ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-04-14
    Description: Prokaryotic CRISPR-Cas adaptive immune systems insert spacers derived from viruses and other parasitic DNA elements into CRISPR loci to provide sequence-specific immunity. This frequently results in high within-population spacer diversity, but it is unclear if and why this is important. Here we show that, as a result of this spacer diversity, viruses can no longer evolve to overcome CRISPR-Cas by point mutation, which results in rapid virus extinction. This effect arises from synergy between spacer diversity and the high specificity of infection, which greatly increases overall population resistance. We propose that the resulting short-lived nature of CRISPR-dependent bacteria-virus coevolution has provided strong selection for the evolution of sophisticated virus-encoded anti-CRISPR mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Houte, Stineke -- Ekroth, Alice K E -- Broniewski, Jenny M -- Chabas, Helene -- Ashby, Ben -- Bondy-Denomy, Joseph -- Gandon, Sylvain -- Boots, Mike -- Paterson, Steve -- Buckling, Angus -- Westra, Edze R -- DP5-OD021344/OD/NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2016 Apr 21;532(7599):385-8. doi: 10.1038/nature17436. Epub 2016 Apr 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ESI and CEC, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK. ; CEFE UMR 5175, CNRS-Universite de Montpellier, Universite Paul-Valery Montpellier, EPHE, 1919, route de Mende 34293, Montpellier Cedex 5, France. ; Department of Integrative Biology, University of California, Berkeley, California 94720, USA. ; CEC, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK. ; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California 94158, USA. ; Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27074511" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophages/genetics/immunology/physiology ; *Biological Evolution ; CRISPR-Cas Systems/*genetics/*immunology ; Extinction, Biological ; Genetic Fitness/genetics/physiology ; Point Mutation/genetics ; Pseudomonas aeruginosa/*genetics/*immunology/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...