alternatives.
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2017-12-01
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-12-01
    Description: In their comment, Bui et al . argue that the approach we described in our report is vastly inferior in efficiency to alternative off-the-shelf technologies. Their conclusion is invalid, as they compare efficiencies in completely different operating conditions. Here, using heat transfer and thermodynamics principles, we show how Bui et al .’s conclusions about the efficiencies of off-the-shelf technologies are fundamentally flawed and inaccurate for the operating conditions described in our study.
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-05-12
    Description: Bacteria within communities can interact to organize their behavior. It has been unclear whether such interactions can extend beyond a single community to coordinate the behavior of distant populations. We discovered that two Bacillus subtilis biofilm communities undergoing metabolic oscillations can become coupled through electrical signaling and synchronize their growth dynamics. Coupling increases competition by also synchronizing demand for limited nutrients. As predicted by mathematical modeling, we confirm that biofilms resolve this conflict by switching from in-phase to antiphase oscillations. This results in time-sharing behavior, where each community takes turns consuming nutrients. Time-sharing enables biofilms to counterintuitively increase growth under reduced nutrient supply. Distant biofilms can thus coordinate their behavior to resolve nutrient competition through time-sharing, a strategy used in engineered systems to allocate limited resources.
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2017-05-12
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2017-02-17
    Description: Engineering has an image problem. The phrase "engineering disaster" rolls off the tongue, while great technical achievements are more often heralded as "scientific miracles." Enter Dream Big. Sponsored by the American Society of Civil Engineers with support from Bechtel Corporation, the film sets out to reframe engineering as a force for good and a profession in service to people and the planet. Author: Donna Riley
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2017-07-21
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2017-07-21
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2017-05-26
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2017-11-10
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-07-08
    Description: The Internet connects billions of computational platforms of various sizes, from supercomputers to smart phones. However, the same types of data transmission can connect computational resources to much simpler sensors “at the edge of the net” that collect, analyze, and transmit data, as well as controllers that receive instructions. Devices deployed in the environment, homes and offices, and even our bodies would expand the number of connected devices to the trillions. This “Internet of Things” (IoT) underlies the vision of smart homes and buildings that could sense and transmit their status and respond appropriately (1), or track and report on the state of objects (vehicles, goods, or even animals) in the environment. However, the practical implementation of the IoT has been relatively slow, in part because all of these edge devices must draw electrical power from their local environment. We analyze the use of photovoltaics (PV) to power devices and help bring the IoT to fruition. Authors: Richard Haight, Wilfried Haensch, Daniel Friedman
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-04-22
    Description: So prized by the ancient Romans were Egyptian obelisks that, at one time, more of them stood in Rome than in Egypt. In the 19th century, France, Britain, and the United States—inspired by Napoleon Bonaparte's expedition to Egypt in 1798— acquired their own major obelisks from Alexandria and Luxor. Cleopatra's Needles, by Egyptologist Bob Brier, explores the engineering challenges associated with building and erecting these massive monuments. Author: Andrew Robinson
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-03-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maxmen, Amy -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1378-80. doi: 10.1126/science.351.6280.1378.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013707" target="_blank"〉PubMed〈/a〉
    Keywords: Anal Canal/*anatomy & histology ; Animals ; *Biological Evolution ; Ctenophora/*anatomy & histology/genetics ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2016-04-29
    Description: To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug-resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that tumors characterized by high levels of the MITF transcription factor also contained cells with low MITF and elevated levels of the AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-cell genomics offers insights with implications for both targeted and immune therapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tirosh, Itay -- Izar, Benjamin -- Prakadan, Sanjay M -- Wadsworth, Marc H 2nd -- Treacy, Daniel -- Trombetta, John J -- Rotem, Asaf -- Rodman, Christopher -- Lian, Christine -- Murphy, George -- Fallahi-Sichani, Mohammad -- Dutton-Regester, Ken -- Lin, Jia-Ren -- Cohen, Ofir -- Shah, Parin -- Lu, Diana -- Genshaft, Alex S -- Hughes, Travis K -- Ziegler, Carly G K -- Kazer, Samuel W -- Gaillard, Aleth -- Kolb, Kellie E -- Villani, Alexandra-Chloe -- Johannessen, Cory M -- Andreev, Aleksandr Y -- Van Allen, Eliezer M -- Bertagnolli, Monica -- Sorger, Peter K -- Sullivan, Ryan J -- Flaherty, Keith T -- Frederick, Dennie T -- Jane-Valbuena, Judit -- Yoon, Charles H -- Rozenblatt-Rosen, Orit -- Shalek, Alex K -- Regev, Aviv -- Garraway, Levi A -- 1U24CA180922/CA/NCI NIH HHS/ -- DP2 OD020839/OD/NIH HHS/ -- K99 CA194163/CA/NCI NIH HHS/ -- K99CA194163/CA/NCI NIH HHS/ -- P01CA163222/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- P50GM107618/GM/NIGMS NIH HHS/ -- R35CA197737/CA/NCI NIH HHS/ -- U54CA112962/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Apr 8;352(6282):189-96. doi: 10.1126/science.aad0501.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA. bizar@partners.org aregev@broadinstitute.org levi_garraway@dfci.harvard.edu. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Department of Chemistry, MIT, Cambridge, MA 02142, USA. Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA 02139, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA. ; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. ; Program in Therapeutic Sciences, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. ; HMS LINCS Center and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA 02139, USA. Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Surgical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Department of Surgical Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. ; Program in Therapeutic Sciences, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. HMS LINCS Center and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA. Ludwig Center at Harvard, Boston, MA 02215, USA. ; Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Department of Chemistry, MIT, Cambridge, MA 02142, USA. Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA 02139, USA. Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Department of Immunology, Massachusetts General Hospital, Boston, MA 02114, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Biology and Koch Institute, MIT, Boston, MA 02142, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. bizar@partners.org aregev@broadinstitute.org levi_garraway@dfci.harvard.edu. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. bizar@partners.org aregev@broadinstitute.org levi_garraway@dfci.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27124452" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Communication ; Cell Cycle ; Drug Resistance, Neoplasm/genetics ; Endothelial Cells/pathology ; Genomics ; Humans ; Immunotherapy ; Lymphocyte Activation ; Melanoma/*genetics/*secondary/therapy ; Microphthalmia-Associated Transcription Factor/metabolism ; Neoplasm Metastasis ; RNA/genetics ; Sequence Analysis, RNA ; Single-Cell Analysis ; Skin Neoplasms/*pathology ; Stromal Cells/pathology ; T-Lymphocytes/immunology/pathology ; Transcriptome ; *Tumor Microenvironment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016-04-02
    Description: Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits forEscherichia coli(880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nielsen, Alec A K -- Der, Bryan S -- Shin, Jonghyeon -- Vaidyanathan, Prashant -- Paralanov, Vanya -- Strychalski, Elizabeth A -- Ross, David -- Densmore, Douglas -- Voigt, Christopher A -- P50 GM098792/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 1;352(6281):aac7341. doi: 10.1126/science.aac7341.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Biological Design Center, Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA. ; Biological Design Center, Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA. ; Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20817, USA. ; Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. cavoigt@gmail.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27034378" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Base Pairing ; Base Sequence ; *Biotechnology ; DNA/*genetics ; Escherichia coli/*genetics ; *Gene Regulatory Networks ; Programming Languages ; Software ; Synthetic Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2016 Jan 15;351(6270):214-5. doi: 10.1126/science.351.6270.214. Epub 2016 Jan 14.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26816357" target="_blank"〉PubMed〈/a〉
    Keywords: Anatomy, Comparative ; Animals ; *Biological Evolution ; Colubridae/anatomy & histology/physiology ; *Copulation ; Female ; Genitalia, Female/*anatomy & histology/*physiology ; Male
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-02-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ball, Steven G -- Bhattacharya, Debashish -- Weber, Andreas P M -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):659-60. doi: 10.1126/science.aad8864.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universite de Lille CNRS, UMR 8576-UGSF-Unite de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France. ; Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA. debash.bhattacharya@gmail.com. ; Institute for Plant Biochemistry, Center of Excellence on Plant Sciences, Heinrich-Heine-University, Universitatsstrasse 1, D-40225 Dusseldorf, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912842" target="_blank"〉PubMed〈/a〉
    Keywords: Alphaproteobacteria/*genetics/pathogenicity ; Animals ; Archaea/metabolism ; *Biological Evolution ; Endocytosis ; Energy Metabolism/genetics ; Eukaryota/genetics ; *Host-Pathogen Interactions ; Humans ; Mitochondria/*genetics ; Plastids/*genetics ; Rickettsia/genetics/pathogenicity ; Symbiosis/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016-03-26
    Description: Sequencing of exomes and genomes has revealed abundant genetic variation affecting the coding sequences of human transcription factors (TFs), but the consequences of such variation remain largely unexplored. We developed a computational, structure-based approach to evaluate TF variants for their impact on DNA binding activity and used universal protein-binding microarrays to assay sequence-specific DNA binding activity across 41 reference and 117 variant alleles found in individuals of diverse ancestries and families with Mendelian diseases. We found 77 variants in 28 genes that affect DNA binding affinity or specificity and identified thousands of rare alleles likely to alter the DNA binding activity of human sequence-specific TFs. Our results suggest that most individuals have unique repertoires of TF DNA binding activities, which may contribute to phenotypic variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825693/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825693/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barrera, Luis A -- Vedenko, Anastasia -- Kurland, Jesse V -- Rogers, Julia M -- Gisselbrecht, Stephen S -- Rossin, Elizabeth J -- Woodard, Jaie -- Mariani, Luca -- Kock, Kian Hong -- Inukai, Sachi -- Siggers, Trevor -- Shokri, Leila -- Gordan, Raluca -- Sahni, Nidhi -- Cotsapas, Chris -- Hao, Tong -- Yi, Song -- Kellis, Manolis -- Daly, Mark J -- Vidal, Marc -- Hill, David E -- Bulyk, Martha L -- P50 HG004233/HG/NHGRI NIH HHS/ -- R01 HG003985/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1450-4. doi: 10.1126/science.aad2257. Epub 2016 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. ; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA. ; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. Center for Human Genetics Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA. Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013732" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Computer Simulation ; DNA/*metabolism ; DNA-Binding Proteins/*genetics/metabolism ; Exome/genetics ; *Gene Expression Regulation ; Genetic Diseases, Inborn/*genetics ; Genetic Variation ; Genome, Human ; Humans ; Mutation ; Polymorphism, Single Nucleotide ; Protein Array Analysis ; Protein Binding ; Sequence Analysis, DNA ; Transcription Factors/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-04-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hulme, Philip E -- Le Roux, Johannes J -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):422. doi: 10.1126/science.352.6284.422-b. Epub 2016 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Bio-Protection Research Centre, Lincoln University, Lincoln 7647, Canterbury, New Zealand. philip.hulme@lincoln.ac.nz. ; The Bio-Protection Research Centre, Lincoln University, Lincoln 7647, Canterbury, New Zealand. Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102471" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Conservation of Natural Resources/*methods ; *Extinction, Biological ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-04-02
    Description: Recent studies have implicated long noncoding RNAs (lncRNAs) as regulators of many important biological processes. Here we report on the identification and characterization of a lncRNA, lnc13, that harbors a celiac disease-associated haplotype block and represses expression of certain inflammatory genes under homeostatic conditions. Lnc13 regulates gene expression by binding to hnRNPD, a member of a family of ubiquitously expressed heterogeneous nuclear ribonucleoproteins (hnRNPs). Upon stimulation, lnc13 levels are reduced, thereby allowing increased expression of the repressed genes. Lnc13 levels are significantly decreased in small intestinal biopsy samples from patients with celiac disease, which suggests that down-regulation of lnc13 may contribute to the inflammation seen in this disease. Furthermore, the lnc13 disease-associated variant binds hnRNPD less efficiently than its wild-type counterpart, thus helping to explain how these single-nucleotide polymorphisms contribute to celiac disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Castellanos-Rubio, Ainara -- Fernandez-Jimenez, Nora -- Kratchmarov, Radomir -- Luo, Xiaobing -- Bhagat, Govind -- Green, Peter H R -- Schneider, Robert -- Kiledjian, Megerditch -- Bilbao, Jose Ramon -- Ghosh, Sankar -- R01-AI093985/AI/NIAID NIH HHS/ -- R01-DK102180/DK/NIDDK NIH HHS/ -- R01-GM067005/GM/NIGMS NIH HHS/ -- R37-AI33443/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 1;352(6281):91-5. doi: 10.1126/science.aad0467.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA. ; Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country (UPV-EHU), BioCruces Research Institute, Leioa 48940, Basque Country, Spain. ; Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA. ; Center for Celiac Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA. Alexandria Center for Life Sciences, New York University School of Medicine, New York, NY 10016, USA. ; Alexandria Center for Life Sciences, New York University School of Medicine, New York, NY 10016, USA. ; Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA. ; Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA. sg2715@columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27034373" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Celiac Disease/*genetics/pathology ; Down-Regulation ; Gene Expression Regulation ; *Genetic Predisposition to Disease ; Haplotypes ; Heterogeneous-Nuclear Ribonucleoproteins/genetics ; Humans ; Inflammation/*genetics ; Mice ; Molecular Sequence Data ; Polymorphism, Single Nucleotide ; RNA, Long Noncoding/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-04-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sarrazin, Francois -- Lecomte, Jane -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):422-3. doi: 10.1126/science.352.6284.422-c. Epub 2016 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sorbonne Universites, UPMC Univ. Paris 06, Museum National d'Histoire Naturelle, CNRS, CESCO, UMR 7204, 75005 Paris, France. sarrazin@mnhn.fr. ; Ecologie Systematique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Universite Paris-Saclay, 91400 Orsay, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102472" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Conservation of Natural Resources/*methods ; *Extinction, Biological ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-10-21
    Description: A physicist reveals the engineering marvels that underlie the modern metropolis Author: Sybil Derrible
    Keywords: Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-01-07
    Description: Catalysis in biology is restricted to RNA (ribozymes) and protein enzymes, but synthetic biomolecular catalysts can also be made of DNA (deoxyribozymes) or synthetic genetic polymers. In vitro selection from synthetic random DNA libraries identified DNA catalysts for various chemical reactions beyond RNA backbone cleavage. DNA-catalysed reactions include RNA and DNA ligation in various topologies, hydrolytic cleavage and photorepair of DNA, as well as reactions of peptides and small molecules. In spite of comprehensive biochemical studies of DNA catalysts for two decades, fundamental mechanistic understanding of their function is lacking in the absence of three-dimensional models at atomic resolution. Early attempts to solve the crystal structure of an RNA-cleaving deoxyribozyme resulted in a catalytically irrelevant nucleic acid fold. Here we report the crystal structure of the RNA-ligating deoxyribozyme 9DB1 (ref. 14) at 2.8 A resolution. The structure captures the ligation reaction in the post-catalytic state, revealing a compact folding unit stabilized by numerous tertiary interactions, and an unanticipated organization of the catalytic centre. Structure-guided mutagenesis provided insights into the basis for regioselectivity of the ligation reaction and allowed remarkable manipulation of substrate recognition and reaction rate. Moreover, the structure highlights how the specific properties of deoxyribose are reflected in the backbone conformation of the DNA catalyst, in support of its intricate three-dimensional organization. The structural principles underlying the catalytic ability of DNA elucidate differences and similarities in DNA versus RNA catalysts, which is relevant for comprehending the privileged position of folded RNA in the prebiotic world and in current organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ponce-Salvatierra, Almudena -- Wawrzyniak-Turek, Katarzyna -- Steuerwald, Ulrich -- Hobartner, Claudia -- Pena, Vladimir -- England -- Nature. 2016 Jan 14;529(7585):231-4. doi: 10.1038/nature16471. Epub 2016 Jan 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Research Group Nucleic Acid Chemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany. ; Research Group Macromolecular Crystallography, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany. ; Institute for Organic and Biomolecular Chemistry, Georg-August-University Gottingen, Tammannstr. 2, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26735012" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; DNA, Catalytic/chemical synthesis/*chemistry/metabolism ; Deoxyribose/chemistry/metabolism ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Nucleotides/chemistry/metabolism ; Polynucleotide Ligases/chemistry/metabolism ; RNA/chemistry/metabolism ; RNA Folding ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-04-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Melott, Adrian L -- England -- Nature. 2016 Apr 7;532(7597):40-1. doi: 10.1038/532040a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27078562" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Climate Change/history ; *Earth (Planet) ; Extinction, Biological ; Geologic Sediments/chemistry ; History, Ancient ; Humans ; Iron Radioisotopes/*analysis/chemistry ; Stars, Celestial/*chemistry ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-04-14
    Description: Prokaryotic CRISPR-Cas adaptive immune systems insert spacers derived from viruses and other parasitic DNA elements into CRISPR loci to provide sequence-specific immunity. This frequently results in high within-population spacer diversity, but it is unclear if and why this is important. Here we show that, as a result of this spacer diversity, viruses can no longer evolve to overcome CRISPR-Cas by point mutation, which results in rapid virus extinction. This effect arises from synergy between spacer diversity and the high specificity of infection, which greatly increases overall population resistance. We propose that the resulting short-lived nature of CRISPR-dependent bacteria-virus coevolution has provided strong selection for the evolution of sophisticated virus-encoded anti-CRISPR mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Houte, Stineke -- Ekroth, Alice K E -- Broniewski, Jenny M -- Chabas, Helene -- Ashby, Ben -- Bondy-Denomy, Joseph -- Gandon, Sylvain -- Boots, Mike -- Paterson, Steve -- Buckling, Angus -- Westra, Edze R -- DP5-OD021344/OD/NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2016 Apr 21;532(7599):385-8. doi: 10.1038/nature17436. Epub 2016 Apr 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ESI and CEC, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK. ; CEFE UMR 5175, CNRS-Universite de Montpellier, Universite Paul-Valery Montpellier, EPHE, 1919, route de Mende 34293, Montpellier Cedex 5, France. ; Department of Integrative Biology, University of California, Berkeley, California 94720, USA. ; CEC, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK. ; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California 94158, USA. ; Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27074511" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophages/genetics/immunology/physiology ; *Biological Evolution ; CRISPR-Cas Systems/*genetics/*immunology ; Extinction, Biological ; Genetic Fitness/genetics/physiology ; Point Mutation/genetics ; Pseudomonas aeruginosa/*genetics/*immunology/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-01-07
    Description: CRISPR-Cas9 nucleases are widely used for genome editing but can induce unwanted off-target mutations. Existing strategies for reducing genome-wide off-target effects of the widely used Streptococcus pyogenes Cas9 (SpCas9) are imperfect, possessing only partial or unproven efficacies and other limitations that constrain their use. Here we describe SpCas9-HF1, a high-fidelity variant harbouring alterations designed to reduce non-specific DNA contacts. SpCas9-HF1 retains on-target activities comparable to wild-type SpCas9 with 〉85% of single-guide RNAs (sgRNAs) tested in human cells. Notably, with sgRNAs targeted to standard non-repetitive sequences, SpCas9-HF1 rendered all or nearly all off-target events undetectable by genome-wide break capture and targeted sequencing methods. Even for atypical, repetitive target sites, the vast majority of off-target mutations induced by wild-type SpCas9 were not detected with SpCas9-HF1. With its exceptional precision, SpCas9-HF1 provides an alternative to wild-type SpCas9 for research and therapeutic applications. More broadly, our results suggest a general strategy for optimizing genome-wide specificities of other CRISPR-RNA-guided nucleases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kleinstiver, Benjamin P -- Pattanayak, Vikram -- Prew, Michelle S -- Tsai, Shengdar Q -- Nguyen, Nhu T -- Zheng, Zongli -- Joung, J Keith -- DP1 GM105378/DP/NCCDPHP CDC HHS/ -- R01 GM088040/GM/NIGMS NIH HHS/ -- R01 GM107427/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Jan 28;529(7587):490-5. doi: 10.1038/nature16526. Epub 2016 Jan 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. ; Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26735016" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; CRISPR-Associated Proteins/*genetics/*metabolism ; CRISPR-Cas Systems/*physiology ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics ; DNA/genetics/metabolism ; DNA-Binding Proteins/genetics/metabolism ; Endonucleases/genetics/*metabolism ; *Genetic Engineering ; Genome, Human/*genetics ; Humans ; Mutation ; Protein Binding ; RNA/genetics ; Reproducibility of Results ; Sequence Analysis, DNA ; Streptococcus pyogenes/enzymology/genetics ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-04-29
    Description: Umbilical cord blood-derived haematopoietic stem cells (HSCs) are essential for many life-saving regenerative therapies. However, despite their advantages for transplantation, their clinical use is restricted because HSCs in cord blood are found only in small numbers. Small molecules that enhance haematopoietic stem and progenitor cell (HSPC) expansion in culture have been identified, but in many cases their mechanisms of action or the nature of the pathways they impinge on are poorly understood. A greater understanding of the molecular circuitry that underpins the self-renewal of human HSCs will facilitate the development of targeted strategies that expand HSCs for regenerative therapies. Whereas transcription factor networks have been shown to influence the self-renewal and lineage decisions of human HSCs, the post-transcriptional mechanisms that guide HSC fate have not been closely investigated. Here we show that overexpression of the RNA-binding protein Musashi-2 (MSI2) induces multiple pro-self-renewal phenotypes, including a 17-fold increase in short-term repopulating cells and a net 23-fold ex vivo expansion of long-term repopulating HSCs. By performing a global analysis of MSI2-RNA interactions, we show that MSI2 directly attenuates aryl hydrocarbon receptor (AHR) signalling through post-transcriptional downregulation of canonical AHR pathway components in cord blood HSPCs. Our study gives mechanistic insight into RNA networks controlled by RNA-binding proteins that underlie self-renewal and provides evidence that manipulating such networks ex vivo can enhance the regenerative potential of human HSCs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880456/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880456/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rentas, Stefan -- Holzapfel, Nicholas T -- Belew, Muluken S -- Pratt, Gabriel A -- Voisin, Veronique -- Wilhelm, Brian T -- Bader, Gary D -- Yeo, Gene W -- Hope, Kristin J -- HG004659/HG/NHGRI NIH HHS/ -- MOP-126030/Canadian Institutes of Health Research/Canada -- NS075449/NS/NINDS NIH HHS/ -- England -- Nature. 2016 Apr 28;532(7600):508-11. doi: 10.1038/nature17665.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8S 4K1, Canada. ; Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California 92037, USA. ; Bioinformatics Graduate Program, University of California, San Diego, La Jolla, California 92037, USA. ; The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada. ; Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada. ; Department of Physiology, National University of Singapore and Molecular Engineering Laboratory, A*STAR, Singapore 138632, Singapore.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27121842" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Basic Helix-Loop-Helix Transcription Factors/genetics/*metabolism ; Cell Count ; *Cell Self Renewal/genetics ; Down-Regulation/genetics ; Female ; Fetal Blood/cytology ; Gene Knockdown Techniques ; Hematopoietic Stem Cells/*cytology/*metabolism ; Humans ; Male ; Mice ; Protein Binding ; RNA, Messenger/genetics/metabolism ; RNA-Binding Proteins/genetics/*metabolism ; Receptors, Aryl Hydrocarbon/genetics/*metabolism ; *Signal Transduction/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-03-31
    Description: Island biogeographical models consider islands either as geologically static with biodiversity resulting from ecologically neutral immigration-extinction dynamics, or as geologically dynamic with biodiversity resulting from immigration-speciation-extinction dynamics influenced by changes in island characteristics over millions of years. Present climate and spatial arrangement of islands, however, are rather exceptional compared to most of the Late Quaternary, which is characterized by recurrent cooler and drier glacial periods. These climatic oscillations over short geological timescales strongly affected sea levels and caused massive changes in island area, isolation and connectivity, orders of magnitude faster than the geological processes of island formation, subsidence and erosion considered in island theory. Consequences of these oscillations for present biodiversity remain unassessed. Here we analyse the effects of present and Last Glacial Maximum (LGM) island area, isolation, elevation and climate on key components of angiosperm diversity on islands worldwide. We find that post-LGM changes in island characteristics, especially in area, have left a strong imprint on present diversity of endemic species. Specifically, the number and proportion of endemic species today is significantly higher on islands that were larger during the LGM. Native species richness, in turn, is mostly determined by present island characteristics. We conclude that an appreciation of Late Quaternary environmental change is essential to understand patterns of island endemism and its underlying evolutionary dynamics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weigelt, Patrick -- Steinbauer, Manuel Jonas -- Cabral, Juliano Sarmento -- Kreft, Holger -- England -- Nature. 2016 Apr 7;532(7597):99-102. doi: 10.1038/nature17443. Epub 2016 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biodiversity, Macroecology &Conservation Biogeography Group, University of Gottingen, 37077 Gottingen, Germany. ; Systemic Conservation Biology, University of Gottingen, 37073 Gottingen, Germany. ; Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark. ; Department of Biogeography, BayCEER, University of Bayreuth, 95440 Bayreuth, Germany. ; Synthesis Centre of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27027291" target="_blank"〉PubMed〈/a〉
    Keywords: Altitude ; *Angiosperms ; *Biodiversity ; *Biological Evolution ; Climate Change/*history ; Geographic Mapping ; Geological Processes ; History, Ancient ; Internationality ; *Islands ; Oceans and Seas ; Seawater/analysis ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-03-05
    Description: Since their discovery, giant viruses have revealed several unique features that challenge the conventional definition of a virus, such as their large and complex genomes, their infection by virophages and their presence of transferable short element transpovirons. Here we investigate the sensitivity of mimivirus to virophage infection in a collection of 59 viral strains and demonstrate lineage specificity in the resistance of mimivirus to Zamilon, a unique virophage that can infect lineages B and C of mimivirus but not lineage A. We hypothesized that mimiviruses harbour a defence mechanism resembling the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system that is widely present in bacteria and archaea. We performed de novo sequencing of 45 new mimivirus strains and searched for sequences specific to Zamilon in a total of 60 mimivirus genomes. We found that lineage A strains are resistant to Zamilon and contain the insertion of a repeated Zamilon sequence within an operon, here named the 'mimivirus virophage resistance element' (MIMIVIRE). Further analyses of the surrounding sequences showed that this locus is reminiscent of a defence mechanism related to the CRISPR-Cas system. Silencing the repeated sequence and the MIMIVIRE genes restores mimivirus susceptibility to Zamilon. The MIMIVIRE proteins possess the typical functions (nuclease and helicase) involved in the degradation of foreign nucleic acids. The viral defence system, MIMIVIRE, represents a nucleic-acid-based immunity against virophage infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levasseur, Anthony -- Bekliz, Meriem -- Chabriere, Eric -- Pontarotti, Pierre -- La Scola, Bernard -- Raoult, Didier -- England -- Nature. 2016 Mar 10;531(7593):249-52. doi: 10.1038/nature17146. Epub 2016 Feb 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aix-Marseille Universite, Unite de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, Marseille, France. ; IHU Mediterranee Infection, Pole des Maladies Infectieuses, Assistance Publique-Hopitaux de Marseille, Faculte de Medecine, 27 Boulevard Jean Moulin, 13005 Marseille, France. ; Aix-Marseille Universite, CNRS, Centrale Marseille, I2M, UMR7373, FR 4213 - FR Eccorev 3098, equipe EBM, 13331 Marseille, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26934229" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; CRISPR-Cas Systems/genetics ; Chromosomes/genetics ; DNA Helicases/genetics/metabolism ; DNA, Viral/genetics/metabolism ; Deoxyribonucleases/genetics/metabolism ; Genes, Viral/genetics ; Genome, Viral/genetics ; Mimiviridae/classification/enzymology/*genetics/*immunology ; Operon/genetics ; Viral Proteins/genetics/metabolism ; Viruses/genetics/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-01-28
    Description: Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia's strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C4A. Human C4 protein localized to neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals with schizophrenia.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752392/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752392/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sekar, Aswin -- Bialas, Allison R -- de Rivera, Heather -- Davis, Avery -- Hammond, Timothy R -- Kamitaki, Nolan -- Tooley, Katherine -- Presumey, Jessy -- Baum, Matthew -- Van Doren, Vanessa -- Genovese, Giulio -- Rose, Samuel A -- Handsaker, Robert E -- Schizophrenia Working Group of the Psychiatric Genomics Consortium -- Daly, Mark J -- Carroll, Michael C -- Stevens, Beth -- McCarroll, Steven A -- R01 HG006855/HG/NHGRI NIH HHS/ -- R01 MH077139/MH/NIMH NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- U01 MH105641/MH/NIMH NIH HHS/ -- England -- Nature. 2016 Feb 11;530(7589):177-83. doi: 10.1038/nature16549. Epub 2016 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; MD-PhD Program, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA. ; Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26814963" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Axons/metabolism ; Base Sequence ; Brain/metabolism/pathology ; Complement C4/chemistry/*genetics ; Complement Pathway, Classical ; Dendrites/metabolism ; Gene Dosage/genetics ; Gene Expression Regulation/genetics ; Genetic Predisposition to Disease/*genetics ; Genetic Variation/*genetics ; Haplotypes/genetics ; Humans ; Major Histocompatibility Complex/genetics ; Mice ; Models, Animal ; Neuronal Plasticity/genetics/physiology ; Polymorphism, Single Nucleotide/genetics ; RNA, Messenger/analysis/genetics ; Risk Factors ; Schizophrenia/*genetics/pathology ; Synapses/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-02-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fox, Douglas -- England -- Nature. 2016 Feb 18;530(7590):268-70. doi: 10.1038/530268a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26887475" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Animals ; Aquatic Organisms/isolation & purification/*physiology ; *Biodiversity ; *Biological Evolution ; Carnivory/physiology ; Coral Reefs ; Food Chain ; Fossils ; Geologic Sediments/chemistry ; History, Ancient ; *Models, Biological ; Oxygen/analysis/*metabolism ; Predatory Behavior/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-04-28
    Description: The bacterial CRISPR/Cas9 system allows sequence-specific gene editing in many organisms and holds promise as a tool to generate models of human diseases, for example, in human pluripotent stem cells. CRISPR/Cas9 introduces targeted double-stranded breaks (DSBs) with high efficiency, which are typically repaired by non-homologous end-joining (NHEJ) resulting in nonspecific insertions, deletions or other mutations (indels). DSBs may also be repaired by homology-directed repair (HDR) using a DNA repair template, such as an introduced single-stranded oligo DNA nucleotide (ssODN), allowing knock-in of specific mutations. Although CRISPR/Cas9 is used extensively to engineer gene knockouts through NHEJ, editing by HDR remains inefficient and can be corrupted by additional indels, preventing its widespread use for modelling genetic disorders through introducing disease-associated mutations. Furthermore, targeted mutational knock-in at single alleles to model diseases caused by heterozygous mutations has not been reported. Here we describe a CRISPR/Cas9-based genome-editing framework that allows selective introduction of mono- and bi-allelic sequence changes with high efficiency and accuracy. We show that HDR accuracy is increased dramatically by incorporating silent CRISPR/Cas-blocking mutations along with pathogenic mutations, and establish a method termed 'CORRECT' for scarless genome editing. By characterizing and exploiting a stereotyped inverse relationship between a mutation's incorporation rate and its distance to the DSB, we achieve predictable control of zygosity. Homozygous introduction requires a guide RNA targeting close to the intended mutation, whereas heterozygous introduction can be accomplished by distance-dependent suboptimal mutation incorporation or by use of mixed repair templates. Using this approach, we generated human induced pluripotent stem cells with heterozygous and homozygous dominant early onset Alzheimer's disease-causing mutations in amyloid precursor protein (APP(Swe)) and presenilin 1 (PSEN1(M146V)) and derived cortical neurons, which displayed genotype-dependent disease-associated phenotypes. Our findings enable efficient introduction of specific sequence changes with CRISPR/Cas9, facilitating study of human disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paquet, Dominik -- Kwart, Dylan -- Chen, Antonia -- Sproul, Andrew -- Jacob, Samson -- Teo, Shaun -- Olsen, Kimberly Moore -- Gregg, Andrew -- Noggle, Scott -- Tessier-Lavigne, Marc -- 8 UL1 TR000043/TR/NCATS NIH HHS/ -- T32GM007739/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 May 5;533(7601):125-9. doi: 10.1038/nature17664. Epub 2016 Apr 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA. ; The New York Stem Cell Foundation Research Institute, New York, New York 10032, USA. ; Weill Cornell Graduate School of Medical Sciences, The Rockefeller University and Sloan-Kettering Institute Tri-institutional MD-PhD Program, 1300 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27120160" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Age of Onset ; Alleles ; Alzheimer Disease/genetics ; Amyloid beta-Protein Precursor/genetics/secretion ; Animals ; Base Sequence ; CRISPR-Cas Systems/*genetics ; DNA Breaks, Double-Stranded ; DNA Cleavage ; DNA Repair/genetics ; Female ; Genes, Dominant/genetics ; Genetic Association Studies ; Genetic Engineering/*methods ; *Heterozygote ; *Homozygote ; Humans ; Induced Pluripotent Stem Cells/metabolism ; Male ; Mice ; Mutagenesis/*genetics ; Mutation/*genetics ; Presenilins/genetics ; RNA, Guide/genetics ; Sequence Homology ; Substrate Specificity ; Templates, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-03-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cressey, Daniel -- England -- Nature. 2016 Mar 10;531(7593):152. doi: 10.1038/531152a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26961636" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; *Climate Change ; Conservation of Natural Resources/*methods ; Ecology/*methods ; *Plants ; Research ; *Seed Bank ; Seeds/*growth & development ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-03-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fernandez-Palacios, Jose Maria -- England -- Nature. 2016 Apr 7;532(7597):42-3. doi: 10.1038/nature17880. Epub 2016 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Island Ecology and Biogeography Group, Instituto Universitario de Enfermedades Tropicales y Salud Publica de Canarias, Universidad de La Laguna (ULL), La Laguna 38200, Tenerife, Canary Islands, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27027292" target="_blank"〉PubMed〈/a〉
    Keywords: *Angiosperms ; *Biodiversity ; *Biological Evolution ; Climate Change/*history ; *Islands
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-04-21
    Description: CRISPR-Cas systems that provide defence against mobile genetic elements in bacteria and archaea have evolved a variety of mechanisms to target and cleave RNA or DNA. The well-studied types I, II and III utilize a set of distinct CRISPR-associated (Cas) proteins for production of mature CRISPR RNAs (crRNAs) and interference with invading nucleic acids. In types I and III, Cas6 or Cas5d cleaves precursor crRNA (pre-crRNA) and the mature crRNAs then guide a complex of Cas proteins (Cascade-Cas3, type I; Csm or Cmr, type III) to target and cleave invading DNA or RNA. In type II systems, RNase III cleaves pre-crRNA base-paired with trans-activating crRNA (tracrRNA) in the presence of Cas9 (refs 13, 14). The mature tracrRNA-crRNA duplex then guides Cas9 to cleave target DNA. Here, we demonstrate a novel mechanism in CRISPR-Cas immunity. We show that type V-A Cpf1 from Francisella novicida is a dual-nuclease that is specific to crRNA biogenesis and target DNA interference. Cpf1 cleaves pre-crRNA upstream of a hairpin structure formed within the CRISPR repeats and thereby generates intermediate crRNAs that are processed further, leading to mature crRNAs. After recognition of a 5'-YTN-3' protospacer adjacent motif on the non-target DNA strand and subsequent probing for an eight-nucleotide seed sequence, Cpf1, guided by the single mature repeat-spacer crRNA, introduces double-stranded breaks in the target DNA to generate a 5' overhang. The RNase and DNase activities of Cpf1 require sequence- and structure-specific binding to the hairpin of crRNA repeats. Cpf1 uses distinct active domains for both nuclease reactions and cleaves nucleic acids in the presence of magnesium or calcium. This study uncovers a new family of enzymes with specific dual endoribonuclease and endonuclease activities, and demonstrates that type V-A constitutes the most minimalistic of the CRISPR-Cas systems so far described.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fonfara, Ines -- Richter, Hagen -- Bratovic, Majda -- Le Rhun, Anais -- Charpentier, Emmanuelle -- England -- Nature. 2016 Apr 28;532(7600):517-21. doi: 10.1038/nature17945. Epub 2016 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umea Centre for Microbial Research (UCMR), Department of Molecular Biology, Umea University, Umea 90187, Sweden. ; Helmholtz Centre for Infection Research, Department of Regulation in Infection Biology, Braunschweig 38124, Germany. ; Max Planck Institute for Infection Biology, Department of Regulation in Infection Biology, Berlin 10117, Germany. ; Hannover Medical School, Hannover 30625, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27096362" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*metabolism ; Base Sequence ; CRISPR-Associated Proteins/*metabolism ; CRISPR-Cas Systems ; Calcium/metabolism/pharmacology ; Catalytic Domain ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics ; *DNA Cleavage/drug effects ; Francisella/enzymology ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA Precursors/chemistry/*genetics/*metabolism ; *RNA Processing, Post-Transcriptional ; RNA, Bacterial/chemistry/genetics/metabolism ; RNA, Guide/biosynthesis/chemistry/genetics/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-04-23
    Description: The current outbreak of Ebola virus in West Africa is unprecedented, causing more cases and fatalities than all previous outbreaks combined, and has yet to be controlled. Several post-exposure interventions have been employed under compassionate use to treat patients repatriated to Europe and the United States. However, the in vivo efficacy of these interventions against the new outbreak strain of Ebola virus is unknown. Here we show that lipid-nanoparticle-encapsulated short interfering RNAs (siRNAs) rapidly adapted to target the Makona outbreak strain of Ebola virus are able to protect 100% of rhesus monkeys against lethal challenge when treatment was initiated at 3 days after exposure while animals were viraemic and clinically ill. Although all infected animals showed evidence of advanced disease including abnormal haematology, blood chemistry and coagulopathy, siRNA-treated animals had milder clinical features and fully recovered, while the untreated control animals succumbed to the disease. These results represent the first, to our knowledge, successful demonstration of therapeutic anti-Ebola virus efficacy against the new outbreak strain in nonhuman primates and highlight the rapid development of lipid-nanoparticle-delivered siRNA as a countermeasure against this highly lethal human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4467030/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4467030/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thi, Emily P -- Mire, Chad E -- Lee, Amy C H -- Geisbert, Joan B -- Zhou, Joy Z -- Agans, Krystle N -- Snead, Nicholas M -- Deer, Daniel J -- Barnard, Trisha R -- Fenton, Karla A -- MacLachlan, Ian -- Geisbert, Thomas W -- U19 AI109711/AI/NIAID NIH HHS/ -- U19AI109711/AI/NIAID NIH HHS/ -- England -- Nature. 2015 May 21;521(7552):362-5. doi: 10.1038/nature14442. Epub 2015 Apr 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tekmira Pharmaceuticals, Burnaby, British Columbia V5J 5J8, Canada. ; 1] Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas 77550, USA [2] Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77550, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25901685" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Disease Models, Animal ; Ebolavirus/classification/*drug effects/*genetics ; Female ; Hemorrhagic Fever, Ebola/pathology/prevention & control/*therapy/*virology ; Humans ; Macaca mulatta/virology ; Male ; Nanoparticles/*administration & dosage ; RNA, Small Interfering/*administration & dosage/pharmacology/*therapeutic use ; Survival Analysis ; Time Factors ; Treatment Outcome ; Viral Load/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2015-05-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zanne, Amy E -- Tank, David C -- Cornwell, William K -- Eastman, Jonathan M -- Smith, Stephen A -- FitzJohn, Richard G -- McGlinn, Daniel J -- O'Meara, Brian C -- Moles, Angela T -- Reich, Peter B -- Royer, Dana L -- Soltis, Douglas E -- Stevens, Peter F -- Westoby, Mark -- Wright, Ian J -- Aarssen, Lonnie -- Bertin, Robert I -- Calaminus, Andre -- Govaerts, Rafael -- Hemmings, Frank -- Leishman, Michelle R -- Oleksyn, Jacek -- Soltis, Pamela S -- Swenson, Nathan G -- Warman, Laura -- Beaulieu, Jeremy M -- England -- Nature. 2015 May 21;521(7552):E6-7. doi: 10.1038/nature14394.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biological Sciences, George Washington University, Washington DC 20052, USA. [2] Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, Missouri 63121, USA. ; 1] Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844, USA. [2] Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho 83844, USA. ; 1] Department of Ecological Sciences, Systems Ecology, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands. [2] Evolution &Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia. ; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA. ; 1] Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada. [2] Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia. ; Department of Biology, College of Charleston, Charleston, South Carolina 29424, USA. ; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996, USA. ; Evolution &Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia. ; 1] Department of Forest Resources, University of Minnesota, St Paul, Minnesota 55108, USA. [2] Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia. ; Department of Earth and Environmental Sciences, Wesleyan University, Middletown, Connecticut 06459, USA. ; 1] Department of Biology, University of Florida, Gainesville, Florida 32611, USA. [2] Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA. [3] Genetics Institute, University of Florida, Gainesville, Florida 32611, USA. ; Department of Biology, University of Missouri-St Louis, St Louis, Missouri 63121, USA. ; Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia. ; Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada. ; Department of Biology, College of the Holy Cross, Worcester, Massachusetts 01610, USA. ; Department of Biology, University of Florida, Gainesville, Florida 32611, USA. ; Royal Botanic Gardens, Kew, Richmond TW9 3AB, UK. ; 1] Department of Forest Resources, University of Minnesota, St Paul, Minnesota 55108, USA. [2] Polish Academy of Sciences, Institute of Dendrology, 62-035 Kornik, Poland. ; 1] Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA. [2] Genetics Institute, University of Florida, Gainesville, Florida 32611, USA. ; Department of Plant Biology and Ecology, Evolutionary Biology and Behavior, Program, Michigan State University, East Lansing, Michigan 48824, USA. ; 1] Evolution &Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia. [2] Institute of Pacific Islands Forestry, USDA Forest Service, Hilo, Hawaii 96720, USA. ; National Institute for Mathematical &Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25993971" target="_blank"〉PubMed〈/a〉
    Keywords: Angiosperms/*anatomy & histology/*physiology ; *Biological Evolution ; *Cold Climate ; *Ecosystem ; *Freezing ; Xylem/*anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-11-10
    Description: Gene expression is regulated by transcription factors (TFs), proteins that recognize short DNA sequence motifs. Such sequences are very common in the human genome, and an important determinant of the specificity of gene expression is the cooperative binding of multiple TFs to closely located motifs. However, interactions between DNA-bound TFs have not been systematically characterized. To identify TF pairs that bind cooperatively to DNA, and to characterize their spacing and orientation preferences, we have performed consecutive affinity-purification systematic evolution of ligands by exponential enrichment (CAP-SELEX) analysis of 9,400 TF-TF-DNA interactions. This analysis revealed 315 TF-TF interactions recognizing 618 heterodimeric motifs, most of which have not been previously described. The observed cooperativity occurred promiscuously between TFs from diverse structural families. Structural analysis of the TF pairs, including a novel crystal structure of MEIS1 and DLX3 bound to their identified recognition site, revealed that the interactions between the TFs were predominantly mediated by DNA. Most TF pair sites identified involved a large overlap between individual TF recognition motifs, and resulted in recognition of composite sites that were markedly different from the individual TF's motifs. Together, our results indicate that the DNA molecule commonly plays an active role in cooperative interactions that define the gene regulatory lexicon.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jolma, Arttu -- Yin, Yimeng -- Nitta, Kazuhiro R -- Dave, Kashyap -- Popov, Alexander -- Taipale, Minna -- Enge, Martin -- Kivioja, Teemu -- Morgunova, Ekaterina -- Taipale, Jussi -- England -- Nature. 2015 Nov 19;527(7578):384-8. doi: 10.1038/nature15518. Epub 2015 Nov 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biosciences and Nutrition, Karolinska Institutet, SE 141 83, Sweden. ; European Synchrotron Radiation Facility, 38043 Grenoble, France. ; Genome-Scale Biology Program, University of Helsinki, P.O. Box 63, FI-00014, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26550823" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites/genetics ; Crystallography, X-Ray ; DNA/*genetics/*metabolism ; Gene Expression Regulation/genetics ; Humans ; Molecular Sequence Data ; Nucleotide Motifs/genetics ; Reproducibility of Results ; *Substrate Specificity/genetics ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-06-25
    Description: The origin and early evolution of turtles have long been major contentious issues in vertebrate zoology. This is due to conflicting character evidence from molecules and morphology and a lack of transitional fossils from the critical time interval. The approximately 220-million-year-old stem-turtle Odontochelys from China has a partly formed shell and many turtle-like features in its postcranial skeleton. Unlike the 214-million-year-old Proganochelys from Germany and Thailand, it retains marginal teeth and lacks a carapace. Odontochelys is separated by a large temporal gap from the approximately 260-million-year-old Eunotosaurus from South Africa, which has been hypothesized as the earliest stem-turtle. Here we report a new reptile, Pappochelys, that is structurally and chronologically intermediate between Eunotosaurus and Odontochelys and dates from the Middle Triassic period ( approximately 240 million years ago). The three taxa share anteroposteriorly broad trunk ribs that are T-shaped in cross-section and bear sculpturing, elongate dorsal vertebrae, and modified limb girdles. Pappochelys closely resembles Odontochelys in various features of the limb girdles. Unlike Odontochelys, it has a cuirass of robust paired gastralia in place of a plastron. Pappochelys provides new evidence that the plastron partly formed through serial fusion of gastralia. Its skull has small upper and ventrally open lower temporal fenestrae, supporting the hypothesis of diapsid affinities of turtles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schoch, Rainer R -- Sues, Hans-Dieter -- England -- Nature. 2015 Jul 30;523(7562):584-7. doi: 10.1038/nature14472. Epub 2015 Jun 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Staatliches Museum fur Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany. ; Department of Paleobiology, National Museum of Natural History, MRC 121, PO Box 37012, Washington, District of Columbia 20013-7012, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26106865" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Shells ; Animals ; *Biological Evolution ; *Fossils ; Germany ; Phylogeny ; Skull/anatomy & histology ; Turtles/*anatomy & histology/classification
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-01-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2015 Jan 29;517(7536):527. doi: 10.1038/517527a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25631406" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Fossils ; Humans ; Israel ; Neanderthals/genetics ; *Skull/anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2015-03-13
    Description: Rare tautomeric and anionic nucleobases are believed to have fundamental biological roles, but their prevalence and functional importance has remained elusive because they exist transiently, in low abundance, and involve subtle movements of protons that are difficult to visualize. Using NMR relaxation dispersion, we show here that wobble dG*dT and rG*rU mispairs in DNA and RNA duplexes exist in dynamic equilibrium with short-lived, low-populated Watson-Crick-like mispairs that are stabilized by rare enolic or anionic bases. These mispairs can evade Watson-Crick fidelity checkpoints and form with probabilities (10(-3) to 10(-5)) that strongly imply a universal role in replication and translation errors. Our results indicate that rare tautomeric and anionic bases are widespread in nucleic acids, expanding their structural and functional complexity beyond that attainable with canonical bases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547696/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547696/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kimsey, Isaac J -- Petzold, Katja -- Sathyamoorthy, Bharathwaj -- Stein, Zachary W -- Al-Hashimi, Hashim M -- R01 GM089846/GM/NIGMS NIH HHS/ -- R01GM089846/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Mar 19;519(7543):315-20. doi: 10.1038/nature14227. Epub 2015 Mar 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Chemistry, Duke University Medical Center, Durham, North Carolina 27710, USA. ; Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden. ; Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25762137" target="_blank"〉PubMed〈/a〉
    Keywords: *Base Pairing ; Base Sequence ; DNA/*chemistry ; DNA Fingerprinting ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Magnetic Resonance Spectroscopy ; Mutation/genetics ; Nucleic Acid Heteroduplexes/*chemistry ; Probability ; RNA/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2015-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grammer, Karl -- Sainani, Kristin Lynn -- England -- Nature. 2015 Oct 8;526(7572):S11. doi: 10.1038/526S11a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26444367" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Anthropometry ; *Beauty ; *Biological Evolution ; *Courtship ; Cultural Characteristics ; Female ; Health ; Humans ; Male ; Odors ; Selection, Genetic ; Surgery, Plastic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2015-07-23
    Description: The human lens is comprised largely of crystallin proteins assembled into a highly ordered, interactive macro-structure essential for lens transparency and refractive index. Any disruption of intra- or inter-protein interactions will alter this delicate structure, exposing hydrophobic surfaces, with consequent protein aggregation and cataract formation. Cataracts are the most common cause of blindness worldwide, affecting tens of millions of people, and currently the only treatment is surgical removal of cataractous lenses. The precise mechanisms by which lens proteins both prevent aggregation and maintain lens transparency are largely unknown. Lanosterol is an amphipathic molecule enriched in the lens. It is synthesized by lanosterol synthase (LSS) in a key cyclization reaction of a cholesterol synthesis pathway. Here we identify two distinct homozygous LSS missense mutations (W581R and G588S) in two families with extensive congenital cataracts. Both of these mutations affect highly conserved amino acid residues and impair key catalytic functions of LSS. Engineered expression of wild-type, but not mutant, LSS prevents intracellular protein aggregation of various cataract-causing mutant crystallins. Treatment by lanosterol, but not cholesterol, significantly decreased preformed protein aggregates both in vitro and in cell-transfection experiments. We further show that lanosterol treatment could reduce cataract severity and increase transparency in dissected rabbit cataractous lenses in vitro and cataract severity in vivo in dogs. Our study identifies lanosterol as a key molecule in the prevention of lens protein aggregation and points to a novel strategy for cataract prevention and treatment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Ling -- Chen, Xiang-Jun -- Zhu, Jie -- Xi, Yi-Bo -- Yang, Xu -- Hu, Li-Dan -- Ouyang, Hong -- Patel, Sherrina H -- Jin, Xin -- Lin, Danni -- Wu, Frances -- Flagg, Ken -- Cai, Huimin -- Li, Gen -- Cao, Guiqun -- Lin, Ying -- Chen, Daniel -- Wen, Cindy -- Chung, Christopher -- Wang, Yandong -- Qiu, Austin -- Yeh, Emily -- Wang, Wenqiu -- Hu, Xun -- Grob, Seanna -- Abagyan, Ruben -- Su, Zhiguang -- Tjondro, Harry Christianto -- Zhao, Xi-Juan -- Luo, Hongrong -- Hou, Rui -- Perry, J Jefferson P -- Gao, Weiwei -- Kozak, Igor -- Granet, David -- Li, Yingrui -- Sun, Xiaodong -- Wang, Jun -- Zhang, Liangfang -- Liu, Yizhi -- Yan, Yong-Bin -- Zhang, Kang -- England -- Nature. 2015 Jul 30;523(7562):607-11. doi: 10.1038/nature14650. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [3] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. ; BGI-Shenzhen, Shenzhen 518083, China. ; 1] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [2] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. ; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] CapitalBio Genomics Co., Ltd., Dongguan 523808, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China. ; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, USA. ; Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA. ; King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia. ; Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China. ; Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [3] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [4] Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA [5] Veterans Administration Healthcare System, San Diego, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200341" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Amyloid/chemistry/drug effects/metabolism/ultrastructure ; Animals ; Base Sequence ; Cataract/congenital/*drug therapy/genetics/*metabolism/pathology ; Cell Line ; Child ; Crystallins/chemistry/genetics/metabolism/ultrastructure ; Dogs ; Female ; Humans ; Lanosterol/administration & dosage/*pharmacology/*therapeutic use ; Lens, Crystalline/drug effects/metabolism/pathology ; Male ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/metabolism/ultrastructure ; Pedigree ; Protein Aggregates/*drug effects ; Protein Aggregation, Pathological/*drug therapy/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2015-03-13
    Description: Exceptionally preserved fossils from the Palaeozoic era provide crucial insights into arthropod evolution, with recent discoveries bringing phylogeny and character homology into sharp focus. Integral to such studies are anomalocaridids, a clade of stem arthropods whose remarkable morphology illuminates early arthropod relationships and Cambrian ecology. Although recent work has focused on the anomalocaridid head, the nature of their trunk has been debated widely. Here we describe new anomalocaridid specimens from the Early Ordovician Fezouata Biota of Morocco, which not only show well-preserved head appendages providing key ecological data, but also elucidate the nature of anomalocaridid trunk flaps, resolving their homology with arthropod trunk limbs. The new material shows that each trunk segment bears a separate dorsal and ventral pair of flaps, with a series of setal blades attached at the base of the dorsal flaps. Comparisons with other stem lineage arthropods indicate that anomalocaridid ventral flaps are homologous with lobopodous walking limbs and the endopod of the euarthropod biramous limb, whereas the dorsal flaps and associated setal blades are homologous with the flaps of gilled lobopodians (for example, Kerygmachela kierkegaardi, Pambdelurion whittingtoni) and exites of the 'Cambrian biramous limb'. This evidence shows that anomalocaridids represent a stage before the fusion of exite and endopod into the 'Cambrian biramous limb', confirming their basal placement in the euarthropod stem, rather than in the arthropod crown or with cycloneuralian worms. Unlike other anomalocaridids, the Fezouata taxon combines head appendages convergently adapted for filter-feeding with an unprecedented body length exceeding 2 m, indicating a new direction in the feeding ecology of the clade. The evolution of giant filter-feeding anomalocaridids may reflect the establishment of highly developed planktic ecosystems during the Great Ordovician Biodiversification Event.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Roy, Peter -- Daley, Allison C -- Briggs, Derek E G -- England -- Nature. 2015 Jun 4;522(7554):77-80. doi: 10.1038/nature14256. Epub 2015 Mar 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Geology and Geophysics, Yale University, PO Box 208109, New Haven, Connecticut 06520, USA [2] Research Unit Palaeontology, Department of Geology and Soil Science, Ghent University, Krijgslaan 281/S8, B-9000 Ghent, Belgium. ; 1] Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK [2] Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK. ; 1] Department of Geology and Geophysics, Yale University, PO Box 208109, New Haven, Connecticut 06520, USA [2] Yale Peabody Museum of Natural History, Yale University, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25762145" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthropods/*anatomy & histology/classification ; *Biological Evolution ; Extremities/*anatomy & histology ; *Fossils ; Gills/*anatomy & histology ; Head/anatomy & histology ; Morocco ; Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-04-24
    Description: It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts - both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diogo, Rui -- Kelly, Robert G -- Christiaen, Lionel -- Levine, Michael -- Ziermann, Janine M -- Molnar, Julia L -- Noden, Drew M -- Tzahor, Eldad -- NS076542/NS/NINDS NIH HHS/ -- R01 NS076542/NS/NINDS NIH HHS/ -- R01GM096032/GM/NIGMS NIH HHS/ -- R01HL108643/HL/NHLBI NIH HHS/ -- England -- Nature. 2015 Apr 23;520(7548):466-73. doi: 10.1038/nature14435.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy, Howard University College of Medicine, Washington DC 20059, USA. ; Aix Marseille Universite, Centre National de la Recherche Scientifique, Institut de Biologie du Developpement de Marseille UMR 7288, 13288 Marseille, France. ; Center for Developmental Genetics, Department of Biology, New York University, New York 10003, USA. ; Department of Molecular and Cell Biology, University of California at Berkeley, California 94720, USA. ; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA. ; Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25903628" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Branchial Region/anatomy & histology/cytology/*embryology ; Head/*anatomy & histology/*embryology ; Heart/*anatomy & histology/*embryology ; Mesoderm/cytology ; Models, Biological ; Muscles/anatomy & histology/cytology/embryology ; Neural Crest/cytology ; Vertebrates/*anatomy & histology/*embryology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-04-24
    Description: The origin of vertebrates was accompanied by the advent of a novel cell type: the neural crest. Emerging from the central nervous system, these cells migrate to diverse locations and differentiate into numerous derivatives. By coupling morphological and gene regulatory information from vertebrates and other chordates, we describe how addition of the neural-crest-specification program may have enabled cells at the neural plate border to acquire multipotency and migratory ability. Analysis of the topology of the neural crest gene regulatory network can serve as a useful template for understanding vertebrate evolution, including elaboration of neural crest derivatives.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Green, Stephen A -- Simoes-Costa, Marcos -- Bronner, Marianne E -- 1K99DE024232/DE/NIDCR NIH HHS/ -- R01NS086907/NS/NINDS NIH HHS/ -- England -- Nature. 2015 Apr 23;520(7548):474-82. doi: 10.1038/nature14436.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25903629" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Cell Proliferation ; Chordata, Nonvertebrate/cytology/embryology ; Gene Duplication/genetics ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; Neural Crest/cytology/*metabolism ; Stem Cells/cytology ; Vertebrates/anatomy & histology/*embryology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-02-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marsh, Geoff -- England -- Nature. 2015 Feb 12;518(7538):147. doi: 10.1038/518147a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25673391" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avian Proteins/genetics ; Beak/*anatomy & histology ; *Biological Evolution ; Costa Rica ; Diet/veterinary ; Ecuador ; Finches/*anatomy & histology/classification/*genetics ; Genetic Variation/genetics ; Genome/*genetics ; Genomics ; Phylogeny ; Selection, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2015-08-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grinsted, Lena -- Bilde, Trine -- Gilbert, James D J -- England -- Nature. 2015 Aug 27;524(7566):E1-3. doi: 10.1038/nature14595.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, University of Sussex, John Maynard Smith Building, Brighton BN1 9QG, UK. ; Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000 Aarhus C, Denmark. ; School of Biological, Biomedical and Environmental Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26310770" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Aggression/*physiology ; Animals ; *Biological Evolution ; Female ; *Selection, Genetic ; Spiders/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-05-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Callaway, Ewen -- England -- Nature. 2015 May 14;521(7551):136. doi: 10.1038/521136a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25971486" target="_blank"〉PubMed〈/a〉
    Keywords: Access to Information ; Base Sequence ; *Confidentiality/standards ; DNA/genetics/isolation & purification ; Feces/microbiology ; Humans ; Microbiota/*genetics ; National Institutes of Health (U.S.) ; Risk ; Tandem Repeat Sequences/genetics ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2015-03-04
    Description: Polyploidy is observed across the tree of life, yet its influence on evolution remains incompletely understood. Polyploidy, usually whole-genome duplication, is proposed to alter the rate of evolutionary adaptation. This could occur through complex effects on the frequency or fitness of beneficial mutations. For example, in diverse cell types and organisms, immediately after a whole-genome duplication, newly formed polyploids missegregate chromosomes and undergo genetic instability. The instability following whole-genome duplications is thought to provide adaptive mutations in microorganisms and can promote tumorigenesis in mammalian cells. Polyploidy may also affect adaptation independently of beneficial mutations through ploidy-specific changes in cell physiology. Here we perform in vitro evolution experiments to test directly whether polyploidy can accelerate evolutionary adaptation. Compared with haploids and diploids, tetraploids undergo significantly faster adaptation. Mathematical modelling suggests that rapid adaptation of tetraploids is driven by higher rates of beneficial mutations with stronger fitness effects, which is supported by whole-genome sequencing and phenotypic analyses of evolved clones. Chromosome aneuploidy, concerted chromosome loss, and point mutations all provide large fitness gains. We identify several mutations whose beneficial effects are manifest specifically in the tetraploid strains. Together, these results provide direct quantitative evidence that in some environments polyploidy can accelerate evolutionary adaptation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497379/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497379/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Selmecki, Anna M -- Maruvka, Yosef E -- Richmond, Phillip A -- Guillet, Marie -- Shoresh, Noam -- Sorenson, Amber L -- De, Subhajyoti -- Kishony, Roy -- Michor, Franziska -- Dowell, Robin -- Pellman, David -- R01 GM081617/GM/NIGMS NIH HHS/ -- R37 GM061345/GM/NIGMS NIH HHS/ -- R37 GM61345/GM/NIGMS NIH HHS/ -- U54CA143798/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Mar 19;519(7543):349-52. doi: 10.1038/nature14187. Epub 2015 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA [2] Department of Cell Biology, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02215, USA [3] Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA. ; 1] Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue Boston, Massachusetts 02215, USA [2] Department of Biostatistics, Harvard School of Public Health, 158 Longwood Avenue, Boston, Massachusetts 02215, USA. ; 1] BioFrontiers Institute, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, USA [2] Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, 347 UCB, Boulder, Colorado 80309, USA. ; Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, USA. ; 1] Department of Medicine, University of Colorado School of Medicine, 13001 East 17th Place, Aurora, Colorado 80045, USA [2] Department of Biostatistics and Informatics, Colorado School of Public Health, 13001 East 17th Place, Aurora, Colorado 80045, USA [3] Molecular Oncology Program, University of Colorado Cancer Center, 13001 East 17th Place, Aurora, Colorado 80045, USA. ; 1] Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, Massachusetts 02115, USA [2] Department of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel. ; 1] Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA [2] Department of Cell Biology, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02215, USA [3] Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA [4] Department of Pediatric Hematology/Oncology, Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25731168" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Aneuploidy ; *Biological Evolution ; Chromosomes, Fungal/genetics ; Clone Cells/cytology/metabolism ; Diploidy ; Genetic Fitness/genetics ; Haploidy ; Mutation Rate ; Point Mutation/genetics ; *Polyploidy ; Saccharomyces cerevisiae/cytology/*genetics/metabolism/*physiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2015-03-25
    Description: Adult stem cells occur in niches that balance self-renewal with lineage selection and progression during tissue homeostasis. Following injury, culture or transplantation, stem cells outside their niche often display fate flexibility. Here we show that super-enhancers underlie the identity, lineage commitment and plasticity of adult stem cells in vivo. Using hair follicle as a model, we map the global chromatin domains of hair follicle stem cells and their committed progenitors in their native microenvironments. We show that super-enhancers and their dense clusters ('epicentres') of transcription factor binding sites undergo remodelling upon lineage progression. New fate is acquired by decommissioning old and establishing new super-enhancers and/or epicentres, an auto-regulatory process that abates one master regulator subset while enhancing another. We further show that when outside their niche, either in vitro or in wound-repair, hair follicle stem cells dynamically remodel super-enhancers in response to changes in their microenvironment. Intriguingly, some key super-enhancers shift epicentres, enabling their genes to remain active and maintain a transitional state in an ever-changing transcriptional landscape. Finally, we identify SOX9 as a crucial chromatin rheostat of hair follicle stem cell super-enhancers, and provide functional evidence that super-enhancers are dynamic, dense transcription-factor-binding platforms which are acutely sensitive to pioneer master regulators whose levels define not only spatial and temporal features of lineage-status but also stemness, plasticity in transitional states and differentiation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482136/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482136/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adam, Rene C -- Yang, Hanseul -- Rockowitz, Shira -- Larsen, Samantha B -- Nikolova, Maria -- Oristian, Daniel S -- Polak, Lisa -- Kadaja, Meelis -- Asare, Amma -- Zheng, Deyou -- Fuchs, Elaine -- R01 AR031737/AR/NIAMS NIH HHS/ -- R01-AR31737/AR/NIAMS NIH HHS/ -- R21 MH099452/MH/NIMH NIH HHS/ -- R21MH099452/MH/NIMH NIH HHS/ -- T32 GM066699/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 May 21;521(7552):366-70. doi: 10.1038/nature14289. Epub 2015 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology &Development, The Rockefeller University, New York, New York 10065, USA. ; Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA. ; 1] Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA [2] Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799994" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Adult Stem Cells/*cytology/metabolism ; Animals ; Base Sequence ; Cell Differentiation/*genetics ; Cell Lineage/*genetics ; Chromatin/genetics/metabolism ; Enhancer Elements, Genetic/*genetics ; Female ; Hair Follicle/*cytology ; Mice ; Organ Specificity ; SOX9 Transcription Factor/*metabolism ; Stem Cell Niche ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2015-04-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Callaway, Ewen -- England -- Nature. 2015 Apr 23;520(7548):421. doi: 10.1038/520421a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25903608" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Cultural Evolution/*history ; History, Ancient ; Hominidae ; *Intelligence ; *Tool Use Behavior ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2015-02-03
    Description: The alternative non-homologous end-joining (NHEJ) machinery facilitates several genomic rearrangements, some of which can lead to cellular transformation. This error-prone repair pathway is triggered upon telomere de-protection to promote the formation of deleterious chromosome end-to-end fusions. Using next-generation sequencing technology, here we show that repair by alternative NHEJ yields non-TTAGGG nucleotide insertions at fusion breakpoints of dysfunctional telomeres. Investigating the enzymatic activity responsible for the random insertions enabled us to identify polymerase theta (Poltheta; encoded by Polq in mice) as a crucial alternative NHEJ factor in mammalian cells. Polq inhibition suppresses alternative NHEJ at dysfunctional telomeres, and hinders chromosomal translocations at non-telomeric loci. In addition, we found that loss of Polq in mice results in increased rates of homology-directed repair, evident by recombination of dysfunctional telomeres and accumulation of RAD51 at double-stranded breaks. Lastly, we show that depletion of Poltheta has a synergistic effect on cell survival in the absence of BRCA genes, suggesting that the inhibition of this mutagenic polymerase represents a valid therapeutic avenue for tumours carrying mutations in homology-directed repair genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718306/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718306/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mateos-Gomez, Pedro A -- Gong, Fade -- Nair, Nidhi -- Miller, Kyle M -- Lazzerini-Denchi, Eros -- Sfeir, Agnel -- AG038677/AG/NIA NIH HHS/ -- P30 CA016087/CA/NCI NIH HHS/ -- R01 AG038677/AG/NIA NIH HHS/ -- England -- Nature. 2015 Feb 12;518(7538):254-7. doi: 10.1038/nature14157. Epub 2015 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York 10016, USA. ; Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin. 2506 Speedway Stop A5000, Austin, Texas 78712, USA. ; Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25642960" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Death/genetics ; Cell Line ; Chromosome Aberrations ; Chromosomes, Mammalian/genetics/*metabolism ; *DNA Breaks, Double-Stranded ; *DNA End-Joining Repair ; DNA-Directed DNA Polymerase/deficiency/*metabolism ; Genes, BRCA1 ; Genes, BRCA2 ; HeLa Cells ; Humans ; Mice ; Poly(ADP-ribose) Polymerases/genetics/metabolism ; Rad51 Recombinase/metabolism ; *Recombination, Genetic/genetics ; Recombinational DNA Repair/genetics ; Telomere/*genetics/*metabolism ; Translocation, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2015-05-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Edwards, Erika J -- de Vos, Jurriaan M -- Donoghue, Michael J -- England -- Nature. 2015 May 21;521(7552):E5-6. doi: 10.1038/nature14393.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St, Box G-W, Providence, Rhodes Island 02912, USA. ; Department of Ecology and Evolutionary Biology, Yale University, PO Box 208105, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25993970" target="_blank"〉PubMed〈/a〉
    Keywords: Angiosperms/*anatomy & histology/*physiology ; *Biological Evolution ; *Cold Climate ; *Ecosystem ; *Freezing ; Xylem/*anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2015-07-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kutschera, U -- England -- Nature. 2015 Jul 2;523(7558):35. doi: 10.1038/523035d.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biology, University of Kassel, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26135438" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Female ; Genetics, Medical/history ; History, 19th Century ; Humans ; Male
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2015-03-25
    Description: The first step in the biogenesis of microRNAs is the processing of primary microRNAs (pri-miRNAs) by the microprocessor complex, composed of the RNA-binding protein DGCR8 and the type III RNase DROSHA. This initial event requires recognition of the junction between the stem and the flanking single-stranded RNA of the pri-miRNA hairpin by DGCR8 followed by recruitment of DROSHA, which cleaves the RNA duplex to yield the pre-miRNA product. While the mechanisms underlying pri-miRNA processing have been determined, the mechanism by which DGCR8 recognizes and binds pri-miRNAs, as opposed to other secondary structures present in transcripts, is not understood. Here we find in mammalian cells that methyltransferase-like 3 (METTL3) methylates pri-miRNAs, marking them for recognition and processing by DGCR8. Consistent with this, METTL3 depletion reduced the binding of DGCR8 to pri-miRNAs and resulted in the global reduction of mature miRNAs and concomitant accumulation of unprocessed pri-miRNAs. In vitro processing reactions confirmed the sufficiency of the N(6)-methyladenosine (m(6)A) mark in promoting pri-miRNA processing. Finally, gain-of-function experiments revealed that METTL3 is sufficient to enhance miRNA maturation in a global and non-cell-type-specific manner. Our findings reveal that the m(6)A mark acts as a key post-transcriptional modification that promotes the initiation of miRNA biogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475635/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475635/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alarcon, Claudio R -- Lee, Hyeseung -- Goodarzi, Hani -- Halberg, Nils -- Tavazoie, Sohail F -- T32 CA009673/CA/NCI NIH HHS/ -- England -- Nature. 2015 Mar 26;519(7544):482-5. doi: 10.1038/nature14281. Epub 2015 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Systems Cancer Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799998" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/metabolism ; Base Sequence ; Cell Line ; Gene Expression Regulation ; Humans ; Methylation ; Methyltransferases/deficiency/metabolism ; MicroRNAs/*chemistry/*metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; *RNA Processing, Post-Transcriptional ; RNA-Binding Proteins/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2015-02-25
    Description: Clustered regularly interspaced short palindromic repeat (CRISPR) loci and their associated (Cas) proteins provide adaptive immunity against viral infection in prokaryotes. Upon infection, short phage sequences known as spacers integrate between CRISPR repeats and are transcribed into small RNA molecules that guide the Cas9 nuclease to the viral targets (protospacers). Streptococcus pyogenes Cas9 cleavage of the viral genome requires the presence of a 5'-NGG-3' protospacer adjacent motif (PAM) sequence immediately downstream of the viral target. It is not known whether and how viral sequences flanked by the correct PAM are chosen as new spacers. Here we show that Cas9 selects functional spacers by recognizing their PAM during spacer acquisition. The replacement of cas9 with alleles that lack the PAM recognition motif or recognize an NGGNG PAM eliminated or changed PAM specificity during spacer acquisition, respectively. Cas9 associates with other proteins of the acquisition machinery (Cas1, Cas2 and Csn2), presumably to provide PAM-specificity to this process. These results establish a new function for Cas9 in the genesis of prokaryotic immunological memory.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385744/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385744/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heler, Robert -- Samai, Poulami -- Modell, Joshua W -- Weiner, Catherine -- Goldberg, Gregory W -- Bikard, David -- Marraffini, Luciano A -- 1DP2AI104556-01/AI/NIAID NIH HHS/ -- DP2 AI104556/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Mar 12;519(7542):199-202. doi: 10.1038/nature14245. Epub 2015 Feb 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA. ; 1] Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA [2] Synthetic Biology Group, Institut Pasteur, 28 Rue du Dr. Roux, 75015 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25707807" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; CRISPR-Associated Proteins/*metabolism ; *CRISPR-Cas Systems/immunology ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics/immunology ; DNA, Viral/*genetics/immunology/metabolism ; Molecular Sequence Data ; Nucleotide Motifs ; Protein Binding ; Protein Structure, Tertiary ; Staphylococcus aureus ; Streptococcus pyogenes/*enzymology/*genetics/immunology/virology ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2015-02-18
    Description: Nitrogen is an essential nutrient for all organisms that must have been available since the origin of life. Abiotic processes including hydrothermal reduction, photochemical reactions, or lightning discharge could have converted atmospheric N2 into assimilable NH4(+), HCN, or NOx species, collectively termed fixed nitrogen. But these sources may have been small on the early Earth, severely limiting the size of the primordial biosphere. The evolution of the nitrogen-fixing enzyme nitrogenase, which reduces atmospheric N2 to organic NH4(+), thus represented a major breakthrough in the radiation of life, but its timing is uncertain. Here we present nitrogen isotope ratios with a mean of 0.0 +/- 1.2 per thousand from marine and fluvial sedimentary rocks of prehnite-pumpellyite to greenschist metamorphic grade between 3.2 and 2.75 billion years ago. These data cannot readily be explained by abiotic processes and therefore suggest biological nitrogen fixation, most probably using molybdenum-based nitrogenase as opposed to other variants that impart significant negative fractionations. Our data place a minimum age constraint of 3.2 billion years on the origin of biological nitrogen fixation and suggest that molybdenum was bioavailable in the mid-Archaean ocean long before the Great Oxidation Event.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stueken, Eva E -- Buick, Roger -- Guy, Bradley M -- Koehler, Matthew C -- England -- Nature. 2015 Apr 30;520(7549):666-9. doi: 10.1038/nature14180. Epub 2015 Feb 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth &Space Sciences and Astrobiology Program, University of Washington, Seattle, Washington 98195-1310, USA. ; Department of Geology, University of Johannesburg, Auckland Park 2006, South Africa.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686600" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Evolution, Molecular ; Geologic Sediments/chemistry ; History, Ancient ; Molybdenum/*metabolism ; *Nitrogen Fixation ; Nitrogen Isotopes/*analysis ; Nitrogenase/*metabolism ; Oceans and Seas ; Oxidation-Reduction ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-03-25
    Description: The structure of messenger RNA is important for post-transcriptional regulation, mainly because it affects binding of trans-acting factors. However, little is known about the in vivo structure of full-length mRNAs. Here we present hiCLIP, a biochemical technique for transcriptome-wide identification of RNA secondary structures interacting with RNA-binding proteins (RBPs). Using this technique to investigate RNA structures bound by Staufen 1 (STAU1) in human cells, we uncover a dominance of intra-molecular RNA duplexes, a depletion of duplexes from coding regions of highly translated mRNAs, an unexpected prevalence of long-range duplexes in 3' untranslated regions (UTRs), and a decreased incidence of single nucleotide polymorphisms in duplex-forming regions. We also discover a duplex spanning 858 nucleotides in the 3' UTR of the X-box binding protein 1 (XBP1) mRNA that regulates its cytoplasmic splicing and stability. Our study reveals the fundamental role of mRNA secondary structures in gene expression and introduces hiCLIP as a widely applicable method for discovering new, especially long-range, RNA duplexes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376666/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376666/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sugimoto, Yoichiro -- Vigilante, Alessandra -- Darbo, Elodie -- Zirra, Alexandra -- Militti, Cristina -- D'Ambrogio, Andrea -- Luscombe, Nicholas M -- Ule, Jernej -- 103760/Wellcome Trust/United Kingdom -- 103760/Z/14/Z/Wellcome Trust/United Kingdom -- 206726/European Research Council/International -- 617837/European Research Council/International -- A16358/Cancer Research UK/United Kingdom -- MC_U105185858/Medical Research Council/United Kingdom -- U105185858/Medical Research Council/United Kingdom -- England -- Nature. 2015 Mar 26;519(7544):491-4. doi: 10.1038/nature14280. Epub 2015 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; 1] Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK [2] UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK. ; Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK. ; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK. ; 1] MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK [2] Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK. ; 1] Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK [2] UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK [3] Okinawa Institute of Science &Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799984" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/genetics ; Base Sequence ; Cytoplasm/genetics/metabolism ; Cytoskeletal Proteins/*metabolism ; DNA-Binding Proteins/genetics ; Humans ; *Nucleic Acid Conformation ; Polymorphism, Single Nucleotide/genetics ; RNA Splicing ; RNA Stability ; RNA, Messenger/*chemistry/genetics/*metabolism ; RNA-Binding Proteins/*metabolism ; Transcription Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-02-06
    Description: The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 A resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352134/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352134/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colussi, Timothy M -- Costantino, David A -- Zhu, Jianyu -- Donohue, John Paul -- Korostelev, Andrei A -- Jaafar, Zane A -- Plank, Terra-Dawn M -- Noller, Harry F -- Kieft, Jeffrey S -- GM-103105/GM/NIGMS NIH HHS/ -- GM-17129/GM/NIGMS NIH HHS/ -- GM-59140/GM/NIGMS NIH HHS/ -- GM-81346/GM/NIGMS NIH HHS/ -- GM-97333/GM/NIGMS NIH HHS/ -- R01 GM097333/GM/NIGMS NIH HHS/ -- R01 GM106105/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Mar 5;519(7541):110-3. doi: 10.1038/nature14219. Epub 2015 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA [2] Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA. ; Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, Sinsheimer Labs, University of California at Santa Cruz, Santa Cruz, California 95064, USA. ; Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25652826" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/*genetics ; Base Sequence ; Conserved Sequence/genetics ; Crystallography, X-Ray ; Dicistroviridae/genetics ; Eukaryota/*genetics ; Models, Molecular ; *Nucleic Acid Conformation ; Peptide Chain Initiation, Translational/genetics ; Protein Biosynthesis/*genetics ; RNA/*chemistry/*genetics/metabolism ; RNA, Bacterial/chemistry/genetics/metabolism ; RNA, Viral/chemistry/genetics/metabolism ; Ribosomes/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-04-02
    Description: The RNA-guided endonuclease Cas9 has emerged as a versatile genome-editing platform. However, the size of the commonly used Cas9 from Streptococcus pyogenes (SpCas9) limits its utility for basic research and therapeutic applications that use the highly versatile adeno-associated virus (AAV) delivery vehicle. Here, we characterize six smaller Cas9 orthologues and show that Cas9 from Staphylococcus aureus (SaCas9) can edit the genome with efficiencies similar to those of SpCas9, while being more than 1 kilobase shorter. We packaged SaCas9 and its single guide RNA expression cassette into a single AAV vector and targeted the cholesterol regulatory gene Pcsk9 in the mouse liver. Within one week of injection, we observed 〉40% gene modification, accompanied by significant reductions in serum Pcsk9 and total cholesterol levels. We further assess the genome-wide targeting specificity of SaCas9 and SpCas9 using BLESS, and demonstrate that SaCas9-mediated in vivo genome editing has the potential to be efficient and specific.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393360/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393360/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ran, F Ann -- Cong, Le -- Yan, Winston X -- Scott, David A -- Gootenberg, Jonathan S -- Kriz, Andrea J -- Zetsche, Bernd -- Shalem, Ophir -- Wu, Xuebing -- Makarova, Kira S -- Koonin, Eugene V -- Sharp, Phillip A -- Zhang, Feng -- 5DP1-MH100706/DP/NCCDPHP CDC HHS/ -- 5P30EY012196-17/EY/NEI NIH HHS/ -- 5R01DK097768-03/DK/NIDDK NIH HHS/ -- DP1 MH100706/MH/NIMH NIH HHS/ -- P01-CA42063/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- R01 EY024259/EY/NEI NIH HHS/ -- R01-CA133404/CA/NCI NIH HHS/ -- R01-GM34277/GM/NIGMS NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32 GM008313/GM/NIGMS NIH HHS/ -- T32GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Apr 9;520(7546):186-91. doi: 10.1038/nature14299. Epub 2015 Apr 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Society of Fellows, Harvard University, Cambridge, Massachusetts 02138, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Graduate Program in Biophysics, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA. ; 1] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [4] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25830891" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; CRISPR-Associated Proteins/genetics/*metabolism ; Cholesterol/blood/metabolism ; Gene Targeting ; Genetic Engineering/*methods ; Genome/*genetics ; Liver/metabolism/physiology ; Male ; Mice ; Mice, Inbred C57BL ; Proprotein Convertases/biosynthesis/blood/deficiency/genetics ; Serine Endopeptidases/biosynthesis/blood/deficiency/genetics ; Staphylococcus aureus/*enzymology/genetics ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-07-15
    Description: Epistasis-the non-additive interactions between different genetic loci-constrains evolutionary pathways, blocking some and permitting others. For biological networks such as transcription circuits, the nature of these constraints and their consequences are largely unknown. Here we describe the evolutionary pathways of a transcription network that controls the response to mating pheromone in yeast. A component of this network, the transcription regulator Ste12, has evolved two different modes of binding to a set of its target genes. In one group of species, Ste12 binds to specific DNA binding sites, while in another lineage it occupies DNA indirectly, relying on a second transcription regulator to recognize DNA. We show, through the construction of various possible evolutionary intermediates, that evolution of the direct mode of DNA binding was not directly accessible to the ancestor. Instead, it was contingent on a lineage-specific change to an overlapping transcription network with a different function, the specification of cell type. These results show that analysing and predicting the evolution of cis-regulatory regions requires an understanding of their positions in overlapping networks, as this placement constrains the available evolutionary pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531262/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531262/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sorrells, Trevor R -- Booth, Lauren N -- Tuch, Brian B -- Johnson, Alexander D -- R01 GM037049/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jul 16;523(7560):361-5. doi: 10.1038/nature14613. Epub 2015 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry &Biophysics, Department of Microbiology &Immunology, University of California, San Francisco, California 94158, USA [2] Tetrad Graduate Program, University of California, San Francisco, California 94158, USA. ; 1] Department of Biochemistry &Biophysics, Department of Microbiology &Immunology, University of California, San Francisco, California 94158, USA [2] Biological and Medical Informatics Graduate Program, University of California, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26153861" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; DNA, Fungal/genetics/metabolism ; DNA-Binding Proteins/metabolism ; Enhancer Elements, Genetic/genetics ; Epistasis, Genetic ; *Evolution, Molecular ; Gene Expression Regulation, Fungal/drug effects/*genetics ; Gene Regulatory Networks/drug effects/*genetics ; Genes, Fungal/genetics ; Kluyveromyces/drug effects/genetics/metabolism ; Peptides/metabolism/pharmacology ; Pheromones/metabolism/pharmacology ; Promoter Regions, Genetic/genetics ; Saccharomyces cerevisiae/drug effects/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-05-15
    Description: Recursive splicing is a process in which large introns are removed in multiple steps by re-splicing at ratchet points--5' splice sites recreated after splicing. Recursive splicing was first identified in the Drosophila Ultrabithorax (Ubx) gene and only three additional Drosophila genes have since been experimentally shown to undergo recursive splicing. Here we identify 197 zero nucleotide exon ratchet points in 130 introns of 115 Drosophila genes from total RNA sequencing data generated from developmental time points, dissected tissues and cultured cells. The sequential nature of recursive splicing was confirmed by identification of lariat introns generated by splicing to and from the ratchet points. We also show that recursive splicing is a constitutive process, that depletion of U2AF inhibits recursive splicing, and that the sequence and function of ratchet points are evolutionarily conserved in Drosophila. Finally, we identify four recursively spliced human genes, one of which is also recursively spliced in Drosophila. Together, these results indicate that recursive splicing is commonly used in Drosophila, occurs in humans, and provides insight into the mechanisms by which some large introns are removed.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529404/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529404/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duff, Michael O -- Olson, Sara -- Wei, Xintao -- Garrett, Sandra C -- Osman, Ahmad -- Bolisetty, Mohan -- Plocik, Alex -- Celniker, Susan E -- Graveley, Brenton R -- R01 GM095296/GM/NIGMS NIH HHS/ -- R01GM095296/GM/NIGMS NIH HHS/ -- U54 HG006994/HG/NHGRI NIH HHS/ -- U54HG006994/HG/NHGRI NIH HHS/ -- England -- Nature. 2015 May 21;521(7552):376-9. doi: 10.1038/nature14475. Epub 2015 May 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA. ; Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25970244" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cells, Cultured ; Drosophila melanogaster/*genetics ; Exons/genetics ; Female ; Genes, Insect/genetics ; Genome, Insect/*genetics ; Humans ; Introns/genetics ; Male ; Nuclear Proteins/deficiency/genetics/metabolism ; Nucleotides/*genetics ; RNA Splice Sites/genetics ; RNA Splicing/*genetics ; Reproducibility of Results ; Ribonucleoproteins/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-02-20
    Description: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530010/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530010/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roadmap Epigenomics Consortium -- Kundaje, Anshul -- Meuleman, Wouter -- Ernst, Jason -- Bilenky, Misha -- Yen, Angela -- Heravi-Moussavi, Alireza -- Kheradpour, Pouya -- Zhang, Zhizhuo -- Wang, Jianrong -- Ziller, Michael J -- Amin, Viren -- Whitaker, John W -- Schultz, Matthew D -- Ward, Lucas D -- Sarkar, Abhishek -- Quon, Gerald -- Sandstrom, Richard S -- Eaton, Matthew L -- Wu, Yi-Chieh -- Pfenning, Andreas R -- Wang, Xinchen -- Claussnitzer, Melina -- Liu, Yaping -- Coarfa, Cristian -- Harris, R Alan -- Shoresh, Noam -- Epstein, Charles B -- Gjoneska, Elizabeta -- Leung, Danny -- Xie, Wei -- Hawkins, R David -- Lister, Ryan -- Hong, Chibo -- Gascard, Philippe -- Mungall, Andrew J -- Moore, Richard -- Chuah, Eric -- Tam, Angela -- Canfield, Theresa K -- Hansen, R Scott -- Kaul, Rajinder -- Sabo, Peter J -- Bansal, Mukul S -- Carles, Annaick -- Dixon, Jesse R -- Farh, Kai-How -- Feizi, Soheil -- Karlic, Rosa -- Kim, Ah-Ram -- Kulkarni, Ashwinikumar -- Li, Daofeng -- Lowdon, Rebecca -- Elliott, GiNell -- Mercer, Tim R -- Neph, Shane J -- Onuchic, Vitor -- Polak, Paz -- Rajagopal, Nisha -- Ray, Pradipta -- Sallari, Richard C -- Siebenthall, Kyle T -- Sinnott-Armstrong, Nicholas A -- Stevens, Michael -- Thurman, Robert E -- Wu, Jie -- Zhang, Bo -- Zhou, Xin -- Beaudet, Arthur E -- Boyer, Laurie A -- De Jager, Philip L -- Farnham, Peggy J -- Fisher, Susan J -- Haussler, David -- Jones, Steven J M -- Li, Wei -- Marra, Marco A -- McManus, Michael T -- Sunyaev, Shamil -- Thomson, James A -- Tlsty, Thea D -- Tsai, Li-Huei -- Wang, Wei -- Waterland, Robert A -- Zhang, Michael Q -- Chadwick, Lisa H -- Bernstein, Bradley E -- Costello, Joseph F -- Ecker, Joseph R -- Hirst, Martin -- Meissner, Alexander -- Milosavljevic, Aleksandar -- Ren, Bing -- Stamatoyannopoulos, John A -- Wang, Ting -- Kellis, Manolis -- 5R24HD000836/HD/NICHD NIH HHS/ -- ES017166/ES/NIEHS NIH HHS/ -- F32 HL110473/HL/NHLBI NIH HHS/ -- F32HL110473/HL/NHLBI NIH HHS/ -- K99 HL119617/HL/NHLBI NIH HHS/ -- K99HL119617/HL/NHLBI NIH HHS/ -- P01 DA008227/DA/NIDA NIH HHS/ -- P30AG10161/AG/NIA NIH HHS/ -- P50 MH096890/MH/NIMH NIH HHS/ -- R01 AG015819/AG/NIA NIH HHS/ -- R01 AG017917/AG/NIA NIH HHS/ -- R01 ES024984/ES/NIEHS NIH HHS/ -- R01 ES024992/ES/NIEHS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 HG007175/HG/NHGRI NIH HHS/ -- R01 HG007354/HG/NHGRI NIH HHS/ -- R01AG15819/AG/NIA NIH HHS/ -- R01AG17917/AG/NIA NIH HHS/ -- R01HG004037/HG/NHGRI NIH HHS/ -- R01HG004037-S1/HG/NHGRI NIH HHS/ -- R01NS078839/NS/NINDS NIH HHS/ -- RC1HG005334/HG/NHGRI NIH HHS/ -- RF1 AG015819/AG/NIA NIH HHS/ -- T32 ES007032/ES/NIEHS NIH HHS/ -- T32 GM007198/GM/NIGMS NIH HHS/ -- T32 GM007266/GM/NIGMS NIH HHS/ -- T32 GM081739/GM/NIGMS NIH HHS/ -- U01 ES017154/ES/NIEHS NIH HHS/ -- U01AG46152/AG/NIA NIH HHS/ -- U01DA025956/DA/NIDA NIH HHS/ -- U01ES017154/ES/NIEHS NIH HHS/ -- U01ES017155/ES/NIEHS NIH HHS/ -- U01ES017156/ES/NIEHS NIH HHS/ -- U01ES017166/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 19;518(7539):317-30. doi: 10.1038/nature14248.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Genetics, Department of Computer Science, 300 Pasteur Dr., Lane Building, L301, Stanford, California 94305-5120, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E Young Dr South, Los Angeles, California 90095, USA. ; Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, Massachusetts 02138, USA. ; Epigenome Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Genomic Analysis Laboratory, Howard Hughes Medical Institute &The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, USA. ; Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, Washington 98195, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Biology Department, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02142, USA. ; The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, Massachusetts 02139, USA. ; 1] Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. [2] Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd Street, San Francisco, California 94158, USA. ; Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143-0511, USA. ; Department of Medicine, Division of Medical Genetics, University of Washington, 2211 Elliot Avenue, Seattle, Washington 98121, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Computer Science &Engineering, University of Connecticut, 371 Fairfield Way, Storrs, Connecticut 06269, USA. ; Department of Microbiology and Immunology and Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada. ; Bioinformatics Group, Department of Molecular Biology, Division of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia. ; Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas, Dallas, NSERL, RL10, 800 W Campbell Road, Richardson, Texas 75080, USA. ; Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St Louis, 4444 Forest Park Ave, St Louis, Missouri 63108, USA. ; Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Brigham &Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA. ; 1] Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St Louis, 4444 Forest Park Ave, St Louis, Missouri 63108, USA. [2] Department of Computer Science and Engineeering, Washington University in St. Louis, St. Louis, Missouri 63130, USA. ; 1] Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600, USA. [2] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA. ; Molecular and Human Genetics Department, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Biology Department, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02142, USA. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Brigham &Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA. [3] Harvard Medical School, 25 Shattuck St, Boston, Massachusetts 02115, USA. ; Department of Biochemistry, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, California 90089-9601, USA. ; ObGyn, Reproductive Sciences, University of California San Francisco, 35 Medical Center Way, San Francisco, California 94143, USA. ; Center for Biomolecular Sciences and Engineering, University of Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada. [3] Department of Medical Genetics, University of British Columbia, 2329 West Mall, Vancouver, BC, Canada, V6T 1Z4. ; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Medical Genetics, University of British Columbia, 2329 West Mall, Vancouver, BC, Canada, V6T 1Z4. ; Department of Microbiology and Immunology, Diabetes Center, University of California, San Francisco, 513 Parnassus Ave, San Francisco, California 94143-0534, USA. ; 1] University of Wisconsin, Madison, Wisconsin 53715, USA. [2] Morgridge Institute for Research, 330 N. Orchard Street, Madison, Wisconsin 53707, USA. ; USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, Texas 77030, USA. ; 1] Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas, Dallas, NSERL, RL10, 800 W Campbell Road, Richardson, Texas 75080, USA. [2] Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China. ; National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, USA. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Massachusetts General Hospital, 55 Fruit St, Boston, Massachusetts 02114, USA. [3] Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815-6789, USA. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Microbiology and Immunology and Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25693563" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Lineage/genetics ; Cells, Cultured ; Chromatin/chemistry/genetics/metabolism ; Chromosomes, Human/chemistry/genetics/metabolism ; DNA/chemistry/genetics/metabolism ; DNA Methylation ; Datasets as Topic ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/*genetics ; *Epigenomics ; Genetic Variation/genetics ; Genome, Human/*genetics ; Genome-Wide Association Study ; Histones/metabolism ; Humans ; Organ Specificity/genetics ; RNA/genetics ; Reference Values
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-02-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dantzer, Ben -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):822-3. doi: 10.1126/science.aaa6480.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA. dantzer@umich.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700499" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Competitive Behavior ; *Ecosystem ; Female ; Male ; *Maternal Behavior ; Songbirds/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mervis, Jeffrey -- New York, N.Y. -- Science. 2015 Mar 6;347(6226):1054. doi: 10.1126/science.347.6226.1054.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25745139" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Biology/*education ; Curriculum ; *Faculty ; Knowledge ; *Professional Competence ; *Religion and Science ; Role ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-02-28
    Description: A central process in evolution is the recruitment of genes to regulatory networks. We engineered immotile strains of the bacterium Pseudomonas fluorescens that lack flagella due to deletion of the regulatory gene fleQ. Under strong selection for motility, these bacteria consistently regained flagella within 96 hours via a two-step evolutionary pathway. Step 1 mutations increase intracellular levels of phosphorylated NtrC, a distant homolog of FleQ, which begins to commandeer control of the fleQ regulon at the cost of disrupting nitrogen uptake and assimilation. Step 2 is a switch-of-function mutation that redirects NtrC away from nitrogen uptake and toward its novel function as a flagellar regulator. Our results demonstrate that natural selection can rapidly rewire regulatory networks in very few, repeatable mutational steps.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taylor, Tiffany B -- Mulley, Geraldine -- Dills, Alexander H -- Alsohim, Abdullah S -- McGuffin, Liam J -- Studholme, David J -- Silby, Mark W -- Brockhurst, Michael A -- Johnson, Louise J -- Jackson, Robert W -- BB/J015350/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/K003240/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- WT097835MF/Wellcome Trust/United Kingdom -- WT101650MA/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2015 Feb 27;347(6225):1014-7. doi: 10.1126/science.1259145.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. ; Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA. ; School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. Department of Plant Production and Protection, Qassim University, Qassim, P.O. Box 6622, Saudi Arabia. ; College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK. ; Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK. ; School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. l.j.johnson@reading.ac.uk. ; School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. The University of Akureyri, Borgir vid Nordurslod, IS-600 Akureyri, Iceland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25722415" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/genetics/*physiology ; *Biological Evolution ; Flagella/genetics/metabolism/*physiology ; Gene Deletion ; Gene Expression Regulation, Bacterial ; Gene Regulatory Networks ; Nitrogen/*metabolism ; Pseudomonas fluorescens/genetics/metabolism/*physiology ; Regulon ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2015-03-06
    Description: Sedimentary basins in eastern Africa preserve a record of continental rifting and contain important fossil assemblages for interpreting hominin evolution. However, the record of hominin evolution between 3 and 2.5 million years ago (Ma) is poorly documented in surface outcrops, particularly in Afar, Ethiopia. Here we present the discovery of a 2.84- to 2.58-million-year-old fossil and hominin-bearing sediments in the Ledi-Geraru research area of Afar, Ethiopia, that have produced the earliest record of the genus Homo. Vertebrate fossils record a faunal turnover indicative of more open and probably arid habitats than those reconstructed earlier in this region, which is in broad agreement with hypotheses addressing the role of environmental forcing in hominin evolution at this time. Geological analyses constrain depositional and structural models of Afar and date the LD 350-1 Homo mandible to 2.80 to 2.75 Ma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DiMaggio, Erin N -- Campisano, Christopher J -- Rowan, John -- Dupont-Nivet, Guillaume -- Deino, Alan L -- Bibi, Faysal -- Lewis, Margaret E -- Souron, Antoine -- Garello, Dominique -- Werdelin, Lars -- Reed, Kaye E -- Arrowsmith, J Ramon -- New York, N.Y. -- Science. 2015 Mar 20;347(6228):1355-9. doi: 10.1126/science.aaa1415. Epub 2015 Mar 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA. dimaggio@psu.edu kreed@asu.edu. ; Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA. ; CNRS Geosciences Rennes, Campus de Beaulieu, 35042 Rennes, France. ; Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA. ; Museum fur Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany. ; Biology Program, Stockton University, 101 Vera King Farris Drive, Galloway, NJ 08205, USA. ; Human Evolution Research Center, University of California, Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA, 94720-3160, USA. ; School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA. ; Swedish Museum of Natural History, Department of Palaeobiology, Box 50007, SE-10405 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25739409" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Ecosystem ; Ethiopia ; Fossils ; *Geologic Sediments ; *Hominidae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...