ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zanne, Amy E -- Tank, David C -- Cornwell, William K -- Eastman, Jonathan M -- Smith, Stephen A -- FitzJohn, Richard G -- McGlinn, Daniel J -- O'Meara, Brian C -- Moles, Angela T -- Reich, Peter B -- Royer, Dana L -- Soltis, Douglas E -- Stevens, Peter F -- Westoby, Mark -- Wright, Ian J -- Aarssen, Lonnie -- Bertin, Robert I -- Calaminus, Andre -- Govaerts, Rafael -- Hemmings, Frank -- Leishman, Michelle R -- Oleksyn, Jacek -- Soltis, Pamela S -- Swenson, Nathan G -- Warman, Laura -- Beaulieu, Jeremy M -- England -- Nature. 2015 May 21;521(7552):E6-7. doi: 10.1038/nature14394.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biological Sciences, George Washington University, Washington DC 20052, USA. [2] Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, Missouri 63121, USA. ; 1] Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844, USA. [2] Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho 83844, USA. ; 1] Department of Ecological Sciences, Systems Ecology, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands. [2] Evolution &Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia. ; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA. ; 1] Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada. [2] Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia. ; Department of Biology, College of Charleston, Charleston, South Carolina 29424, USA. ; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996, USA. ; Evolution &Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia. ; 1] Department of Forest Resources, University of Minnesota, St Paul, Minnesota 55108, USA. [2] Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia. ; Department of Earth and Environmental Sciences, Wesleyan University, Middletown, Connecticut 06459, USA. ; 1] Department of Biology, University of Florida, Gainesville, Florida 32611, USA. [2] Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA. [3] Genetics Institute, University of Florida, Gainesville, Florida 32611, USA. ; Department of Biology, University of Missouri-St Louis, St Louis, Missouri 63121, USA. ; Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia. ; Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada. ; Department of Biology, College of the Holy Cross, Worcester, Massachusetts 01610, USA. ; Department of Biology, University of Florida, Gainesville, Florida 32611, USA. ; Royal Botanic Gardens, Kew, Richmond TW9 3AB, UK. ; 1] Department of Forest Resources, University of Minnesota, St Paul, Minnesota 55108, USA. [2] Polish Academy of Sciences, Institute of Dendrology, 62-035 Kornik, Poland. ; 1] Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA. [2] Genetics Institute, University of Florida, Gainesville, Florida 32611, USA. ; Department of Plant Biology and Ecology, Evolutionary Biology and Behavior, Program, Michigan State University, East Lansing, Michigan 48824, USA. ; 1] Evolution &Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia. [2] Institute of Pacific Islands Forestry, USDA Forest Service, Hilo, Hawaii 96720, USA. ; National Institute for Mathematical &Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25993971" target="_blank"〉PubMed〈/a〉
    Keywords: Angiosperms/*anatomy & histology/*physiology ; *Biological Evolution ; *Cold Climate ; *Ecosystem ; *Freezing ; Xylem/*anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-02-01
    Description: Improved phylogenies and the accumulation of broad comparative data sets have opened the way for phylogenetic analyses to trace trait evolution in major groups of organisms. We arrayed seed mass data for 12,987 species on the seed plant phylogeny and show the history of seed size from the emergence of the angiosperms through to the present day. The largest single contributor to the present-day spread of seed mass was the divergence between angiosperms and gymnosperms, whereas the widest divergence was between Celastraceae and Parnassiaceae. Wide divergences in seed size were more often associated with divergences in growth form than with divergences in dispersal syndrome or latitude. Cross-species studies and evolutionary theory are consistent with this evidence that growth form and seed size evolve in a coordinated manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moles, Angela T -- Ackerly, David D -- Webb, Campbell O -- Tweddle, John C -- Dickie, John B -- Westoby, Mark -- New York, N.Y. -- Science. 2005 Jan 28;307(5709):576-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Ecological Analysis and Synthesis, 735 State Street, Santa Barbara, CA 93101-5304, USA. amoles@bio.mq.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15681384" target="_blank"〉PubMed〈/a〉
    Keywords: *Angiosperms/anatomy & histology/classification/physiology ; *Biological Evolution ; *Gymnosperms/anatomy & histology/classification/physiology ; *Phylogeny ; Reproduction ; Seeds/*anatomy & histology/physiology ; Software ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-12-24
    Description: Early flowering plants are thought to have been woody species restricted to warm habitats. This lineage has since radiated into almost every climate, with manifold growth forms. As angiosperms spread and climate changed, they evolved mechanisms to cope with episodic freezing. To explore the evolution of traits underpinning the ability to persist in freezing conditions, we assembled a large species-level database of growth habit (woody or herbaceous; 49,064 species), as well as leaf phenology (evergreen or deciduous), diameter of hydraulic conduits (that is, xylem vessels and tracheids) and climate occupancies (exposure to freezing). To model the evolution of species' traits and climate occupancies, we combined these data with an unparalleled dated molecular phylogeny (32,223 species) for land plants. Here we show that woody clades successfully moved into freezing-prone environments by either possessing transport networks of small safe conduits and/or shutting down hydraulic function by dropping leaves during freezing. Herbaceous species largely avoided freezing periods by senescing cheaply constructed aboveground tissue. Growth habit has long been considered labile, but we find that growth habit was less labile than climate occupancy. Additionally, freezing environments were largely filled by lineages that had already become herbs or, when remaining woody, already had small conduits (that is, the trait evolved before the climate occupancy). By contrast, most deciduous woody lineages had an evolutionary shift to seasonally shedding their leaves only after exposure to freezing (that is, the climate occupancy evolved before the trait). For angiosperms to inhabit novel cold environments they had to gain new structural and functional trait solutions; our results suggest that many of these solutions were probably acquired before their foray into the cold.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zanne, Amy E -- Tank, David C -- Cornwell, William K -- Eastman, Jonathan M -- Smith, Stephen A -- FitzJohn, Richard G -- McGlinn, Daniel J -- O'Meara, Brian C -- Moles, Angela T -- Reich, Peter B -- Royer, Dana L -- Soltis, Douglas E -- Stevens, Peter F -- Westoby, Mark -- Wright, Ian J -- Aarssen, Lonnie -- Bertin, Robert I -- Calaminus, Andre -- Govaerts, Rafael -- Hemmings, Frank -- Leishman, Michelle R -- Oleksyn, Jacek -- Soltis, Pamela S -- Swenson, Nathan G -- Warman, Laura -- Beaulieu, Jeremy M -- England -- Nature. 2014 Feb 6;506(7486):89-92. doi: 10.1038/nature12872. Epub 2013 Dec 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biological Sciences, George Washington University, Washington DC 20052, USA [2] Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, Missouri 63121, USA. ; 1] Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844, USA [2] Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho 83844, USA. ; 1] Department of Ecological Sciences, Systems Ecology, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands [2] Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia. ; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA. ; 1] Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada [2] Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia. ; Department of Biology and the Ecology Center, Utah State University, Logan, Utah 84322, USA. ; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996, USA. ; Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia. ; 1] Department of Forest Resources, University of Minnesota, St Paul, Minnesota 55108, USA [2] Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia. ; Department of Earth and Environmental Sciences, Wesleyan University, Middletown, Connecticut 06459, USA. ; 1] Department of Biology, University of Florida, Gainesville, Florida 32611, USA [2] Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA [3] Genetics Institute, University of Florida, Gainesville, Florida 32611, USA. ; Department of Biology, University of Missouri-St Louis, St Louis, Missouri 63121, USA. ; Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia. ; Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada. ; Department of Biology, College of the Holy Cross, Worcester, Massachusetts 01610, USA. ; Department of Biology, University of Florida, Gainesville, Florida 32611, USA. ; Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, United Kingdom. ; 1] Department of Forest Resources, University of Minnesota, St Paul, Minnesota 55108, USA [2] Polish Academy of Sciences, Institute of Dendrology, 62-035 Kornik, Poland. ; 1] Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA [2] Genetics Institute, University of Florida, Gainesville, Florida 32611, USA. ; Department of Plant Biology and Ecology, Evolutionary Biology and Behavior, Program, Michigan State University, East Lansing, Michigan 48824, USA. ; 1] Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia [2] Institute of Pacific Islands Forestry, USDA Forest Service, Hilo, Hawaii 96720, USA. ; National Institute for Mathematical & Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24362564" target="_blank"〉PubMed〈/a〉
    Keywords: Angiosperms/*anatomy & histology/*physiology ; *Biological Evolution ; *Cold Climate ; *Ecosystem ; *Freezing ; Likelihood Functions ; Phylogeography ; Plant Leaves/anatomy & histology/physiology ; Seeds/physiology ; Time Factors ; Wood/anatomy & histology/physiology ; Xylem/*anatomy & histology/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-25
    Description: Earth is home to a remarkable diversity of plant forms and life histories, yet comparatively few essential trait combinations have proved evolutionarily viable in today's terrestrial biosphere. By analysing worldwide variation in six major traits critical to growth, survival and reproduction within the largest sample of vascular plant species ever compiled, we found that occupancy of six-dimensional trait space is strongly concentrated, indicating coordination and trade-offs. Three-quarters of trait variation is captured in a two-dimensional global spectrum of plant form and function. One major dimension within this plane reflects the size of whole plants and their parts; the other represents the leaf economics spectrum, which balances leaf construction costs against growth potential. The global plant trait spectrum provides a backdrop for elucidating constraints on evolution, for functionally qualifying species and ecosystems, and for improving models that predict future vegetation based on continuous variation in plant form and function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diaz, Sandra -- Kattge, Jens -- Cornelissen, Johannes H C -- Wright, Ian J -- Lavorel, Sandra -- Dray, Stephane -- Reu, Bjorn -- Kleyer, Michael -- Wirth, Christian -- Prentice, I Colin -- Garnier, Eric -- Bonisch, Gerhard -- Westoby, Mark -- Poorter, Hendrik -- Reich, Peter B -- Moles, Angela T -- Dickie, John -- Gillison, Andrew N -- Zanne, Amy E -- Chave, Jerome -- Wright, S Joseph -- Sheremet'ev, Serge N -- Jactel, Herve -- Baraloto, Christopher -- Cerabolini, Bruno -- Pierce, Simon -- Shipley, Bill -- Kirkup, Donald -- Casanoves, Fernando -- Joswig, Julia S -- Gunther, Angela -- Falczuk, Valeria -- Ruger, Nadja -- Mahecha, Miguel D -- Gorne, Lucas D -- England -- Nature. 2016 Jan 14;529(7585):167-71. doi: 10.1038/nature16489. Epub 2015 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto Multidisciplinario de Biologia Vegetal (IMBIV), CONICET and FCEFyN, Universidad Nacional de Cordoba, Casilla de Correo 495, 5000 Cordoba, Argentina. ; Max Planck Institute for Biogeochemistry, Hans-Knoll-Strasse 10, 07745 Jena, Germany. ; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany. ; Systems Ecology, Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands. ; Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia. ; Laboratoire d'Ecologie Alpine, UMR 5553, CNRS - Universite Grenoble Alpes, 38041 Grenoble Cedex 9, France. ; Laboratoire de Biometrie et Biologie Evolutive, UMR5558, Universite Lyon 1, CNRS, F-69622 Villeurbanne, France. ; Institute of Biology, University of Leipzig, Johannisallee 21, 04103 Leipzig, Germany. ; Escuela de Biologia, Universidad Industrial de Santander, Cra. 27 Calle 9, 680002 Bucaramanga, Colombia. ; Landscape Ecology Group, Institute of Biology and Environmental Sciences, University of Oldenburg, D-26111 Oldenburg, Germany. ; Department of Systematic Botany and Functional Biodiversity, University of Leipzig, Johannisallee 21, 04103 Leipzig, Germany. ; AXA Chair in Biosphere and Climate Impacts, Grand Challenges in Ecosystems and the Environment and Grantham Institute - Climate Change and the Environment, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK. ; Centre d'Ecologie Fonctionnelle et Evolutive (UMR 5175), CNRS-Universite de Montpellier - Universite Paul-Valery Montpellier - EPHE, 34293 Montpellier Cedex 5, France. ; Plant Sciences (IBG-2), Forschungszentrum Julich GmbH, D-52425 Julich, Germany. ; Department of Forest Resources, University of Minnesota, St Paul, Minnesota 55108, USA. ; Hawkesbury Institute for the Environment, University of Western Sydney, Penrith New South Wales 2751, Australia. ; Evolution &Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales 2052, Australia. ; Collections , The Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK. ; Center for Biodiversity Management, P.O. Box 120, Yungaburra, Queensland 4884, Australia. ; Department of Biological Sciences, George Washington University, Washington DC 20052, USA. ; Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, Missouri 63121, USA. ; UMR 5174 Laboratoire Evolution et Diversite Biologique, CNRS &Universite Paul Sabatier, Toulouse 31062, France. ; Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama. ; Komarov Botanical Institute, Prof. Popov Street 2, St Petersburg 197376, Russia. ; INRA, UMR1202 BIOGECO, F-33610 Cestas, France. ; Universite de Bordeaux, BIOGECO, UMR 1202, F-33600 Pessac, France. ; International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, Florida 33199, USA. ; INRA, UMR Ecologie des Forets de Guyane, 97310 Kourou, French Guiana. ; Department of Theoretical and Applied Sciences, University of Insubria, Via J.H. Dunant 3, I-21100 Varese, Italy. ; Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Via G. Celoria 2, I-20133 Milan, Italy. ; Departement de biologie, Universite de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada. ; Biodiversity Informatics and Spatial Analysis, Jodrell Building, The Royal Botanic Gardens Kew, Richmond TW9 3AB, UK. ; Unidad de Bioestadistica, Centro Agronomico Tropical de Investigacion y Ensenanza (CATIE), 7170 Turrialba, 30501, Costa Rica.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26700811" target="_blank"〉PubMed〈/a〉
    Keywords: Biodiversity ; Databases, Factual ; Genetic Variation ; Internationality ; Models, Biological ; Nitrogen/analysis ; Organ Size ; *Phenotype ; Plant Development ; Plant Leaves/anatomy & histology ; *Plant Physiological Phenomena ; Plant Stems/anatomy & histology ; Plants/*anatomy & histology/classification ; Reproduction ; Seeds/anatomy & histology ; Selection, Genetic ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zanne, Amy E -- Tank, David C -- Cornwell, William K -- Eastman, Jonathan M -- Smith, Stephen A -- FitzJohn, Richard G -- McGlinn, Daniel J -- O'Meara, Brian C -- Moles, Angela T -- Reich, Peter B -- Royer, Dana L -- Soltis, Douglas E -- Stevens, Peter F -- Westoby, Mark -- Wright, Ian J -- Aarssen, Lonnie -- Bertin, Robert I -- Calaminus, Andre -- Govaerts, Rafael -- Hemmings, Frank -- Leishman, Michelle R -- Oleksyn, Jacek -- Soltis, Pamela S -- Swenson, Nathan G -- Warman, Laura -- Beaulieu, Jeremy M -- England -- Nature. 2015 May 21;521(7552):380. doi: 10.1038/nature14371.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25993966" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-07-19
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-03-28
    Description: Aims Studies integrating phylogenetic history and large-scale community assembly are few, and many questions remain unanswered. Here, we use a global coastal dune plant data set to uncover the important factors in community assembly across scales from the local filtering processes to the global long-term diversification and dispersal dynamics. Coastal dune plant communities occur worldwide under a wide range of climatic and geologic conditions as well as in all biogeographic regions. However, global patterns in the phylogenetic composition of coastal dune plant communities have not previously been studied. Methods The data set comprised vegetation data from 18463 plots in New Zealand, South Africa, South America, North America and Europe. The phylogenetic tree comprised 2241 plant species from 149 families. We calculated phylogenetic clustering (Net Relatedness Index, NRI, and Nearest Taxon Index, NTI) of regional dune floras to estimate the amount of in situ diversification relative to the global dune species pool and evaluated the relative importance of land and climate barriers for these diversification patterns by geographic analyses of phylogenetic similarity. We then tested whether dune plant communities exhibit similar patterns of phylogenetic structure within regions. Finally, we calculated NRI for local communities relative to the regional species pool and tested for an association with functional traits (plant height and seed mass) thought to vary along sea–inland gradients. Important Findings Regional species pools were phylogenetically clustered relative to the global pool, indicating regional diversification. NTI showed stronger clustering than NRI pointing to the importance of especially recent diversifications within regions. The species pools grouped phylogenetically into two clusters on either side of the tropics suggesting greater dispersal rates within hemispheres than between hemispheres. Local NRI plot values confirmed that most communities were also phylogenetically clustered within regions. NRI values decreased with increasing plant height and seed mass, indicating greater phylogenetic clustering in communities with short maximum height and good dispersers prone to wind and tidal disturbance as well as salt spray, consistent with environmental filtering along sea–inland gradients. Height and seed mass both showed significant phylogenetic signal, and NRI tended to correlate negatively with both at the plot level. Low NRI plots tended to represent coastal scrub and forest, whereas high NRI plots tended to represent herb-dominated vegetation. We conclude that regional diversification processes play a role in dune plant community assembly, with convergence in local phylogenetic community structure and local variation in community structure probably reflecting consistent coastal-inland gradients. Our study contributes to a better understanding of the globally distributed dynamic coastal ecosystems and the structuring factors working on dune plant communities across spatial scales and regions.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2011-06-21
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2003-01-01
    Print ISSN: 0305-0270
    Electronic ISSN: 1365-2699
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...