ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3,400)
  • Springer  (2,328)
  • Copernicus Publications (EGU)  (1,071)
  • AGU / Wiley
Collection
Language
  • 1
    Publication Date: 2023-12-18
    Description: Cephalopods are well known for their cognitive capabilities and unique behavioural repertoires. Yet, certain life strategies and behaviours are still not fully understood. For instance, coastal octopuses have been documented (mainly through citizen science and TV documentaries) to occasionally leave the water and crawl in intertidal areas. Yet, there is a complete lack of knowledge on this behaviour's physiological and biochemical basis. Within this context, this study aimed to investigate, for the first time, physiological (routine and maximum metabolic rates and aerobic scope) and biochemical (i.e., antioxidant enzymes activities, heat shock protein and ubiquitin levels, DNA damage, lipid peroxidation) responses of the common octopus, Octopus vulgaris, to emersion. The octopuses’ physiological performance was determined by measuring metabolic rates in different emersion treatments and biochemical markers. The size-adjusted maximum metabolic rates (MMRadj) of octopuses exposed to 2:30 min of air exposure followed by re-immersion did not differ significantly from the MMRadj of the chased individuals (control group). Yet, most biochemical markers revealed no significant differences among the different emersion treatments. Our findings showed that O. vulgaris could tolerate exposure to short-term emersion periods due to an efficient antioxidant machinery and cellular repair mechanisms. Alongside, we argue that the use of atmospheric air through the mucus-covered gills and/or cutaneous respiration may also help octopus withstand emersion and crawling on land.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-07
    Description: The sustainability of southern Africa’s natural and managed marine and terrestrial ecosystems is threatened by overuse, mismanagement, population pressures, degradation, and climate change. Counteracting unsustainable development requires a deep understanding of earth system processes and how these are affected by ongoing and anticipated global changes. This information must be translated into practical policy and management interventions. Climate models project that the rate of terrestrial warming in southern Africa is above the global terrestrial average. Moreover, most of the region will become drier. Already there is evidence that climate change is disrupting ecosystem functioning and the provision of ecosystem services. This is likely to continue in the foreseeable future, but impacts can be partly mitigated through urgent implementation of appropriate policy and management interventions to enhance resilience and sustainability of the ecosystems. The recommendations presented in the previous chapters are informed by a deepened scientific understanding of the relevant earth system processes, but also identify research and knowledge gaps. Ongoing disciplinary research remains critical, but needs to be complemented with cross-disciplinary and transdisciplinary research that can integrate across temporal and spatial scales to give a fuller understanding of not only individual components of the complex earth-system, but how they interact.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-07
    Description: The southern African subcontinent and its surrounding oceans accommodate globally unique ecoregions, characterized by exceptional biodiversity and endemism. This diversity is shaped by extended and steep physical gradients or environmental discontinuities found in both ocean and terrestrial biomes. The region’s biodiversity has historically been the basis of life for indigenous cultures and continues to support countless economic activities, many of them unsustainable, ranging from natural resource exploitation, an extensive fisheries industry and various forms of land use to nature-based tourism. Being at the continent’s southern tip, terrestrial species have limited opportunities for adaptive range shifts under climate change, while warming is occurring at an unprecedented rate. Marine climate change effects are complex, as warming may strengthen thermal stratification, while shifts in regional wind regimes influence ocean currents and the intensity of nutrient-enriching upwelling. The flora and fauna of marine and terrestrial southern African biomes are of vital importance for global biodiversity conservation and carbon sequestration. They thus deserve special attention in further research on the impacts of anthropogenic pressures including climate change. Excellent preconditions exist in the form of long-term data sets of high quality to support scientific advice for future sustainable management of these vulnerable biomes.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-12
    Description: Ice calved from the Antarctic and Greenland Ice Sheets or tidewater glaciers ultimately melts in the ocean contributing to sea-level rise. Icebergs have also been described as biological hotspots due to their potential roles as platforms for marine mammals and birds, and as micronutrient fertilizing agents. Icebergs may be especially important in the Southern Ocean where availability of the micronutrients iron and manganese extensively limits marine primary production. Whilst icebergs have long been described as a source of iron to the ocean, their nutrient signature is poorly constrained and it is unclear if there are regional differences. Here we show that 589 ice fragments collected from floating ice in contrasting regions spanning the Antarctic Peninsula, Greenland, and smaller tidewater systems in Svalbard, Patagonia and Iceland have similar characteristic (micro)nutrient signatures with limited or no significant differences between regions. Icebergs are a minor or negligible source of macronutrients to the ocean with low concentrations of NOx (NO3 + NO2, median 0.51 µM), PO4 (median 0.04 µM), and dissolved Si (dSi, median 0.02 µM). In contrast, icebergs deliver elevated concentrations of dissolved Fe (dFe; mean 82 nM, median 12 nM) and Mn (dMn; mean 26 nM, median 2.6 nM). A tight correlation between total dissolvable Fe and Mn (R2 = 0.95) and a Mn:Fe ratio of 0.024 suggested a lithogenic origin for the majority of sediment present in ice. Total dissolvable Fe and Mn retained a strong relationship with sediment load (both R2 = 0.43, p〈0.001), whereas weaker relationships were observed for dFe, dMn and dSi. Sediment load for Antarctic ice (median 9 mg L-1, n=144) was low compared to prior reported values for the Arctic. A particularly curious incidental finding was that melting samples of ice were observed to rapidly lose their sediment load, even when sediment layers were embedded within the ice and stored in the dark. Our results demonstrated that the nutrient signature of icebergs is consistent with an atmospheric source of NOx and PO4. Conversely, high Fe and Mn, and modest dSi concentrations, are associated with englacial sediment, which experiences limited biogeochemical processing prior to release into the ocean.
    Type: Article , NonPeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-12
    Description: Microbial carbonates are common components of Quaternary tropical coral reefs. Previous studies revealed that sulfate-reducing bacteria trigger microbial carbonate precipitation in supposedly cryptic reef environments. Here, using petrography, lipid biomarker analysis, and stable isotope data, we aim to understand the formation mechanism of microbial carbonate enclosed in deep fore reef limestones from Mayotte and Mohéli, Comoro Islands, which differ from other reefal microbial carbonates in that they contain less microbial carbonate and are dominated by numerous sponges. To discern sponge-derived lipids from lipids enclosed in microbial carbonate, lipid biomarker inventories of diverse sponges from the Mayotte and Mohéli reef systems were examined. Abundant peloidal, laminated, and clotted textures point to a microbial origin of the authigenic carbonates, which is supported by ample amounts of mono- O -alkyl glycerol monoethers (MAGEs) and terminally branched fatty acids; both groups of compounds are attributed to sulfate-reducing bacteria. Sponges revealed a greater variety of alkyl chains in MAGEs, including new, previously unknown, mid-chain monomethyl- and dimethyl-branched MAGEs, suggesting a diverse community of sulfate reducers different from the sulfate-reducers favoring microbialite formation. Aside from biomarkers specific for sulfate-reducing bacteria, lipids attributed to demosponges (i.e., demospongic acids) are also present in some of the sponges and the reefal carbonates. Fatty acids attributed to demosponges show a higher diversity and a higher proportion in microbial carbonate compared to sponge tissue. Such pattern reflects significant taphonomic bias associated with the preservation of demospongic acids, with preservation apparently favored by carbonate authigenesis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-01
    Description: Biological invasions pose a growing threat to ecosystems, biodiversity, and socio-economic interests. In the European Union, the introduction of non-native species through trade, tourism, and other pathways has led to unintended consequences. Among these non-native species, a subset exhibits negative impacts and is commonly referred to as ‘invasive’. However, the number of non-native species and the proportion considered invasive vary across different member states of the European Union. Classifications and definitions of invasive species also differ among countries potentially leading to an underrepresentation. Here, we use Germany as a case study to highlight gaps in invasive species classifications. The number of non-native species reported as invasive in Germany remains low (~ 14%) compared to other European Union member states (~ 22%), despite Germany’s strong economy, significant research investments, and well-established trade networks. This disparities may be attributed to complex and multifaceted factors, encompassing differences in classifications, variations in research effort and focus, and diverse national priorities. We further propose that the impacts of non-native species on resources and biodiversity may be more likely to be overlooked, principally in large economies reliant on international trade, such as Germany. This oversight could negatively affect conservation efforts and funding for research aimed at improving understanding invasive species threats. We suggest that this underreporting may stem from a focus on maintaining economic growth, which might have taken precedence over addressing the potential ecological and economic impacts of invasive species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-01
    Description: There is growing concern surrounding the pervasive impacts of microplastic pollution, but despite increasing interest in this area there remains limited understanding of its disruption to biological communities and the ecosystem services they provide. One such service is the breakdown of leaf litter in freshwaters by invertebrate shredders, such as Gammarus spp., that directly and indirectly provides resources for many other species. This study investigates the effect of microplastic exposure on leaf consumption by two Gammarus species in Ireland, the native Gammarus duebeni celticus, and the invasive Gammarus pulex. Individuals were exposed to 40-48 mu m polyethylene particles for 24 h at a range of concentrations (20-200,000 MP/L), with the amount of leaf consumption in that time frame recorded. Microplastics did not affect the feeding rate of either species at environmentally relevant concentrations, indicating that ecosystem services currently provided by our study species are sustainable. However, at higher microplastic concentrations the feeding rate of G. d. celticus was significantly reduced, whereas G. pulex remained unaffected, drawing attention to species-specific and native-invader differences in microplastic impacts. The results of our study further contribute to the observed pattern that invasive species, including various amphipod species, often display a higher tolerance to environmental stressors compared to their native counterparts. This research highlights the need for mitigation of ongoing and increasing microplastic pollution that could differentially influence key ecosystem services and functions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-01
    Description: Anthropogenic disturbances, including non-indigenous species (NIS) and climate change, have considerably affected ecosystems and socio-economies globally. Despite the widely acknowledged individual roles of NIS and global warming in biodiversity change, predicting the connection between the two still remains a fundamental challenge and requires urgent attention due to a timely importance for proper conservation management. To improve our understanding of the interaction between climate change and NIS on biological communities, we conducted laboratory experiments to test the temperature and pCO2 tolerance of four gammarid species: two native Baltic Sea species (Gammarus locusta and G. salinus), one Ponto‐Caspian NIS (Pontogammarus maeoticus) and one North American NIS (Gammarus tigrinus). Our results demonstrated that an increase in pCO2 level was not a significant driver of mortality, neither by itself nor in combination with increased temperature, for any of the tested species. However, temperature was significant, and differentially affected the tested species. The most sensitive was the native G. locusta which experienced 100% mortality at 24 °C. The second native species, G. salinus, performed better than G. locusta, but was still significantly more sensitive to temperature increase than either of the NIS. In contrast, NIS performed better than native species with warming, whereby particularly the Ponto-Caspian P. maeoticus did not demonstrate any difference in its performance between the temperature treatments. With the predicted environmental changes in the Baltic Sea, we may expect shifts in distributions of native taxa towards colder areas, while their niches might be filled by NIS, particularly those from the Ponto-Caspian region. Although, northern colder areas may be constrained by lower salinity. Additional studies are needed to confirm our findings across other NIS, habitats and regions to make more general inferences.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-01
    Description: Statistics of regional sterodynamic sea level variability are analyzed in terms of probability density functions of a 100-member ensemble of monthly mean sea surface height (SSH) timeseries simulated with the low-resolution Max Planck Institute Grand Ensemble. To analyze the impact of climate change on sea level statistics, fields of SSH variability, skewness and excess kurtosis representing the historical period 1986-2005 are compared with similar fields from projections for the period 2081-2100 under moderate (RCP4.5) and strong (RCP8.5) climate forcing conditions. Larger deviations of the models SSH statistics from Gaussian are limited to the western and eastern tropical Pacific. Under future climate warming conditions, SSH variability of the western tropical Pacific appear more Gaussian in agreement with weaker zonal easterly wind stress pulses, suggesting a reduced El Nino Southern Oscillation activity in the western warm pool region. SSH variability changes show a complex amplitude pattern with some regions becoming less variable, e.g., off the eastern coast of the north American continent, while other regions become more variable, notably the Southern Ocean. A west (decrease)-east (increase) contrast in variability changes across the subtropical Atlantic under RCP8.5 forcing is related to changes in the gyre circulation and a declining Atlantic Meridional Overturning Circulation in response to external forcing changes. In addition to global mean sea-level rise of 16 cm for RCP4.5 and 24 cm for RCP8.5, we diagnose regional changes in the tails of the probability density functions, suggesting a potential increased in variability-related extreme sea level events under global warmer conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-05
    Description: Seamounts are thought to function as hotspots of megafauna diversity due to their topology and environmental characteristics. However, assessments of megafauna communities inhabiting seamounts, including diversity and density, are scarce. In this study, we provide megafauna diversity and density estimates for a recently discovered, not yet characterized seamount region (Boetius seamounts) west of Cape Verde (N17° 16′, W29° 26′). We investigated the distribution of epibenthic megafauna over a large depth gradient from the seamount’s summit at 1400 m down to 3200 m water depth and provided qualitative and quantitative analyses based on quantified video data. In utilizing an ocean floor observation system (OFOS), calibrated videos were taken as a horizontal transect from the north-eastern flank of the seamount, differentiating between an upper, coral-rich region (−1354/−2358 m) and a deeper, sponge-rich region (−2358/−3218 m). Taxa were morphologically distinguished, and their diversity and densities were estimated and related to substrate types. Both the upper and deeper seamount region hosted unique communities with significantly higher megafauna richness at the seamount’s summit. Megafauna densities differed significantly between the upper (0.297 ± 0.167 Ind./m 2 ) and deeper community (0.112 ± 0.114 Ind./m). The seamount showed a vertical zonation with dense aggregations of deep-sea corals dominating the seamount’s upper region and colonies of the glass sponges Poliopogon amadou dominating the deeper region. The results are discussed in light of detected substrate preferences and co-occurrence of species and are compared with findings from other Atlantic seamounts.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
  • 12
    Publication Date: 2024-02-08
    Description: Riverine nutrient export is an important process in marine coastal biogeochemistry and also impacts global marine biology. The nitrogen cycle is a key player here. Internal feedbacks regulate not only nitrogen distribution, but also primary production and thereby oxygen concentrations. Phosphorus is another essential nutrient and interacts with the nitrogen cycle via different feedback mechanisms. After a previous study of the marine nitrogen cycle response to riverine nitrogen supply, we here additionally include phosphorus from river export with different phosphorus burial scenarios and study the impact of phosphorus alone and in combination with nitrogen in a global 3-D ocean biogeochemistry model. Again, we analyse the effects on near coastal and open ocean biogeochemistry. We find that the addition of bio-available riverine phosphorus alone or together with nitrogen affects marine biology on millennial timescales more than riverine nitrogen alone. Biogeochemical feedbacks in the marine nitrogen cycle are strongly influenced by the additional phosphorus. Where bio-available phosphorus is increased by river input, nitrogen concentrations increase as well, except for regions with high denitrification rates. High phosphorus burial rates decrease biological production significantly. Globally, riverine phosphorus leads to elevated primary production rates in the coastal and open oceans.
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-02-12
    Description: Weather causes extremes in photovoltaic and wind power production. Here we present a comprehensive climatology of anomalies in photovoltaic and wind power production associated with weather patterns in Europe considering the 2019 and potential 2050 installations, and hourly to ten-day events. To that end, we performed kilometer-scale numerical simulations of hourly power production for 23 years and paired the output with a weather classification which allows a detailed assessment of weather-driven spatio-temporal production anomalies. Our results highlight the dependency of low-power production events on the installed capacities and the event duration. South-shifted Westerlies (Anticyclonic South-Easterlies) are associated with the lowest hourly (ten-day) extremes for the 2050 (both) installations. Regional power production anomalies can differ from the ones in the European mean. Our findings suggest that weather patterns can serve as indicators for expected photovoltaic and wind power production anomalies and may be useful for early warnings in the energy sector.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-02-12
    Description: The southeastern tropical Atlantic hosts a coastal upwelling system characterized by high biological productivity. Three subregions can be distinguished based on differences in the physical climate: the tropical Angolan and the northern and southern Benguela upwelling systems (tAUS, nBUS, sBUS). The tAUS, which is remotely forced via equatorial and coastal trapped waves, can be characterized as a mixing-driven system, where the wind forcing plays only a secondary role. The nBUS and sBUS are both forced by alongshore winds and offshore cyclonic wind stress curl. While the nBUS is a permanent upwelling system, the sBUS is impacted by the seasonal cycle of alongshore winds. Interannual variability in the region is dominated by Benguela Niños and Niñas that are warm and cold events observed every few years in the tAUS and nBUS. Decadal and multidecadal variations are reported for sea surface temperature and salinity, stratification and subsurface oxygen. Future climate warming is likely associated with a southward shift of the South Atlantic wind system. While the mixing-driven tAUS will most likely be affected by warming and increasing stratification, the nBUS and sBUS will be mostly affected by wind changes with increasing winds in the sBUS and weakening winds in the northern nBUS.
    Type: Book chapter , NonPeerReviewed , info:eu-repo/semantics/bookPart
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-02-23
    Description: Predatory non-indigenous species (NIS) have profound impacts on global ecosystems, potentially leading to native prey extinction and reshaping community dynamics. Among mechanisms potentially mediating predator impacts and prey invasion success are predator preferences between native vs. non-indigenous prey, a topic still underexplored. Using functional response and prey preference experiments, this study focused on the predation by the non-indigenous Japanese brush-clawed shore crab, Hemigrapsus takanoi, between the native gammarid Gammarus duebeni and the analogous non-indigenous Gammarus tigrinus. Although H. takanoi showed subtle differences in its functional response type between the two prey species, its preferences across their environmental frequencies were not strongly influenced by the prey invasion scenario. The findings highlight the need for a comprehensive understanding of interactions in ecosystems with multiple NIS, offering fresh insights into complex feeding interactions within marine environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-02-26
    Description: This study investigates extreme wet and dry conditions over the humid tropics and their connections to the variability of the tropical ocean basins using observations and a multi-model ensemble of 24 state-of-the-art coupled climate models, for the 1930–2014 period. The extreme wet (dry) conditions are consistently linked to Central Pacific La Niña (Eastern Pacific El Niño), the weakest being the Congo basin, and homogeneous patterns of sea surface temperature (SST) variability in the tropical Indian Ocean. The Atlantic exhibits markedly varying configurations of SST anomalies, including the Atlantic Niño and pan-Atlantic decadal oscillation, with non-symmetrical patterns between the wet and dry conditions. The oceanic influences are associated with anomalous convection and diabatic heating partly related to variations in the strength of the Walker Circulation. The observed connection between the Amazon basin, as well as the Maritime continent, and the Indo-Pacific variability are better simulated than that of the Congo basin. The observed signs of the Pacific and Indian SST anomalies are reversed for the modelled Congo basin extreme conditions which are, instead, tied to the Atlantic Niño/Niña variability. This Atlantic–Congo basin connection is related to a too southerly location of the simulated inter-tropical convergence zone that is associated with warm SST biases over the Atlantic cold tongue. This study highlights important teleconnections and model improvements necessary for the skillful prediction of extreme precipitation over the humid tropics.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-02-27
    Description: Ocean alkalinity enhancement (OAE) stands as a promising carbon dioxide removal technology. Yet, this solution to climate change entails shifts in water chemistry with unknown consequences for marine fish that are critical to ecosystem health and food security. With a laboratory and mesocosm experiment, we show that early life stages of fish can be resistant to OAE. We examined metabolic rate, swimming behavior, growth and survival in Atlantic herring (Clupea harengus) and other temperate coastal fish species. Neither direct physiological nor indirect food web-mediated impacts of OAE were apparent. This was despite non-CO2-equilibrated OAE (ΔTA = +600 µmol kg-1) that induces strong perturbations (ΔpH = +0.7, pCO2 = 75 µatm) compared to alternative deployment scenarios. Whilst our results give cause for optimism regarding the large-scale application of OAE, other life history stages (embryos) and habitats (open ocean) may prove more vulnerable. Still, our study across ecological scales (organism to community) and exposure times (short- to long-term) suggests that some fish populations, including key fisheries species, may be resilient to the carbonate chemistry changes under OAE.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-03-05
    Description: Ocean alkalinity enhancement (OAE) is considered for the long-term removal of gigatons of carbon dioxide (CO2) from the atmosphere to achieve our climate goals. Little is known, however, about the ecosystem-level changes in biogeochemical functioning that may result from the chemical sequestration of CO2 in seawater, and how stable the sequestration is. We studied these two aspects in natural plankton communities under carbonate-based, CO2-equilibrated OAE in the nutrient-poor North Atlantic. During a month-long mesocosm experiment, the majority of biogeochemical pools, including inorganic nutrients, particulate organic carbon and phosphorus as well as biogenic silica, remained unaltered across all OAE levels of up to a doubling of ambient alkalinity (+2400 µeq kg-1). Noticeable exceptions were a minor decrease in particulate organic nitrogen and an increase in the carbon to nitrogen ratio (C:N) of particulate organic matter in response to OAE. Thus, in our nitrogen limited system, nitrogen turnover processes appear more susceptible than those of other elements leading to decreased food quality and increased organic carbon storage. However, alkalinity and chemical CO2 sequestration were not stable at all levels of OAE. Two weeks after alkalinity addition, we measured a loss of added alkalinity and of the initially stored CO2 in the mesocosm where alkalinity was highest (+2400 µeq kg-1, Ωaragonite ~10). The loss rate accelerated over time. Additional tests showed that such secondary precipitation can be initiated by particles acting as precipitation nuclei and that this process can occur even at lower levels of OAE. In conclusion, on the one hand, our study under carbonate-based OAE where the carbon is already sequestered, the risk of major and sustained impacts on biogeochemical functioning may be low in the nutrient-poor ocean. On the other hand, the durability of carbon sequestration using OAE could be constrained by alkalinity loss in supersaturated waters with precipitation nuclei present. Our study provides evaluation of ecosystem impacts of an idealised OAE deployment for monitoring, reporting and verification (MRV) in an oligotrophic system. Whether biogeochemical functioning is resilient to more technically simple and economically more viable approaches that induce stronger water chemistry perturbations remains to be seen.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-03-08
    Description: Circulation anomalies accompanying Sudden Stratospheric Warmings (SSWs) can have a significant impact on the troposphere. This surface response is observed for some but not all SSWs, and their downward coupling is not fully understood. We use an existing classification method to separate downward- and non-propagating SSWs (d/nSSWs) in ERA5 reanalysis data for the years 1979–2019. The differences in SSW downward propagation in composites of spatial patterns clearly show that dSSWs dominate the surface regional impacts following SSWs. During dSSWs, the upper-tropospheric jet stream is significantly displaced equatorward. Wave activity analysis shows remarkable differences between d/nSSWs for planetary and synoptic-scale waves. Enhanced stratospheric planetary eddy kinetic energy (EKE) and heat fluxes around the central date of dSSWs are followed by increased synoptic-scale wave activity and even surface coupling for synoptic-scale EKE. An observed significant reduction in upper-tropospheric synoptic-scale momentum fluxes following dSSWs confirms the important role of tropospheric eddy feedbacks for coupling to the surface. Our findings emphasize the role of the lower stratosphere and synoptic-scale waves in coupling the SSW signal to the surface and agree with mechanisms suggested in earlier modeling studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-03-11
    Description: Ocean alkalinity enhancement (OAE) is considered one of the most promising approaches to actively remove carbon dioxide (CO2) from the atmosphere by accelerating the natural process of rock weathering. This approach involves introducing alkaline substances sourced from natural mineral deposits such as olivine, basalt, and carbonates or obtained from industrial waste products such as steel slags, into seawater and dispersing them over coastal areas. Some of these natural and industrial substances contain trace metals, which would be released into the oceans along with the alkalinity enhancement. The trace metals could serve as micronutrients for marine organisms at low concentrations, but could potentially become toxic at high concentrations, adversely affecting marine biota. To comprehensively assess the feasibility of OAE, it is crucial to understand how the phytoplankton, which forms the base of marine food webs, responds to ocean alkalinization and associated trace metal perturbations. In this study, we investigated the toxicity of nickel on three representative phytoplankton species across a range of Ni concentrations (from 0 to 100 µmol L-1 with 12 µmol L-1 synthetic organic ligand). The results showed that the growth of the tested species was impacted differently. The low growth inhibition and high IC50 (concentration to inhibit growth rate by 50 %) revealed that both the coccolithophore Emiliania huxleyi and the dinoflagellate Amphidinium carterae were mildly impacted by the increase in Ni concentrations while the rapid response to exposure of Ni, high growth rate inhibition, and low IC50 of Thalassiosira weissflogii indicate low tolerance to Ni in this species. In conclusion, the variability in phytoplankton sensitivity to Ni suggests that for OAE applications with Ni-rich materials caution is required and critical toxic thresholds for Ni must be avoided.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-03-11
    Description: The central Arctic Ocean (CAO) plays an important role in the global carbon cycle, but the current and future exchange of the climate-forcing trace gases methane (CH4) and carbon dioxide (CO2) between the CAO and the atmosphere is highly uncertain. In particular, there are very few observations of near-surface gas concentrations or direct air–sea CO2 flux estimates and no previously reported direct air–sea CH4 flux estimates from the CAO. Furthermore, the effect of sea ice on the exchange is not well understood. We present direct measurements of the air–sea flux of CH4 and CO2, as well as air–snow fluxes of CO2 in the summertime CAO north of 82.5∘ N from the Synoptic Arctic Survey (SAS) expedition carried out on the Swedish icebreaker Oden in 2021. Measurements of air–sea CH4 and CO2 flux were made using floating chambers deployed in leads accessed from sea ice and from the side of Oden, and air–snow fluxes were determined from chambers deployed on sea ice. Gas transfer velocities determined from fluxes and surface-water-dissolved gas concentrations exhibited a weaker wind speed dependence than existing parameterisations, with a median sea-ice lead gas transfer rate of 2.5 cm h−1 applicable over the observed 10 m wind speed range (1–11 m s−1). The average observed air–sea CO2 flux was −7.6 ..., and the average air–snow CO2 flux was −1.1 . Extrapolating these fluxes and the corresponding sea-ice concentrations gives an August and September flux for the CAO of −1.75 ... , within the range of previous indirect estimates. The average observed air–sea CH4 flux of 3.5 ..., accounting for sea-ice concentration, equates to an August and September CAO flux of 0.35 , lower than previous estimates and implying that the CAO is a very small (≪ 1 %) contributor to the Arctic flux of CH4 to the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-03-12
    Description: Identification of seismically active fault zones and the definition of sufficiently large respect distances from these faults which enable avoiding the damaged rock zone surrounding the ruptured ground commonly are amongst the first steps to take in the geoscientific evaluation of sites suitable for nuclear waste disposal. In this work we present a GIS-based approach, using the earthquake-epicentre locations from the instrumental earthquake record of South-Korea to identify potentially active fault zones in the country, and compare different strategies for fault zone buffer creation as originally developed for site search in the high seismicity country Japan, and the low-to-moderate seismicity countries Germany and Sweden. In order to characterize the hazard potential of the Korean fault zones, we moreover conducted slip tendency analysis, here for the first time covering the fault zones of the entire Korean Peninsula. For our analyses we used the geo-spatial information from a new version of the Geological map of South-Korea, containing the outlines of 11 rock units, which we simplified to distinguish between 4 different rock types (granites, metamorphic rocks, sedimentary rocks and igneous rocks) and the surface traces of 1,528 fault zones and 6,654 lineaments identified through years of field work and data processing, a rich geo-dataset which we will publish along with this manuscript. Our approach for identification of active fault zones was developed without prior knowledge of already known seismically active fault zones, and as a proof of concept the results later were compared to a map containing already identified active fault zones. The comparison revealed that our approach identified 16 of the 21 known seismically active faults and added 472 previously unknown potentially active faults. The 5 seismically active fault zones which were not identified by our approach are located in the NE- and SW-sectors of the Korean Peninsula, which haven’t seen much recent seismic activity, and thus are not sufficiently well covered by the seismic record. The strike directions of fault zones identified as active are in good agreement with the orientation of the current stress field of the peninsula and slip tendency analysis provided first insights into subsurface geometry such as the dip angles of both active and inactive fault zones. The results of our work are of major importance for the early-stage seismic hazard assessment that has to be conducted in support of the nuclear waste disposal siting in South-Korea. Moreover, the GIS-based methods for identification of active fault zones and buffering of respect areas around fault zone traces presented here, are applicable also elsewhere.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-03-18
    Description: Interest in deep-sea mining for polymetallic nodules as an alternative source to onshore mines for various high-technology metals has risen in recent years, as demands and costs have increased. The need for studies to assess its short- and long-term consequences on polymetallic nodule ecosystems is therefore also increasingly prescient. Recent image-based expedition studies have described the temporal impacts on epi-/megafauna seafloor communities across these ecosystems at particular points in time. However, these studies have failed to capture information on large infauna within the sediments or give information on potential transient and temporally limited users of these areas, such as mobile surface deposit feeders or fauna responding to bloom events or food fall depositions. This study uses data from the Peru Basin polymetallic nodule province, where the seafloor was previously disturbed with a plough harrow in 1989 and with an epibenthic sled (EBS) in 2015, to simulate two contrasting possible impact forms of mining disturbance. To try and address the shortfall on information on transient epifauna and infauna use of these various disturbed and undisturbed areas of nodule-rich seafloor, images collected 6 months after the 2015 disturbance event were inspected and all Lebensspuren, 'traces of life', were characterized by type (epi- or infauna tracemakers, as well as forming fauna species where possible), along with whether they occurred on undisturbed seafloor or regions disturbed in 1989 or 2015. The results show that epi- and endobenthic Lebensspuren were at least 50% less abundant across both the ploughed and EBS disturbed seafloors. This indicates that even 26 years after disturbance, sediment use by fauna may remain depressed across these areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2024-03-15
    Description: Processes taking place within the magma plumbing system can exert an important control on the composition of mid-ocean ridge basalts (MORB). Plagioclase ultraphyric basalts (PUBs) found at magma-poor mid-ocean ridges exhibit diverse disequilibrium characteristics, which can provide vital insights for distinguishing the complex effects of melt transport from those of source heterogeneity on the compositions of MORBs. Here, we present new insights into magmatic processes using integrated petrologic and geochemical studies of the PUBs from two zones (~ 50° and ~ 64°E longitude) along the ultraslow-spreading southwest Indian ridge (SWIR). The studied PUBs have complex mineral morphologies, including skeletal and acicular crystals, glomerocrysts with open and closed structure, reverse and normally zoned crystals and external and internal resorption even in single samples. Both low- and high-Fo olivine and An plagioclase crystals are in disequilibrium with their matrix glasses. Some plagioclase phenocrysts have repeated oscillatory zoning (An77–86) going from their core to rim and an abrupt decrease in An content toward the rim. Disequilibrium Sr isotopic compositions are present at several scales: between cores and rims of plagioclase crystals, between different plagioclase crystals and between plagioclase and their host lavas. Inferred pressures of magma storage range from 0.3 to 11.3 kbar. The textural and compositional diversity of crystals together with the variability in melt compositions reflect the combined influences of source heterogeneity and magmatic processes (e.g. crystallization, assimilation and magma mixing processes) taking place within crystal mushes. Our data combined with previous studies suggest that the magmatic processes within the SWIR magma plumbing system involve formation, disaggregation and juxtaposition of crystal-rich mush zones.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-03-25
    Description: To advance underwater computer vision and robotics from lab environments and clear water scenarios to the deep dark ocean or murky coastal waters, representative benchmarks and realistic datasets with ground truth information are required. In particular, determining the camera pose is essential for many underwater robotic or photogrammetric applications and known ground truth is mandatory to evaluate the performance of, e.g., simultaneous localization and mapping approaches in such extreme environments. This paper presents the conception, calibration, and implementation of an external reference system for determining the underwater camera pose in real time. The approach, based on an HTC Vive tracking system in air, calculates the underwater camera pose by fusing the poses of two controllers tracked above the water surface of a tank. It is shown that the mean deviation of this approach to an optical marker-based reference in air is less than 3 mm and 0.3. Finally, the usability of the system for underwater applications is demonstrated.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2024-03-25
    Description: Total alkalinity (AT) and dissolved inorganic carbon (CT) in the oceans are important properties with respect to understanding the ocean carbon cycle and its link to global change (ocean carbon sinks and sources, ocean acidification) and ultimately finding carbon-based solutions or mitigation procedures (marine carbon removal). We present a database of more than 44 400 AT and CT observations along with basic ancillary data (spatiotemporal location, depth, temperature and salinity) from various ocean regions obtained, mainly in the framework of French projects, since 1993. This includes both surface and water column data acquired in the open ocean, coastal zones and in the Mediterranean Sea and either from time series or dedicated one-off cruises. Most AT and CT data in this synthesis were measured from discrete samples using the same closed-cell potentiometric titration calibrated with Certified Reference Material, with an overall accuracy of ±4 µmol kg−1 for both AT and CT. The data are provided in two separate datasets – for the Global Ocean and the Mediterranean Sea (https://doi.org/10.17882/95414, Metzl et al., 2023), respectively – that offer a direct use for regional or global purposes, e.g., AT–salinity relationships, long-term CT estimates, and constraint and validation of diagnostic CT and AT reconstructed fields or ocean carbon and coupled climate–carbon models simulations as well as data derived from Biogeochemical-Argo (BGC-Argo) floats. When associated with other properties, these data can also be used to calculate pH, the fugacity of CO2 (fCO2) and other carbon system properties to derive ocean acidification rates or air–sea CO2 fluxes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2024-03-25
    Description: The upper wind-driven circulation in the tropical Atlantic Ocean plays a key role in the basin-wide distribution of water mass properties and affects the transport of heat, freshwater, and biogeochemical tracers such as oxygen or nutrients. It is crucial to improve our understanding of its long-term behaviour, which largely relies on model simulations and applied forcing due to sparse observational data coverage, especially before the mid-2000s. Here, we apply two different forcing products, the Coordinated Ocean-ice Reference Experiments (CORE) v2 and the Japanese 55-year Reanalysis (JRA55-do) surface dataset, to a high-resolution ocean model. Where possible, we compare the simulated results to long-term observations. We find large discrepancies between the two simulations regarding the wind and current field. In the CORE simulation, strong, large-scale wind stress curl amplitudes above the upwelling regions of the eastern tropical North Atlantic seem to cause an overestimation of the mean and seasonal variability in the eastward subsurface current just north of the Equator. The wind stress curl of JRA55-do forcing shows much finer structures, and the JRA55-do simulation is in better agreement with the mean and intraseasonal fluctuations in the subsurface current found in observations. The northern branch of the South Equatorial Current flows westward at the surface just north of the Equator. On interannual to decadal timescales, it shows a high correlation of R=0.9 with the zonal wind stress in the CORE simulation but only a weak correlation of R=0.35 in the JRA55-do simulation. We also identify similarities between the two simulations. The strength of the eastward-flowing North Equatorial Counter Current located between 3 and 10° N covaries with the strength of the meridional wind stress just north of the Equator on interannual to decadal timescales in the two simulations. Both simulations present a comparable mean, seasonal cycle and trend of the eastward off-equatorial subsurface current south of the Equator but underestimate the current strength by half compared to observations. In both simulations, the eastward-flowing Equatorial Undercurrent weakened between 1990 and 2009. In the JRA simulation, which covers the modern period of observations, the Equatorial Undercurrent strengthened again between 2008 to 2018, which agrees with observations, although the simulation underestimates the strengthening by over a third. We propose that long-term observations, once they have reached a critical length, need to be used to test the quality of wind-driven simulations. This study presents one step in this direction.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-03-27
    Description: We conducted extensive sediment trap experiments in the Benguela Upwelling System (BUS) in the south-eastern Atlantic Ocean to study the influence of zooplankton on the flux of particulate organic carbon (POC) through the water column and its sedimentation. Two long term moored and sixteen short term free-floating sediment trap systems were deployed. The mooring experiments were conducted for several years and the sixteen drifters were deployed on three different research cruises between 2019 and 2021. Zooplankton was separated from the trapped material and divided into 8 different zooplankton groups. In contrast to zooplankton which actively carries POC into the traps in the form of biomass (active POC flux), the remaining fraction of the trapped material was assumed to fall passively into the traps along with sinking particles (passive POC flux). The results show, in line with other studies, that copepods dominate the active POC flux, with the active POC flux in the southern BUS (sBUS) being about three times higher than in the northern BUS (nBUS). In contrast, the differences between the passive POC fluxes in the nBUS and sBUS were small. Despite large variations, which reflected the variability within the two subsystems, the mean passive POC fluxes from the drifters and the moored traps could be described using a common POC flux attenuation equation. However, the almost equal passive POC flux, on the one hand, and large variations in the POC concentration in the surface sediments between the nBUS and sBUS, on the other hand, imply that factors others than the POC supply exert the main control on POC sedimentation in the BUS. The varying intensity of the near-bottom oxygen minimum zone (OMZ), which is more pronounced in the nBUS than in the sBUS, could in turn explain the differences in the sediments, as the lack of oxygen reduces the POC degradation. Hence, globally expanding OMZs might favour POC sedimentation in regions formerly exposed to oxygenated bottom water but bear the risk of increasing the frequency of anoxic events in the oxygen-poor upwelling systems. Apart from associated release of CH4, which is a much more potent greenhouse gas than CO2, such events pose a major threat to the pelagic ecosystem and fisheries.
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-04-03
    Description: Here we present a confocal Fe K-edge μ-XANES method (where XANES stands for X-ray absorption near-edge spectroscopy) for the analysis of Fe oxidation state in heterogeneous and one-side-polished samples. The new technique allows for an analysis of small volumes with high spatial 3D resolution of 〈100 µm3. The probed volume is restricted to that just beneath the surface of the exposed object. This protocol avoids contamination of the signal by the host material and minimizes self-absorption effects. This technique has been tested on a set of experimental glasses with a wide range of Fe3+  ΣFe ratios. The method was applied to the analysis of natural melt inclusions trapped in forsteritic to fayalitic olivine crystals of the Hekla volcano, Iceland. Our measurements reveal changes in Fe3+  ΣFe from 0.17 in basaltic up to 0.45 in dacitic melts, whereas the magnetite–ilmenite equilibrium shows redox conditions with Fe3+  ΣFe ≤0.20 (close to FMQ, fayalite–magnetite–quartz redox equilibrium) along the entire range of Hekla melt compositions. This discrepancy indicates that the oxidized nature of glasses in the melt inclusions could be related to the post-entrapment process of diffusive hydrogen loss from inclusions and associated oxidation of Fe in the melt. The Fe3+  ΣFe ratio in silicic melts is particularly susceptible to this process due to their low FeO content, and it should be critically evaluated before petrological interpretation.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2024-04-05
    Description: We examine the impact of horizontal resolution and model time step on the climate of the OpenIFS version 43r3 atmospheric general circulation model. A series of simulations for the period 1979–2019 are conducted with various horizontal resolutions (i.e. ∼100, ∼50, and ∼25 km) while maintaining the same time step (i.e. 15 min) and using different time steps (i.e. 60, 30, and 15 min) at 100 km horizontal resolution. We find that the surface zonal wind bias is significantly reduced over certain regions such as the Southern Ocean and the Northern Hemisphere mid-latitudes and in tropical and subtropical regions at a high horizontal resolution (i.e. ∼25 km). Similar improvement is evident too when using a coarse-resolution model (∼100 km) with a smaller time step (i.e. 30 and 15 min). We also find improvements in Rossby wave amplitude and phase speed, as well as in weather regime patterns, when a smaller time step or higher horizontal resolution is used. The improvement in the wind bias when using the shorter time step is mostly due to an increase in shallow and mid-level convection that enhances vertical mixing in the lower troposphere. The enhanced mixing allows frictional effects to influence a deeper layer and reduces wind and wind speed throughout the troposphere. However, precipitation biases generally increase with higher horizontal resolutions or smaller time steps, whereas the surface air temperature bias exhibits a small improvement over North America and the eastern Eurasian continent. We argue that the bias improvement in the highest-horizontal-resolution (i.e. ∼25 km) configuration benefits from a combination of both the enhanced horizontal resolution and the shorter time step. In summary, we demonstrate that, by reducing the time step in the coarse-resolution (∼100 km) OpenIFS model, one can alleviate some climate biases at a lower cost than by increasing the horizontal resolution.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2024-04-05
    Description: A new member of the family Flavobacteriaceae (termed Hal144T) was isolated from the marine breadcrumb sponge Halichondria panicea. Sponge material was collected in 2018 at Schilksee which is located in the Kiel Fjord (Baltic Sea, Germany). Phylogenetic analysis of the full-length Hal144T 16S rRNA gene sequence revealed similarities from 94.3 to 96.6% to the nearest type strains of the genus Maribacter. The phylogenetic tree of the 16S rRNA gene sequences depicted a cluster of strain Hal144T with its closest relatives Maribacter aestuarii GY20T (96.6%) and Maribacter thermophilus HT7-2T (96.3%). Genome phylogeny showed that Maribacter halichondriae Hal144T branched from a cluster consisting of Maribacter arenosus, Maribacter luteus, and Maribacter polysiphoniae. Genome comparisons of strain Maribacter halichondriae Hal144T with Maribacter sp. type strains exhibited average nucleotide identities in the range of 75–76% and digital DNA-DNA hybridisation values in the range of 13.1–13.4%. Compared to the next related type strains, strain Hal144T revealed unique genomic features such as phosphoenolpyruvate-dependent phosphotransferase system pathway, serine-glyoxylate cycle, lipid A 3-O-deacylase, 3-hexulose-6-phosphate synthase, enrichment of pseudogenes and of genes involved in cell wall and envelope biogenesis, indicating an adaptation to the host. Strain Hal144T was determined to be Gram-negative, mesophilic, strictly aerobic, flexirubin positive, resistant to aminoglycoside antibiotics, and able to utilize N-acetyl-β-D-glucosamine. Optimal growth occurred at 25–30 °C, within a salinity range of 2–6% sea salt, and a pH range between 5 and 8. The major fatty acids identified were C17:0 3-OH, iso-C15:0, and iso-C15:1 G. The DNA G + C content of strain Hal144T was 41.4 mol%. Based on the polyphasic approach, strain Hal144T represents a novel species of the genus Maribacter, and we propose the name Maribacter halichondriae sp. nov. The type strain is Hal144T (= DSM 114563T = LMG 32744T).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2024-04-09
    Description: Phytoplankton forms the base of the marine food web by transforming CO2 into organic carbon via photosynthesis. Some of the organic carbon is then transferred through the food web and exported into the deep ocean, a process known as the biological carbon pump. Despite the importance of phytoplankton for marine ecosystems and the global carbon cycle, projections of phytoplankton biomass in response to climate change differ strongly across Earth system models, illustrating uncertainty in our understanding of the underlying processes. Differences are especially large in the Southern Ocean, a region that is notoriously difficult to represent in models. Here, we argue that water column-integrated phytoplankton biomass in the Southern Ocean is projected to largely remain unchanged under climate change by the CMIP6 multi-model ensemble because of a shifting balance of bottom-up and top-down processes driven by a shoaling mixed layer depth. A shallower mixed layer is projected to improve growth conditions and consequently weaken bottom-up control. In addition to enhanced phytoplankton growth, the shoaling of the mixed layer also compresses phytoplankton closer to the surface and promotes zooplankton grazing efficiency, thus intensifying top-down control. Overall, our results suggest that while changes in bottom-up conditions stimulate enhanced growth, intensified top-down control opposes an increase in phytoplankton and becomes increasingly important for phytoplankton response under climate change in the Southern Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
  • 34
    Publication Date: 2024-04-11
    Description: Future changes in the southeastern tropical Atlantic interannual sea surface temperature (SST) variability in response to increasing greenhouse gas concentrations are investigated utilizing the global climate model FOCI. In that model, the Coastal Angola Benguela Area (CABA) is among the regions of the tropical Atlantic that exhibits the largest surface warming. Under the worst-case scenario of the Shared Socioeconomic Pathway 5-8.5 (SSP5-8.5), the SST variability in the CABA decreases by about 19% in 2070–2099 relative to 1981–2010 during the model’s peak interannual variability season May–June–July (MJJ). The weakening of the MJJ interannual temperature variability spans the upper 40 m of the ocean along the Angolan and Namibian coasts. The reduction in variability appears to be related to a diminished surface-layer temperature response to thermocline-depth variations, i.e., a weaker thermocline feedback, which is linked to changes in the mean vertical temperature gradient. Despite improvements made by embedding a high-resolution nest in the ocean a significant SST bias remains, which might have implications for the results.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2024-04-15
    Description: 3D models, generated from underwater imagery, are a valuable asset for many applications. When acquiring images underwater, light is refracted as it passes the boundary layers between water, housing and the air inside the housing due to the different refractive indices of the materials. Thus the geometry of the light rays changes in this scenario and the standard pinhole camera model is not applicable. As a result, pinhole 3D reconstruction methods can not easily be applied in this environment. For the dense reconstruction of scene surfaces the added complexity is especially challenging, as these types of algorithms have to match vast amounts of image content. This work proposes the refractive adaptation of a PatchMatch Multi-View Stereo algorithm. The refraction encountered at flat port underwater housings is explicitly modeled to avoid systematic errors in the reconstruction. Concepts derived from the axial camera model are employed to handle the high demands of Multi-View Stereo regarding accuracy and computational complexity. Numerical simulations and reconstruction results on synthetically generated but realistic images with ground truth validate the effectiveness of the approach.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2024-04-15
    Description: The climate science community aims to improve our understanding of climate change due to anthropogenic influences on atmospheric composition and the Earth's surface. Yet not all climate interactions are fully understood and diversity in climate model experiments persists as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. This article synthesizes current challenges and emphasizes opportunities for advancing our understanding of climate change and model diversity. The perspective of this article is based on expert views from three multi-model intercomparison projects (MIPs) – the Precipitation Driver Response MIP (PDRMIP), the Aerosol and Chemistry MIP (AerChemMIP), and the Radiative Forcing MIP (RFMIP). While there are many shared interests and specialisms across the MIPs, they have their own scientific foci and specific approaches. The partial overlap between the MIPs proved useful for advancing the understanding of the perturbation-response paradigm through multi-model ensembles of Earth System Models of varying complexity. It specifically facilitated contributions to the research field through sharing knowledge on best practices for the design of model diagnostics and experimental strategies across MIP boundaries, e.g., for estimating effective radiative forcing. We discuss the challenges of gaining insights from highly complex models that have specific biases and provide guidance from our lessons learned. Promising ideas to overcome some long-standing challenges in the near future are kilometer-scale experiments to better simulate circulation-dependent processes where it is possible, and machine learning approaches for faster and better sub-grid scale parameterizations where they are needed. Both would improve our ability to adopt a smart experimental design with an optimal tradeoff between resolution, complexity and simulation length. Future experiments can be evaluated and improved with sophisticated methods that leverage multiple observational datasets, and thereby, help to advance the understanding of climate change and its impacts.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2024-04-17
    Description: Nitrogen (N) is a crucial limiting nutrient for phytoplankton growth in the ocean. The main source of bioavailable N in the ocean is delivered by N2-fixing diazotrophs in the surface layer. Since field observation of N2 fixation are spatially and temporally sparse, the fundamental processes and mechanisms controlling N2 fixation are not well understood and constrained. Here, we implement benthic denitrification in an Earth System Model of intermediate complexity (UVic-ESCM 2.9) coupled to an optimality-based plankton ecosystem model (OPEM v1.1). Benthic denitrification occurs mostly in coastal upwelling regions and on shallow continental shelves, and is the largest N-loss process in the global ocean. We calibrate our model against three different combinations of observed Chl, NO3-, PO43-, O2 and N* = NO3- −16PO43- +2.9. The inclusion of N* provides a powerful constraint on biogeochemical model behavior. Our new model version including benthic denitrification simulates higher global rates of N2 fixation with a more realistic distribution extending to higher latitudes that are supported by independent estimates based on geochemical data. Oxygen deficient zone volume and water column denitrification rates are reduced in the new version, indicating that including benthic denitrification may improve global biogeochemical models that commonly overestimate anoxic zones. With the improved representation of the ocean N cycle, our new model configuration also yields better global net primary production (NPP) when compared to the independent datasets not included in the calibration. Benthic denitrification plays an important role shaping N2 fixation and NPP throughout the global ocean in our model, and should be considered when evaluating and predicting their response to environmental change.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-04-17
    Description: Since a pH sensor has become available that is principally suitable for use on demanding autonomous measurement platforms, the marine CO2 system can be observed independently and continuously by Biogeochemical Argo floats. This opens the potential to detect variability and long-term changes in interior ocean inorganic carbon storage and quantify the ocean sink for atmospheric CO2. In combination with a second parameter of the marine CO2 system, pH can be a useful tool to derive the surface ocean CO2 partial pressure (pCO2). The large spatiotemporal variability in the marine CO2 system requires sustained observations to decipher trends and study the impacts of short-term events (e.g., eddies, storms, phytoplankton blooms) but also puts a high emphasis on the quality control of float-based pH measurements. In consequence, a consistent and rigorous quality control procedure is being established to correct sensor offsets or drifts as the interpretation of changes depends on accurate data. By applying current standardized routines of the Argo data management to pH measurements from a pH / O2 float pilot array in the subpolar North Atlantic Ocean, we assess the uncertainties and lack of objective criteria associated with the standardized routines, notably the choice of the reference method for the pH correction (CANYON-B, LIR-pH, ESPER-NN, and ESPER-LIR) and the reference depth for this adjustment. For the studied float array, significant differences ranging between ca. 0.003 pH units and ca. 0.04 pH units are observed between the four reference methods which have been proposed to correct float pH data. Through comparison against discrete and underway pH data from other platforms, an assessment of the adjusted float pH data quality is presented. The results point out noticeable discrepancies near the surface of 〉 0.004 pH units. In the context of converting surface ocean pH measurements into pCO2 data for the purpose of deriving air–sea CO2 fluxes, we conclude that an accuracy requirement of 0.01 pH units (equivalent to a pCO2 accuracy of 10 µatm as a minimum requirement for potential future inclusion in the Surface Ocean CO2 Atlas, SOCAT, database) is not systematically achieved in the upper ocean. While the limited dataset and regional focus of our study do not allow for firm conclusions, the evidence presented still calls for the inclusion of an additional independent pH reference in the surface ocean in the quality control routines. We therefore propose a way forward to enhance the float pH quality control procedure. In our analysis, the current philosophy of pH data correction against climatological reference data at one single depth in the deep ocean appears insufficient to assure adequate data quality in the surface ocean. Ideally, an additional reference point should be taken at or near the surface where the resulting pCO2 data are of the highest importance to monitor the air–sea exchange of CO2 and would have the potential to very significantly augment the impact of the current observation network.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2024-04-29
    Description: Der Biodiversitätsverlust schreitet in bedrohlichem Ausmaß voran. Mit dem Global Biodiversity Framework und voraussichtlich dem Nature Restoration Law bestehen nun auf internationaler und europäischer Ebene vielversprechende Ansätze, ihm Herr zu werden. Jetzt ist der Bundesgesetzgeber – nicht zuletzt aus verfassungsrechtlichen Erwägungen – aufgerufen, daran anzuknüpfen. Dazu bietet sich die Regelungsform eines Rahmen- und Politikplanungsgesetzes an, wie sie schon aus dem Klimaschutzgesetz und dem Klimaanpassungsgesetz bekannt ist. Der Aufsatz beleuchtet den internationalen, europa- und verfassungsrechtlichen Hintergrund eines solchen ‘Biodiversitätsschutzgesetzes’ und diskutiert – unter Zusammenarbeit sowohl rechts- als auch naturwissenschaftlicher Autor:innen – formale und materielle Ausgestaltungsmöglichkeiten.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2024-04-29
    Description: A natural plankton community from oligotrophic subtropical waters of the Atlantic near Gran Canaria, Spain, was subjected to varying degrees of ocean alkalinity enhancement (OAE) to assess the potential physiological effects, in the context of the application of ocean carbon dioxide removal (CDR) techniques. We employed 8.3 m3 mesocosms with a sediment trap attached to the bottom, creating a gradient in total alkalinity (TA). The lowest point on this gradient was 2400 μmol · L-1, which corresponded to the natural alkalinity of the environment, and the highest point was 4800 μmol · L-1. Over the course of the 33-day experiment, the plankton community exhibited two distinct phases. In phase-I (days 5–20), a notable decline in the photosynthetic efficiency (Fv/Fm) was observed. This change was accompanied by substantial reductions in the abundances of picoeukaryotes, small size nanoeukaryotes (nanoeukaryotes-1), and microplankton. The cell viability of picoeukaryotes, as indicated by fluorescein-di-acetate hydrolysis by cellular esterases (FDA- green fluorescence), slightly increased by the end of phase-I whilst the viability of nanoeukaryotes 1 and Synechococcus spp . did not change. Reactive oxygen species levels (ROS-green fluorescence) showed no significant changes for any of the functional groups. In contrast, in phase-II (days 21–33), a pronounced community response was observed. Increases in Fv/Fm in the intermediate OAE treatments of ∆900 to ∆1800 μmol · L-1 and in chlorophyll-a (Chl-a), chlorophyll-c2 (Chl-c2) , fucoxanthin and divinyl-Chl-a were attributed to the emergence of blooms of large size nanoeukaryotes (nanoeukaryotes-2) from the genera Chrysochromulina, as well as picoeukaryotes. Synechococcus spp. also flourished towards the end of this phase. In parallel, we observed a total 20 % significant change in the metaproteome of the phytoplankton community. This is considered a significant alteration in protein expression, having substantial impacts on cellular functions and the physiology of the organisms. Medium levels of ∆TA showed more upregulated and less downregulated proteins than higher ∆TA treatments. Under these conditions, cell viability significantly increased in pico and nanoeukaryotes-1 in intermediate alkalinity levels, while in Synechococcus spp., nanoeukaryotes-2 and microplankton remained stable. ROS levels did not significantly change in any functional group. The pigment ratios DD+DT : FUCO, and DD+DT : Chl-a increased in medium ∆TA treatments, supporting the idea of nutrient deficiency alleviation and the absence of physiological stress. Taken all data together, this study shows that there is minimal evidence indicating a harmful impact of high alkalinity on the plankton community. The OAE treatments did not result in physiological fitness impairment, thus OAE did not cause cellular stress in the phytoplankton community studied.
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2024-04-29
    Type: Article , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2024-05-06
    Description: The presented pilot for the Synthesis Product for Ocean Time Series (SPOTS) includes data from 12 fixed ship-based time-series programs. The related stations represent unique open-ocean and coastal marine environments within the Atlantic Ocean, Pacific Ocean, Mediterranean Sea, Nordic Seas, and Caribbean Sea. The focus of the pilot has been placed on biogeochemical essential ocean variables: dissolved oxygen, dissolved inorganic nutrients, inorganic carbon (pH, total alkalinity, dissolved inorganic carbon, and partial pressure of CO2), particulate matter, and dissolved organic carbon. The time series used include a variety of temporal res- olutions (monthly, seasonal, or irregular), time ranges (10–36 years), and bottom depths (80–6000 m), with the oldest samples dating back to 1983 and the most recent one corresponding to 2021. Besides having been harmo- nized into the same format (semantics, ancillary data, units), the data were subjected to a qualitative assessment in which the applied methods were evaluated and categorized. The most recently applied methods of the time- series programs usually follow the recommendations outlined by the Bermuda Time Series Workshop report (Lorenzoni and Benway, 2013), which is used as the main reference for “method recommendations by prevalent initiatives in the field”. However, measurements of dissolved oxygen and pH, in particular, still show room for improvement. Additional data quality descriptors include precision and accuracy estimates, indicators for data variability, and offsets compared to a reference and widely recognized data product for the global ocean: the GLobal Ocean Data Analysis Project (GLODAP). Generally, these descriptors indicate a high level of continuity in measurement quality within time-series programs and a good consistency with the GLODAP data product, even though robust comparisons to the latter are limited. The data are available as (i) a merged comma-separated file that is compliant with the World Ocean Circulation Experiment (WOCE) exchange format and (ii) a format dependent on user queries via the Environmental Research Division’s Data Access Program (ERDDAP) server of the Global Ocean Observing System (GOOS). The pilot increases the data utility, findability, accessibility, interoperability, and reusability following the FAIR philosophy, enhancing the readiness of biogeochemical time series. It facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations and forms the basis for a sustained time-series living data product, SPOTS, complementing relevant products for the global interior ocean carbon data (GLobal Ocean Data Analysis Project), global surface ocean carbon data (Surface Ocean CO2 Atlas; SOCAT), and global interior and surface methane and nitrous oxide data (MarinE MethanE and NiTrous Oxide product). Aside from the actual data compilation, the pilot project produced suggestions for reporting metadata, im- plementing quality control measures, and making estimations about uncertainty. These recommendations aim to encourage the community to adopt more consistent and uniform practices for analysis and reporting and to update these practices regularly. The detailed recommendations, links to the original time-series programs, the original data, their documentation, and related efforts are available on the SPOTS website. This site also pro- vides access to the data product (DOI: https://doi.org/10.26008/1912/bco-dmo.896862.2, Lange et al., 2024) and ancillary data.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2024-05-13
    Description: Es werden mögliche Beiträge geologischer und mariner Kohlenstoffspeicher für die Vermeidung von CO2-Emissionen in die Atmosphäre oder für die Entnahme von bereits emittiertem CO2 aus der Atmosphäre vorgestellt. Neben der Einlagerung von CO2 in geologischen Speichern unter Land und unter dem Meeresboden werden eine forcierte CO2-Entnahme aus der Atmosphäre und Abgabe in den Ozean durch Erhöhung der Alkalinität, durch Ozeandüngung und durch das Management vegetationsreicher Küstenökosysteme untersucht. Alle Optionen können sowohl global als auch aus deutscher Perspektive eine Rolle für das Erreichen der Klimaziele spielen. Umweltverträglichkeit, Permanenz der Speicherung sowie infrastrukturelle und rechtliche Voraussetzungen, gesellschaftliche Akzeptanz und wirtschaftliche Realisierbarkeit bedürfen für alle Ansätze weiterer Klärung, bevor hieraus realisierbare Optionen werden können.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2023-01-19
    Description: Here, we outline how to identify hydrogenase enzymes from metagenomic fosmid libraries through an activity-based screening approach. A metagenomic fosmid library is constructed in E. coli and the fosmids are transferred into a hydrogenase deletion mutant of Shewanella oneidensis MR-1 (ΔhyaB) via triparental mating. If a fosmid clone exhibits hydrogen-uptake activity, S. oneidensis’ phenotype is restored and hydrogenase activity is indicated by a color change of the medium from yellow to colorless. The screen enables screening of 48 metagenomic fosmid clones in parallel.
    Type: Book chapter , NonPeerReviewed , info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2023-02-16
    Description: Bacteriophages, also called phages, are viruses of bacteria. They are the most common and diverse biological entities on this planet. For metagenomic investigation, their diversity is also their biggest obstacle. The direct metagenomic sequence of environmental phage communities often leads to short genomic fragments limiting the investigation to a few individual aspects of phage biology and diversity. The presented protocol for generating a host-associated metagenome reduces the phage diversity to a concise and accessible size. Metagenome sequencing often leads to complete genomes, and the availability of a suitable host system ensures further experimental investigation.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2023-03-16
    Description: Most fish stocks in the European Union (EU) are still being overfished. One recent measure of the EU common fisheries policy to curb overfishing is the introduction of landing obligations that are meant to reduce discards, but the success of landing obligations is controversial, as discards still take place. In the German Western Baltic Sea , discards are currently estimated using ship observer data, but vessels 〈12 m are not sufficiently controlled. We here use an independent method and document widespread discard of undersized cod and flatfish in late summer 2018 using video transects. Discards along the coastline of the south-western Baltic Sea amount to an extrapolated 14.0 t of cod and 1.0 t of flatfish decomposing on the sea floor in 1-13 m depth in a subarea of Mecklenburg Bight that covers only 2.3% of ICES (International Council for the Exploration of the Sea ) subdivisions 22-24, the habitat of Western Baltic cod. Compared to a similar video-mapping seven years earlier (in 2011), the amount of discard increased markedly, suggesting that the implementation of landing obligations in the time between the two mappings for under-sized catches has not resulted in a decrease but an increase of discards. We suggest that higher observed discards of cod in 2018 are also due to a high percentage of cod coming from the 2016-cohort of the Western Baltic cod stock which are just undersized but nevertheless caught by most passive net gear. Our data complement estimates based on ship observer data, while providing the first direct evidence of the fate of discards in the benthic marine habitat.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2023-06-14
    Description: We compare Holocene tree-cover changes in Europe derived from a transient MPI-ESM1.2 simulation with high spatial resolution LPJ-GUESS time-slice simulations and pollen-based quantitative reconstructions of tree cover based on the REVEALS model. The dynamic vegetation models and REVEALS agree with respect to the general temporal trends in tree cover for most parts of Europe, with a large tree cover during the mid-Holocene and a substantially smaller tree cover closer to the present time. However, the decrease in tree cover in REVEALS starts much earlier than in the models indicating much earlier anthropogenic deforestation than the prescribed land-use in the models. While LPJ-GUESS generally overestimates tree cover compared to the reconstructions, MPI-ESM indicates lower percentages of tree cover than REVEALS, particularly in Central Europe and the British Isles. A comparison of the simulated climate with chironomid-based climate reconstructions reveals that model-data mismatches in tree cover are in most cases not driven by biases in the climate. Instead, sensitivity experiments indicate that the model results strongly depend on the tuning of the models regarding natural disturbance regimes (e.g. fire and wind throw). The frequency and strength of disturbances are – like most of the parameters in the vegetation models – static and calibrated to modern conditions. However, these parameter values may not be valid during climate and vegetation states totally different from todays. In particular, the mid-Holocene natural forests were probably more stable and less sensitive to disturbances than present day forests that are heavily altered by human interventions. Our analysis highlights the fact that such model settings are inappropriate for palaeo-simulations and complicate model-data comparisons with additional challenges. Moreover, our study suggests that land-use is the main driver of forest decline in Europe during the mid- and late-Holocene.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2023-06-29
    Description: Although considerable progress has been made in the management and planning of the marine environment, important gaps still exist in streamlining policies across governance levels, maritime sectors, and between different countries. This can hinder effective Maritime Spatial Planning (MSP) and prevent harmonious cross-sectoral cooperation, and importantly, cross-border or trans-boundary collaboration. These may in turn have serious implications for overall ocean governance and ultimately, marine sustainability. The North Atlantic presents an ideal case-study region for reviewing these issues: North Atlantic countries have different governance structures, and as such, different approaches to marine policy. Therefore, for an effective marine management, cross-sectoral and cross-border MSP in the region, there is a need to review marine and maritime policies in order to identify differences and commonalities among countries. This chapter reviews major policies for the marine environment in the North Atlantic and assesses where differences between countries exist and at which governance level they are being created. Key research questions include: (i) Are there significant differences in marine policy between North Atlantic countries? Moreover, are there any substantial geographical/political differences? (ii) Are there differences in implementation of key policies? Such an analysis requires a sound framework for comparison among countries. To that end, the use of “horrendograms”, a tool increasingly being used by the marine research and planning community to assess such issues, is adopted. Results indicate that key differences between countries are created primarily at a national level of marine governance. Although differences between countries exist, overall strategic targets are similar. For instance, whilst the political systems of certain North Atlantic countries may differ substantially, key objectives for major sectors, such as fisheries and conservation, are similar – even when such objectives are implemented at different levels. Findings from the study can enable targeted policy intervention and, as such, assist the development of future outlooks of ocean governance in the region. Results can also aid the development of future visions and scenarios for MSP in the Atlantic region.
    Type: Book chapter , PeerReviewed , info:eu-repo/semantics/bookPart
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2023-07-03
    Description: "Für ein gutes Miteinander auf See“ ist eine Initiative am GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, die sich der Prävention von sexualisierter Belästigung, Diskriminierung und Gewalt (SBDG) auf deutschen Forschungsschiffen widmet. Geleitet wird die Initiative vom Gleichstellungsteam, das in der komplexen Organisationsstruktur der Forschungsschifffahrt viele Akteur*innen zusammenbringen muss, um die Maßnahmen passgenau zu entwickeln und zu etablieren. Auf Forschungsfahrten sind die Menschen für einen längeren Zeitraum auf engem Raum zusammen und können unerwünschten Situationen nicht ausweichen. Das Ziel der Initiative ist es, dafür eine Rettungsinsel zu bieten: Etablierte und klare Strukturen sollen Sicherheit geben und eine Klärung von unerwünschten Situationen ermöglichen. Dieser Beitrag gibt einen Einblick in die Vorgehensweise der Entwicklung der Initiative und erläutert, welche Herausforderungen Forschungsschiffe als Arbeitsort für eine SBDG-Initiative darstellen.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2023-10-27
    Description: Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance, which has been accumulating in the atmosphere since the pre-industrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 parts per billion (ppb) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr-1 in both 2020 and 2021. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), we present a global N2O budget that incorporates both natural and anthropogenic sources and sinks, and accounts for the interactions between nitrogen additions and the biochemical processes that control N2O emissions. We use Bottom-Up (BU: inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and Top-Down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions increased 40 % (or 1.9 Tg N yr-1) in the past four decades (1980–2020). Direct agricultural emissions in 2020, 3.9 Tg N yr−1 (best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources (including ‘Fossil fuel and industry’, ‘Waste and wastewater’, and ‘Biomass burning’ (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1). For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.3 (lower-upper bounds: 10.5–27.0) Tg N yr-1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr-1. For the period 2010–2019, the annual BU decadal-average emissions for natural plus anthropogenic sources were 18.1 (10.4–25.9) Tg N yr-1 and TD emissions were 17.4 (15.8–19.20 Tg N yr-1. The once top emitter Europe has reduced its emissions since the 1980s by 31 % while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the urgency to reduce anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose establishing a global network for monitoring and modeling N2O from the surface through the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al. 2023).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2023-11-24
    Description: Gas chimneys and gas clouds in the subsurface media are known as one of the indications of possible petroleum reservoirs. Investigations of their properties are mostly initiated by seismic attribute interpretation on reflection seismic data. However, due to the complexity of their behavior and their difficult interpretation of seismic attributes, state-of-the-art methods are mostly required to be applied on the seismic data to prevent any misinterpretation. This is mostly done through attribute integration and multi-attribute analysis. This research presents a study on seismic attributes and integration on several 2D seismic reflection lines from the Gorgan Plain. It is located in Northeast Iran, on the western border of the region’s well-known Kopeh-Dagh fold and thrust belt, and southeastern border of the South Caspian Basin. Hydrocarbon systems of the Gorgan Plain are poorly known and have not been widely studied, but according to preliminary investigations, this region has the potential for hydrocarbon occurrences. The aim of this study is to investigate presence and then delaminate the affected area of possible gas chimneys that are related to possible hydrocarbon reservoirs. Gas chimneys are assumed to be created due to the routes, mostly made by faults, that provoke light hydrocarbons components to migrate toward the surface. Preliminary interpretations of seismic reflection data in this study revealed that at least two gas chimneys occurred within the Gorgan Plain. As it was mentioned, since they are mostly due to the faulting above the hydrocarbon reservoir, gas chimney and heavy faulting might exhibit the same effects on the seismic data and then on its attributes, which are amplitude reduction and high damping on energies, distortion of the waveshape and seismic velocity reduction. Thus, care should be taken in separation of these two different geologic phenomena on seismic attributes. This also was done in this study through utilized integration of the most relevant seismic attributes such as Instantaneous-phase, Chaos, Variance and Remove-bias attributes. Based on the result of interpretations and according to the evolution of the basin and its structural reconstruction on other studies, gas chimneys of the Gorgan Plain, are in relation to the operation of fault zones in Cenozoic erathem in the region. These fault zones which cut the entire Cenozoic erathem, create the pathway for vertical migration of hydrocarbons through Cheleken formation (reservoir rock) and its overburden sedimentary sequences. In other words, operation of fault zones within Cenozoic sedimentary sequence, is the main reason for gas seepage in the Gorgan Plain, which is also shown in seismic data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2023-12-08
    Description: Dieses Kapitel behandelt die visuelle Navigation von autonomen Unterwasserfahrzeugen (AUVs) mit und ohne gegebene Karte, wobei Letzteres als Simultane Lokalisierung und Kartierung (SLAM) bezeichnet wird. Wir fassen die Herausforderungen und Möglichkeiten in Unterwasserumgebungen zusammen, die die visuelle Navigation von der Landnavigation unterscheiden, und geben auch einen kurzen Überblick über den aktuellen Stand der Technik in diesem Bereich. Dann argumentieren wir als Positionspapier, warum viele dieser Herausforderungen durch eine angemessene Modellierung von Unsicherheiten in der SLAM-Darstellung bewältigt werden könnten. Dies würde insbesondere dem SLAM-Algorithmus ermöglichen, die Mehrdeutigkeit zwischen „Ich sehe das gleiche Merkmal wieder“, „Ich sehe ein anderes, aber ähnlich aussehendes Merkmal“ und „Die Umgebung hat sich verändert und das Merkmal hat sich bewegt“ gründlich zu behandeln.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2023-12-08
    Description: Black shale sediments from the Barremian to Aptian South Atlantic document intense and widespread burial of marine organic carbon during the initial stages of seafloor spreading between Africa and South America. The enhanced sequestration of atmospheric CO2 makes these young ocean basins potential drivers of the Early Cretaceous carbon cycle and climate perturbations. The opening of marine gateways between initially restricted basins and related circulation and ventilation changes are a commonly invoked explanation for the transient formation and disappearance of these regional carbon sinks. However, large uncertainties in paleogeographic reconstructions limit the interpretation of available paleoceanographic data and prevent any robust model-based quantifications of the proposed circulation and carbon burial changes. Here, we present a new approach to assess the principal controls on the Early Cretaceous South Atlantic and Southern Ocean circulation changes under full consideration of the uncertainties in available boundary conditions. Specifically, we use a large ensemble of 36 climate model experiments to simulate the Barremian to Albian progressive opening of the Falkland Plateau and Georgia Basin gateways with different configurations of the proto-Drake Passage, the Walvis Ridge, and atmospheric CO2 concentrations. The experiments are designed to complement available geochemical data across the regions and to test circulation scenarios derived from them. All simulations show increased evaporation and intermediate water formation at subtropical latitudes that drive a meridional overturning circulation whose vertical extent is determined by the sill depth of the Falkland Plateau. Densest water masses formed in the southern Angola Basin and potentially reached the deep Cape Basin as Walvis Ridge Overflow Water. Paleogeographic uncertainties are as important as the lack of precise knowledge of atmospheric CO2 levels for the simulated temperature and salinity spread in large parts of the South Atlantic. Overall temperature uncertainties are up to 15 °C and increase significantly with water depth. The ensemble approach reveals temporal changes in the relative importance of geographic and radiative forcings for the simulated oceanographic conditions and, importantly, nonlinear interactions between them. Progressive northward opening of the highly restricted Angola Basin increased the sensitivity of local overturning and upper ocean stratification to atmospheric CO2 concentrations due to large-scale changes in the hydrological cycle, while the chosen proto-Drake Passage depth is critical for the ocean dynamics and CO2 response in the southern South Atlantic. Finally, the simulated processes are integrated into a recent carbon burial framework to document the principal control of the regional gateway evolution on the progressive shift from the prevailing saline and oxygen-depleted subtropical water masses to the dominance of ventilated high-latitude deep waters.
    Type: Article , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2023-12-21
    Description: Ocean alkalinity enhancement (OAE) has been proposed as a carbon dioxide removal technology (CDR) allowing for long term storage of carbon dioxide in the ocean. By changing the carbonate speciation in seawater, OAE may potentially alter marine ecosystems with implications for the biological carbon pump. Using mesocosmsthe subtropical North Atlantic, we provide first empirical insights into impacts of carbonate-based OAE on the vertical flux and attenuation of sinking particles in an oligotrophic plankton community. We enhanced total alkalinity (TA) in increments of 300 μmol kg-1, reaching up to ΔTA = 2400 µmol kg-1 compared to ambient TA. We applied a pCO2-equilibrated OAE approach, i.e. dissolved inorganic carbon (DIC) was raised simultaneously with TA to maintain seawater pCO2 in equilibrium with the atmosphere, thereby keeping perturbations of seawater carbonate chemistry moderate. The vertical flux of major elements including carbon, nitrogen, phosphorus and silicon, as well as their stoichiometric ratios (e.g. carbon-to-nitrogen) remained unaffected over 29 days of OAE. The particle properties controlling the flux attenuationinking velocities and remineralization rates also remained unaffected by OAE. However, we observed abiotic mineral precipitation at high OAE levels (ΔTA = 1800 μmol kg-1 and higher) that resulted in a substantial increase in PIC formation. The associated consumption of alkalinity reduces the efficiency of CO2 removal and emphasizes the importance of maintaining OAE within a carefully defined operating range. Our findings suggest that carbon export by oligotrophic plankton communities is insensitive to OAE perturbations using a CO2 pre-equilibrated approach. The integrity of ecosystem services is a prerequisite for large-scale application and should be further tested across a variety of nutrient-regimes and for less idealized OAE approaches.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2024-01-08
    Description: Nitric oxide (NO) is an intermediate of various microbial nitrogen cycle processes and the open ocean and coastal areas are generally a source of NO in the atmosphere. However, our knowledge about its distribution and the main production processes in coastal areas and estuaries is rudimentary at best. To this end, dissolved NO concentrations were measured for the first time in surface waters along the lower Elbe Estuary and Hamburg Port area in July 2021. The discrete surface water samples were analyzed using a chemiluminescence detection method. The NO concentrations ranged from below the limit of detection (9.1 × 10−12 mol L−1) to 17.7 × 10−12 mol L−1, averaging at 12.5 × 10−12 mol L−1 and were supersaturated in the surface layer of both the lower Elbe Estuary and the Hamburg Port area, indicating that the study site was a source of NO to the atmosphere during the study period. On the basis of a comprehensive comparison of NO concentrations with parallel nutrient, oxygen, and nitrous oxide concentration measurements, we conclude that the observed distribution of dissolved NO was most likely resulting from microbial nitrogen transformation processes, particularly nitrification in the coastal-brackish and limnic zones of the lower Elbe Estuary and nitrifier-denitrification in the Hamburg Port area.
    Type: Article , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2024-01-08
    Description: Ocean alkalinity enhancement (OAE) is an emerging strategy that aims to mitigate climate change by increasing the alkalinity of seawater. This approach involves increasing the alkalinity of the ocean to enhance its capacity to absorb and store carbon dioxide (CO2) from the atmosphere. This chapter presents an overview of the technical aspects associated with the full range of OAE methods being pursued and discusses implications for undertaking research on these approaches. Various methods have been developed to implement OAE, including the direct injection of alkaline liquid into the surface ocean; dispersal of alkaline particles from ships, platforms, or pipes; the addition of minerals to coastal environments; and the electrochemical removal of acid from seawater. Each method has its advantages and challenges, such as scalability, cost effectiveness, and potential environmental impacts. The choice of technique may depend on factors such as regional oceanographic conditions, alkalinity source availability, and engineering feasibility. This chapter considers electrochemical methods, the accelerated weathering of limestone, ocean liming, the creation of hydrated carbonates, and the addition of minerals to coastal environments. In each case, the technical aspects of the technologies are considered, and implications for best-practice research are drawn. The environmental and social impacts of OAE will likely depend on the specific technology and the local context in which it is deployed. Therefore, it is essential that the technical feasibility of OAE is undertaken in parallel with, and informed by, wider impact assessments. While OAE shows promise as a potential climate change mitigation strategy, it is essential to acknowledge its limitations and uncertainties. Further research and development are needed to understand the long-term effects, optimize techniques, and address potential unintended consequences. OAE should be viewed as complementary to extensive emission reductions, and its feasibility may be improved if it is operated using energy and supply chains with minimal CO2 emissions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2024-01-08
    Description: The Paris Agreement to limit global warming to well below 2 °C requires ambitious emission reduction and the balancing of remaining emissions through carbon sinks, i.e. the deployment of carbon dioxide removal (CDR). While ambitious climate protection scenarios until now consider primarily land-based CDR methods, there is growing concern about their potential to deliver sufficient CDR, and marine CDR options receive more and more interest. Based on idealized theoretical studies, Ocean Alkalinity Enhancement (OAE) appears as a promising marine CDR method. However, the knowledge base is insufficient for a robust assessment of its practical feasibility, of its side effects, social and governance aspects as well as monitoring, reporting and verification issues. A number of research efforts aim to improve this in a timely manner. We provide an overview on the current situation of developing OAE as marine CDR method, and describe the history that has led to the creation of the OAE research Best Practices Guide.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2024-01-08
    Description: Ocean alkalinity enhancement (OAE) is a proposed marine carbon dioxide removal (mCDR) approach that has the potential for large-scale uptake of significant amounts of atmospheric carbon dioxide (CO2). Removing anthropogenic legacy CO2 will be required to stabilise global surface temperatures below the 1.5–2 ∘C Paris Agreement target of 2015. In this chapter we describe the impacts of various OAE feedstocks on seawater carbonate chemistry, as well as pitfalls that need to be avoided during sampling, storage, and measurement of the four main carbonate chemistry parameters, i.e. dissolved inorganic carbon (DIC), total alkalinity (TA), pH, and CO2 fugacity (fCO2). Finally, we also discuss considerations in regard to calculating carbonate chemistry speciation from two measured parameters. Key findings are that (1) theoretical CO2 uptake potential (global mean of 0.84 mol of CO2 per mole of TA added) based on carbonate chemistry calculations is probably secondary in determining the oceanic region in which OAE would be best; (2) carbonate chemistry sampling is recommended to involve gentle pressure filtration to remove calcium carbonate (CaCO3) that might have been precipitated upon TA increase as it would otherwise interfere with a number of analyses; (3) samples for DIC and TA can be stabilised to avoid the risk of secondary CaCO3 precipitation during sample storage; and (4) some OAE feedstocks require additional adjustments to carbonate chemistry speciation calculations using available programs and routines, for instance if seawater magnesium or calcium concentrations are modified.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2024-01-08
    Description: The deliberate increase in ocean alkalinity (referred to as ocean alkalinity enhancement, or OAE) has been proposed as a method for removing CO2 from the atmosphere. Before OAE can be implemented safely, efficiently, and at scale several research questions have to be addressed, including (1) which alkaline feedstocks are best suited and the doses in which they can be added safely, (2) how net carbon uptake can be measured and verified, and (3) what the potential ecosystem impacts are. These research questions cannot be addressed by direct observation alone but will require skilful and fit-for-purpose models. This article provides an overview of the most relevant modelling tools, including turbulence-, regional-, and global-scale biogeochemical models and techniques including approaches for model validation, data assimilation, and uncertainty estimation. Typical bio- geochemical model assumptions and their limitations are discussed in the context of OAE research, which leads to an identification of further development needs to make models more applicable to OAE research questions. A description of typical steps in model validation is followed by proposed minimum criteria for what constitutes a model that is fit for its intended purpose. After providing an overview of approaches for sound integration of models and observations via data assimilation, the application of observing system simulation experiments (OSSEs) for observing system design is described within the context of OAE research. Criteria for model val- idation and intercomparison studies are presented. The article concludes with a summary of recommendations and potential pitfalls to be avoided.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2024-01-08
    Description: An essential prerequisite for the implementation of ocean alkalinity enhancement (OAE) applications is their environmental safety. Only if it can be ensured that ecosystem health and ecosystem services are not at risk will the implementation of OAE move forward. Public opinion on OAEs will depend first and foremost on reliable evidence that no harm will be done to marine ecosystems and licensing authorities will demand measurable criteria against which environmental sustainability can be determined. In this context mesocosm experiments represent a highly valuable tool in determining the safe operating space of OAE applications. By combining realism and biological complexity with controllability and replication they provide an ideal OAE test bed and a critical stepping stone towards field applications. Mesocosm approaches can also be helpful in testing the efficacy, efficiency and permanence of OAE applications. This chapter outlines strengths and weaknesses of mesocosm approaches, illustrates mesocosm facilities and suitable experimental designs presently employed in OAE research, describes critical steps in mesocosm operation, and discusses possible approaches for alkalinity manipulation and monitoring. Building on a general treatise on each of these aspects, the chapter describes pelagic and benthic mesocosm approaches separately, given their inherent differences. The chapter concludes with recommendations for best practices in OAE-related mesocosm research.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2024-01-10
    Description: Carbon monoxide (CO) is an atmospheric trace gas that plays a crucial role in the oxidizing capacity of the Earth’s atmosphere. Moreover, it functions as an indirect greenhouse gas, influencing the lifetimes of potent greenhouse gases such as methane. Albeit being an overall source of atmospheric CO, the role of coastal regions in the marine cycling of CO and how its budget can be affected by anthropogenic activities, remain uncertain. Here, we present the first measurements of dissolved CO in the Ria Formosa Lagoon, an anthropogenically influenced system in southern Portugal. The dissolved CO concentrations in the surface layer ranged from 0.16 to 3.1 nmol L−1 with an average concentration of 0.75 ± 0.57 nmol L−1. The CO saturation ratio ranged from 1.7 to 32.2, indicating that the lagoon acted as a source of CO to the atmosphere in May 2021. The estimated average sea-to-air flux density was 1.53 μmol m−2 d−1, mainly fueled by CO photochemical production. Microbial consumption accounted for 83 % of the CO production, suggesting that the resulting CO emissions to the atmosphere were modulated by microbial consumption in the surface waters of the Ria Formosa Lagoon. The results from an irradiation experiment with aquaculture effluent water indicated that aquaculture facilities in the Ria Formosa Lagoon seem to be a negligible source of atmospheric CO.
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2024-01-11
    Description: Ocean alkalinity enhancement (OAE) is a marine carbon dioxide removal (CDR) approach. Publicly funded research projects have begun, and philanthropic funding and start-ups are collectively pushing the field forward. This rapid progress in research activities has created an urgent need to learn if and how OAE can work at scale. The Best Practices Guide to OAE research contains 7 topics broken down into 13 chapters that compare and synthesise previously published methods and offer guidance for future research.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
  • 64
    Publication Date: 2024-02-07
    Description: As one of Earth's most productive marine ecosystems, the Peruvian upwelling system transports large amounts of biogenic matter from the surface to the deep ocean. Whilst particle sinking velocity is a key factor controlling the biological pump, thereby affecting carbon sequestration and O2-depletion, it has not yet been measured in this system. During a 50 d mesocosm experiment in the surface waters off the coast of Peru, we assessed particle sinking velocities and their biogeochemical and physical drivers. We further characterized the general properties of exported particles under different phytoplankton communities and nutritional states. Average sinking velocities varied between size classes and ranged from 12.8 ± 0.7 m d−1 (particles 40–100 µm) to 19.4 ± 0.7 m d−1 (particles 100–250 µm) and 34.2 ± 1.5 m d−1 (particles 250–1000 µm) (± 95 % CI). Despite a distinct plankton succession from diatoms to dinoflagellates with concomitant 5-fold drop in opal ballasting, substantial changes in sinking velocity were not observed. This illustrates the complexity of counteracting factors driving the settling behaviour of marine particles. In contrast, we found higher sinking velocities with increasing particle size and roundness and decreasing porosity. Size had by far the strongest influence among these physical particle properties, despite a high amount of unexplained variability. Our study provides a detailed analysis of the drivers of particle sinking velocity in the Peruvian upwelling system, which allows modellers to optimize local particle flux parameterization. This will help to better project oxygen concentrations and carbon sequestration in a region that is subject to substantial climate-driven changes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2024-02-07
    Description: Global biogeochemical ocean models help to investigate the present and potential future state of the ocean, its productivity and cascading effects on higher trophic levels such as fish. They are often subjectively tuned against data sets of inorganic tracers and surface chlorophyll and only very rarely against organic components such as particulate organic carbon or zooplankton. The resulting uncertainty in biogeochemical model parameters (and parameterisations) associated with these components can explain some of the large spread of global model solutions with regard to the cycling of organic matter and its impacts on biogeochemical tracer distributions, such as oxygen minimum zones (OMZs). A second source of uncertainty arises from differences in the model spin-up length as, so far, there seems to be no agreement on the required simulation time that should elapse before a global model is assessed against observations. We investigated these two sources of uncertainty by optimising a global biogeochemical ocean model against the root-mean-squared error (RMSE) of six different combinations of data sets and different spin-up times. Besides nutrients and oxygen, the observational data sets also included phyto- and zooplankton, as well as dissolved and particulate organic phosphorus (DOP and POP, respectively). We further analysed the optimised model performance with regard to global biogeochemical fluxes, oxygen inventory and OMZ volume. Following the optimisation procedure, we evaluated the RMSE for all tracers located in the upper 100 m (except for POP, for which we considered the entire vertical domain), regardless of their consideration during optimisation. For the different optimal model solutions, we find a narrow range of the RMSE, between 14 % of the average RMSE after 10 years and 24 % after 3000 years of simulation. Global biogeochemical fluxes, global oxygen bias and OMZ volume showed a much stronger divergence among the models and over time than RMSE, indicating that even models that are similar with regard to local surface tracer concentrations can perform very differently when assessed against the global diagnostics for oxygen. Considering organic tracers in the optimisation had a strong impact on the particle flux exponent (Martin b) and may reduce much of the uncertainty in this parameter and the resulting deep particle flux. Independent of the optimisation setup, the OMZ volume showed a particularly sensitive response with strong trends over time, even after 3000 years of simulation time (despite the constant physical forcing); a high sensitivity to simulation time; and the highest sensitivity to model parameters arising from the tuning strategy setup (variation of almost 80 % of the ensemble mean). In conclusion, calibration against observations of organic tracers can help to improve global biogeochemical models even after short spin-up times; here especially, observations of deep particle flux could provide a powerful constraint. However, a large uncertainty remains with regard to global OMZ volume and its evolution over time, which can show very dynamic behaviour during the model spin-up, which renders temporal extrapolation to a final equilibrium state difficult if not impossible. Given that the real ocean shows variations on many timescales, the assumption of observations representing a steady-state ocean may require some reconsideration.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2024-02-07
    Description: The Storegga Slide is the largest known exposed submarine landslide in the world, which triggered a tsunami that inundated the coasts of northern Europe ~8,150 years ago. Previous studies suggested the removal of 50–70 m of sediment from the northern slide scar segment, contributing half of the total slide volume of up to 3200 km³. However, new sediment echosounder profiles and sedimentological constraints show that most material within the northern Storegga slide scar had already failed ~20,000 years ago, at the end of the Last Glacial Maximum. We refer to this previously undetected slope failure as the Nyegga Slide. In our revised slope failure reconstruction, the Nyegga Slide removed more than 35 m of sediments that were previously attributed to the tsunamigenic Storegga Slide. This implies that large slope failures at the mid-Norwegian margin occur more frequently than previously thought, indicating a higher tsunami hazard for the North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2024-02-07
    Description: For the first time, the processes controlling the variations of mixed layer temperature (MLT) and salinity (MLS) in the Banda Sea are quantified using data from a single Argo float in combination with satellite and reanalysis outputs from August 2017 to August 2019. This augments previous studies that utilized ocean model data only. We document the presence of a barrier layer and quantify the roles of air-sea heat and mass exchanges, horizontal advection, and vertical entrainment in the seasonal variability of MLT and MLS. We find that heat gains and losses at the air-sea interface are the main contributor to the warming and cooling of the MLT. Seasonal changes in MLS are driven by advection of low salinity water rather than freshwater fluxes from precipitation and evaporation. This is particularly the case during the late northwest and monsoon transition period from February to April when low salinity is advected eastward from the Java Sea into the Banda Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2024-02-07
    Description: A quantitative local analytical method with the application of inductively coupled plasma mass spectrometry with laser ablation (LA-ICP-MS) was tested at Vernadsky Institute for the determination of contents of trace elements (Cu, Zn, Co, Ni, Mn, Cr, Sc, V, Ca, Ti, Al, Y, and REE) in olivine. Olivine phenocrysts from volcanic rocks of various geological settings have been studied: island-arc basalts, mid-ocean ridge (MOR) basalts, and high-alkaline continental volcanic rocks. The contents of some elements (Ni, Co, Mn, Cr, Sc, and Zn) systematically vary during the evolution of the composition of olivine, and the concentration fields of these elements in olivine from different settings overlap one another. At the same time, the contents of some other elements (Ca, Al, Ti, V, and Cu) fundamentally differ in olivine from different geological settings. Copper content in olivine from oceanic tholeiites and highly alkaline continental volcanics is 1–3 ppm, which is systematically lower than copper content in olivine from island-arc basalts (3–9 ppm). The concentrations of vanadium in olivine in MOR basalts are higher than in island-arc and alkaline continental ones, which may be due to relatively more reduced crystallization conditions as more favorable for the incorporation of V3+ into the olivine structure. Variations in the distribution coefficients of trace elements between olivine and silicate melt (DOl/Melement) were determined for volcanic rocks from Kamchatka, the Bouvet Triple Junction, and Gaussberg volcano. It has been demonstrated that the unusually high values DOl/MNi of DOl/MNi = 50–150 previously identified for the lamproites of Gaussberg volcano indicate a mismatch between the composition of the quenched glass and the composition of the equilibrium melt for olivine phenocrysts. When using the bulk compositions of Gaussberg rocks, values of DOl/MNi = 11–21 were obtained, which correspond to experimental estimates for high-potassium rocks. The redox crystallization conditions of the studied rocks were estimated using several oxybarometers based on the distribution of vanadium between coexisting olivine and melt. These values were: ΔQFM= +0.6 to +1.5 for oceanic tholeiites of the Bouvet Triple Junction area, South Atlantic, and ΔQFM = +1.5 to +2.4 for Mutnovsky volcano, Kamchatka. Estimates of the redox crystallization conditions of the highly alkaline rocks of Gaussberg volcano significantly vary depending on which model is chosen: ΔQFM= +0.2 to +4.8, which may be due to the strong effect of K2O content in the melt involved in one of the models. The newly acquired analytical data confirmed the possibility of using contents of trace elements in olivine to characterize igneous systems from different geological settings and highlighted the need for additional experimental studies on the distribution of these elements between olivine and melt, especially in highly alkaline systems.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2024-02-07
    Description: Excess nutrient supply by the rivers and the atmosphere are considered as the major causes for the persistently poor ecological status of the Baltic Sea. More than 97% of the Baltic Sea still suffers from eutrophication due to past and present inputs of nitrogen and phosphorus. One of the poorly quantified nutrient sources in the Baltic Sea is submarine groundwater discharge (SGD). Through seepage meter deployments and a radium mass balance model, a widespread occurrence of SGD along the coastline of Eckernförde Bay was detected. Mean SGD was 21.6 cm d −1 with a calculated freshwater fraction of 17%. Where SGD was detected, pore water sampled by a piezometer revealed a wide range of dissolved inorganic nitrogen (DIN: 0.05–1.722 µmol L −1 ) and phosphate (PO 4 3− : 0.03–70.5 µmol L −1 ) concentrations. Mean DIN and PO 4 3− concentrations in non-saline (salinity 〈 1) pore waters were 59 ± 68 µmol L −1 and 1.2 ± 1.9 µmol L −1 , respectively; whereas pore water with salinities 〉 1 revealed higher values, 113 ± 207 µmol L −1 and 6 ± 12 µmol L −1 for DIN and PO 4 3− , respectively. The nutrient concentrations along the salinity gradient do not suggest that land-derived groundwater is the definitive source of nutrients in the Baltic Sea. Still, SGD may contribute to a major autochthonous nutrient source, resulting from remineralization or dissolution processes of organic matter in the sediments. The DIN and PO 4 3− fluxes derived from SGD rates through seepage meters are 7.9 ± 9.2 mmol m −2 d −1 and 0.5 ± 0.4 mmol m −2 d −1 , lower by a factor of ~ 2 and ~ 5 when compared to the fluxes derived with the radium mass balance model (mean DIN: 19 ± 28 mmol m −2 d −1 ; mean PO 4 3− : 1.5 ± 2.7 mmol m −2 d −1 ). Assuming that these mean radium-based nutrient fluxes are representative for the coastline of Eckernförde Bay, we arrive at SGD-borne nutrient fluxes of about 1 t km −1 y −1 of nitrogen and 0.2 t km −1 y −1 of phosphorous. These fluxes are lower for DIN and in the same range for phosphorus as compared to the riverine nutrient supply (DIN: 6.3 t km −1 y −1 , P: 0.2 km −1 y −1 ) to the German Baltic Sea identifying SGD-borne nutrients as a secondary nutrient source to the Baltic Sea.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2024-02-07
    Description: Planktonic Foraminifera are unique paleo-environmental indicators through their excellent fossil record in ocean sediments. Their distribution and diversity are affected by different environmental factors including anthropogenically forced ocean and climate change. Until now, historical changes in their distribution have not been fully assessed at the global scale. Here we present the FORCIS (Foraminifera Response to Climatic Stress) database on foraminiferal species diversity and distribution in the global ocean from 1910 until 2018 including published and unpublished data. The FORCIS database includes data collected using plankton tows, continuous plankton recorder, sediment traps and plankton pump, and contains similar to 22,000, similar to 157,000, similar to 9,000, similar to 400 subsamples, respectively (one single plankton aliquot collected within a depth range, time interval, size fraction range, at a single location) from each category. Our database provides a perspective of the distribution patterns of planktonic Foraminifera in the global ocean on large spatial (regional to basin scale, and at the vertical scale), and temporal (seasonal to interdecadal) scales over the past century.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2024-02-07
    Description: The Peruvian upwelling system is a highly productive ecosystem with a large oxygen minimum zone (OMZ) close to the surface. In this work, we carried out a mesocosm experiment off Callao, Peru, with the addition of water masses from the regional OMZ collected at two different sites simulating two different upwelling scenarios. Here, we focus on the pelagic remineralization of organic matter by the extracellular enzyme activity of leucine aminopeptidase (LAP) and alkaline phosphatase activity (APA). After the addition of the OMZ water, dissolved inorganic nitrogen (N) was depleted, but the standing stock of phytoplankton was relatively high, even after N depletion (mostly 〉 4 µg chlorophyll a L−1). During the initial phase of the experiment, APA was 0.6 nmol L−1 h−1 even though the PO concentration was 〉 0.5 µmol L−1. Initially, the dissolved organic phosphorus (DOP) decreased, coinciding with an increase in the PO concentration that was probably linked to the APA. The LAP activity was very high, with most of the measurements in the range of 200–800 nmol L−1 h−1. This enzyme hydrolyzes terminal amino acids from larger molecules (e.g., peptides or proteins), and these high values are probably linked to the highly productive but N-limited coastal ecosystem. Moreover, the experiment took place during a rare coastal El Niño event with higher than normal surface temperatures, which could have affected enzyme activity. Using a nonparametric multidimensional scaling analysis (NMDS) with a generalized additive model (GAM), we found that biogeochemical variables (e.g., nutrient and chlorophyll-a concentrations) and phytoplankton and bacterial communities explained up to 64 % of the variability in APA. The bacterial community best explained the variability (34 %) in LAP. The high hydrolysis rates for this enzyme suggest that pelagic N remineralization, likely driven by the bacterial community, supported the high standing stock of primary producers in the mesocosms after N depletion.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2024-02-07
    Description: Focused fluid flow through sub-seafloor pipes and chimneys, and their seafloor manifestations as pockmarks, are ubiquitous. However, the dynamics of flow localization and evolution of fluid escape structures remain poorly understood. Models based on geomechanical mechanisms like hydro-fracturing and porosity wave propagation offer some useful insights into fluid flow and escape dynamics, but face limitations in capturing features like mobilized granular matter, especially in the upper sediment layers where the link between fracture and pockmark is not always clear. Here, we propose a mathematical model based on the multiphase theory of porous media, where changes in subsurface and seafloor morphology are resolved through seepage-induced erosion, fluidization, transport, and re-deposition of granular material. Through simulation of an idealized scenario of gas escape from overpressured shallow gas reservoir, we demonstrate that our model can capture flow localization and formation of pipes, chimneys, and pockmarks. Our simulations show (1) formation of conical focused-flow conduits with a brecciated core and annular gas channels; (2) pockmarks of W and ring shapes; and (3) pulsed release of gas. Sediment erodibility and flow anisotropy control the morphology of focused fluid flow and escape structures, while permeability shows negligible impact. While the geological setting for this study is theoretical, we show that our results have real-world analogs.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2024-02-07
    Description: Background: The widespread Indo-Pacific coral species Pocillopora acuta Lamarck, 1816 displays varying levels of asexual versus sexual reproduction, with strong repercussions on genetic diversity, connectivity and genetic structuring within and among populations. For many geographic regions, baseline information on genetic diversity is still lacking, particularly in the Andaman Sea. The region suffered a massive heat-induced bleaching event in 2010 with high coral cover loss of branching coral species such as P. acuta. A subsequent bleaching in 2016, however, revealed a mild bleaching response in pocilloporids compared to other coral taxa in the region, suggesting that rare, heat tolerant genotypes had been selected by the 2010 bleaching event. In order to test whether this potential ‘evolutionary rescue’ event has led to a low genetic diversity, we conducted a population genetic survey covering a total of nine different P. acuta populations (336 individuals) along a 50 km coastal stretch around Phuket Island, Thailand. We used six microsatellite markers to assess genotypic diversity and to determine the prevalent mode of reproduction (i.e. sexual or asexual recruitment). Results: In contrast to other Indian Ocean P. acuta populations, the majority of corals in this study adopted a sexual reproduction mode (75% across all populations). At the same time, substantial regional gene flow was observed around Phuket Island with strong genetic differentiation as indicated by three genetic clusters that were separated by only a few kilometers. Patterns of isolation by distance over 0.7 – 40 km suggest small-scale genetic barriers, such as changing currents throughout each monsoonal season, potentially contributing to locally restricted dispersal of P. acuta larvae. Conclusions: The occurrence of distinct genetic clusters within short coastal stretches suggests that the 2010 bleaching event has not led to extreme genetic impoverishment. While more in-depth genomic analyses are necessary to investigate changes in genetic diversity following extreme bleaching events, our results will help guide conservation efforts to maintain genetic diversity of a coral species that likely will be dominant in future, warmer Andaman Sea reefs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2024-02-07
    Description: Dissolved organic matter (DOM) occupies a huge and uncharted molecular space. Given its properties, DOM can be presented as a promising biotechnological resource. However, research into bioactivities of DOM is still in early stages. In this study, the biotechnological potential of terrestrial and marine DOM, its molecular composition and their relationships are investigated. Samples were screened for their in vitro antibacterial, antifungal, anticancer and antioxidant activities. Antibacterial activity was detected against Staphylococcus aureus in almost all DOM samples, with freshwater DOM showing the lowest IC50 values. Most samples also inhibited Staphylococcus epidermidis, and four DOM extracts showed up to fourfold higher potency than the reference drug. Antifungal activity was limited to only porewater DOM towards human dermatophyte Trichophyton rubrum. No significant in vitro anticancer activity was observed. Low antioxidant potential was exerted. The molecular characterization by FT-ICR MS allowed a broad compositional overview. Three main distinguished groups have been identified by PCoA analyses. Antibacterial activities are related to high aromaticity content and highly-unsaturated molecular formulae (O-poor). Antifungal effect is correlated with highly-unsaturated molecular formulae (O-rich). Antioxidant activity is positively related to the presence of double bonds and polyphenols. This study evidenced for the first time antibacterial and antifungal activity in DOM with potential applications in cosmeceutical, pharmaceutical and aquaculture industry. The lack of cytotoxicity and the almost unlimited presence of this organic material may open new avenues in future marine bioprospecting efforts. Graphical abstract: [Figure not available: see fulltext.]
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2024-02-07
    Description: Background: The microbiota of multicellular organisms undergoes considerable changes during host ontogeny but the general mechanisms that control community assembly and succession are poorly understood. Here, we use bacterial recolonization experiments in Nematostella vectensis as a model to understand general mechanisms determining bacterial establishment and succession. We compared the dynamic establishment of the microbiome on the germfree host and on inert silicone tubes. Results: Following the dynamic reconstruction of microbial communities on both substrates, we show that the initial colonization events are strongly influenced by the host but not by the silicone tube, while the subsequent bacteria-bacteria interactions are the main driver of bacterial succession. Interestingly, the recolonization pattern on adult hosts resembles the ontogenetic colonization succession. This process occurs independently of the bacterial composition of the inoculum and can be followed at the level of individual bacteria. To identify potential metabolic traits associated with initial colonization success and potential metabolic interactions among bacteria associated with bacterial succession, we reconstructed the metabolic networks of bacterial colonizers based on their genomes. These analyses revealed that bacterial metabolic capabilities reflect the recolonization pattern, and the degradation of chitin might be a selection factor during early recolonization of the animal. Concurrently, transcriptomic analyses revealed that Nematostella possesses two chitin synthase genes, one of which is upregulated during early recolonization. Conclusions: Our results show that early recolonization events are strongly controlled by the host while subsequent colonization depends on metabolic bacteria-bacteria interactions largely independent of host ontogeny.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2024-02-07
    Description: As Earth's atmospheric temperatures and human populations increase, more people are becoming vulnerable to natural and human-induced disasters. This is particularly true in Central America, where the growing human population is experiencing climate extremes (droughts and floods), and the region is susceptible to geological hazards, such as earthquakes and volcanic eruptions, and environmental deterioration in many forms (soil erosion, lake eutrophication, heavy metal contamination, etc.). Instrumental and historical data from the region are insufficient to understand and document past hazards, a necessary first step for mitigating future risks. Long, continuous, well-resolved geological records can, however, provide a window into past climate and environmental changes that can be used to better predict future conditions in the region. The Lake Izabal Basin (LIB), in eastern Guatemala, contains the longest known continental records of tectonics, climate, and environmental change in the northern Neotropics. The basin is a pull-apart depression that developed along the North American and Caribbean plate boundary ∼ 12 Myr ago and contains 〉 4 km of sediment. The sedimentological archive in the LIB records the interplay among several Earth System processes. Consequently, exploration of sediments in the basin can provide key information concerning: (1) tectonic deformation and earthquake history along the plate boundary; (2) the timing and causes of volcanism from the Central American Volcanic Arc; and (3) hydroclimatic, ecologic, and geomicrobiological responses to different climate and environmental states. To evaluate the LIB as a potential site for scientific drilling, 65 scientists from 13 countries and 33 institutions met in Antigua, Guatemala, in August 2022 under the auspices of the International Continental Scientific Drilling Program (ICDP) and the US National Science Foundation (NSF). Several working groups developed scientific questions and overarching hypotheses that could be addressed by drilling the LIB and identified optimal coring sites and instrumentation needed to achieve the project goals. The group also discussed logistical challenges and outreach opportunities. The project is not only an outstanding opportunity to improve our scientific understanding of seismotectonic, volcanic, paleoclimatic, paleoecologic, and paleobiologic processes that operate in the tropics of Central America, but it is also an opportunity to improve understanding of multiple geological hazards and communicate that knowledge to help increase the resilience of at-risk Central American communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2024-02-07
    Description: For millennia, humans have gravitated towards coastlines for their resource potential and as geopolitical centres for global trade. A basic requirement ensuring water security for coastal communities relies on a delicate balance between the supply and demand of potable water. The interaction between freshwater and saltwater in coastal settings is, therefore, complicated by both natural and human-driven environmental changes at the land-sea interface. In particular, ongoing sea level rise, warming and deoxygenation might exacerbate such perturbations. In this context, an improved understanding of the nature and variability of groundwater fluxes across the land-sea continuum is timely, yet remains out of reach. The flow of terrestrial groundwater across the coastal transition zone as well as the extent of freshened groundwater below the present-day seafloor are receiving increased attention in marine and coastal sciences because they likely represent a significant, yet highly uncertain component of (bio)geochemical budgets, and because of the emerging interest in the potential use of offshore freshened groundwater as a resource. At the same time, “reverse” groundwater flux from offshore to onshore is of prevalent socio-economic interest as terrestrial groundwater resources are continuously pressured by overpumping and seawater intrusion in many coastal regions worldwide. An accurate assessment of the land-ocean connectivity through groundwater and its potential responses to future anthropogenic activities and climate change will require a multidisciplinary approach combining the expertise of geophysicists, hydrogeologists, (bio)geochemists and modellers. Such joint activities will lay the scientific basis for better understanding the role of groundwater in societal-relevant issues such as climate change, pollution and the environmental status of the coastal oceans within the framework of the United Nations Sustainable Development Goals. Here, we present our perspectives on future research directions to better understand land-ocean connectivity through groundwater, including the spatial distributions of the essential hydrogeological parameters, highlighting technical and scientific developments, and briefly discussing its societal relevance in rapidly changing coastal oceans.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2024-02-07
    Description: The Humboldt Current Upwelling System (HCS) is the most productive eastern boundary upwelling system (EBUS) in terms of fishery yield on the planet. EBUSs are considered hotspots of climate change with predicted expansion of mesopelagic oxygen minimum zones (OMZs) and related changes in the frequency and intensity of upwelling of nutrient-rich, low-oxygen deep water. To increase our mechanistic understanding of how upwelling impacts plankton communities and trophic links, we investigated mesozooplankton community succession and gut fluorescence, fatty acid and elemental compositions (C, N, O, P), and stable isotope (δ13C, δ15N) ratios of dominant mesozooplankton and microzooplankton representatives in a mesocosm setup off Callao (Peru) after simulated upwelling with OMZ water from two different locations and different N:P signatures (moderate and extreme treatments). An oxycline between 5 and 15 m with hypoxic conditions (〈50 µmol L−1) below ∼10 m persisted in the mesocosms throughout the experiment. No treatment effects were determined for the measured parameters, but differences in nutrient concentrations established through OMZ water additions were only minor. Copepods and polychaete larvae dominated in terms of abundance and biomass. Development and reproduction of the dominant copepod genera Paracalanus sp., Hemicyclops sp., Acartia sp., and Oncaea sp. were hindered as evident from accumulation of adult copepodids but largely missing nauplii. Failed hatching of nauplii in the hypoxic bottom layer of the mesocosms and poor nutritional condition of copepods suggested from very low gut fluorescence and fatty acid compositions most likely explain the retarded copepod development. Correlation analysis revealed no particular trophic relations between dominant copepods and phytoplankton groups. Possibly, particulate organic matter with a relatively high C:N ratio was a major diet of copepods. C:N ratios of copepods and polychaetes ranged 4.8–5.8 and 4.2–4.3, respectively. δ15N was comparatively high (∼13 ‰–17 ‰), potentially because the injected OMZ source water was enriched in δ15N as a result of anoxic conditions. Elemental ratios of dinoflagellates deviated strongly from the Redfield ratio. We conclude that opportunistic feeding of copepods may have played an important role in the pelagic food web. Overall, projected changes in the frequency and intensity of upwelling hypoxic waters may make a huge difference for copepod reproduction and may be further enhanced by varying N:P ratios of upwelled OMZ water masses.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2024-02-07
    Description: The effect of anthropogenic climate change in the ocean is challenging to project because atmosphere-ocean general circulation models (AOGCMs) respond differently to forcing. This study focuses on changes in the Atlantic Meridional Overturning Circulation (AMOC), ocean heat content (Δ OHC), and the spatial pattern of ocean dynamic sea level (Δ ζ). We analyse experiments following the FAFMIP protocol, in which AOGCMs are forced at the ocean surface with standardised heat, freshwater and momentum flux perturbations, typical of those produced by doubling CO 2. Using two new heat-flux-forced experiments, we find that the AMOC weakening is mainly caused by and linearly related to the North Atlantic heat flux perturbation, and further weakened by a positive coupled heat flux feedback. The quantitative relationships are model-dependent, but few models show significant AMOC change due to freshwater or momentum forcing, or to heat flux forcing outside the North Atlantic. AMOC decline causes warming at the South Atlantic-Southern Ocean interface. It does not strongly affect the global-mean vertical distribution of Δ OHC, which is dominated by the Southern Ocean. AMOC decline strongly affects Δ ζ in the North Atlantic, with smaller effects in the Southern Ocean and North Pacific. The ensemble-mean Δ ζ and Δ OHC patterns are mostly attributable to the heat added by the flux perturbation, with smaller effects from ocean heat and salinity redistribution. The ensemble spread, on the other hand, is largely due to redistribution, with pronounced disagreement among the AOGCMs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2024-02-07
    Description: When interpreting geophysical models, we need to establish a link between the models’ physical parameters and geological units. To define these connections, it is crucial to consider and compare geophysical models with multiple, independent parameters. Particularly in complex geological scenarios, such as the rifted passive margin offshore Namibia, multi-parameter analysis and joint inversion are key techniques for comprehensive geological inferences. The models resulting from joint inversion enable the definition of specific parameter combinations, which can then be ascribed to geological units. Here we perform a user-unbiased clustering analysis of the parameters electrical resistivity and density from two models derived in a joint inversion along the Namibian passive margin. We link the resulting parameter combinations to break-up related lithology, and infer the history of margin formation. This analysis enables us to clearly differentiate two types of sediment cover. Namely, one of near-shore, thick, clastic sediments, and a second one of further offshore located, more biogenic, marine sediments. Furthermore, we clearly identify areas of interlayered massive, and weathered volcanic flows, which are usually only identified in reflection seismic studies as seaward dipping reflectors. Lastly, we find a distinct difference in the signature of the transitional crust south of- and along the supposed hot-spot track Walvis Ridge. We ascribe this contrast to an increase in magmatic activity above the volcanic centre along Walvis Ridge, and potentially a change in melt sources or depth of melting. This characterizes a rift-related southern complex, and a plume-driven Walvis Ridge regime. All of these observations demonstrate the importance of multi-parameter geophysical analysis for large-scale geological interpretations. Furthermore, our results may improve future joint inversions using direct parameter coupling, by providing a guideline for the complex passive margins parameter correlations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2024-02-07
    Description: Food web research provides essential insights into ecosystem functioning, but practical applications in ecosystem-based management are hampered by a current lack of knowledge synthesis. To address this gap, we provide the first systematic review of ecological studies applying stable isotope analysis, a pivotal method in food web research, in the heavily anthropogenically impacted Baltic Sea macro-region. We identified a thriving research field, with 164 publications advancing a broad range of fundamental and applied research topics, but also found structural shortcomings limiting ecosystem-level understanding. We argue that enhanced collaboration and integration, including the systematic submission of Baltic Sea primary datasets to stable isotope databases, would help to overcome many of the current shortcomings, unify the scattered knowledge base, and promote future food web research and science-based resource management. The effort undertaken here demonstrates the value of macro-regional synthesis, in enhancing access to existing data and supporting strategic planning of research agendas.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2024-02-07
    Description: In this paper, we review observational and modelling results on the upwelling in the tropical Atlantic between 10∘ N and 20∘ S. We focus on the physical processes that drive the seasonal variability of surface cooling and the upward nutrient flux required to explain the seasonality of biological productivity. We separately consider the equatorial upwelling system, the coastal upwelling system of the Gulf of Guinea and the tropical Angolan upwelling system. All three tropical Atlantic upwelling systems have in common a strong seasonal cycle, with peak biological productivity during boreal summer. However, the physical processes driving the upwelling vary between the three systems. For the equatorial regime, we discuss the wind forcing of upwelling velocity and turbulent mixing, as well as the underlying dynamics responsible for thermocline movements and current structure. The coastal upwelling system in the Gulf of Guinea is located along its northern boundary and is driven by both local and remote forcing. Particular emphasis is placed on the Guinea Current, its separation from the coast and the shape of the coastline. For the tropical Angolan upwelling, we show that this system is not driven by local winds but instead results from the combined effect of coastally trapped waves, surface heat and freshwater fluxes, and turbulent mixing. Finally, we review recent changes in the upwelling systems associated with climate variability and global warming and address possible responses of upwelling systems in future scenarios.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2024-02-07
    Description: Understanding the drivers behind fluctuations in fish populations remains a key objective in fishery science. Our predictive capacity to explain these fluctuations is still relatively low, due to the amalgam of interacting bottom-up and top-down factors, which vary across time and space among and within populations. Gaining a mechanistic understanding of these recruitment drivers requires a holistic approach, combining field, experimental and modelling efforts. Here, we use the Western Baltic Spring-Spawning (WBSS) herring (Clupea harengus) to exemplify the power of this holistic approach and the high complexity of the recruitment drivers (and their interactions). Since the early 2000s, low recruitment levels have promoted intense research on this stock. Our literature synthesis suggests that the major drivers are habitat compression of the spawning beds (due to eutrophication and coastal modification mainly) and warming, which indirectly leads to changes in spawning phenology, prey abundance and predation pressure. Other factors include increased intensity of extreme climate events and new predators in the system. Four main knowledge gaps were identified related to life-cycle migration and habitat use, population structure and demographics, life-stage specific impact of multi-stressors, and predator–prey interactions. Specific research topics within these areas are proposed, as well as the priority to support a sustainable management of the stock. Given that the Baltic Sea is severely impacted by warming, eutrophication and altered precipitation, WBSS herring could be a harbinger of potential effects of changing environmental drivers to the recruitment of small pelagic fishes in other coastal areas in the world.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2024-02-07
    Description: Hydroacoustic surveys at the accretionary wedge southwest of Taiwan reveal a confined active hydrocarbon seepage area of ~ 49,000 m 2 in ~ 1350 m water depth on the northern crest of the Four-Way Closure Ridge, which we call Yam Seep. In this study, multibeam and side-scan sonar data acquired during surveys with an autonomous underwater vehicle during an expedition with R/V Ocean Researcher I in 2017 showed that the area is characterized by rough topography and high seafloor backscatter. Seafloor observations with a video sled and sediment sampling with gravity corers and the MeBo seafloor drill rig during an expedition with R/V SONNE in 2018 revealed that the area is almost entirely covered by intensely fractured methane-derived carbonates, which indicate that seepage has been ongoing for thousands of years. Hydroacoustic anomalies (‘flares’) in the water column indicated the presence of several gas bubble emission sites mostly at the center and eastern flank of the area in 2019. Drilling through massive carbonates in the northwestern part of Yam Seep induced free gas escape from a depth of ~ 5.1 m. This suggests the presence of gas hydrates in the subsurface as the seep area is located well within the gas hydrate stability zone. The inter-disciplinary investigations of the Yam Seep demonstrate that upward migration of light hydrocarbons and seafloor discharge has a considerable influence on the seabed properties.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2024-02-07
    Description: Interactions between volcanoes and glaciers provide insight to the evolution of a volcanic edifice and may be an indicator for renewed volcanic activity. At Mount St. Helens, Crater Glacier, which has formed in the volcanic crater after the eruption in 1980, is one of the world’s last expanding glaciers and provides a unique opportunity to characterize the evolution of a glacier expanding onto an area of significant thermal flux. We combine photographic documentation and glaciovolcanic cave surveys with remote sensing data from Google Earth, UAS, and LiDAR to analyze the present state of Crater Glacier and reconstruct its development since the emplacement of the 2004–2008 lava dome. Our results show that snow accumulation has caused Crater Glacier to grow from 2009 to 2019 by approximately 13.8 × 106 m3, during which time the glacier toe advanced by several hundred meters. The glacier-dome interface shift toward higher elevations against the 2004–2008 lava dome and subsequent encroachment onto thermally active areas led to glacier modification via extensive subglacial cave system formation. Analysis of subglacial tephra layers revealed the existence of juvenile material from the 2004–2008 eruption cycle, providing insights about glacier subsidence of ~ 40 m since 2004/2005 in spite of net growth. Although the lava dome is cooling, the glacier-dome interface seems to have become increasingly stable in the past few years. Our results suggest that glacier development in the accumulation area adjacent to the dome is now being affected by the thermal characteristics of the lava dome itself, making monitoring internal glacier development via tracking glaciovolcanic cave expansion a potentially important volcano monitoring tool. Zusammenfassung Die Interaktionen von Vulkanen und Gletschern tragen häufig zum Verständnis über die Entwicklung eines vulkanischen Systems bei und können als Indikator für wiederkehrende vulkanische Aktivität dienen. Crater Glacier, der nach der Eruption 1980 im Krater des Mount St. Helens entstanden ist, ist einer der letzten wachsenden Gletscher weltweit und bietet somit eine einmalige Chance, die Entwicklung eines Gletschers in Verbindung mit erheblichen Wärmeflüssen zu charakterisieren. Neben einer fotografischen Dokumentation des Gletschers machen wir uns die Kartierung vulkanischer Gletscherhöhlen zu Nutze. Diese kombinieren wir mit Fernerkundungsdaten von Google Earth sowie Drohnen- und LiDAR-Daten, um den aktuellen Zustand des Gletschers zu charakterisieren und seine Entwicklung seit dem letzten Lavadomwachstum zwischen 2004 und 2008 zu rekonstruieren. Unsere Ergebnisse zeigen, dass die ausreichende Akkumulation von Schnee zum Wachstum des Gletschers mit einem Massenzuwachs von ca. 13,8 x 106 m3 zwischen 2009 und 2019 geführt hat. Neben dem Voranschreiten der Gletscherzunge um mehrere hundert Meter hat sich das Wachstum ebenfalls rund um den neuen Lavadom bemerkbar gemacht. Durch die Verschiebung der Kontaktzone von Gletscher und Lavadom hin zu höheren Bereichen des Doms und der damit verbundenen Interaktion zwischen Gletscher und geothermaler Aktivität ist es zu einer deutlichen Veränderung des Gletschers durch die Ausbildung subglazialer Höhlensysteme gekommen. Analysen von im Gletscher eingebetteten Tephraschichten, die vermutlich der letzten Aktivität zwischen 2004 und 2008 zuzuordnen sind, deuten trotz des allgemeinen Wachstums auf eine Setzung des Gletschers um etwa 40 m seit 2004/05 hin. Obwohl der Lavadom an Hitze verliert, scheint die Kontaktzone von Gletscher und Dom in den letzten Jahren zunehmend konstant geworden zu sein. Unsere Ergebnisse deuten darauf hin, dass der Gletscher in diesem Bereich derzeit vor allem durch die thermalen Eigenschaften des Lavadoms beeinflusst wird. Dadurch kommt dem Monitoring interner Gletscherstrukturen mittels Beobachtung vulkanischer Gletscherhöhlen eine potenziell wichtige Bedeutung bei der Vulkanüberwachung zu.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2024-02-07
    Description: Increasing Greenland Ice Sheet–melting is anticipated to impact watermass transformation in the subpolar North Atlantic and ultimately the meridional overturning circulation. Complex ocean and climate models are widely applied to predict magnitude and timing of related impacts under projected future climate. We discuss the role of the ocean mean state, subpolar gyre circulation, mesoscale eddies and atmospheric coupling in shaping the response of the subpolar North Atlantic Ocean to enhanced Greenland runoff. In a suite of eight dedicated 60 to 100-year long model experiments with and without atmospheric coupling, with eddy processes parameterized and explicitly simulated, with regular and significantly enlarged Greenland runoff, we find (1) a major impact by the interactive atmosphere in enabling a compensating temperature feedback, (2) a non-negligible influence by the ocean mean state biased towards greater stability in the coupled simulations, both of which making the Atlantic Merdional Overturning Circulation less susceptible to the freshwater perturbation applied, and (3) a more even spreading of the runoff tracer in the subpolar North Atlantic and enhanced inter-gyre exchange with the subtropics in the strongly eddying simulations. Overall, our experiments demonstrate the important role of mesoscale ocean dynamics and atmosphere feedbacks in projections of the climate system response to enhanced Greenland Ice Sheet–melting and hence underline the necessity to advance scale-aware eddy parameterizations for next-generation climate models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2024-02-07
    Description: Military field exercises are characterised by high volumes of exercise and prolonged periods of load carriage. Exercise can decrease circulating serum calcium and increase parathyroid hormone and bone resorption. These disturbances to calcium and bone metabolism can be attenuated with calcium supplementation immediately before exercise. This randomised crossover trial will investigate the effect of calcium supplementation on calcium and bone metabolism, and bone mineral balance, during load carriage exercise in women. Methods Thirty women (eumenorrheic or using the combined oral contraceptive pill, intrauterine system, or intrauterine device) will complete two experimental testing sessions either with, or without, a calcium supplement (1000 mg). Each experimental testing session will involve one 120 min session of load carriage exercise carrying 20 kg. Venous blood samples will be taken and analysed for biochemical markers of bone resorption and formation, calcium metabolism, and endocrine function. Urine will be collected pre- and post-load carriage to measure calcium isotopes for the calculation of bone calcium balance. Discussion The results from this study will help identify whether supplementing women with calcium during load carriage is protective of bone and calcium homeostasis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2024-02-07
    Description: Carbon monoxide (CO) influences the radiative budget and oxidative capacity of the atmosphere over the Arctic Ocean, which is a source of atmospheric CO. Yet, oceanic CO cycling is understudied in this area, particu- larly in light of the ongoing rapid environmental changes. We present results from incubation experiments conducted in the Fram Strait in August–September 2019 under different environmental conditions: while lower pH did not affect CO production (GPCO) or consumption (kCO) rates, enhanced GPCO and kCO were positively correlated with coloured dis- solved organic matter (CDOM) and dissolved nitrate concen- trations, respectively, suggesting microbial CO uptake under oligotrophic conditions to be a driving factor for variability in CO surface concentrations. Both production and consump- tion of CO will likely increase in the future, but it is un- known which process will dominate. Our results will help to improve models predicting future CO concentrations and emissions and their effects on the radiative budget and the oxidative capacity of the Arctic atmosphere.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2024-02-07
    Description: The carbon cycle component of the newly developed Earth System Model of intermediate complexity CLIMBER-X is presented. The model represents the cycling of carbon through atmosphere, vegetation, soils, seawater and marine sediments. Exchanges of carbon with geological reservoirs occur through sediment burial, rock weathering and volcanic degassing. The state-of-the-art HAMOCC6 model is employed to simulate ocean biogeochemistry and marine sediments processes. The land model PALADYN simulates the processes related to vegetation and soil carbon dynamics, including permafrost and peatlands. The dust cycle in the model allows for an interactive determination of the input of the micro-nutrient iron into the ocean. A rock weathering scheme is implemented into the model, with the weathering rate depending on lithology, runoff and soil temperature. CLIMBER-X includes a simple representation of the methane cycle, with explicitly modelled natural emissions from land and the assumption of a constant residence time of CH4 in the atmosphere. Carbon isotopes 13C and 14C are tracked through all model compartments and provide a useful diagnostic for model-data comparison. A comprehensive evaluation of the model performance for present–day and the historical period shows that CLIMBER-X is capable of realistically reproducing the historical evolution of atmospheric CO2 and CH4, but also the spatial distribution of carbon on land and the 3D structure of biogeochemical ocean tracers. The analysis of model performance is complemented by an assessment of carbon cycle feedbacks and model sensitivities compared to state-of-the-art CMIP6 models. Enabling interactive carbon cycle in CLIMBER-X results in a relatively minor slow-down of model computational performance by ~20 %, compared to a throughput of ~10,000 simulation years per day on a single node with 16 CPUs on a high performance computer in a climate–only model setup. CLIMBER-X is therefore well suited to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to 〉100,000 years.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2024-02-07
    Description: Since the discovery of the first oncaeid copepod described by Philippi in 1843 as Oncaea venusta, great progress has been achieved regarding the morphological/descriptive taxonomy of the microcopepod family Oncaeidae, occurring in all great oceans and all depth layers of the ocean. The species diversity of this family is still underestimated and the ecological role of oncaeids within the marine ecosystem is not yet well understood, but the life strategy appears to be fundamentally different from most other pelagic microcopepod families. The present paper aims at a comprehensive review of the current state of knowledge of this microcopepod family, including taxonomic and phylogenetic issues, questions of species identification, specific morphological and molecular genetic characteristics, information on regional and vertical distribution and abundance, motion behaviour, feeding and food relationships, reproduction aspects, biomass and elemental composition, respiration and metabolic rates. Relevant open questions are highlighted, and examples are given of shortcomings and high uncertainties in results of current attempts to include oncaeid copepods in various aspects of global marine ecosystem studies. It is concluded that continued support of taxonomic research is required for Oncaeidae and other small copepod species, based on an integrated approach of morphological and molecular genetic methods and user-friendly regional identification keys, to allow an adequate consideration of oncaeids in advanced ecological studies and to achieve a better understanding of the ecological role of this abundant microcopepod family in marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2024-02-07
    Description: Nitrous oxide (N2O) is a greenhouse gas, with a global warming potential 298 times that of carbon dioxide. Estuaries can be sources of N2O, but their emission estimates have significant uncertainties due to limited data availability and high spatiotemporal variability. We investigated the spatial and seasonal variability of dissolved N2O and its emissions along the Elbe Estuary (Germany), a well-mixed temperate estuary with high nutrient loading from agriculture. During nine research cruises performed between 2017 and 2022, we measured dissolved N2O concentrations, as well as dissolved nutrient and oxygen concentrations along the estuary, and calculated N2O saturations, flux densities, and emissions. We found that the estuary was a year-round source of N2O, with the highest emissions in winter when dissolved inorganic nitrogen (DIN) loads and wind speeds are high. However, in spring and summer, N2O saturations and emissions did not decrease alongside lower riverine nitrogen loads, suggesting that estuarine in situ N2O production is an important source of N2O. We identified two hotspot areas of N2O production: the Port of Hamburg, a major port region, and the mesohaline estuary near the maximum turbidity zone (MTZ). N2O production was fueled by the decomposition of riverine organic matter in the Hamburg Port and by marine organic matter in the MTZ. A comparison with previous measurements in the Elbe Estuary revealed that N2O saturation did not decrease alongside the decrease in DIN concentrations after a significant improvement of water quality in the 1990s that allowed for phytoplankton growth to re-establish in the river and estuary. The overarching control of phytoplankton growth on organic matter and, subsequently, on N2O production highlights the fact that eutrophication and elevated agricultural nutrient input can increase N2O emissions in estuaries.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2024-02-07
    Description: Temperate fisheries grounds are exposed to compound effects of jellyfish proliferations and fishing pressure, which affect local fisheries, cause economic losses, and threaten seafood supply. Here, we quantify the interlink between climate variability and jellyfish blooms and their impact on the Japanese anchovy (Engraulis japonicus), in the Korean coastal waters. We used a bioclimate dataset (2010–2019) that includes quantitative information of two major bloom-former species, Aurelia coerulea and Nemopilema nomurai, in the Korean Peninsula. We show that climate phenomena governing East Asia regions explain circa half of jellyfish variability. In turn, jellyfish blooms have a significant negative effect on anchovy interannual changes (r = -0.47, P 〈 0.01), which varies along with the bloom magnitude. Our results indicate that the intensity of jellyfish blooms, more than their duration, has a predominant effect on anchovy and coastal fisheries production. We also suggest the possibility of using climate signals for assessing and eventually predicting, interannual abundance changes of jellyfish in the Korean Peninsula. These results stress the challenge posed by jellyfish blooms to the provisioning of ecosystem services via their influence on marine harvested fish and further highlight the need for their integration into ecosystem-based management.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2024-02-07
    Description: Removal of atmospheric carbon dioxide is being considered a suitable option for reducing the recent global rise in atmospheric temperature. The impact of the removal on some climate parameters—near-surface air temperature (TAS), maximum near-surface air temperature (TASMAX), minimum near-surface air temperature (TASMIN) and surface temperature (TS) over West Africa was assessed in this paper. We used CNRM-ESM1-C1 model simulation output consisting of 1%yr−1 CO2 removal from the atmosphere which was compared with CRU observational dataset. Four climatological periods 1990–2019 (reference period), 2040–2069, 2070–2099 and 2100–2129 were considered, and hence the impacts levels in each of the two West African regions, Sahel and Guinea, were estimated in each period with respect to the reference period. The comparison with CRU demonstrated that CNRM-ESM1-C1 model captured temperature variations within major locations in Mauritania, Mali, Niger, Burkina Faso and Senegal with an indication of an underestimation of temperature at locations above 18° N. The value of each parameter was projected to decrease progressively the periods and much impacts were also projected in the last period for the two regions. Time of retreat to 2 °C reduction target is projected a decade before the year 2100 and will occur earlier with greater impact in the Guinea region than in Sahel region. The root mean square deviation of each ensemble member was found at RMSD 〈 0.5 with respect to the model ensemble mean per parameter, although RMSD 〉 0.5 was found with GFDL-ESM4 model for TAS and TS.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2024-02-07
    Description: The conventional view of spawning in iteroparous bony fish, i.e., the “reproductive drain hypothesis,” is based on the observation that somatic growth (in length) slows down noticeably at approximately the time fish attain maturity, and hence the assumption is made that investment in gonadal development slows down growth. However, when this is translated as growth in weight, the weight at first maturity (or puberty) is usually smaller than the weight at which growth rate is highest, i.e., weight growth accelerates after first maturity. We solve this conundrum, with some emphasis on female cod (Gadus morhua), by proposing the hypothesis that the substantial loss of body mass experienced by fish as a result of spawning is quickly compensated for by increased somatic growth after the spawning period, notably because of the increase in food conversion efficiency resulting from a sudden loss of body weight, which necessarily leads to a large increase in relative oxygen supply via the gills. This is consistent with the argument developed elsewhere that declining relative oxygen supply by the gills, whose surface area cannot keep up with increasing body weight, is the reason for growth rate declining with weight in adult fish.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2024-02-07
    Description: This paper presents numerous new data on the geochemical composition of olivine, clinopyroxene, and leucite phenocrysts, as well as spinel inclusions in olivine and quench glass from lamproites of Gaussberg volcano (East Antarctica). Most of the olivine phenocrysts in the Gaussberg lamproites are high Mg varieties (Fo89–91) with elevated Ni contents (up to 4900 ppm) and high Ni/Co ratios. According to data of about 320 clinopyroxene analyses, two groups of diopsidic phenocrysts have been established. Group I consists mainly of high-Mg varieties (Mg#〉80), while group II clinopyroxenes are less magnesian (Mg# 52–80). The main difference between the clinopyroxenes of the two groups is the elevated contents of Al2O3, FeO and reduced TiO2, Cr2O3, and NiO in the compositions of group II compared to group I, as well as different contents of trace elements, which may reflect their crystallization from different types of primary melts. According to the study of ~550 grains of leucite phenocrysts in the Gaussberg lamproites, it was shown that they correspond to the ideal stoichiometry of leucite K[AlSi2O6] and are enriched in Na2O (0.05–0.35 wt %), but depleted in K2O (19.9–20.9 wt %) compared to leucites from lamproites of other provinces. The BaO content reaches 0.3 wt %, SrO –0.04 wt %. The iron content in most leucite phenocrysts varies within 0.7–1.2 wt % Fe2O3, but some grains have the low Fe2O3 contents (〈0.5 wt %). In leucite microlites of the groundmass and rims of phenocrysts, the Fe2O3 content can reach 2.4 wt %, which may indicate more oxidized conditions at lava eruption. Based on the study of natural samples, existing experimental data and numerical models, the order and conditions of crystallization of the Gaussberg lamproites were obtained. Crystallization proceeded in the following order: chromian spinel → chromian spinel + olivine → olivine + leucite (± chromian spinel) → olivine + leucite + clinopyroxene (± chromian spinel). The near-liquidus assemblage represented by high-Mg olivine phenocrysts with inclusions of Cr-spinel was formed in the temperature range from 1180 to 1250°C. Further crystallization of the melt with the formation of an association of olivine+leucite+clinopyroxene phenocrysts could occur at pressures below 2 GPa and temperatures of 1070–1180°C, corresponding to the presence of water in the magmatic system. Estimates of the redox conditions of crystallization of lamproites obtained using different oxybarometers vary in a wide range from QFM-0.5 to QFM+2.3. The elevated Ni contents in liquidus olivines of Gaussberg indicate the high nickel contents in the source. It is shown that the formation of ultra-alkaline magmas in the Gaussberg volcano area is likely related to melting of the continental lithosphere, which was heterogeneous and included both the peridotite mantle and hydrous pyroxenite fragments.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2024-02-07
    Description: A.G. Bain (1797–1864) was probably the first to describe the deposits of the Permo-Carboniferous glaciation of South Africa in 1844, but still attributed their formation to a volcanic origin. It was not until P.C. Sutherland (1822–1908) in 1868 and 1870 that the series was recognised as a glacial formation. J. E. Dunn (1844–1937) named this deposit the Dwyka Series or Dwyka Conglomerate after the Dwyka River near Prince Albert in South Africa in 1886. This series contains scratched boulders and varved sediments, and the basement is characterised by rounded boulders and striated surfaces as evidence of glaciation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2024-02-07
    Description: In this study, we present a new 87 Sr/ 86 Sr isoscape map of Central and NE Germany. This area is characterized by an alternation of sedimentary basins and mountainous regions with a very variable lithology. Since lithology and rock age have a major impact on the isotopic composition of biologically available strontium, Central and NE Germany should reveal highly variable 87 Sr/ 86 Sr ratios. From lithological characteristics, particularly high ratios are expected in the mountainous regions of the Erzgebirge/Fichtelgebirge and the Harz Mountains. In contrast to these predictions, published 87 Sr/ 86 Sr isoscape maps of Central and NE Germany record rather uniform and low 87 Sr/ 86 Sr ratios. From this observation, we suspected that existing isoscape maps might be computed from an insufficient database, with mountainous regions being underrepresented. Our goal was to gather 87 Sr/ 86 Sr baselines for each major lithology of Central and NE Germany and to produce an accurate isoscape map of Central and NE Germany. In the first step, we evaluated the suitability of stream water and groundwater as a proxy for biologically available strontium. In a selected watershed, we present mixing relationships and a stream network model. We show that groundwater is prone to very local geologic and anthropogenic influences and should thus be avoided. Instead, we focussed our further sampling on stream water. Altogether, we used 119 new measurements of groundwater and stream water and a set of 23 auxiliary variables as a database for our new isoscape map of Central and NE Germany. Due to a sampling strategy that focussed on covering each major lithology, our measurements and the final isoscape map show a clear contrast between sedimentary basins and mountainous regions. For regions that have been sufficiently sampled, a direct comparison of the isoscape map with published and new data shows good agreement. Although Central and NE Germany were part of published isoscape maps, our new map is the first that predicts 87 Sr/ 86 Sr ratios in mountainous regions with high accuracy.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2024-02-07
    Description: This Open Access book on Ocean Governance examines sustainability challenges facing our oceans today. The book is organized into three sections: knowledge systems, policy foundations and thematic analyses. The knowledge produced in the book was catalyzed by the scientific outcomes within the European-funded Cooperation in Science and Technology (COST) network “Ocean Governance for Sustainability – Challenges, Options and the Role of Science”. This network brings together scientists, policy-makers and civil society representatives from 28 nation states to cooperate on ocean governance research. This book offers a compilation of new research material including focused case studies, broad policy syntheses and reflective chapters on the history and current status of knowledge production systems on ocean governance. New research material is presented, although some chapters draw on secondary sources. The book starts with synthetic review chapters from the editors, outlining past and present knowledge systems, addressing how and why ocean governance for sustainability is where it currently stands with critical reflections on existing narratives, path dependencies and colonialist histories. This is followed by chapters addressing, synthesizing and analyzing different legal and policy frameworks for ocean governance both regionally and internationally. At the core of the book are the thematic analyses, which provide focused case studies with detailed contextual information in support of different ocean governance challenges and sustainability pathways around the world. The book concludes with a chapter explicitly targeting students, researchers and policy-makers with key take-away messages compiled by the editors.
    Type: Book , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2024-02-07
    Description: Over one hundred years of vigorous progress in tropical cyclone (TC) research, the genesis of the cyclone (hereafter, tropical cyclogenesis) is remarkable as a doubtful subject. Furthermore, predicting tropical cyclogenesis, particularly in the lesser latitude, remains a significant challenge. Therefore, understanding the complex interactions in developing tropical cyclogenesis over the region is vital to improving tropical cyclogenesis forecasting. Hence, the Indonesia Maritime Continent is a tropical cyclone-free region due to decreasing the Coriolis effect. However, Seroja TC hit Flores (8.6° S, 120° E), east Nusa Tenggara, Indonesia, on 4 April 2021, and was recorded as the first TC that occurred over the mainland, which brought a catastrophic disaster in the region. This study investigated the tropical cyclogenesis of Seroja by using observational and numerical studies. The results indicate that a marine heatwave and double vortices were favorable conditions that produced preconditions for developing tropical cyclogenesis over the Maluku Sea. Thus, tropical cyclogenesis is formed by the breakdown of the intertropical convergence zone (ITCZ) associated with synoptic-scale wave train driven under the interaction of the Madden Julian oscillation (MJO) and equatorial Rossby waves. Moreover, our finding suggested that an extensive background cyclonic vorticity under the cold pool mechanisms is responsible for maintaining tropical cyclogenesis into a persistent Seroja TC.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2024-02-07
    Description: The Clarion Clipperton Fracture Zone (CCZ) is an abyssal region in the north-east Pacific that is currently being explored for metal-rich polymetallic nodules, but also harbors a highly diverse megabenthic community. This community is influenced by multiple environmental gradients including bathymetric structures as well as differences in habitat and food availability. This study focuses on the benthic megafauna investigated in an exploration area positioned in the very east of the CCZ, which exhibits the lowest water depths (mean: 4200 m) and the highest flux of particulate organic carbon (POC) of the CCZ. Case studies using seafloor images for the detection of megafauna have revealed differences between seamounts and abyssal hills compared to nodule fields, as well as differences in the community composition between areas with and without nodule coverage and rock outcrop. Extrapolations suggest a richness of more than 300 morphotypes in the study area, including multiple invertebrate groups such as corals, sponges, echinoderms, and crustaceans as well as fish. Focusing on sampled specimens, diversities of Ophiuroidea, Porifera, and Bryozoa are high and more species are likely to be discovered in the study area. This also applies for the taxon Ophiuroidea, which is among the taxa investigated in the greatest detail so far. In the context of deep-sea mining, megafauna has been in the focus of a variety of environmental studies including baseline analyses, disturbance experiments, and/or testing of mining components or systems. These studies identify and address key factors responsible for the observed natural and impacted distribution patterns and thereby help to constrain expected anthropogenic impacts to the deep-sea environment in the context of deep-sea mining. Specifically in the area of focus of this study, 10 years of megafauna analyses have shown that the biodiversity in the selected preservation reference zone (PRZ) is not as similar to that of the impact reference zone (IRZ) as originally hypothesized based mainly on geological parameters. We suggest that recent area-wide habitat classifications and faunal mapping exercises (e.g., Uhlenkott et al. 2020, 2022) are used to designate a new PRZ that is more similar to the IRZ to meet its purpose, but that the current PRZ is maintained for scientific and conservation purposes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...