ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-11
    Description: Subtropical dry zones, located in the Hadley cells’ subsidence regions, strongly influence regional climate as well as outgoing longwave radiation. Changes in these dry zones could have significant impact on surface climate as well as on the atmospheric energy budget. This study investigates the behavior of upper-tropospheric dry zones in a changing climate, using the variable upper-tropospheric humidity (UTH), calculated from climate model experiment output as well as from radiances measured with satellite-based sensors. The global UTH distribution shows that dry zones form a belt in the subtropical winter hemisphere. In the summer hemisphere they concentrate over the eastern ocean basins, where the descent regions of the subtropical anticyclones are located. Recent studies with model and satellite data have found tendencies of increasing dryness at the poleward edges of the subtropical subsidence zones. However, UTH calculated from climate simulations with 25 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) shows these tendencies only for parts of the winter-hemispheric dry belts. In the summer hemisphere, even though differences exist between the simulations, UTH is increasing in most dry zones, particularly in the South and North Pacific Ocean. None of the summer dry zones is expanding in these simulations. Upper-tropospheric dry zones estimated from observational data do not show any robust signs of change since 1979. Apart from a weak drying tendency at the poleward edge of the southern winter-hemispheric dry belt in infrared measurements, nothing indicates that the subtropical dry belts have expanded poleward.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Subtropical dry zones, located in the Hadley cells' subsidence regions, strongly influence regional climate as well as outgoing longwave radiation. Changes in these dry zones could have significant impact on surface climate as well as on the atmospheric energy budget. This study investigates the behavior of upper-tropospheric dry zones in a changing climate, using the variable upper-tropospheric humidity (UTH), calculated from climate model experiment output as well as from radiances measured with satellite-based sensors. The global UTH distribution shows that dry zones form a belt in the subtropical winter hemisphere. In the summer hemisphere they concentrate over the eastern ocean basins, where the descent regions of the subtropical anticyclones are located. Recent studies with model and satellite data have found tendencies of increasing dryness at the poleward edges of the subtropical subsidence zones. However, UTH calculated from climate simulations with 25 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) shows these tendencies only for parts of the winter-hemispheric dry belts. In the summer hemisphere, even though differences exist between the simulations, UTH is increasing in most dry zones, particularly in the South and North Pacific Ocean. None of the summer dry zones is expanding in these simulations. Upper-tropospheric dry zones estimated from observational data do not show any robust signs of change since 1979. Apart from a weak drying tendency at the poleward edge of the southern winter-hemispheric dry belt in infrared measurements, nothing indicates that the subtropical dry belts have expanded poleward.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: A common notion is that negative feedbacks stabilize the natural marine nitrogen inventory. Recent modeling studies have shown, however, some potential for localized positive feedbacks leading to substantial nitrogen losses in regions where nitrogen fixation and denitrification occur in proximity to each other. Here we include dissolved nitrogen from river discharge in a global 3-D ocean biogeochemistry model and study the effects on near-coastal and remote-open-ocean biogeochemistry. We find that at a steady state the biogeochemical feedbacks in the marine nitrogen cycle, nitrogen input from biological N2 fixation, and nitrogen loss via denitrification mostly compensate for the imposed yearly addition of 22.8 to 45.6 Tg of riverine nitrogen and limit the impact on global marine productivity to 〈 2 %. Global experiments that regionally isolate river nutrient input show that the sign and strength of the feedbacks depend on the location of the river discharge and the oxygen status of the receiving marine environment. Marine productivity generally increases in proximity to the nitrogen input, but we also find a decline in productivity in the modeled Bay of Bengal and near the mouth of the Amazon River. While most of the changes are located in shelf and near-coastal oceans, nitrogen supply from the rivers can impact the open ocean, due to feedbacks or knock-on effects.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-08
    Description: Riverine nutrient export is an important process in marine coastal biogeochemistry and also impacts global marine biology. The nitrogen cycle is a key player here. Internal feedbacks regulate not only nitrogen distribution, but also primary production and thereby oxygen concentrations. Phosphorus is another essential nutrient and interacts with the nitrogen cycle via different feedback mechanisms. After a previous study of the marine nitrogen cycle response to riverine nitrogen supply, we here additionally include phosphorus from river export with different phosphorus burial scenarios and study the impact of phosphorus alone and in combination with nitrogen in a global 3-D ocean biogeochemistry model. Again, we analyse the effects on near coastal and open ocean biogeochemistry. We find that the addition of bio-available riverine phosphorus alone or together with nitrogen affects marine biology on millennial timescales more than riverine nitrogen alone. Biogeochemical feedbacks in the marine nitrogen cycle are strongly influenced by the additional phosphorus. Where bio-available phosphorus is increased by river input, nitrogen concentrations increase as well, except for regions with high denitrification rates. High phosphorus burial rates decrease biological production significantly. Globally, riverine phosphorus leads to elevated primary production rates in the coastal and open oceans.
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...