ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Articles  (1,043)
  • *Ecosystem  (614)
  • Protein Structure, Tertiary  (429)
  • 2010-2014  (1,043)
  • 1935-1939
  • Natural Sciences in General  (1,043)
Collection
  • Books
  • Articles  (1,043)
Keywords
Years
Year
Topic
  • 1
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2010 Jun 24;465(7301):985-6. doi: 10.1038/465985b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577163" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Disasters/*economics ; *Ecosystem ; Federal Government ; Industry/*economics ; Insurance/economics/*trends/utilization ; Petroleum/*adverse effects ; Risk ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-12-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pincock, Stephen -- England -- Nature. 2010 Dec 9;468(7325):744. doi: 10.1038/468744a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21150966" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/methods ; Animals ; Australia ; *Conservation of Natural Resources/economics ; *Ecosystem ; Endangered Species ; Environmental Policy ; *Leadership ; *Rivers/chemistry ; *Water Supply/analysis/economics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-10-15
    Description: The pre-T-cell antigen receptor (pre-TCR), expressed by immature thymocytes, has a pivotal role in early T-cell development, including TCR beta-selection, survival and proliferation of CD4(-)CD8(-) double-negative thymocytes, and subsequent alphabeta T-cell lineage differentiation. Whereas alphabetaTCR ligation by the peptide-loaded major histocompatibility complex initiates T-cell signalling, pre-TCR-induced signalling occurs by means of a ligand-independent dimerization event. The pre-TCR comprises an invariant alpha-chain (pre-Talpha) that pairs with any TCR beta-chain (TCRbeta) following successful TCR beta-gene rearrangement. Here we provide the basis of pre-Talpha-TCRbeta assembly and pre-TCR dimerization. The pre-Talpha chain comprised a single immunoglobulin-like domain that is structurally distinct from the constant (C) domain of the TCR alpha-chain; nevertheless, the mode of association between pre-Talpha and TCRbeta mirrored that mediated by the Calpha-Cbeta domains of the alphabetaTCR. The pre-TCR had a propensity to dimerize in solution, and the molecular envelope of the pre-TCR dimer correlated well with the observed head-to-tail pre-TCR dimer. This mode of pre-TCR dimerization enabled the pre-Talpha domain to interact with the variable (V) beta domain through residues that are highly conserved across the Vbeta and joining (J) beta gene families, thus mimicking the interactions at the core of the alphabetaTCR's Valpha-Vbeta interface. Disruption of this pre-Talpha-Vbeta dimer interface abrogated pre-TCR dimerization in solution and impaired pre-TCR expression on the cell surface. Accordingly, we provide a mechanism of pre-TCR self-association that allows the pre-Talpha chain to simultaneously 'sample' the correct folding of both the V and C domains of any TCR beta-chain, regardless of its ultimate specificity, which represents a critical checkpoint in T-cell development. This unusual dual-chaperone-like sensing function of pre-Talpha represents a unique mechanism in nature whereby developmental quality control regulates the expression and signalling of an integral membrane receptor complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pang, Siew Siew -- Berry, Richard -- Chen, Zhenjun -- Kjer-Nielsen, Lars -- Perugini, Matthew A -- King, Glenn F -- Wang, Christina -- Chew, Sock Hui -- La Gruta, Nicole L -- Williams, Neal K -- Beddoe, Travis -- Tiganis, Tony -- Cowieson, Nathan P -- Godfrey, Dale I -- Purcell, Anthony W -- Wilce, Matthew C J -- McCluskey, James -- Rossjohn, Jamie -- England -- Nature. 2010 Oct 14;467(7317):844-8. doi: 10.1038/nature09448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944746" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Gene Rearrangement, T-Lymphocyte/genetics ; Humans ; Models, Molecular ; Mutation ; Protein Folding ; *Protein Multimerization ; Protein Structure, Tertiary ; Receptors, Antigen, T-Cell/*chemistry/genetics/*metabolism ; Receptors, Antigen, T-Cell, alpha-beta/chemistry/metabolism ; Signal Transduction ; Solutions ; T-Lymphocytes/cytology/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-02-09
    Description: Although the notion of an early origin and diversification of life on Earth during the Archaean eon has received increasing support in geochemical, sedimentological and palaeontological evidence, ambiguities and controversies persist regarding the biogenicity and syngeneity of the record older than Late Archaean. Non-biological processes are known to produce morphologies similar to some microfossils, and hydrothermal fluids have the potential to produce abiotic organic compounds with depleted carbon isotope values, making it difficult to establish unambiguous traces of life. Here we report the discovery of a population of large (up to about 300 mum in diameter) carbonaceous spheroidal microstructures in Mesoarchaean shales and siltstones of the Moodies Group, South Africa, the Earth's oldest siliciclastic alluvial to tidal-estuarine deposits. These microstructures are interpreted as organic-walled microfossils on the basis of petrographic and geochemical evidence for their endogenicity and syngeneity, their carbonaceous composition, cellular morphology and ultrastructure, occurrence in populations, taphonomic features of soft wall deformation, and the geological context plausible for life, as well as a lack of abiotic explanation falsifying a biological origin. These are the oldest and largest Archaean organic-walled spheroidal microfossils reported so far. Our observations suggest that relatively large microorganisms cohabited with earlier reported benthic microbial mats in the photic zone of marginal marine siliciclastic environments 3.2 billion years ago.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Javaux, Emmanuelle J -- Marshall, Craig P -- Bekker, Andrey -- England -- Nature. 2010 Feb 18;463(7283):934-8. doi: 10.1038/nature08793. Epub 2010 Feb 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geology, University of Liege, 17 allee du 6 Aout B18, Liege 4000, Belgium. ej.javaux@ulg.ac.be〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20139963" target="_blank"〉PubMed〈/a〉
    Keywords: Acids ; Bacteria/chemistry/cytology/isolation & purification/metabolism ; Carbon/analysis/chemistry ; Carbon Isotopes ; *Ecosystem ; Eukaryotic Cells/chemistry/cytology ; *Fossils ; Geologic Sediments/*microbiology ; History, Ancient ; Oceans and Seas ; Organic Chemicals/*analysis/chemistry ; *Phylogeny ; Reproducibility of Results ; Seawater/*microbiology ; South Africa ; Spectrum Analysis, Raman ; Sunlight
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-05-21
    Description: MyD88, IRAK4 and IRAK2 are critical signalling mediators of the TLR/IL1-R superfamily. Here we report the crystal structure of the MyD88-IRAK4-IRAK2 death domain (DD) complex, which surprisingly reveals a left-handed helical oligomer that consists of 6 MyD88, 4 IRAK4 and 4 IRAK2 DDs. Assembly of this helical signalling tower is hierarchical, in which MyD88 recruits IRAK4 and the MyD88-IRAK4 complex recruits the IRAK4 substrates IRAK2 or the related IRAK1. Formation of these Myddosome complexes brings the kinase domains of IRAKs into proximity for phosphorylation and activation. Composite binding sites are required for recruitment of the individual DDs in the complex, which are confirmed by mutagenesis and previously identified signalling mutations. Specificities in Myddosome formation are dictated by both molecular complementarity and correspondence of surface electrostatics. The MyD88-IRAK4-IRAK2 complex provides a template for Toll signalling in Drosophila and an elegant mechanism for versatile assembly and regulation of DD complexes in signal transduction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2888693/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2888693/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Su-Chang -- Lo, Yu-Chih -- Wu, Hao -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 AI050872/AI/NIAID NIH HHS/ -- R01 AI050872-09/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Jun 17;465(7300):885-90. doi: 10.1038/nature09121. Epub 2010 May 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Weill Cornell Medical College, New York, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20485341" target="_blank"〉PubMed〈/a〉
    Keywords: Humans ; *Interleukin-1 Receptor-Associated Kinases/chemistry/metabolism ; *Models, Molecular ; *Myeloid Differentiation Factor 88/chemistry/metabolism ; Protein Structure, Tertiary ; Receptors, Interleukin-1/metabolism/*physiology ; *Signal Transduction ; Toll-Like Receptors/metabolism/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-01-16
    Description: Form I Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase), a complex of eight large (RbcL) and eight small (RbcS) subunits, catalyses the fixation of atmospheric CO(2) in photosynthesis. The limited catalytic efficiency of Rubisco has sparked extensive efforts to re-engineer the enzyme with the goal of enhancing agricultural productivity. To facilitate such efforts we analysed the formation of cyanobacterial form I Rubisco by in vitro reconstitution and cryo-electron microscopy. We show that RbcL subunit folding by the GroEL/GroES chaperonin is tightly coupled with assembly mediated by the chaperone RbcX(2). RbcL monomers remain partially unstable and retain high affinity for GroEL until captured by RbcX(2). As revealed by the structure of a RbcL(8)-(RbcX(2))(8) assembly intermediate, RbcX(2) acts as a molecular staple in stabilizing the RbcL subunits as dimers and facilitates RbcL(8) core assembly. Finally, addition of RbcS results in RbcX(2) release and holoenzyme formation. Specific assembly chaperones may be required more generally in the formation of complex oligomeric structures when folding is closely coupled to assembly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Cuimin -- Young, Anna L -- Starling-Windhof, Amanda -- Bracher, Andreas -- Saschenbrecker, Sandra -- Rao, Bharathi Vasudeva -- Rao, Karnam Vasudeva -- Berninghausen, Otto -- Mielke, Thorsten -- Hartl, F Ulrich -- Beckmann, Roland -- Hayer-Hartl, Manajit -- England -- Nature. 2010 Jan 14;463(7278):197-202. doi: 10.1038/nature08651.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075914" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/metabolism ; Chaperonin 10/metabolism ; Chaperonin 60/metabolism ; Cryoelectron Microscopy ; Holoenzymes/chemistry/metabolism ; Models, Molecular ; Molecular Chaperones/chemistry/*metabolism ; Protein Binding ; *Protein Folding ; *Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Ribulose-Bisphosphate Carboxylase/*chemistry/*metabolism/ultrastructure ; Synechococcus/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-05-25
    Description: The three-dimensional structures of proteins often show a modular architecture comprised of discrete structural regions or domains. Cooperative communication between these regions is important for catalysis, regulation and efficient folding; lack of coupling has been implicated in the formation of fibrils and other misfolding pathologies. How different structural regions of a protein communicate and contribute to a protein's overall energetics and folding, however, is still poorly understood. Here we use a single-molecule optical tweezers approach to induce the selective unfolding of particular regions of T4 lysozyme and monitor the effect on other regions not directly acted on by force. We investigate how the topological organization of a protein (the order of structural elements along the sequence) affects the coupling and folding cooperativity between its domains. To probe the status of the regions not directly subjected to force, we determine the free energy changes during mechanical unfolding using Crooks' fluctuation theorem. We pull on topological variants (circular permutants) and find that the topological organization of the polypeptide chain critically determines the folding cooperativity between domains and thus what parts of the folding/unfolding landscape are explored. We speculate that proteins may have evolved to select certain topologies that increase coupling between regions to avoid areas of the landscape that lead to kinetic trapping and misfolding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911970/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911970/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shank, Elizabeth A -- Cecconi, Ciro -- Dill, Jesse W -- Marqusee, Susan -- Bustamante, Carlos -- GM 32543/GM/NIGMS NIH HHS/ -- GM 50945/GM/NIGMS NIH HHS/ -- R01 GM050945/GM/NIGMS NIH HHS/ -- R01 GM050945-17/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jun 3;465(7298):637-40. doi: 10.1038/nature09021. Epub 2010 May 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20495548" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Bacteriophage T4/*enzymology ; Models, Molecular ; Mutant Proteins/chemistry/genetics/metabolism ; Optical Tweezers ; Probability ; Protein Denaturation ; *Protein Folding ; Protein Structure, Tertiary ; Viral Proteins/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-02-09
    Description: Ca(2+) channels and calmodulin (CaM) are two prominent signalling hubs that synergistically affect functions as diverse as cardiac excitability, synaptic plasticity and gene transcription. It is therefore fitting that these hubs are in some sense coordinated, as the opening of Ca(V)1-2 Ca(2+) channels are regulated by a single CaM constitutively complexed with channels. The Ca(2+)-free form of CaM (apoCaM) is already pre-associated with the isoleucine-glutamine (IQ) domain on the channel carboxy terminus, and subsequent Ca(2+) binding to this 'resident' CaM drives conformational changes that then trigger regulation of channel opening. Another potential avenue for channel-CaM coordination could arise from the absence of Ca(2+) regulation in channels lacking a pre-associated CaM. Natural fluctuations in CaM concentrations might then influence the fraction of regulable channels and, thereby, the overall strength of Ca(2+) feedback. However, the prevailing view has been that the ultrastrong affinity of channels for apoCaM ensures their saturation with CaM, yielding a significant form of concentration independence between Ca(2+) channels and CaM. Here we show that significant exceptions to this autonomy exist, by combining electrophysiology (to characterize channel regulation) with optical fluorescence resonance energy transfer (FRET) sensor determination of free-apoCaM concentration in live cells. This approach translates quantitative CaM biochemistry from the traditional test-tube context into the realm of functioning holochannels within intact cells. From this perspective, we find that long splice forms of Ca(V)1.3 and Ca(V)1.4 channels include a distal carboxy tail that resembles an enzyme competitive inhibitor that retunes channel affinity for apoCaM such that natural CaM variations affect the strength of Ca(2+) feedback modulation. Given the ubiquity of these channels, the connection between ambient CaM levels and Ca(2+) entry through channels is broadly significant for Ca(2+) homeostasis. Strategies such as ours promise key advances for the in situ analysis of signalling molecules resistant to in vitro reconstitution, such as Ca(2+) channels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553577/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553577/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Xiaodong -- Yang, Philemon S -- Yang, Wanjun -- Yue, David T -- P30 DC005211/DC/NIDCD NIH HHS/ -- R01 DC000276/DC/NIDCD NIH HHS/ -- England -- Nature. 2010 Feb 18;463(7283):968-72. doi: 10.1038/nature08766. Epub 2010 Feb 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20139964" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Animals ; Apoproteins/analysis/metabolism ; Binding, Competitive/drug effects ; Calcium/analysis/metabolism/pharmacology ; Calcium Channel Blockers/*chemistry/*metabolism ; Calcium Channels/*chemistry/genetics/*metabolism ; Calmodulin/analysis/*metabolism ; Cell Line ; Cell Survival ; Electrophysiology ; *Feedback, Physiological ; Fluorescence Resonance Energy Transfer ; Humans ; Protein Structure, Tertiary ; Rats ; Recombinant Fusion Proteins/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-12-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bernado, Pau -- Blackledge, Martin -- England -- Nature. 2010 Dec 23;468(7327):1046-8. doi: 10.1038/4681046a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21179158" target="_blank"〉PubMed〈/a〉
    Keywords: *Biochemistry/methods ; Models, Chemical ; Protein Structure, Tertiary ; Proteins/*chemistry ; Proto-Oncogene Proteins c-hck/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-10-12
    Description: Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved alpha-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheard, Laura B -- Tan, Xu -- Mao, Haibin -- Withers, John -- Ben-Nissan, Gili -- Hinds, Thomas R -- Kobayashi, Yuichi -- Hsu, Fong-Fu -- Sharon, Michal -- Browse, John -- He, Sheng Yang -- Rizo, Josep -- Howe, Gregg A -- Zheng, Ning -- P30 DK056341/DK/NIDDK NIH HHS/ -- P30 DK056341-10/DK/NIDDK NIH HHS/ -- R01 AI068718/AI/NIAID NIH HHS/ -- R01 AI068718-04/AI/NIAID NIH HHS/ -- R01 CA107134/CA/NCI NIH HHS/ -- R01 CA107134-07/CA/NCI NIH HHS/ -- R01 GM057795/GM/NIGMS NIH HHS/ -- R01 GM057795-12/GM/NIGMS NIH HHS/ -- R01AI068718/AI/NIAID NIH HHS/ -- R01GM57795/GM/NIGMS NIH HHS/ -- T32 GM07270/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Nov 18;468(7322):400-5. doi: 10.1038/nature09430. Epub 2010 Oct 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20927106" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/chemistry/metabolism ; Arabidopsis/chemistry/metabolism ; Arabidopsis Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Cyclopentanes/chemistry/*metabolism ; F-Box Proteins/chemistry/metabolism ; Indenes/chemistry/metabolism ; Inositol Phosphates/*metabolism ; Isoleucine/analogs & derivatives/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxylipins/chemistry/*metabolism ; Peptide Fragments/chemistry/metabolism ; Plant Growth Regulators/chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2010-03-26
    Description: Soil respiration, R(S), the flux of microbially and plant-respired carbon dioxide (CO(2)) from the soil surface to the atmosphere, is the second-largest terrestrial carbon flux. However, the dynamics of R(S) are not well understood and the global flux remains poorly constrained. Ecosystem warming experiments, modelling analyses and fundamental biokinetics all suggest that R(S) should change with climate. This has been difficult to confirm observationally because of the high spatial variability of R(S), inaccessibility of the soil medium and the inability of remote-sensing instruments to measure R(S) on large scales. Despite these constraints, it may be possible to discern climate-driven changes in regional or global R(S) values in the extant four-decade record of R(S) chamber measurements. Here we construct a database of worldwide R(S) observations matched with high-resolution historical climate data and find a previously unknown temporal trend in the R(S) record after accounting for mean annual climate, leaf area, nitrogen deposition and changes in CO(2) measurement technique. We find that the air temperature anomaly (the deviation from the 1961-1990 mean) is significantly and positively correlated with changes in R(S). We estimate that the global R(S) in 2008 (that is, the flux integrated over the Earth's land surface over 2008) was 98 +/- 12 Pg C and that it increased by 0.1 Pg C yr(-1) between 1989 and 2008, implying a global R(S) response to air temperature (Q(10)) of 1.5. An increasing global R(S) value does not necessarily constitute a positive feedback to the atmosphere, as it could be driven by higher carbon inputs to soil rather than by mobilization of stored older carbon. The available data are, however, consistent with an acceleration of the terrestrial carbon cycle in response to global climate change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bond-Lamberty, Ben -- Thomson, Allison -- England -- Nature. 2010 Mar 25;464(7288):579-82. doi: 10.1038/nature08930.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pacific Northwest National Laboratory, Joint Global Change Research Institute at the University of Maryland-College Park, 5825 University Research Court, Suite 3500, College Park, Maryland 20740, USA. bondlamberty@pnl.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20336143" target="_blank"〉PubMed〈/a〉
    Keywords: *Ecosystem ; Models, Theoretical ; Soil/*analysis ; *Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2010-05-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chong, Kwek Yan -- Yeo, Chow Khoon -- Koon Yee, Alex Thiam -- England -- Nature. 2010 May 27;465(7297):420. doi: 10.1038/465420b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20505709" target="_blank"〉PubMed〈/a〉
    Keywords: Biodiversity ; Droughts ; *Ecosystem ; *Global Warming ; Rain ; Trees/classification/*growth & development ; *Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2010-04-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Glausiusz, Josie -- England -- Nature. 2010 Apr 22;464(7292):1118-20. doi: 10.1038/4641118a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20414284" target="_blank"〉PubMed〈/a〉
    Keywords: *Altitude ; Animals ; Desert Climate ; *Ecosystem ; Eutrophication ; Fresh Water/*analysis/chemistry/microbiology ; Indian Ocean ; International Cooperation ; Middle East ; Salinity ; Volatilization ; *Water Supply/analysis/economics/statistics & numerical data
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2010-10-15
    Description: The evolution and maintenance of sexual reproduction has puzzled biologists for decades. Although this field is rich in hypotheses, experimental evidence is scarce. Some important experiments have demonstrated differences in evolutionary rates between sexual and asexual populations; other experiments have documented evolutionary changes in phenomena related to genetic mixing, such as recombination and selfing. However, direct experiments of the evolution of sex within populations are extremely rare (but see ref. 12). Here we use the rotifer, Brachionus calyciflorus, which is capable of both sexual and asexual reproduction, to test recent theory predicting that there is more opportunity for sex to evolve in spatially heterogeneous environments. Replicated experimental populations of rotifers were maintained in homogeneous environments, composed of either high- or low-quality food habitats, or in heterogeneous environments that consisted of a mix of the two habitats. For populations maintained in either type of homogeneous environment, the rate of sex evolves rapidly towards zero. In contrast, higher rates of sex evolve in populations experiencing spatially heterogeneous environments. The data indicate that the higher level of sex observed under heterogeneity is not due to sex being less costly or selection against sex being less efficient; rather sex is sufficiently advantageous in heterogeneous environments to overwhelm its inherent costs. Counter to some alternative theories for the evolution of sex, there is no evidence that genetic drift plays any part in the evolution of sex in these populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Becks, Lutz -- Agrawal, Aneil F -- England -- Nature. 2010 Nov 4;468(7320):89-92. doi: 10.1038/nature09449. Epub 2010 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada. lutz.becks@utoronto.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944628" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Migration/physiology ; Animals ; *Biological Evolution ; Diet/veterinary ; *Ecosystem ; Female ; *Food ; Genetic Drift ; Male ; Meiosis/genetics ; Models, Biological ; Ovum/physiology ; Population Density ; Reproduction/physiology ; Reproduction, Asexual/physiology ; Rotifera/cytology/genetics/*physiology ; Selection, Genetic ; *Sex
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2010-03-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schiermeier, Quirin -- England -- Nature. 2010 Mar 25;464(7288):472-3. doi: 10.1038/464472b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20336100" target="_blank"〉PubMed〈/a〉
    Keywords: Antarctic Regions ; *Ecosystem ; *Fresh Water/analysis/microbiology ; Ice Cover
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2010-06-26
    Description: DNA polymerase eta (Poleta) is unique among eukaryotic polymerases in its proficient ability for error-free replication through ultraviolet-induced cyclobutane pyrimidine dimers, and inactivation of Poleta (also known as POLH) in humans causes the variant form of xeroderma pigmentosum (XPV). We present the crystal structures of Saccharomyces cerevisiae Poleta (also known as RAD30) in ternary complex with a cis-syn thymine-thymine (T-T) dimer and with undamaged DNA. The structures reveal that the ability of Poleta to replicate efficiently through the ultraviolet-induced lesion derives from a simple and yet elegant mechanism, wherein the two Ts of the T-T dimer are accommodated in an active site cleft that is much more open than in other polymerases. We also show by structural, biochemical and genetic analysis that the two Ts are maintained in a stable configuration in the active site via interactions with Gln 55, Arg 73 and Met 74. Together, these features define the basis for Poleta's action on ultraviolet-damaged DNA that is crucial in suppressing the mutagenic and carcinogenic consequences of sun exposure, thereby reducing the incidence of skin cancers in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030469/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030469/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Silverstein, Timothy D -- Johnson, Robert E -- Jain, Rinku -- Prakash, Louise -- Prakash, Satya -- Aggarwal, Aneel K -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 CA107650/CA/NCI NIH HHS/ -- R01 CA107650-39/CA/NCI NIH HHS/ -- R01 ES017767/ES/NIEHS NIH HHS/ -- R01 ES017767-01/ES/NIEHS NIH HHS/ -- England -- Nature. 2010 Jun 24;465(7301):1039-43. doi: 10.1038/nature09104.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural and Chemical Biology, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577207" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA Damage ; DNA-Directed DNA Polymerase/*chemistry/genetics/*metabolism ; Humans ; Kinetics ; Models, Molecular ; Mutation, Missense ; Nucleic Acid Conformation ; Protein Structure, Tertiary ; Pyrimidine Dimers/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; Skin Neoplasms/*enzymology/genetics ; Structure-Activity Relationship ; Xeroderma Pigmentosum/enzymology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2010-11-19
    Description: Biodiversity indicators provide a vital window on the state of the planet, guiding policy development and management. The most widely adopted marine indicator is mean trophic level (MTL) from catches, intended to detect shifts from high-trophic-level predators to low-trophic-level invertebrates and plankton-feeders. This indicator underpins reported trends in human impacts, declining when predators collapse ("fishing down marine food webs") and when low-trophic-level fisheries expand ("fishing through marine food webs"). The assumption is that catch MTL measures changes in ecosystem MTL and biodiversity. Here we combine model predictions with global assessments of MTL from catches, trawl surveys and fisheries stock assessments and find that catch MTL does not reliably predict changes in marine ecosystems. Instead, catch MTL trends often diverge from ecosystem MTL trends obtained from surveys and assessments. In contrast to previous findings of rapid declines in catch MTL, we observe recent increases in catch, survey and assessment MTL. However, catches from most trophic levels are rising, which can intensify fishery collapses even when MTL trends are stable or increasing. To detect fishing impacts on marine biodiversity, we recommend greater efforts to measure true abundance trends for marine species, especially those most vulnerable to fishing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Branch, Trevor A -- Watson, Reg -- Fulton, Elizabeth A -- Jennings, Simon -- McGilliard, Carey R -- Pablico, Grace T -- Ricard, Daniel -- Tracey, Sean R -- England -- Nature. 2010 Nov 18;468(7322):431-5. doi: 10.1038/nature09528.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Aquatic and Fishery Sciences, Box 355020, University of Washington, Seattle, Washington 98195-5020, USA. tbranch@uw.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21085178" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/*isolation & purification/*metabolism ; Biodiversity ; Biomass ; Databases, Factual ; *Ecosystem ; Environmental Policy ; *Fisheries ; *Fishes/metabolism ; Food Chain ; Human Activities ; Invertebrates/metabolism ; Models, Biological ; Plankton/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2010-06-04
    Description: Ecological interactions are crucial to understanding both the ecology and the evolution of organisms. Because the phenotypic traits regulating species interactions are largely a legacy of their ancestors, it is widely assumed that ecological interactions are phylogenetically conserved, with closely related species interacting with similar partners. However, the existing empirical evidence is inadequate to appropriately evaluate the hypothesis of phylogenetic conservatism in ecological interactions, because it is both ecologically and taxonomically biased. In fact, most studies on the evolution of ecological interactions have focused on specialized organisms, such as some parasites or insect herbivores, belonging to a limited subset of the overall tree of life. Here we study the evolution of host use in a large and diverse group of interactions comprising both specialist and generalist acellular, unicellular and multicellular organisms. We show that, as previously found for specialized interactions, generalized interactions can be evolutionarily conserved. Significant phylogenetic conservatism of interaction patterns was equally likely to occur in symbiotic and non-symbiotic interactions, as well as in mutualistic and antagonistic interactions. Host-use differentiation among species was higher in phylogenetically conserved clades, irrespective of their generalization degree and taxonomic position within the tree of life. Our findings strongly suggest a shared pattern in the organization of biological systems through evolutionary time, mediated by marked conservatism of ecological interactions among taxa.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gomez, Jose M -- Verdu, Miguel -- Perfectti, Francisco -- England -- Nature. 2010 Jun 17;465(7300):918-21. doi: 10.1038/nature09113. Epub 2010 Jun 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departamento de Ecologia, Universidad de Granada, E-18071 Granada, Spain. jmgreyes@ugr.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20520609" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; *Ecosystem ; Host-Parasite Interactions ; *Phylogeny ; Symbiosis/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-12-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gates, John B -- England -- Nature. 2010 Dec 9;468(7325):765. doi: 10.1038/468765a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21150980" target="_blank"〉PubMed〈/a〉
    Keywords: Canada ; Chemical Hazard Release ; Disclosure ; *Ecosystem ; Environmental Pollutants/adverse effects ; *Mining ; Petroleum/*adverse effects ; *Public Opinion ; *Research Personnel ; Risk Assessment ; United States ; Water Supply
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2010-08-10
    Description: Mitochondrial calcium uptake has a central role in cell physiology by stimulating ATP production, shaping cytosolic calcium transients and regulating cell death. The biophysical properties of mitochondrial calcium uptake have been studied in detail, but the underlying proteins remain elusive. Here we use an integrative strategy to predict human genes involved in mitochondrial calcium entry based on clues from comparative physiology, evolutionary genomics and organelle proteomics. RNA interference against 13 top candidates highlighted one gene, CBARA1, that we call hereafter mitochondrial calcium uptake 1 (MICU1). Silencing MICU1 does not disrupt mitochondrial respiration or membrane potential but abolishes mitochondrial calcium entry in intact and permeabilized cells, and attenuates the metabolic coupling between cytosolic calcium transients and activation of matrix dehydrogenases. MICU1 is associated with the mitochondrial inner membrane and has two canonical EF hands that are essential for its activity, indicating a role in calcium sensing. MICU1 represents the founding member of a set of proteins required for high-capacity mitochondrial calcium uptake. Its discovery may lead to the complete molecular characterization of mitochondrial calcium uptake pathways, and offers genetic strategies for understanding their contribution to normal physiology and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2977980/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2977980/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perocchi, Fabiana -- Gohil, Vishal M -- Girgis, Hany S -- Bao, X Robert -- McCombs, Janet E -- Palmer, Amy E -- Mootha, Vamsi K -- DK080261/DK/NIDDK NIH HHS/ -- GM0077465/GM/NIGMS NIH HHS/ -- GM084027/GM/NIGMS NIH HHS/ -- R01 GM077465/GM/NIGMS NIH HHS/ -- R01 GM077465-01A1/GM/NIGMS NIH HHS/ -- R01 GM077465-02/GM/NIGMS NIH HHS/ -- R01 GM077465-03/GM/NIGMS NIH HHS/ -- R01 GM077465-04/GM/NIGMS NIH HHS/ -- R01 GM077465-05/GM/NIGMS NIH HHS/ -- R01 GM077465-06/GM/NIGMS NIH HHS/ -- R01 GM084027/GM/NIGMS NIH HHS/ -- R24 DK080261/DK/NIDDK NIH HHS/ -- R24 DK080261-04/DK/NIDDK NIH HHS/ -- TR2 GM08759/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Sep 16;467(7313):291-6. doi: 10.1038/nature09358. Epub 2010 Aug 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20693986" target="_blank"〉PubMed〈/a〉
    Keywords: Allergens/*chemistry/genetics/*metabolism ; Amino Acid Sequence ; Antigens, Plant ; Calcium/*metabolism ; *Calcium Signaling ; Calcium-Binding Proteins/*chemistry/deficiency/genetics/*metabolism ; Cation Transport Proteins ; Cell Respiration ; Cytoplasm/metabolism ; DNA, Mitochondrial/analysis ; *EF Hand Motifs ; Endoplasmic Reticulum/metabolism ; Gene Knockdown Techniques ; HeLa Cells ; Homeostasis ; Humans ; Membrane Potentials ; Mitochondria/*metabolism ; Mitochondrial Membrane Transport Proteins ; Mitochondrial Proteins/*chemistry/deficiency/genetics/*metabolism ; NAD/metabolism ; NADP/metabolism ; Oxidative Phosphorylation ; Protein Structure, Tertiary ; Protein Transport ; RNA Interference
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2010-01-30
    Description: Vitamin K epoxide reductase (VKOR) generates vitamin K hydroquinone to sustain gamma-carboxylation of many blood coagulation factors. Here, we report the 3.6 A crystal structure of a bacterial homologue of VKOR from Synechococcus sp. The structure shows VKOR in complex with its naturally fused redox partner, a thioredoxin-like domain, and corresponds to an arrested state of electron transfer. The catalytic core of VKOR is a four transmembrane helix bundle that surrounds a quinone, connected through an additional transmembrane segment with the periplasmic thioredoxin-like domain. We propose a pathway for how VKOR uses electrons from cysteines of newly synthesized proteins to reduce a quinone, a mechanism confirmed by in vitro reconstitution of vitamin K-dependent disulphide bridge formation. Our results have implications for the mechanism of the mammalian VKOR and explain how mutations can cause resistance to the VKOR inhibitor warfarin, the most commonly used oral anticoagulant.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2919313/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2919313/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Weikai -- Schulman, Sol -- Dutton, Rachel J -- Boyd, Dana -- Beckwith, Jon -- Rapoport, Tom A -- GMO41883/PHS HHS/ -- K99 HL097083/HL/NHLBI NIH HHS/ -- K99 HL097083-01/HL/NHLBI NIH HHS/ -- K991K99HL097083/HL/NHLBI NIH HHS/ -- R00 HL097083/HL/NHLBI NIH HHS/ -- R01 GM041883/GM/NIGMS NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jan 28;463(7280):507-12. doi: 10.1038/nature08720.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA. weikai@crystal.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20110994" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anticoagulants ; Bacterial Proteins/chemistry ; Catalytic Domain ; Disulfides/chemistry ; Drug Resistance/genetics ; Electron Transport ; Humans ; Membrane Proteins/chemistry ; Mixed Function Oxygenases/*chemistry/genetics ; *Models, Molecular ; Protein Structure, Tertiary ; Synechococcus/*enzymology ; Vitamin K Epoxide Reductases ; Warfarin
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2010-09-25
    Description: Gram-negative bacteria, such as Escherichia coli, frequently use tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel various toxic compounds from the cell. The efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions. No previous structural information was available for the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here we describe the crystal structures of the inner-membrane transporter CusA in the absence and presence of bound Cu(I) or Ag(I). These CusA structures provide new structural information about the HME subfamily of RND efflux pumps. The structures suggest that the metal-binding sites, formed by a three-methionine cluster, are located within the cleft region of the periplasmic domain. This cleft is closed in the apo-CusA form but open in the CusA-Cu(I) and CusA-Ag(I) structures, which directly suggests a plausible pathway for ion export. Binding of Cu(I) and Ag(I) triggers significant conformational changes in both the periplasmic and transmembrane domains. The crystal structure indicates that CusA has, in addition to the three-methionine metal-binding site, four methionine pairs-three located in the transmembrane region and one in the periplasmic domain. Genetic analysis and transport assays suggest that CusA is capable of actively picking up metal ions from the cytosol, using these methionine pairs or clusters to bind and export metal ions. These structures suggest a stepwise shuttle mechanism for transport between these sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Feng -- Su, Chih-Chia -- Zimmermann, Michael T -- Boyken, Scott E -- Rajashankar, Kanagalaghatta R -- Jernigan, Robert L -- Yu, Edward W -- GM 072014/GM/NIGMS NIH HHS/ -- GM 074027/GM/NIGMS NIH HHS/ -- GM 081680/GM/NIGMS NIH HHS/ -- GM 086431/GM/NIGMS NIH HHS/ -- R01 GM072014/GM/NIGMS NIH HHS/ -- R01 GM074027/GM/NIGMS NIH HHS/ -- R01 GM074027-05/GM/NIGMS NIH HHS/ -- R01 GM086431/GM/NIGMS NIH HHS/ -- R01 GM086431-01A2/GM/NIGMS NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Sep 23;467(7314):484-8. doi: 10.1038/nature09395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, Iowa 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20865003" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/chemistry/metabolism ; Binding Sites ; Cell Membrane/metabolism ; Copper/chemistry/*metabolism ; Crystallography, X-Ray ; Cytosol/metabolism ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Ion Transport ; Membrane Transport Proteins/*chemistry/*metabolism ; Methionine/*metabolism ; Models, Biological ; Models, Molecular ; Periplasm/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Silver/chemistry/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2010-09-30
    Description: Cell-cell signalling of semaphorin ligands through interaction with plexin receptors is important for the homeostasis and morphogenesis of many tissues and is widely studied for its role in neural connectivity, cancer, cell migration and immune responses. SEMA4D and Sema6A exemplify two diverse vertebrate, membrane-spanning semaphorin classes (4 and 6) that are capable of direct signalling through members of the two largest plexin classes, B and A, respectively. In the absence of any structural information on the plexin ectodomain or its interaction with semaphorins the extracellular specificity and mechanism controlling plexin signalling has remained unresolved. Here we present crystal structures of cognate complexes of the semaphorin-binding regions of plexins B1 and A2 with semaphorin ectodomains (human PLXNB1(1-2)-SEMA4D(ecto) and murine PlxnA2(1-4)-Sema6A(ecto)), plus unliganded structures of PlxnA2(1-4) and Sema6A(ecto). These structures, together with biophysical and cellular assays of wild-type and mutant proteins, reveal that semaphorin dimers independently bind two plexin molecules and that signalling is critically dependent on the avidity of the resulting bivalent 2:2 complex (monomeric semaphorin binds plexin but fails to trigger signalling). In combination, our data favour a cell-cell signalling mechanism involving semaphorin-stabilized plexin dimerization, possibly followed by clustering, which is consistent with previous functional data. Furthermore, the shared generic architecture of the complexes, formed through conserved contacts of the amino-terminal seven-bladed beta-propeller (sema) domains of both semaphorin and plexin, suggests that a common mode of interaction triggers all semaphorin-plexin based signalling, while distinct insertions within or between blades of the sema domains determine binding specificity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587840/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587840/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janssen, Bert J C -- Robinson, Ross A -- Perez-Branguli, Francesc -- Bell, Christian H -- Mitchell, Kevin J -- Siebold, Christian -- Jones, E Yvonne -- 082301/Wellcome Trust/United Kingdom -- 083111/Wellcome Trust/United Kingdom -- 10976/Cancer Research UK/United Kingdom -- A10976/Cancer Research UK/United Kingdom -- A3964/Cancer Research UK/United Kingdom -- A5261/Cancer Research UK/United Kingdom -- G0700232/Medical Research Council/United Kingdom -- G0700232(82098)/Medical Research Council/United Kingdom -- G0900084/Medical Research Council/United Kingdom -- G9900061/Medical Research Council/United Kingdom -- G9900061(69203)/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Oct 28;467(7319):1118-22. doi: 10.1038/nature09468. Epub 2010 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20877282" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/chemistry/genetics/metabolism ; Binding Sites ; Cell Adhesion Molecules/*chemistry/genetics/*metabolism ; Cell Communication ; Crystallography, X-Ray ; Humans ; Ligands ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; NIH 3T3 Cells ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/metabolism ; Semaphorins/*chemistry/genetics/*metabolism ; *Signal Transduction ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2010-11-05
    Description: Many physiological events require transient increases in cytosolic Ca(2+) concentrations. Ryanodine receptors (RyRs) are ion channels that govern the release of Ca(2+) from the endoplasmic and sarcoplasmic reticulum. Mutations in RyRs can lead to severe genetic conditions that affect both cardiac and skeletal muscle, but locating the mutated residues in the full-length channel structure has been difficult. Here we show the 2.5 A resolution crystal structure of a region spanning three domains of RyR type 1 (RyR1), encompassing amino acid residues 1-559. The domains interact with each other through a predominantly hydrophilic interface. Docking in RyR1 electron microscopy maps unambiguously places the domains in the cytoplasmic portion of the channel, forming a 240-kDa cytoplasmic vestibule around the four-fold symmetry axis. We pinpoint the exact locations of more than 50 disease-associated mutations in full-length RyR1 and RyR2. The mutations can be classified into three groups: those that destabilize the interfaces between the three amino-terminal domains, disturb the folding of individual domains or affect one of six interfaces with other parts of the receptor. We propose a model whereby the opening of a RyR coincides with allosterically coupled motions within the N-terminal domains. This process can be affected by mutations that target various interfaces within and across subunits. The crystal structure provides a framework to understand the many disease-associated mutations in RyRs that have been studied using functional methods, and will be useful for developing new strategies to modulate RyR function in disease states.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tung, Ching-Chieh -- Lobo, Paolo A -- Kimlicka, Lynn -- Van Petegem, Filip -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Nov 25;468(7323):585-8. doi: 10.1038/nature09471. Epub 2010 Nov 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21048710" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Models, Molecular ; Mutation/genetics ; Protein Structure, Tertiary ; Rabbits ; Ryanodine Receptor Calcium Release Channel/*chemistry/*genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2010-07-14
    Description: While reversible histone modifications are linked to an ever-expanding range of biological functions, the demethylases for histone H4 lysine 20 and their potential regulatory roles remain unknown. Here we report that the PHD and Jumonji C (JmjC) domain-containing protein, PHF8, while using multiple substrates, including H3K9me1/2 and H3K27me2, also functions as an H4K20me1 demethylase. PHF8 is recruited to promoters by its PHD domain based on interaction with H3K4me2/3 and controls G1-S transition in conjunction with E2F1, HCF-1 (also known as HCFC1) and SET1A (also known as SETD1A), at least in part, by removing the repressive H4K20me1 mark from a subset of E2F1-regulated gene promoters. Phosphorylation-dependent PHF8 dismissal from chromatin in prophase is apparently required for the accumulation of H4K20me1 during early mitosis, which might represent a component of the condensin II loading process. Accordingly, the HEAT repeat clusters in two non-structural maintenance of chromosomes (SMC) condensin II subunits, N-CAPD3 and N-CAPG2 (also known as NCAPD3 and NCAPG2, respectively), are capable of recognizing H4K20me1, and ChIP-Seq analysis demonstrates a significant overlap of condensin II and H4K20me1 sites in mitotic HeLa cells. Thus, the identification and characterization of an H4K20me1 demethylase, PHF8, has revealed an intimate link between this enzyme and two distinct events in cell cycle progression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059551/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059551/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Wen -- Tanasa, Bogdan -- Tyurina, Oksana V -- Zhou, Tian Yuan -- Gassmann, Reto -- Liu, Wei Ting -- Ohgi, Kenneth A -- Benner, Chris -- Garcia-Bassets, Ivan -- Aggarwal, Aneel K -- Desai, Arshad -- Dorrestein, Pieter C -- Glass, Christopher K -- Rosenfeld, Michael G -- R01 CA097134/CA/NCI NIH HHS/ -- R01 CA097134-09/CA/NCI NIH HHS/ -- R01 DK018477/DK/NIDDK NIH HHS/ -- R01 DK018477-35/DK/NIDDK NIH HHS/ -- R01 DK039949/DK/NIDDK NIH HHS/ -- R01 DK039949-18/DK/NIDDK NIH HHS/ -- R01 HL065445/HL/NHLBI NIH HHS/ -- R01 NS034934/NS/NINDS NIH HHS/ -- R01 NS034934-21/NS/NINDS NIH HHS/ -- R37 DK039949/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jul 22;466(7305):508-12. doi: 10.1038/nature09272. Epub 2010 Jul 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20622854" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry/metabolism ; Cell Cycle/*physiology ; Cell Line ; Chromatin/metabolism ; Chromosomal Proteins, Non-Histone/chemistry/deficiency/genetics/*metabolism ; DNA-Binding Proteins/chemistry/metabolism ; HeLa Cells ; Histone Demethylases/chemistry/genetics/*metabolism ; Histone-Lysine N-Methyltransferase/metabolism ; Histones/chemistry/*metabolism ; Host Cell Factor C1/genetics/metabolism ; Humans ; Lysine/*metabolism ; Methylation ; Multiprotein Complexes/chemistry/metabolism ; Phosphorylation ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Transcription Factors/chemistry/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-05-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2010 May 27;465(7297):397-8. doi: 10.1038/465397b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20505686" target="_blank"〉PubMed〈/a〉
    Keywords: Disaster Planning/organization & administration ; *Ecosystem ; Mexico ; Oceans and Seas ; Petroleum/*analysis/poisoning/toxicity ; Relief Work/*organization & administration ; Research/economics/*trends ; Seawater/*chemistry ; United States ; United States Government Agencies/*organization & administration
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2010-07-30
    Description: The post-translational methylation of alpha-amino groups was first discovered over 30 years ago on the bacterial ribosomal proteins L16 and L33 (refs 1, 2), but almost nothing is known about the function or enzymology of this modification. Several other bacterial and eukaryotic proteins have since been shown to be alpha-N-methylated. However, the Ran guanine nucleotide-exchange factor, RCC1, is the only protein for which any biological function of alpha-N-methylation has been identified. Methylation-defective mutants of RCC1 have reduced affinity for DNA and cause mitotic defects, but further characterization of this modification has been hindered by ignorance of the responsible methyltransferase. All fungal and animal N-terminally methylated proteins contain a unique N-terminal motif, Met-(Ala/Pro/Ser)-Pro-Lys, indicating that they may be targets of the same, unknown enzyme. The initiating Met is cleaved, and the exposed alpha-amino group is mono-, di- or trimethylated. Here we report the discovery of the first alpha-N-methyltransferase, which we named N-terminal RCC1 methyltransferase (NRMT). Substrate docking and mutational analysis of RCC1 defined the NRMT recognition sequence and enabled the identification of numerous new methylation targets, including SET (also known as TAF-I or PHAPII) and the retinoblastoma protein, RB. Knockdown of NRMT recapitulates the multi-spindle phenotype seen with methylation-defective RCC1 mutants, demonstrating the importance of alpha-N-methylation for normal bipolar spindle formation and chromosome segregation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939154/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939154/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tooley, Christine E Schaner -- Petkowski, Janusz J -- Muratore-Schroeder, Tara L -- Balsbaugh, Jeremy L -- Shabanowitz, Jeffrey -- Sabat, Michal -- Minor, Wladek -- Hunt, Donald F -- Macara, Ian G -- R01 GM050526/GM/NIGMS NIH HHS/ -- R01 GM050526-17/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Aug 26;466(7310):1125-8. doi: 10.1038/nature09343.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA. ces5g@virginia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20668449" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/*metabolism ; Cell Line ; Chromosome Segregation ; Gene Knockdown Techniques ; Guanine Nucleotide Exchange Factors/*metabolism ; HeLa Cells ; Histone Chaperones/metabolism ; Humans ; Methyltransferases/chemistry/genetics/*metabolism ; Models, Molecular ; Mutation/genetics ; Nuclear Proteins/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Retinoblastoma Protein/*metabolism ; Spindle Apparatus/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-08-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schrope, Mark -- England -- Nature. 2010 Aug 12;466(7308):802. doi: 10.1038/466802a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20703275" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Disasters/*statistics & numerical data ; Ecology ; *Ecosystem ; Marine Biology ; Oceanography ; Oceans and Seas ; Petroleum/adverse effects/*analysis ; Reproducibility of Results ; Seawater/*chemistry ; *Uncertainty ; Volatilization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-07-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gaskill, Melissa -- England -- Nature. 2010 Jul 1;466(7302):14-5. doi: 10.1038/466014a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20595980" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Identification Systems/utilization ; Animal Migration ; Animals ; *Disasters ; *Ecosystem ; Female ; Food Chain ; Larva/drug effects/growth & development ; Marine Biology ; Mexico ; Oceans and Seas ; Petroleum/analysis/*poisoning/*toxicity ; Seawater/*chemistry ; Sharks/physiology ; Survival Rate ; Tuna/physiology ; Turtles/physiology ; Whales/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-07-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schrope, Mark -- England -- Nature. 2010 Jul 15;466(7304):304-5. doi: 10.1038/466304a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20631769" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Disasters/history ; *Ecosystem ; Fisheries/history/statistics & numerical data ; History, 20th Century ; History, 21st Century ; Marine Biology/history/trends ; Mexico ; Oceans and Seas ; Ostreidae ; Petroleum/*analysis/*toxicity ; Population Dynamics ; Research/history/*statistics & numerical data/trends ; Seawater/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2010-05-14
    Description: A huge variety of proteins are able to form fibrillar structures, especially at high protein concentrations. Hence, it is surprising that spider silk proteins can be stored in a soluble form at high concentrations and transformed into extremely stable fibres on demand. Silk proteins are reminiscent of amphiphilic block copolymers containing stretches of polyalanine and glycine-rich polar elements forming a repetitive core flanked by highly conserved non-repetitive amino-terminal and carboxy-terminal domains. The N-terminal domain comprises a secretion signal, but further functions remain unassigned. The C-terminal domain was implicated in the control of solubility and fibre formation initiated by changes in ionic composition and mechanical stimuli known to align the repetitive sequence elements and promote beta-sheet formation. However, despite recent structural data, little is known about this remarkable behaviour in molecular detail. Here we present the solution structure of the C-terminal domain of a spider dragline silk protein and provide evidence that the structural state of this domain is essential for controlled switching between the storage and assembly forms of silk proteins. In addition, the C-terminal domain also has a role in the alignment of secondary structural features formed by the repetitive elements in the backbone of spider silk proteins, which is known to be important for the mechanical properties of the fibre.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hagn, Franz -- Eisoldt, Lukas -- Hardy, John G -- Vendrely, Charlotte -- Coles, Murray -- Scheibel, Thomas -- Kessler, Horst -- England -- Nature. 2010 May 13;465(7295):239-42. doi: 10.1038/nature08936.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Integrated Protein Science (CIPSM), Technische Universitat Munchen, 85747 Garching, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20463741" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calorimetry, Differential Scanning ; Circular Dichroism ; *Conserved Sequence ; Hydrophobic and Hydrophilic Interactions ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Protein Structure, Tertiary ; Silk/*chemistry/*metabolism ; Spectrometry, Fluorescence ; Spectroscopy, Fourier Transform Infrared ; Spiders/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-09-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tollefson, Jeff -- England -- Nature. 2010 Sep 23;467(7314):386-7. doi: 10.1038/467386a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20864970" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; Brazil ; Carbon Dioxide/*analysis/metabolism ; *Ecosystem ; Environmental Monitoring/economics/*instrumentation ; Forestry ; Germany ; Global Warming ; *Greenhouse Effect ; Time Factors ; Trees/growth & development/*metabolism ; Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2010-09-28
    Description: Epigenetic proteins are intently pursued targets in ligand discovery. So far, successful efforts have been limited to chromatin modifying enzymes, or so-called epigenetic 'writers' and 'erasers'. Potent inhibitors of histone binding modules have not yet been described. Here we report a cell-permeable small molecule (JQ1) that binds competitively to acetyl-lysine recognition motifs, or bromodomains. High potency and specificity towards a subset of human bromodomains is explained by co-crystal structures with bromodomain and extra-terminal (BET) family member BRD4, revealing excellent shape complementarity with the acetyl-lysine binding cavity. Recurrent translocation of BRD4 is observed in a genetically-defined, incurable subtype of human squamous carcinoma. Competitive binding by JQ1 displaces the BRD4 fusion oncoprotein from chromatin, prompting squamous differentiation and specific antiproliferative effects in BRD4-dependent cell lines and patient-derived xenograft models. These data establish proof-of-concept for targeting protein-protein interactions of epigenetic 'readers', and provide a versatile chemical scaffold for the development of chemical probes more broadly throughout the bromodomain family.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010259/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010259/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Filippakopoulos, Panagis -- Qi, Jun -- Picaud, Sarah -- Shen, Yao -- Smith, William B -- Fedorov, Oleg -- Morse, Elizabeth M -- Keates, Tracey -- Hickman, Tyler T -- Felletar, Ildiko -- Philpott, Martin -- Munro, Shonagh -- McKeown, Michael R -- Wang, Yuchuan -- Christie, Amanda L -- West, Nathan -- Cameron, Michael J -- Schwartz, Brian -- Heightman, Tom D -- La Thangue, Nicholas -- French, Christopher A -- Wiest, Olaf -- Kung, Andrew L -- Knapp, Stefan -- Bradner, James E -- 13058/Cancer Research UK/United Kingdom -- G0500905/Medical Research Council/United Kingdom -- G1000807/Medical Research Council/United Kingdom -- G9400953/Medical Research Council/United Kingdom -- K08 CA128972/CA/NCI NIH HHS/ -- K08 CA128972-03/CA/NCI NIH HHS/ -- T32-075762/PHS HHS/ -- Canadian Institutes of Health Research/Canada -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Dec 23;468(7327):1067-73. doi: 10.1038/nature09504. Epub 2010 Sep 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20871596" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Azirines/chemical synthesis/chemistry/*pharmacology ; Binding Sites ; Carcinoma, Squamous Cell/physiopathology ; Cell Differentiation/drug effects ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Chromatin/metabolism ; Dihydropyridines/chemical synthesis/chemistry/*pharmacology ; Female ; Humans ; Mice ; Mice, Nude ; *Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/*antagonists & inhibitors/*metabolism ; Protein Binding/drug effects ; Protein Structure, Tertiary ; Recombinant Proteins/metabolism ; Sequence Alignment ; Skin Neoplasms/physiopathology ; Stereoisomerism ; Transcription Factors/*antagonists & inhibitors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2010-06-19
    Description: Transcription of eukaryotic messenger RNA (mRNA) encoding genes by RNA polymerase II (Pol II) is triggered by the binding of transactivating proteins to enhancer DNA, which stimulates the recruitment of general transcription factors (TFIIA, B, D, E, F, H) and Pol II on the cis-linked promoter, leading to pre-initiation complex formation and transcription. In TFIID-dependent activation pathways, this general transcription factor containing TATA-box-binding protein is first recruited on the promoter through interaction with activators and cooperates with TFIIA to form a committed pre-initiation complex. However, neither the mechanisms by which activation signals are communicated between these factors nor the structural organization of the activated pre-initiation complex are known. Here we used cryo-electron microscopy to determine the architecture of nucleoprotein complexes composed of TFIID, TFIIA, the transcriptional activator Rap1 and yeast enhancer-promoter DNA. These structures revealed the mode of binding of Rap1 and TFIIA to TFIID, as well as a reorganization of TFIIA induced by its interaction with Rap1. We propose that this change in position increases the exposure of TATA-box-binding protein within TFIID, consequently enhancing its ability to interact with the promoter. A large Rap1-dependent DNA loop forms between the activator-binding site and the proximal promoter region. This loop is topologically locked by a TFIIA-Rap1 protein bridge that folds over the DNA. These results highlight the role of TFIIA in transcriptional activation, define a molecular mechanism for enhancer-promoter communication and provide structural insights into the pathways of intramolecular communication that convey transcription activation signals through the TFIID complex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900199/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900199/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Papai, Gabor -- Tripathi, Manish K -- Ruhlmann, Christine -- Layer, Justin H -- Weil, P Anthony -- Schultz, Patrick -- GM52461/GM/NIGMS NIH HHS/ -- R01 GM052461/GM/NIGMS NIH HHS/ -- R01 GM052461-14/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jun 17;465(7300):956-60. doi: 10.1038/nature09080.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology and Genomics, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, BP10142, 67404 Illkirch, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20559389" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; *Models, Molecular ; Nucleoproteins/chemistry/ultrastructure ; Protein Structure, Tertiary ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism/ultrastructure ; Telomere-Binding Proteins/chemistry/*metabolism/ultrastructure ; Transcription Factor TFIIA/chemistry/*metabolism ; Transcription Factor TFIID/chemistry/*metabolism ; Transcription Factors/chemistry/*metabolism/ultrastructure ; *Transcriptional Activation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2010-07-02
    Description: Protected areas vary enormously in their contribution to conserving biodiversity, and the inefficiency of protected area systems is widely acknowledged. However, conservation plans focus overwhelmingly on adding new sites to current protected area estates. Here we show that the conservation performance of a protected area system can be radically improved, without extra expenditure, by replacing a small number of protected areas with new ones that achieve more for conservation. Replacing the least cost-effective 1% of Australia's 6,990 strictly protected areas could increase the number of vegetation types that have 15% or more of their original extent protected from 18 to 54, of a maximum possible of 58. Moreover, it increases markedly the area that can be protected, with no increase in overall spending. This new paradigm for protected area system expansion could yield huge improvements to global conservation at a time when competition for land is increasingly intense.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fuller, Richard A -- McDonald-Madden, Eve -- Wilson, Kerrie A -- Carwardine, Josie -- Grantham, Hedley S -- Watson, James E M -- Klein, Carissa J -- Green, David C -- Possingham, Hugh P -- England -- Nature. 2010 Jul 15;466(7304):365-7. doi: 10.1038/nature09180. Epub 2010 Jun 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Ecology Centre, University of Queensland, St Lucia, Queensland 4072, Australia. r.a.fuller@dunelm.org.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20592729" target="_blank"〉PubMed〈/a〉
    Keywords: Australia ; Biodiversity ; Conservation of Natural Resources/*economics/*methods/statistics & numerical data ; Cost-Benefit Analysis ; *Ecosystem ; Forestry/economics/methods ; Trees/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2010-12-18
    Description: Recognition of modified histone species by distinct structural domains within 'reader' proteins plays a critical role in the regulation of gene expression. Readers that simultaneously recognize histones with multiple marks allow transduction of complex chromatin modification patterns into specific biological outcomes. Here we report that chromatin regulator tripartite motif-containing 24 (TRIM24) functions in humans as a reader of dual histone marks by means of tandem plant homeodomain (PHD) and bromodomain (Bromo) regions. The three-dimensional structure of the PHD-Bromo region of TRIM24 revealed a single functional unit for combinatorial recognition of unmodified H3K4 (that is, histone H3 unmodified at lysine 4, H3K4me0) and acetylated H3K23 (histone H3 acetylated at lysine 23, H3K23ac) within the same histone tail. TRIM24 binds chromatin and oestrogen receptor to activate oestrogen-dependent genes associated with cellular proliferation and tumour development. Aberrant expression of TRIM24 negatively correlates with survival of breast cancer patients. The PHD-Bromo of TRIM24 provides a structural rationale for chromatin activation through a non-canonical histone signature, establishing a new route by which chromatin readers may influence cancer pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsai, Wen-Wei -- Wang, Zhanxin -- Yiu, Teresa T -- Akdemir, Kadir C -- Xia, Weiya -- Winter, Stefan -- Tsai, Cheng-Yu -- Shi, Xiaobing -- Schwarzer, Dirk -- Plunkett, William -- Aronow, Bruce -- Gozani, Or -- Fischle, Wolfgang -- Hung, Mien-Chie -- Patel, Dinshaw J -- Barton, Michelle Craig -- GM079641/GM/NIGMS NIH HHS/ -- GM081627/GM/NIGMS NIH HHS/ -- P01 GM081627/GM/NIGMS NIH HHS/ -- P01 GM081627-010003/GM/NIGMS NIH HHS/ -- P01 GM081627-020003/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- P30DK078392-01/DK/NIDDK NIH HHS/ -- T32 HD07325/HD/NICHD NIH HHS/ -- U54 RR025216/RR/NCRR NIH HHS/ -- UL1 TR000077/TR/NCATS NIH HHS/ -- England -- Nature. 2010 Dec 16;468(7326):927-32. doi: 10.1038/nature09542.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Program in Genes and Development, Graduate School of Biomedical Sciences, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21164480" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Breast Neoplasms/*genetics/*metabolism/pathology ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line, Tumor ; Chromatin/metabolism ; Chromatin Assembly and Disassembly ; Crystallography, X-Ray ; Estrogen Receptor alpha/metabolism ; Estrogens/metabolism ; *Gene Expression Regulation, Neoplastic/genetics ; HEK293 Cells ; Histones/chemistry/*metabolism ; Humans ; Methylation ; Protein Array Analysis ; Protein Binding ; Protein Structure, Tertiary ; Substrate Specificity ; Survival Rate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-07-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kareiva, Peter -- England -- Nature. 2010 Jul 15;466(7304):322-3. doi: 10.1038/466322a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20631786" target="_blank"〉PubMed〈/a〉
    Keywords: Australia ; Biodiversity ; Conservation of Natural Resources/*economics/*methods/statistics & numerical data ; Cost-Benefit Analysis ; *Ecosystem
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-09-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2010 Sep 16;467(7313):251-2. doi: 10.1038/467251b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20844491" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Migration ; Animals ; Conservation of Natural Resources/*methods ; *Ecosystem ; Politics ; Risk Assessment ; Ruminants/physiology ; Tanzania ; Transportation/*instrumentation ; Urbanization/*trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2010-08-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marin, Victor H -- Delgado, Luisa E -- Tironi, Antonio -- England -- Nature. 2010 Aug 12;466(7308):815. doi: 10.1038/466815c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20703284" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chile ; *Ecosystem ; *Fisheries ; *Mass Media ; *Salmon ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2010-01-08
    Description: Eukaryotic DNA replication uses kinase regulatory pathways to facilitate coordination with other processes during cell division cycles and response to environmental cues. At least two cell cycle-regulated protein kinase systems, the S-phase-specific cyclin-dependent protein kinases (S-CDKs) and the Dbf4-Cdc7 kinase (DDK, Dbf4-dependent protein kinase) are essential activators for initiation of DNA replication. Although the essential mechanism of CDK activation of DNA replication in Saccharomyces cerevisiae has been established, exactly how DDK acts has been unclear. Here we show that the amino terminal serine/threonine-rich domain (NSD) of Mcm4 has both inhibitory and facilitating roles in DNA replication control and that the sole essential function of DDK is to relieve an inhibitory activity residing within the NSD. By combining an mcm4 mutant lacking the inhibitory activity with mutations that bypass the requirement for CDKs for initiation of DNA replication, we show that DNA synthesis can occur in G1 phase when CDKs and DDK are limited. However, DDK is still required for efficient S phase progression. In the absence of DDK, CDK phosphorylation at the distal part of the Mcm4 NSD becomes crucial. Moreover, DDK-null cells fail to activate the intra-S-phase checkpoint in the presence of hydroxyurea-induced DNA damage and are unable to survive this challenge. Our studies establish that the eukaryote-specific NSD of Mcm4 has evolved to integrate several protein kinase regulatory signals for progression through S phase.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805463/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805463/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheu, Yi-Jun -- Stillman, Bruce -- R01 GM045436/GM/NIGMS NIH HHS/ -- R01 GM045436-18/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jan 7;463(7277):113-7. doi: 10.1038/nature08647.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054399" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/antagonists & inhibitors/chemistry/genetics/*metabolism ; Cell Proliferation/drug effects ; DNA Damage ; DNA-Binding Proteins/antagonists & inhibitors/chemistry/genetics/*metabolism ; G1 Phase/drug effects ; Genes, Essential ; Hydroxyurea/pharmacology ; Microbial Viability/drug effects ; Minichromosome Maintenance Complex Component 4 ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; S Phase/drug effects/*physiology ; Saccharomyces cerevisiae/*cytology/enzymology/growth & development/*metabolism ; Saccharomyces cerevisiae Proteins/antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Sequence Deletion ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-05-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2010 May 6;465(7294):9. doi: 10.1038/465009a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20445583" target="_blank"〉PubMed〈/a〉
    Keywords: *Ecosystem ; *Environment ; Government Regulation ; Oceans and Seas ; *Public Policy/economics ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mascarelli, Amanda -- England -- Nature. 2010 Jun 24;465(7301):993. doi: 10.1038/465993b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577177" target="_blank"〉PubMed〈/a〉
    Keywords: *Disasters ; *Ecosystem ; *Federal Government ; Industry/*economics/*legislation & jurisprudence ; Mexico ; Oceans and Seas ; Petroleum/*adverse effects ; Research/*economics ; Seawater/*chemistry ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-09-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marris, Emma -- England -- Nature. 2010 Aug 5;466(7307):784-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20862790" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthozoa ; Conservation of Natural Resources/*trends ; Disasters ; *Ecosystem ; Employment/statistics & numerical data/trends ; Fisheries/methods/statistics & numerical data ; Human Activities ; Marine Biology/education/*manpower/*trends ; Petroleum/adverse effects ; Public Policy ; *Research Personnel ; Social Sciences/education
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2010-11-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Powers, Joseph E -- England -- Nature. 2010 Nov 18;468(7322):385-6. doi: 10.1038/468385a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21085170" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/*isolation & purification ; *Biodiversity ; Databases, Factual ; *Ecosystem ; *Fisheries ; *Fishes ; Food Chain ; Models, Biological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2010-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Viswanathan, Gandhimohan M -- England -- Nature. 2010 Jun 24;465(7301):1018-9. doi: 10.1038/4651018a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577199" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ecosystem ; Fishes/*physiology ; *Food ; Locomotion/*physiology ; Models, Biological ; Predatory Behavior/*physiology ; *Seawater ; Swimming/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-02-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dalton, Rex -- England -- Nature. 2010 Feb 25;463(7284):1007. doi: 10.1038/4631007a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20182480" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthozoa ; Australia ; California ; *Conservation of Natural Resources/economics/methods ; *Ecosystem ; *Fisheries/economics ; Population Density
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-06-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marris, Emma -- England -- Nature. 2010 Jun 17;465(7300):859. doi: 10.1038/465859a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20559360" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Ecosystem ; Global Warming ; Humans ; *United Nations/economics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2010-09-10
    Description: During the decline to extinction, animal populations may present dynamical phenomena not exhibited by robust populations. Some of these phenomena, such as the scaling of demographic variance, are related to small size whereas others result from density-dependent nonlinearities. Although understanding the causes of population extinction has been a central problem in theoretical biology for decades, the ability to anticipate extinction has remained elusive. Here we argue that the causes of a population's decline are central to the predictability of its extinction. Specifically, environmental degradation may cause a tipping point in population dynamics, corresponding to a bifurcation in the underlying population growth equations, beyond which decline to extinction is almost certain. In such cases, imminent extinction will be signalled by critical slowing down (CSD). We conducted an experiment with replicate laboratory populations of Daphnia magna to test this hypothesis. We show that populations crossing a transcritical bifurcation, experimentally induced by the controlled decline in environmental conditions, show statistical signatures of CSD after the onset of environmental deterioration and before the critical transition. Populations in constant environments did not have these patterns. Four statistical indicators all showed evidence of the approaching bifurcation as early as 110 days ( approximately 8 generations) before the transition occurred. Two composite indices improved predictability, and comparative analysis showed that early warning signals based solely on observations in deteriorating environments without reference populations for standardization were hampered by the presence of transient dynamics before the onset of deterioration, pointing to the importance of reliable baseline data before environmental deterioration begins. The universality of bifurcations in models of population dynamics suggests that this phenomenon should be general.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drake, John M -- Griffen, Blaine D -- England -- Nature. 2010 Sep 23;467(7314):456-9. doi: 10.1038/nature09389. Epub 2010 Sep 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Odum School of Ecology, University of Georgia, Athens, Georgia 30602, USA. jdrake@uga.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20827269" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Daphnia/growth & development/*physiology ; *Ecosystem ; *Extinction, Biological ; Forecasting ; *Models, Biological ; Population Density ; Population Dynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2010-04-20
    Description: Photosynthetic organisms adopt two different strategies for the reduction of the C17 = C18 double bond of protochlorophyllide (Pchlide) to form chlorophyllide a, the direct precursor of chlorophyll a (refs 1-4). The first involves the activity of the light-dependent Pchlide oxidoreductase, and the second involves the light-independent (dark-operative) Pchlide oxidoreductase (DPOR). DPOR is a nitrogenase-like enzyme consisting of two components, L-protein (a BchL dimer) and NB-protein (a BchN-BchB heterotetramer), which are structurally related to nitrogenase Fe protein and MoFe protein, respectively. Here we report the crystal structure of the NB-protein of DPOR from Rhodobacter capsulatus at a resolution of 2.3A. As expected, the overall structure is similar to that of nitrogenase MoFe protein: each catalytic BchN-BchB unit contains one Pchlide and one iron-sulphur cluster (NB-cluster) coordinated uniquely by one aspartate and three cysteines. Unique aspartate ligation is not necessarily needed for the cluster assembly but is essential for the catalytic activity. Specific Pchlide-binding accompanies the partial unwinding of an alpha-helix that belongs to the next catalytic BchN-BchB unit. We propose a unique trans-specific reduction mechanism in which the distorted C17-propionate of Pchlide and an aspartate from BchB serve as proton donors for C18 and C17 of Pchlide, respectively. Intriguingly, the spatial arrangement of the NB-cluster and Pchlide is almost identical to that of the P-cluster and FeMo-cofactor in nitrogenase MoFe-protein, illustrating that a common architecture exists to reduce chemically stable multibonds of porphyrin and dinitrogen.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muraki, Norifumi -- Nomata, Jiro -- Ebata, Kozue -- Mizoguchi, Tadashi -- Shiba, Tomoo -- Tamiaki, Hitoshi -- Kurisu, Genji -- Fujita, Yuichi -- England -- Nature. 2010 May 6;465(7294):110-4. doi: 10.1038/nature08950.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20400946" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; *Models, Molecular ; Oxidoreductases Acting on CH-CH Group Donors/*chemistry/metabolism ; Protein Structure, Tertiary ; Rhodobacter capsulatus/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2010-09-24
    Description: Symplekin (Pta1 in yeast) is a scaffold in the large protein complex that is required for 3'-end cleavage and polyadenylation of eukaryotic messenger RNA precursors (pre-mRNAs); it also participates in transcription initiation and termination by RNA polymerase II (Pol II). Symplekin mediates interactions between many different proteins in this machinery, although the molecular basis for its function is not known. Here we report the crystal structure at 2.4 A resolution of the amino-terminal domain (residues 30-340) of human symplekin in a ternary complex with the Pol II carboxy-terminal domain (CTD) Ser 5 phosphatase Ssu72 (refs 7, 10-17) and a CTD Ser 5 phosphopeptide. The N-terminal domain of symplekin has the ARM or HEAT fold, with seven pairs of antiparallel alpha-helices arranged in the shape of an arc. The structure of Ssu72 has some similarity to that of low-molecular-mass phosphotyrosine protein phosphatase, although Ssu72 has a unique active-site landscape as well as extra structural features at the C terminus that are important for interaction with symplekin. Ssu72 is bound to the concave face of symplekin, and engineered mutations in this interface can abolish interactions between the two proteins. The CTD peptide is bound in the active site of Ssu72, with the pSer 5-Pro 6 peptide bond in the cis configuration, which contrasts with all other known CTD peptide conformations. Although the active site of Ssu72 is about 25 A from the interface with symplekin, we found that the symplekin N-terminal domain stimulates Ssu72 CTD phosphatase activity in vitro. Furthermore, the N-terminal domain of symplekin inhibits polyadenylation in vitro, but only when coupled to transcription. Because catalytically active Ssu72 overcomes this inhibition, our results show a role for mammalian Ssu72 in transcription-coupled pre-mRNA 3'-end processing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038789/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038789/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xiang, Kehui -- Nagaike, Takashi -- Xiang, Song -- Kilic, Turgay -- Beh, Maia M -- Manley, James L -- Tong, Liang -- GM028983/GM/NIGMS NIH HHS/ -- GM077175/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM028983/GM/NIGMS NIH HHS/ -- R01 GM028983-31/GM/NIGMS NIH HHS/ -- R01 GM077175/GM/NIGMS NIH HHS/ -- R01 GM077175-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Oct 7;467(7316):729-33. doi: 10.1038/nature09391. Epub 2010 Sep 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, New York 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20861839" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Carrier Proteins/*chemistry/genetics/*metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Drosophila Proteins/chemistry ; Humans ; Models, Molecular ; Nuclear Proteins/*chemistry/genetics/*metabolism ; Phosphopeptides/chemistry/*metabolism ; Phosphoprotein Phosphatases/chemistry/genetics/metabolism ; Polyadenylation ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA Polymerase II/*chemistry/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry ; Substrate Specificity ; mRNA Cleavage and Polyadenylation Factors/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2010-11-03
    Description: Natural killer cells and cytotoxic T lymphocytes accomplish the critically important function of killing virus-infected and neoplastic cells. They do this by releasing the pore-forming protein perforin and granzyme proteases from cytoplasmic granules into the cleft formed between the abutting killer and target cell membranes. Perforin, a 67-kilodalton multidomain protein, oligomerizes to form pores that deliver the pro-apoptopic granzymes into the cytosol of the target cell. The importance of perforin is highlighted by the fatal consequences of congenital perforin deficiency, with more than 50 different perforin mutations linked to familial haemophagocytic lymphohistiocytosis (type 2 FHL). Here we elucidate the mechanism of perforin pore formation by determining the X-ray crystal structure of monomeric murine perforin, together with a cryo-electron microscopy reconstruction of the entire perforin pore. Perforin is a thin 'key-shaped' molecule, comprising an amino-terminal membrane attack complex perforin-like (MACPF)/cholesterol dependent cytolysin (CDC) domain followed by an epidermal growth factor (EGF) domain that, together with the extreme carboxy-terminal sequence, forms a central shelf-like structure. A C-terminal C2 domain mediates initial, Ca(2+)-dependent membrane binding. Most unexpectedly, however, electron microscopy reveals that the orientation of the perforin MACPF domain in the pore is inside-out relative to the subunit arrangement in CDCs. These data reveal remarkable flexibility in the mechanism of action of the conserved MACPF/CDC fold and provide new insights into how related immune defence molecules such as complement proteins assemble into pores.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Law, Ruby H P -- Lukoyanova, Natalya -- Voskoboinik, Ilia -- Caradoc-Davies, Tom T -- Baran, Katherine -- Dunstone, Michelle A -- D'Angelo, Michael E -- Orlova, Elena V -- Coulibaly, Fasseli -- Verschoor, Sandra -- Browne, Kylie A -- Ciccone, Annette -- Kuiper, Michael J -- Bird, Phillip I -- Trapani, Joseph A -- Saibil, Helen R -- Whisstock, James C -- 079605/Wellcome Trust/United Kingdom -- BB/D008573/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Arthritis Research UK/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Nov 18;468(7322):447-51. doi: 10.1038/nature09518. Epub 2010 Oct 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria 3800, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21037563" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/*metabolism ; Cholesterol/metabolism ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Epidermal Growth Factor/chemistry ; Granzymes/metabolism ; Humans ; Lymphocytes/*metabolism ; Mice ; Models, Molecular ; Pore Forming Cytotoxic Proteins/*chemistry/genetics/*metabolism/ultrastructure ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-05-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Earle, Sylvia -- England -- Nature. 2010 May 13;465(7295):165. doi: 10.1038/465165a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉US National Oceanic and Atmospheric Administration, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20463723" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Climate ; *Conservation of Natural Resources ; *Ecology ; *Ecosystem ; *Marine Biology ; Meteorology ; *Motion Pictures as Topic ; Oceans and Seas ; Population Density
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2010-05-28
    Description: Complex I is the first enzyme of the respiratory chain and has a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation by an unknown mechanism. Dysfunction of complex I has been implicated in many human neurodegenerative diseases. We have determined the structure of its hydrophilic domain previously. Here, we report the alpha-helical structure of the membrane domain of complex I from Escherichia coli at 3.9 A resolution. The antiporter-like subunits NuoL/M/N each contain 14 conserved transmembrane (TM) helices. Two of them are discontinuous, as in some transporters. Unexpectedly, subunit NuoL also contains a 110-A long amphipathic alpha-helix, spanning almost the entire length of the domain. Furthermore, we have determined the structure of the entire complex I from Thermus thermophilus at 4.5 A resolution. The L-shaped assembly consists of the alpha-helical model for the membrane domain, with 63 TM helices, and the known structure of the hydrophilic domain. The architecture of the complex provides strong clues about the coupling mechanism: the conformational changes at the interface of the two main domains may drive the long amphipathic alpha-helix of NuoL in a piston-like motion, tilting nearby discontinuous TM helices, resulting in proton translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Efremov, Rouslan G -- Baradaran, Rozbeh -- Sazanov, Leonid A -- MC_U105674180/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2010 May 27;465(7297):441-5. doi: 10.1038/nature09066.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20505720" target="_blank"〉PubMed〈/a〉
    Keywords: Benzoquinones/metabolism ; Binding Sites ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Electron Transport Complex I/*chemistry/*metabolism ; Escherichia coli/*enzymology ; Models, Molecular ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/*chemistry/*metabolism ; Structure-Activity Relationship ; Thermus thermophilus/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2010-06-01
    Description: In termination of protein synthesis, the bacterial release factors RF1 and RF2 bind to the ribosome through specific recognition of messenger RNA stop codons and trigger hydrolysis of the bond between the nascent polypeptide and the transfer RNA at the peptidyl-tRNA site, thereby releasing the newly synthesized protein. The release factors are highly specific for a U in the first stop-codon position and recognize different combinations of purines in the second and third positions, with RF1 reading UAA and UAG and RF2 reading UAA and UGA. With recently determined crystal structures of termination complexes, it has become possible to decipher the energetics of stop-codon reading by computational analysis and to clarify the origin of the high release-factor binding accuracy. Here we report molecular dynamics free-energy calculations on different cognate and non-cognate termination complexes. The simulations quantitatively explain the basic principles of decoding in all three codon positions and reveal the key elements responsible for specificity of the release factors. The overall reading mechanism involves hitherto unidentified interactions and recognition switches that cannot be described in terms of a tripeptide anticodon model. Further simulations of complexes with tRNA(Trp), the tRNA recognizing the triplet codon for Trp, explain the observation of a 'leaky' stop codon and highlight the fundamentally different third position reading by RF2, which leads to a high stop-codon specificity with strong discrimination against the Trp codon. The simulations clearly illustrate the versatility of codon reading by protein, which goes far beyond tRNA mimicry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sund, Johan -- Ander, Martin -- Aqvist, Johan -- England -- Nature. 2010 Jun 17;465(7300):947-50. doi: 10.1038/nature09082. Epub 2010 May 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20512119" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/chemistry/genetics/*metabolism ; Codon, Terminator/*chemistry/genetics/*metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Peptide Termination Factors/chemistry/genetics/*metabolism ; Protein Binding/genetics ; Protein Structure, Tertiary ; RNA, Transfer/metabolism ; Ribosomes/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2010-07-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Xiaohui -- Jia, Zhiqing -- Ci, Longjun -- England -- Nature. 2010 Jul 15;466(7304):315; author reply 315. doi: 10.1038/466315c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20631778" target="_blank"〉PubMed〈/a〉
    Keywords: China ; Conservation of Natural Resources/*methods ; *Ecosystem ; Forestry/*methods ; *Program Evaluation ; Rain ; Soil/*analysis ; Trees/*growth & development ; Water Supply/*analysis ; Wind
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2010-02-05
    Description: During their intraerythrocytic development, malaria parasites export hundreds of proteins to remodel their host cell. Nutrient acquisition, cytoadherence and antigenic variation are among the key virulence functions effected by this erythrocyte takeover. Proteins destined for export are synthesized in the endoplasmic reticulum (ER) and cleaved at a conserved (PEXEL) motif, which allows translocation into the host cell via an ATP-driven translocon called the PTEX complex. We report that plasmepsin V, an ER aspartic protease with distant homology to the mammalian processing enzyme BACE, recognizes the PEXEL motif and cleaves it at the correct site. This enzyme is essential for parasite viability and ER residence is essential for its function. We propose that plasmepsin V is the PEXEL protease and is an attractive enzyme for antimalarial drug development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826791/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826791/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Russo, Ilaria -- Babbitt, Shalon -- Muralidharan, Vasant -- Butler, Tamira -- Oksman, Anna -- Goldberg, Daniel E -- AI-047798/AI/NIAID NIH HHS/ -- R01 AI047798/AI/NIAID NIH HHS/ -- R01 AI047798-10/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Feb 4;463(7281):632-6. doi: 10.1038/nature08726.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Washington University School of Medicine, Department of Molecular Microbiology, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20130644" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Antimalarials/pharmacology ; Aspartic Acid Endopeptidases/antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Biocatalysis/drug effects ; Endoplasmic Reticulum/enzymology/metabolism ; Erythrocytes/cytology/*metabolism/parasitology ; Genes, Dominant ; Genes, Essential ; HIV Protease Inhibitors/pharmacology ; Humans ; Malaria, Falciparum/*blood/metabolism/*parasitology/pathology ; Multiprotein Complexes/metabolism ; Pepstatins/pharmacology ; Phenotype ; Plasmids/genetics ; Plasmodium falciparum/enzymology/genetics/*metabolism/pathogenicity ; Protein Binding ; Protein Sorting Signals ; Protein Structure, Tertiary ; Protein Transport ; Proteomics ; Protozoan Proteins/chemistry/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2010-06-26
    Description: Tumour-necrosis factor (TNF) receptor-associated factor 2 (TRAF2) is a key component in NF-kappaB signalling triggered by TNF-alpha. Genetic evidence indicates that TRAF2 is necessary for the polyubiquitination of receptor interacting protein 1 (RIP1) that then serves as a platform for recruitment and stimulation of IkappaB kinase, leading to activation of the transcription factor NF-kappaB. Although TRAF2 is a RING domain ubiquitin ligase, direct evidence that TRAF2 catalyses the ubiquitination of RIP1 is lacking. TRAF2 binds to sphingosine kinase 1 (SphK1), one of the isoenzymes that generates the pro-survival lipid mediator sphingosine-1-phosphate (S1P) inside cells. Here we show that SphK1 and the production of S1P is necessary for lysine-63-linked polyubiquitination of RIP1, phosphorylation of IkappaB kinase and IkappaBalpha, and IkappaBalpha degradation, leading to NF-kappaB activation. These responses were mediated by intracellular S1P independently of its cell surface G-protein-coupled receptors. S1P specifically binds to TRAF2 at the amino-terminal RING domain and stimulates its E3 ligase activity. S1P, but not dihydro-S1P, markedly increased recombinant TRAF2-catalysed lysine-63-linked, but not lysine-48-linked, polyubiquitination of RIP1 in vitro in the presence of the ubiquitin conjugating enzymes (E2) UbcH13 or UbcH5a. Our data show that TRAF2 is a novel intracellular target of S1P, and that S1P is the missing cofactor for TRAF2 E3 ubiquitin ligase activity, indicating a new paradigm for the regulation of lysine-63-linked polyubiquitination. These results also highlight the key role of SphK1 and its product S1P in TNF-alpha signalling and the canonical NF-kappaB activation pathway important in inflammatory, antiapoptotic and immune processes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946785/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946785/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alvarez, Sergio E -- Harikumar, Kuzhuvelil B -- Hait, Nitai C -- Allegood, Jeremy -- Strub, Graham M -- Kim, Eugene Y -- Maceyka, Michael -- Jiang, Hualiang -- Luo, Cheng -- Kordula, Tomasz -- Milstien, Sheldon -- Spiegel, Sarah -- R01 AI050094/AI/NIAID NIH HHS/ -- R01 AI050094-09/AI/NIAID NIH HHS/ -- R01 CA061774/CA/NCI NIH HHS/ -- R01 CA061774-15/CA/NCI NIH HHS/ -- R01 CA061774-16/CA/NCI NIH HHS/ -- R01AI50094/AI/NIAID NIH HHS/ -- R01CA61774/CA/NCI NIH HHS/ -- R37 GM043880/GM/NIGMS NIH HHS/ -- R37 GM043880-18/GM/NIGMS NIH HHS/ -- R37 GM043880-19/GM/NIGMS NIH HHS/ -- R37 GM043880-20/GM/NIGMS NIH HHS/ -- R37 GM043880-21/GM/NIGMS NIH HHS/ -- R37GM043880/GM/NIGMS NIH HHS/ -- U19 AI077435/AI/NIAID NIH HHS/ -- U19 AI077435-020004/AI/NIAID NIH HHS/ -- U19 AI077435-02S10004/AI/NIAID NIH HHS/ -- U19 AI077435-030004/AI/NIAID NIH HHS/ -- U19AI077435/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Jun 24;465(7301):1084-8. doi: 10.1038/nature09128.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond, Virginia 23298, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577214" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biocatalysis ; Cell Line ; Enzyme Activation ; Humans ; I-kappa B Kinase/metabolism ; I-kappa B Proteins/metabolism ; Lysine/metabolism ; Lysophospholipids/biosynthesis/chemistry/*metabolism ; Mice ; Models, Molecular ; NF-kappa B/metabolism ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/genetics/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Receptor-Interacting Protein Serine-Threonine Kinases/metabolism ; Sphingosine/*analogs & derivatives/biosynthesis/chemistry/metabolism ; Substrate Specificity ; TNF Receptor-Associated Factor 2/chemistry/*metabolism ; Tumor Necrosis Factor-alpha/pharmacology ; Ubiquitin-Conjugating Enzymes/metabolism ; Ubiquitin-Protein Ligases/*metabolism ; Ubiquitination/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2010-07-03
    Description: The evidence for macroscopic life during the Palaeoproterozoic era (2.5-1.6 Gyr ago) is controversial. Except for the nearly 2-Gyr-old coil-shaped fossil Grypania spiralis, which may have been eukaryotic, evidence for morphological and taxonomic biodiversification of macroorganisms only occurs towards the beginning of the Mesoproterozoic era (1.6-1.0 Gyr). Here we report the discovery of centimetre-sized structures from the 2.1-Gyr-old black shales of the Palaeoproterozoic Francevillian B Formation in Gabon, which we interpret as highly organized and spatially discrete populations of colonial organisms. The structures are up to 12 cm in size and have characteristic shapes, with a simple but distinct ground pattern of flexible sheets and, usually, a permeating radial fabric. Geochemical analyses suggest that the sediments were deposited under an oxygenated water column. Carbon and sulphur isotopic data indicate that the structures were distinct biogenic objects, fossilized by pyritization early in the formation of the rock. The growth patterns deduced from the fossil morphologies suggest that the organisms showed cell-to-cell signalling and coordinated responses, as is commonly associated with multicellular organization. The Gabon fossils, occurring after the 2.45-2.32-Gyr increase in atmospheric oxygen concentration, may be seen as ancient representatives of multicellular life, which expanded so rapidly 1.5 Gyr later, in the Cambrian explosion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉El Albani, Abderrazak -- Bengtson, Stefan -- Canfield, Donald E -- Bekker, Andrey -- Macchiarelli, Roberto -- Mazurier, Arnaud -- Hammarlund, Emma U -- Boulvais, Philippe -- Dupuy, Jean-Jacques -- Fontaine, Claude -- Fursich, Franz T -- Gauthier-Lafaye, Francois -- Janvier, Philippe -- Javaux, Emmanuelle -- Ossa, Frantz Ossa -- Pierson-Wickmann, Anne-Catherine -- Riboulleau, Armelle -- Sardini, Paul -- Vachard, Daniel -- Whitehouse, Martin -- Meunier, Alain -- England -- Nature. 2010 Jul 1;466(7302):100-4. doi: 10.1038/nature09166.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire HYDRASA, UMR 6269 CNRS-INSU, Universite de Poitiers, 86022 Poitiers, France. abder.albani@univ-poitiers.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20596019" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/cytology ; *Ecosystem ; Eukaryota/cytology ; *Fossils ; Gabon ; Geologic Sediments/microbiology ; History, Ancient ; Oxygen/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2010-10-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hilborn, Ray -- Cowan, James H Jr -- England -- Nature. 2010 Sep 30;467(7315):531. doi: 10.1038/467531c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20881998" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Certification/economics/*standards ; Conservation of Natural Resources/*legislation & jurisprudence/methods ; *Ecosystem ; Fisheries/economics/*standards ; Fishes/physiology ; Marine Biology/*standards ; Population Dynamics ; *Seafood/economics/standards
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2010-12-18
    Description: On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout and beyond the Arctic.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amstrup, Steven C -- Deweaver, Eric T -- Douglas, David C -- Marcot, Bruce G -- Durner, George M -- Bitz, Cecilia M -- Bailey, David A -- England -- Nature. 2010 Dec 16;468(7326):955-8. doi: 10.1038/nature09653.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉US Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, Alaska 99508, USA. samstrup@pbears.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21164484" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms ; Arctic Regions ; Bayes Theorem ; Carbon Dioxide/analysis ; *Ecosystem ; Endangered Species/statistics & numerical data/*trends ; Environmental Monitoring ; Gases/analysis ; Global Warming/prevention & control/statistics & numerical data ; Greenhouse Effect/*prevention & control/statistics & numerical data ; *Ice Cover ; Models, Theoretical ; Population Density ; Predatory Behavior ; Seasons ; Seawater/analysis/chemistry ; Temperature ; Thermodynamics ; Time Factors ; Ursidae/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2010-03-20
    Description: Cobalamin (Cbl, vitamin B(12)) is a bacterial organic compound and an essential coenzyme in mammals, which take it up from the diet. This occurs by the combined action of the gastric intrinsic factor (IF) and the ileal endocytic cubam receptor formed by the 460-kilodalton (kDa) protein cubilin and the 45-kDa transmembrane protein amnionless. Loss of function of any of these proteins ultimately leads to Cbl deficiency in man. Here we present the crystal structure of the complex between IF-Cbl and the cubilin IF-Cbl-binding-region (CUB(5-8)) determined at 3.3 A resolution. The structure provides insight into how several CUB (for 'complement C1r/C1s, Uegf, Bmp1') domains collectively function as modular ligand-binding regions, and how two distant CUB domains embrace the Cbl molecule by binding the two IF domains in a Ca(2+)-dependent manner. This dual-point model provides a probable explanation of how Cbl indirectly induces ligand-receptor coupling. Finally, the comparison of Ca(2+)-binding CUB domains and the low-density lipoprotein (LDL) receptor-type A modules suggests that the electrostatic pairing of a basic ligand arginine/lysine residue with Ca(2+)-coordinating acidic aspartates/glutamates is a common theme of Ca(2+)-dependent ligand-receptor interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andersen, Christian Brix Folsted -- Madsen, Mette -- Storm, Tina -- Moestrup, Soren K -- Andersen, Gregers R -- England -- Nature. 2010 Mar 18;464(7287):445-8. doi: 10.1038/nature08874.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry, Aarhus University, 8000 Aarhus C, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20237569" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid/metabolism ; Binding Sites ; Calcium/metabolism ; Crystallography, X-Ray ; Glutamic Acid/metabolism ; Humans ; Intrinsic Factor/*chemistry/*metabolism ; Ligands ; Models, Molecular ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/*metabolism ; Static Electricity ; Vitamin B 12/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-10-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sambrotto, Raymond N -- England -- Nature. 2010 Sep 30;467(7315):538-9. doi: 10.1038/467538a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20882003" target="_blank"〉PubMed〈/a〉
    Keywords: Diatoms/genetics/metabolism ; *Ecosystem ; *Geography ; Nitrogen/analysis/metabolism ; Oceans and Seas ; Phosphorus/analysis/metabolism ; Plankton/*metabolism ; Seawater/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2010-05-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cao, Shixiong -- Wang, Guosheng -- Chen, Li -- England -- Nature. 2010 May 6;465(7294):31. doi: 10.1038/465031d.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20445606" target="_blank"〉PubMed〈/a〉
    Keywords: China ; Conservation of Natural Resources/*methods ; Droughts ; *Ecosystem ; Rain ; *Trees
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-02-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England, John -- England -- Nature. 2010 Jan 14;463(7278):159. doi: 10.1038/463159a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NSERC Northern Research Chair at the University of Alberta, Edmonton, Alberta T6G 2E3, Canada. john.england@ualberta.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075900" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arctic Regions ; Canada ; Ecology/*economics/instrumentation ; *Ecosystem ; Ice Cover ; Leadership ; Research/*economics/instrumentation ; Research Support as Topic/economics/*organization & administration
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2010-04-24
    Description: The production of artificial fertilizers, fossil fuel use and leguminous agriculture worldwide has increased the amount of reactive nitrogen in the natural environment by an order of magnitude since the Industrial Revolution. This reorganization of the nitrogen cycle has led to an increase in food production, but increasingly causes a number of environmental problems. One such problem is the accumulation of nitrate in both freshwater and coastal marine ecosystems. Here we establish that ecosystem nitrate accrual exhibits consistent and negative nonlinear correlations with organic carbon availability along a hydrologic continuum from soils, through freshwater systems and coastal margins, to the open ocean. The trend also prevails in ecosystems subject to substantial human alteration. Across this diversity of environments, we find evidence that resource stoichiometry (organic carbon:nitrate) strongly influences nitrate accumulation by regulating a suite of microbial processes that couple dissolved organic carbon and nitrate cycling. With the help of a meta-analysis we show that heterotrophic microbes maintain low nitrate concentrations when organic carbon:nitrate ratios match the stoichiometric demands of microbial anabolism. When resource ratios drop below the minimum carbon:nitrogen ratio of microbial biomass, however, the onset of carbon limitation appears to drive rapid nitrate accrual, which may then be further enhanced by nitrification. At low organic carbon:nitrate ratios, denitrification appears to constrain the extent of nitrate accretion, once organic carbon and nitrate availability approach the 1:1 stoichiometry of this catabolic process. Collectively, these microbial processes express themselves on local to global scales by restricting the threshold ratios underlying nitrate accrual to a constrained stoichiometric window. Our findings indicate that ecological stoichiometry can help explain the fate of nitrate across disparate environments and in the face of human disturbance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taylor, Philip G -- Townsend, Alan R -- England -- Nature. 2010 Apr 22;464(7292):1178-81. doi: 10.1038/nature08985.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INSTAAR, University of Colorado, Boulder, Colorado, USA. philip.taylor@colorado.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20414306" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/metabolism ; Biomass ; Carbon/analysis/*metabolism ; Climate ; *Ecosystem ; Fresh Water/chemistry ; Freshwater Biology ; Marine Biology ; Nitrates/analysis/*metabolism ; Nitrogen/analysis/metabolism ; Oceans and Seas ; Plankton/metabolism ; Seawater/*chemistry ; Soil/*analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2010-05-14
    Description: Nature's high-performance polymer, spider silk, consists of specific proteins, spidroins, with repetitive segments flanked by conserved non-repetitive domains. Spidroins are stored as a highly concentrated fluid dope. On silk formation, intermolecular interactions between repeat regions are established that provide strength and elasticity. How spiders manage to avoid premature spidroin aggregation before self-assembly is not yet established. A pH drop to 6.3 along the spider's spinning apparatus, altered salt composition and shear forces are believed to trigger the conversion to solid silk, but no molecular details are known. Miniature spidroins consisting of a few repetitive spidroin segments capped by the carboxy-terminal domain form metre-long silk-like fibres irrespective of pH. We discovered that incorporation of the amino-terminal domain of major ampullate spidroin 1 from the dragline of the nursery web spider Euprosthenops australis (NT) into mini-spidroins enables immediate, charge-dependent self-assembly at pH values around 6.3, but delays aggregation above pH 7. The X-ray structure of NT, determined to 1.7 A resolution, shows a homodimer of dipolar, antiparallel five-helix bundle subunits that lack homologues. The overall dimeric structure and observed charge distribution of NT is expected to be conserved through spider evolution and in all types of spidroins. Our results indicate a relay-like mechanism through which the N-terminal domain regulates spidroin assembly by inhibiting precocious aggregation during storage, and accelerating and directing self-assembly as the pH is lowered along the spider's silk extrusion duct.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Askarieh, Glareh -- Hedhammar, My -- Nordling, Kerstin -- Saenz, Alejandra -- Casals, Cristina -- Rising, Anna -- Johansson, Jan -- Knight, Stefan D -- England -- Nature. 2010 May 13;465(7295):236-8. doi: 10.1038/nature08962.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Oslo University, 1033 Blindern, 0315 Oslo, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20463740" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Circular Dichroism ; Conserved Sequence ; Crystallography, X-Ray ; Hydrogen-Ion Concentration ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Tertiary ; Sequence Alignment ; Silk/*chemistry/*metabolism/ultrastructure ; Spiders/*chemistry ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2010-11-12
    Description: Interaction of pathogens with cells of the immune system results in activation of inflammatory gene expression. This response, although vital for immune defence, is frequently deleterious to the host due to the exaggerated production of inflammatory proteins. The scope of inflammatory responses reflects the activation state of signalling proteins upstream of inflammatory genes as well as signal-induced assembly of nuclear chromatin complexes that support mRNA expression. Recognition of post-translationally modified histones by nuclear proteins that initiate mRNA transcription and support mRNA elongation is a critical step in the regulation of gene expression. Here we present a novel pharmacological approach that targets inflammatory gene expression by interfering with the recognition of acetylated histones by the bromodomain and extra terminal domain (BET) family of proteins. We describe a synthetic compound (I-BET) that by 'mimicking' acetylated histones disrupts chromatin complexes responsible for the expression of key inflammatory genes in activated macrophages, and confers protection against lipopolysaccharide-induced endotoxic shock and bacteria-induced sepsis. Our findings suggest that synthetic compounds specifically targeting proteins that recognize post-translationally modified histones can serve as a new generation of immunomodulatory drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nicodeme, Edwige -- Jeffrey, Kate L -- Schaefer, Uwe -- Beinke, Soren -- Dewell, Scott -- Chung, Chun-Wa -- Chandwani, Rohit -- Marazzi, Ivan -- Wilson, Paul -- Coste, Herve -- White, Julia -- Kirilovsky, Jorge -- Rice, Charles M -- Lora, Jose M -- Prinjha, Rab K -- Lee, Kevin -- Tarakhovsky, Alexander -- England -- Nature. 2010 Dec 23;468(7327):1119-23. doi: 10.1038/nature09589. Epub 2010 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de Recherche GSK, 27 Avenue du Quebec, 91140 Villebon Sur Yvette, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21068722" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation/drug effects ; Animals ; Anti-Inflammatory Agents/chemistry/*pharmacology/therapeutic use ; Benzodiazepines ; Cells, Cultured ; Epigenomics ; Gene Expression Regulation/*drug effects ; Genome-Wide Association Study ; Heterocyclic Compounds with 4 or More Rings/chemistry/*pharmacology/therapeutic ; use ; Histone Deacetylase Inhibitors/pharmacology ; Hydroxamic Acids/pharmacology ; *Inflammation/drug therapy/prevention & control ; Kaplan-Meier Estimate ; Lipopolysaccharides/pharmacology ; Macrophages/*drug effects ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Salmonella Infections/drug therapy/immunology/physiopathology/prevention & ; control ; Salmonella typhimurium ; Sepsis/drug therapy/prevention & control ; Shock, Septic/drug therapy/prevention & control
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2010-10-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Homewood, Katherine -- Brockington, Daniel -- Sullivan, Sian -- England -- Nature. 2010 Oct 14;467(7317):788-9. doi: 10.1038/467788e.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944723" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Migration ; Animals ; *Ecosystem ; *Environmental Policy ; Tanzania ; *Transportation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2010-08-13
    Description: The eubacterial SOS system is a paradigm of cellular DNA damage and repair, and its activation can contribute to antibiotic resistance. Under normal conditions, LexA represses the transcription of many DNA repair proteins by binding to SOS 'boxes' in their operators. Under genotoxic stress, accumulating complexes of RecA, ATP and single-stranded DNA (ssDNA) activate LexA for autocleavage. To address how LexA recognizes its binding sites, we determined three crystal structures of Escherichia coli LexA in complex with SOS boxes. Here we report the structure of these LexA-DNA complexes. The DNA-binding domains of the LexA dimer interact with the DNA in the classical fashion of a winged helix-turn-helix motif. However, the wings of these two DNA-binding domains bind to the same minor groove of the DNA. These wing-wing contacts may explain why the spacing between the two half-sites of E. coli SOS boxes is invariant.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921665/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921665/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Adrianna P P -- Pigli, Ying Z -- Rice, Phoebe A -- GM058827/GM/NIGMS NIH HHS/ -- R01 GM058827/GM/NIGMS NIH HHS/ -- R01 GM058827-09/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Aug 12;466(7308):883-6. doi: 10.1038/nature09200.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20703307" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Bacterial Proteins/*chemistry/*metabolism ; Base Sequence ; Crystallography, X-Ray ; DNA Damage ; DNA Repair/genetics ; DNA, Bacterial/chemistry/*genetics/*metabolism ; Electrophoretic Mobility Shift Assay ; *Escherichia coli/chemistry/genetics ; Escherichia coli Proteins/chemistry/genetics/metabolism ; Models, Molecular ; Protein Binding ; *Protein Multimerization ; Protein Structure, Tertiary ; Rec A Recombinases/metabolism ; Repressor Proteins/chemistry/metabolism ; SOS Response (Genetics)/*genetics ; Serine Endopeptidases/*chemistry/*metabolism ; Winged-Helix Transcription Factors/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2010-01-15
    Description: In an effort to find new pharmacological modalities to overcome resistance to ATP-binding-site inhibitors of Bcr-Abl, we recently reported the discovery of GNF-2, a selective allosteric Bcr-Abl inhibitor. Here, using solution NMR, X-ray crystallography, mutagenesis and hydrogen exchange mass spectrometry, we show that GNF-2 binds to the myristate-binding site of Abl, leading to changes in the structural dynamics of the ATP-binding site. GNF-5, an analogue of GNF-2 with improved pharmacokinetic properties, when used in combination with the ATP-competitive inhibitors imatinib or nilotinib, suppressed the emergence of resistance mutations in vitro, displayed additive inhibitory activity in biochemical and cellular assays against T315I mutant human Bcr-Abl and displayed in vivo efficacy against this recalcitrant mutant in a murine bone-marrow transplantation model. These results show that therapeutically relevant inhibition of Bcr-Abl activity can be achieved with inhibitors that bind to the myristate-binding site and that combining allosteric and ATP-competitive inhibitors can overcome resistance to either agent alone.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901986/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901986/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Jianming -- Adrian, Francisco J -- Jahnke, Wolfgang -- Cowan-Jacob, Sandra W -- Li, Allen G -- Iacob, Roxana E -- Sim, Taebo -- Powers, John -- Dierks, Christine -- Sun, Fangxian -- Guo, Gui-Rong -- Ding, Qiang -- Okram, Barun -- Choi, Yongmun -- Wojciechowski, Amy -- Deng, Xianming -- Liu, Guoxun -- Fendrich, Gabriele -- Strauss, Andre -- Vajpai, Navratna -- Grzesiek, Stephan -- Tuntland, Tove -- Liu, Yi -- Bursulaya, Badry -- Azam, Mohammad -- Manley, Paul W -- Engen, John R -- Daley, George Q -- Warmuth, Markus -- Gray, Nathanael S -- R01 CA130876/CA/NCI NIH HHS/ -- R01 CA130876-03/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jan 28;463(7280):501-6. doi: 10.1038/nature08675. Epub 2010 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Harvard Medical School, Department of Cancer Biology, Seeley G. Mudd Building 628, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20072125" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/*chemistry/metabolism/*pharmacology ; Antineoplastic Combined Chemotherapy Protocols ; Benzamides ; Binding Sites ; Bone Marrow Transplantation ; Cell Line, Tumor ; Crystallization ; Disease Models, Animal ; Drug Resistance, Neoplasm/*drug effects ; Female ; Fusion Proteins, bcr-abl/*chemistry/genetics/metabolism ; Humans ; Imatinib Mesylate ; Inhibitory Concentration 50 ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug ; therapy/enzymology/*metabolism ; Male ; Mass Spectrometry ; Mice ; Models, Molecular ; Mutation/genetics ; Piperazines/chemistry/pharmacology ; Protein Structure, Tertiary ; Pyrimidines/chemistry/metabolism/pharmacology ; Transplantation, Heterologous
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2010-08-03
    Description: The flagellar motor drives the rotation of flagellar filaments at hundreds of revolutions per second, efficiently propelling bacteria through viscous media. The motor uses the potential energy from an electrochemical gradient of cations across the cytoplasmic membrane to generate torque. A rapid switch from anticlockwise to clockwise rotation determines whether a bacterium runs smoothly forward or tumbles to change its trajectory. A protein called FliG forms a ring in the rotor of the flagellar motor that is involved in the generation of torque through an interaction with the cation-channel-forming stator subunit MotA. FliG has been suggested to adopt distinct conformations that induce switching but these structural changes and the molecular mechanism of switching are unknown. Here we report the molecular structure of the full-length FliG protein, identify conformational changes that are involved in rotational switching and uncover the structural basis for the formation of the FliG torque ring. This allows us to propose a model of the complete ring and switching mechanism in which conformational changes in FliG reverse the electrostatic charges involved in torque generation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159035/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159035/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Lawrence K -- Ginsburg, Michael A -- Crovace, Claudia -- Donohoe, Mhairi -- Stock, Daniela -- MC_U105170645/Medical Research Council/United Kingdom -- P41 RR007707/RR/NCRR NIH HHS/ -- P41 RR007707-17/RR/NCRR NIH HHS/ -- RR007707/RR/NCRR NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- Medical Research Council/United Kingdom -- England -- Nature. 2010 Aug 19;466(7309):996-1000. doi: 10.1038/nature09300. Epub 2010 Aug 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20676082" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Flagella/*chemistry/genetics/*physiology ; Models, Molecular ; Molecular Motor Proteins/*chemistry/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; *Rotation ; Static Electricity ; Structure-Activity Relationship ; Thermotoga maritima/chemistry ; *Torque
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2010-10-26
    Description: The energy-coupling factor (ECF) transporters, responsible for vitamin uptake in prokaryotes, are a unique family of membrane transporters. Each ECF transporter contains a membrane-embedded, substrate-binding protein (known as the S component), an energy-coupling module that comprises two ATP-binding proteins (known as the A and A' components) and a transmembrane protein (known as the T component). The structure and transport mechanism of the ECF family remain unknown. Here we report the crystal structure of RibU, the S component of the ECF-type riboflavin transporter from Staphylococcus aureus at 3.6-A resolution. RibU contains six transmembrane segments, adopts a previously unreported transporter fold and contains a riboflavin molecule bound to the L1 loop and the periplasmic portion of transmembrane segments 4-6. Structural analysis reveals the essential ligand-binding residues, identifies the putative transport path and, with sequence alignment, uncovers conserved structural features and suggests potential mechanisms of action among the ECF transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Peng -- Wang, Jiawei -- Shi, Yigong -- R01 GM084964/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):717-20. doi: 10.1038/nature09488. Epub 2010 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20972419" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Conserved Sequence ; Crystallography, X-Ray ; Ligands ; Membrane Transport Proteins/*chemistry/classification/*metabolism ; Models, Molecular ; Movement ; Periplasm/metabolism ; Protein Folding ; Protein Structure, Tertiary ; Riboflavin/chemistry/*metabolism ; Sequence Alignment ; Staphylococcus aureus/*chemistry ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2010-10-01
    Description: Semaphorins and their receptor plexins constitute a pleiotropic cell-signalling system that is used in a wide variety of biological processes, and both protein families have been implicated in numerous human diseases. The binding of soluble or membrane-anchored semaphorins to the membrane-distal region of the plexin ectodomain activates plexin's intrinsic GTPase-activating protein (GAP) at the cytoplasmic region, ultimately modulating cellular adhesion behaviour. However, the structural mechanism underlying the receptor activation remains largely unknown. Here we report the crystal structures of the semaphorin 6A (Sema6A) receptor-binding fragment and the plexin A2 (PlxnA2) ligand-binding fragment in both their pre-signalling (that is, before binding) and signalling (after complex formation) states. Before binding, the Sema6A ectodomain was in the expected 'face-to-face' homodimer arrangement, similar to that adopted by Sema3A and Sema4D, whereas PlxnA2 was in an unexpected 'head-on' homodimer arrangement. In contrast, the structure of the Sema6A-PlxnA2 signalling complex revealed a 2:2 heterotetramer in which the two PlxnA2 monomers dissociated from one another and docked onto the top face of the Sema6A homodimer using the same interface as the head-on homodimer, indicating that plexins undergo 'partner exchange'. Cell-based activity measurements using mutant ligands/receptors confirmed that the Sema6A face-to-face dimer arrangement is physiologically relevant and is maintained throughout signalling events. Thus, homodimer-to-heterodimer transitions of cell-surface plexin that result in a specific orientation of its molecular axis relative to the membrane may constitute the structural mechanism by which the ligand-binding 'signal' is transmitted to the cytoplasmic region, inducing GAP domain rearrangements and activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nogi, Terukazu -- Yasui, Norihisa -- Mihara, Emiko -- Matsunaga, Yukiko -- Noda, Masanori -- Yamashita, Naoya -- Toyofuku, Toshihiko -- Uchiyama, Susumu -- Goshima, Yoshio -- Kumanogoh, Atsushi -- Takagi, Junichi -- England -- Nature. 2010 Oct 28;467(7319):1123-7. doi: 10.1038/nature09473. Epub 2010 Sep 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20881961" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; Ligands ; Mice ; Models, Molecular ; Molecular Sequence Data ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/genetics/*metabolism ; Semaphorins/*chemistry/genetics/*metabolism ; *Signal Transduction ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2010-08-21
    Description: Propionyl-coenzyme A carboxylase (PCC), a mitochondrial biotin-dependent enzyme, is essential for the catabolism of the amino acids Thr, Val, Ile and Met, cholesterol and fatty acids with an odd number of carbon atoms. Deficiencies in PCC activity in humans are linked to the disease propionic acidaemia, an autosomal recessive disorder that can be fatal in infants. The holoenzyme of PCC is an alpha(6)beta(6) dodecamer, with a molecular mass of 750 kDa. The alpha-subunit contains the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains, whereas the beta-subunit supplies the carboxyltransferase (CT) activity. Here we report the crystal structure at 3.2-A resolution of a bacterial PCC alpha(6)beta(6) holoenzyme as well as cryo-electron microscopy (cryo-EM) reconstruction at 15-A resolution demonstrating a similar structure for human PCC. The structure defines the overall architecture of PCC and reveals unexpectedly that the alpha-subunits are arranged as monomers in the holoenzyme, decorating a central beta(6) hexamer. A hitherto unrecognized domain in the alpha-subunit, formed by residues between the BC and BCCP domains, is crucial for interactions with the beta-subunit. We have named it the BT domain. The structure reveals for the first time the relative positions of the BC and CT active sites in the holoenzyme. They are separated by approximately 55 A, indicating that the entire BCCP domain must translocate during catalysis. The BCCP domain is located in the active site of the beta-subunit in the current structure, providing insight for its involvement in the CT reaction. The structural information establishes a molecular basis for understanding the large collection of disease-causing mutations in PCC and is relevant for the holoenzymes of other biotin-dependent carboxylases, including 3-methylcrotonyl-CoA carboxylase (MCC) and eukaryotic acetyl-CoA carboxylase (ACC).〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925307/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925307/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Christine S -- Sadre-Bazzaz, Kianoush -- Shen, Yang -- Deng, Binbin -- Zhou, Z Hong -- Tong, Liang -- AI069015/AI/NIAID NIH HHS/ -- DK067238/DK/NIDDK NIH HHS/ -- GM071940/GM/NIGMS NIH HHS/ -- GM08281/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 AI069015/AI/NIAID NIH HHS/ -- R01 AI069015-04/AI/NIAID NIH HHS/ -- R01 DK067238/DK/NIDDK NIH HHS/ -- R01 DK067238-07/DK/NIDDK NIH HHS/ -- R01 GM071940/GM/NIGMS NIH HHS/ -- R01 GM071940-05/GM/NIGMS NIH HHS/ -- T32 GM008281/GM/NIGMS NIH HHS/ -- T32 GM008281-23/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Aug 19;466(7309):1001-5. doi: 10.1038/nature09302.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, New York 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20725044" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl-CoA Carboxylase/chemistry/metabolism/ultrastructure ; Biocatalysis ; Biotin/metabolism ; Carbon-Nitrogen Ligases/chemistry/metabolism/ultrastructure ; Carrier Proteins/chemistry/metabolism/ultrastructure ; Catalytic Domain ; *Cryoelectron Microscopy ; Crystallography, X-Ray ; Fatty Acid Synthase, Type II ; Holoenzymes/*chemistry/genetics/metabolism/*ultrastructure ; Humans ; Methylmalonyl-CoA Decarboxylase/*chemistry/genetics/metabolism/*ultrastructure ; Models, Molecular ; Mutation/genetics ; Propionic Acidemia/enzymology/genetics ; Protein Binding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Rhodobacteraceae/enzymology ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2010-04-30
    Description: Dynamin is an atypical GTPase that catalyses membrane fission during clathrin-mediated endocytosis. The mechanisms of dynamin's basal and assembly-stimulated GTP hydrolysis are unknown, though both are indirectly influenced by the GTPase effector domain (GED). Here we present the 2.0 A resolution crystal structure of a human dynamin 1-derived minimal GTPase-GED fusion protein, which was dimeric in the presence of the transition state mimic GDP.AlF(4)(-).The structure reveals dynamin's catalytic machinery and explains how assembly-stimulated GTP hydrolysis is achieved through G domain dimerization. A sodium ion present in the active site suggests that dynamin uses a cation to compensate for the developing negative charge in the transition state in the absence of an arginine finger. Structural comparison to the rat dynamin G domain reveals key conformational changes that promote G domain dimerization and stimulated hydrolysis. The structure of the GTPase-GED fusion protein dimer provides insight into the mechanisms underlying dynamin-catalysed membrane fission.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879890/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879890/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chappie, Joshua S -- Acharya, Sharmistha -- Leonard, Marilyn -- Schmid, Sandra L -- Dyda, Fred -- F31 MH081419/MH/NIMH NIH HHS/ -- F31 MH081419-02/MH/NIMH NIH HHS/ -- GM42455/GM/NIGMS NIH HHS/ -- MH081419/MH/NIMH NIH HHS/ -- MH61345/MH/NIMH NIH HHS/ -- R01 GM042455/GM/NIGMS NIH HHS/ -- R01 GM042455-20/GM/NIGMS NIH HHS/ -- R37 MH061345/MH/NIMH NIH HHS/ -- R37 MH061345-10/MH/NIMH NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2010 May 27;465(7297):435-40. doi: 10.1038/nature09032. Epub 2010 Apr 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20428113" target="_blank"〉PubMed〈/a〉
    Keywords: Aluminum Compounds/metabolism ; Amino Acid Sequence ; Biocatalysis ; Catalytic Domain/genetics ; Conserved Sequence ; Crystallography, X-Ray ; Dynamin I/*chemistry/genetics/*metabolism ; Enzyme Activation ; Fluorides/metabolism ; GTP Phosphohydrolases/*chemistry/genetics/*metabolism ; Guanosine Diphosphate/analogs & derivatives/metabolism ; Humans ; Hydrolysis ; Models, Molecular ; *Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Sodium/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2010-05-28
    Description: The Escherichia coli isocitrate dehydrogenase kinase/phosphatase (AceK) is a unique bifunctional enzyme that phosphorylates or dephosphorylates isocitrate dehydrogenase (ICDH) in response to environmental changes, resulting in the inactivation or, respectively, activation of ICDH. ICDH inactivation short-circuits the Krebs cycle by enabling the glyoxlate bypass. It was the discovery of AceK and ICDH that established the existence of protein phosphorylation regulation in prokaryotes. As a 65-kDa protein, AceK is significantly larger than typical eukaryotic protein kinases. Apart from the ATP-binding motif, AceK does not share sequence homology with any eukaryotic protein kinase or phosphatase. Most intriguingly, AceK possesses the two opposing activities of protein kinase and phosphatase within one protein, and specifically recognizes only intact ICDH. Additionally, AceK has strong ATPase activity. It has been shown that AceK kinase, phosphatase and ATPase activities reside at the same site, although the molecular basis of such multifunctionality and its regulation remains completely unknown. Here we report the structures of AceK and its complex with ICDH. The AceK structure reveals a eukaryotic protein-kinase-like domain containing ATP and a regulatory domain with a novel fold. As an AceK phosphatase activator and kinase inhibitor, AMP is found to bind in an allosteric site between the two AceK domains. An AMP-mediated conformational change exposes and shields ATP, acting as a switch between AceK kinase and phosphatase activities, and ICDH-binding induces further conformational change for AceK activation. The substrate recognition loop of AceK binds to the ICDH dimer, allowing higher-order substrate recognition and interaction, and inducing critical conformational change at the phosphorylation site of ICDH.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, Jimin -- Jia, Zongchao -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Jun 17;465(7300):961-5. doi: 10.1038/nature09088. Epub 2010 May 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20505668" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Escherichia coli/*enzymology/genetics ; Escherichia coli Proteins/*chemistry/genetics/metabolism ; Isocitrate Dehydrogenase ; *Models, Molecular ; Multienzyme Complexes/*chemistry/genetics/metabolism ; Mutation/genetics ; Protein Binding ; Protein Structure, Tertiary ; Sequence Homology, Amino Acid
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-11-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huber, Patrick R -- Greco, Steven E -- England -- Nature. 2010 Nov 11;468(7321):173. doi: 10.1038/468173a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21068814" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cities ; *City Planning/methods/trends ; *Ecosystem ; *Plant Development
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2010-04-23
    Description: Vast world reserves of methane gas are underutilized as a feedstock for the production of liquid fuels and chemicals owing to the lack of economical and sustainable strategies for the selective oxidation of methane to methanol. Current processes to activate the strong C-H bond (104 kcal mol(-1)) in methane require high temperatures, are costly and inefficient, and produce waste. In nature, methanotrophic bacteria perform this reaction under ambient conditions using metalloenzymes called methane monooxygenases (MMOs). MMOs thus provide the optimal model for an efficient, environmentally sound catalyst. There are two types of MMO. Soluble MMO (sMMO) is expressed by several strains of methanotroph under copper-limited conditions and oxidizes methane with a well-characterized catalytic di-iron centre. Particulate MMO (pMMO) is an integral membrane metalloenzyme produced by all methanotrophs and is composed of three subunits, pmoA, pmoB and pmoC, arranged in a trimeric alpha(3)beta(3)gamma(3) complex. Despite 20 years of research and the availability of two crystal structures, the metal composition and location of the pMMO metal active site are not known. Here we show that pMMO activity is dependent on copper, not iron, and that the copper active site is located in the soluble domains of the pmoB subunit rather than within the membrane. Recombinant soluble fragments of pmoB (spmoB) bind copper and have propylene and methane oxidation activities. Disruption of each copper centre in spmoB by mutagenesis indicates that the active site is a dicopper centre. These findings help resolve the pMMO controversy and provide a promising new approach to developing environmentally friendly C-H oxidation catalysts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2999467/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2999467/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balasubramanian, Ramakrishnan -- Smith, Stephen M -- Rawat, Swati -- Yatsunyk, Liliya A -- Stemmler, Timothy L -- Rosenzweig, Amy C -- DK068139/DK/NIDDK NIH HHS/ -- GM070473/GM/NIGMS NIH HHS/ -- R01 DK068139/DK/NIDDK NIH HHS/ -- R01 DK068139-05/DK/NIDDK NIH HHS/ -- R01 GM070473/GM/NIGMS NIH HHS/ -- R01 GM070473-07/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 May 6;465(7294):115-9. doi: 10.1038/nature08992. Epub 2010 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20410881" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Copper/*chemistry ; Methane/*metabolism ; Methanol/chemistry ; Methylococcus capsulatus/*enzymology ; Methylosinus trichosporium/enzymology ; *Models, Molecular ; Mutation ; Oxidation-Reduction ; Oxygenases/*chemistry/genetics/metabolism ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2010-12-03
    Description: Alphaviruses are enveloped RNA viruses that have a diameter of about 700 A and can be lethal human pathogens. Entry of virus into host cells by endocytosis is controlled by two envelope glycoproteins, E1 and E2. The E2-E1 heterodimers form 80 trimeric spikes on the icosahedral virus surface, 60 with quasi-three-fold symmetry and 20 coincident with the icosahedral three-fold axes arranged with T = 4 quasi-symmetry. The E1 glycoprotein has a hydrophobic fusion loop at one end and is responsible for membrane fusion. The E2 protein is responsible for receptor binding and protects the fusion loop at neutral pH. The lower pH in the endosome induces the virions to undergo an irreversible conformational change in which E2 and E1 dissociate and E1 forms homotrimers, triggering fusion of the viral membrane with the endosomal membrane and then releasing the viral genome into the cytoplasm. Here we report the structure of an alphavirus spike, crystallized at low pH, representing an intermediate in the fusion process and clarifying the maturation process. The trimer of E2-E1 in the crystal structure is similar to the spikes in the neutral pH virus except that the E2 middle region is disordered, exposing the fusion loop. The amino- and carboxy-terminal domains of E2 each form immunoglobulin-like folds, consistent with the receptor attachment properties of E2.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057476/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057476/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Long -- Jose, Joyce -- Xiang, Ye -- Kuhn, Richard J -- Rossmann, Michael G -- P01 AI055672/AI/NIAID NIH HHS/ -- P01 AI055672-07/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):705-8. doi: 10.1038/nature09546.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907-2054, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124457" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Drosophila melanogaster ; Endosomes/metabolism ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Membrane Fusion ; Membrane Glycoproteins/chemistry/metabolism ; Models, Molecular ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Receptors, Virus/metabolism ; Sindbis Virus/*chemistry/*metabolism ; Viral Envelope Proteins/*chemistry/*metabolism ; Viral Fusion Proteins/chemistry/metabolism ; Virion/chemistry/metabolism ; *Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2010-06-10
    Description: An optimal search theory, the so-called Levy-flight foraging hypothesis, predicts that predators should adopt search strategies known as Levy flights where prey is sparse and distributed unpredictably, but that Brownian movement is sufficiently efficient for locating abundant prey. Empirical studies have generated controversy because the accuracy of statistical methods that have been used to identify Levy behaviour has recently been questioned. Consequently, whether foragers exhibit Levy flights in the wild remains unclear. Crucially, moreover, it has not been tested whether observed movement patterns across natural landscapes having different expected resource distributions conform to the theory's central predictions. Here we use maximum-likelihood methods to test for Levy patterns in relation to environmental gradients in the largest animal movement data set assembled for this purpose. Strong support was found for Levy search patterns across 14 species of open-ocean predatory fish (sharks, tuna, billfish and ocean sunfish), with some individuals switching between Levy and Brownian movement as they traversed different habitat types. We tested the spatial occurrence of these two principal patterns and found Levy behaviour to be associated with less productive waters (sparser prey) and Brownian movements to be associated with productive shelf or convergence-front habitats (abundant prey). These results are consistent with the Levy-flight foraging hypothesis, supporting the contention that organism search strategies naturally evolved in such a way that they exploit optimal Levy patterns.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Humphries, Nicolas E -- Queiroz, Nuno -- Dyer, Jennifer R M -- Pade, Nicolas G -- Musyl, Michael K -- Schaefer, Kurt M -- Fuller, Daniel W -- Brunnschweiler, Juerg M -- Doyle, Thomas K -- Houghton, Jonathan D R -- Hays, Graeme C -- Jones, Catherine S -- Noble, Leslie R -- Wearmouth, Victoria J -- Southall, Emily J -- Sims, David W -- England -- Nature. 2010 Jun 24;465(7301):1066-9. doi: 10.1038/nature09116. Epub 2010 Jun 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20531470" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Identification Systems ; Animals ; Biological Evolution ; *Ecosystem ; Exploratory Behavior/physiology ; Fishes/*physiology ; *Food ; Likelihood Functions ; Locomotion/*physiology ; Marine Biology ; *Models, Biological ; Perciformes/physiology ; Predatory Behavior/*physiology ; *Seawater ; Sharks/physiology ; Swimming/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2010-04-07
    Description: Targeting of proteins to appropriate subcellular compartments is a crucial process in all living cells. Secretory and membrane proteins usually contain an amino-terminal signal peptide, which is recognized by the signal recognition particle (SRP) when nascent polypeptide chains emerge from the ribosome. The SRP-ribosome nascent chain complex is then targeted through its GTP-dependent interaction with SRP receptor to the protein-conducting channel on endoplasmic reticulum membrane in eukaryotes or plasma membrane in bacteria. A universally conserved component of SRP (refs 1, 2), SRP54 or its bacterial homologue, fifty-four homologue (Ffh), binds the signal peptides, which have a highly divergent sequence divisible into a positively charged n-region, an h-region commonly containing 8-20 hydrophobic residues and a polar c-region. No structure has been reported that exemplifies SRP54 binding of any signal sequence. Here we have produced a fusion protein between Sulfolobus solfataricus SRP54 (Ffh) and a signal peptide connected via a flexible linker. This fusion protein oligomerizes in solution through interaction between the SRP54 and signal peptide moieties belonging to different chains, and it is functional, as demonstrated by its ability to bind SRP RNA and SRP receptor FtsY. We present the crystal structure at 3.5 A resolution of an SRP54-signal peptide complex in the dimer, which reveals how a signal sequence is recognized by SRP54.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897128/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897128/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janda, Claudia Y -- Li, Jade -- Oubridge, Chris -- Hernandez, Helena -- Robinson, Carol V -- Nagai, Kiyoshi -- MC_U105184330/Medical Research Council/United Kingdom -- U.1051.04.016(78933)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2010 May 27;465(7297):507-10. doi: 10.1038/nature08870. Epub 2010 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20364120" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/metabolism ; Crystallography, X-Ray ; Mass Spectrometry ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Multimerization ; Protein Sorting Signals/*physiology ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Receptors, Cytoplasmic and Nuclear/metabolism ; Receptors, Virus/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Recognition Particle/*chemistry/*metabolism ; Structure-Activity Relationship ; Sulfolobus solfataricus/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2010-06-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vester, Heike -- Timme, Marc -- England -- Nature. 2010 Jun 17;465(7300):869. doi: 10.1038/465869d.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20559364" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chile ; *Ecosystem ; *Fisheries ; Industrial Waste/legislation & jurisprudence ; Noise/prevention & control ; *Salmon ; Water Pollution/*prevention & control
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2010-05-28
    Description: MicroRNAs (miRNAs) mediate post-transcriptional gene regulation through association with Argonaute proteins (AGOs). Crystal structures of archaeal and bacterial homologues of AGOs have shown that the MID (middle) domain mediates the interaction with the phosphorylated 5' end of the miRNA guide strand and this interaction is thought to be independent of the identity of the 5' nucleotide in these systems. However, analysis of the known sequences of eukaryotic miRNAs and co-immunoprecipitation experiments indicate that there is a clear bias for U or A at the 5' position. Here we report the crystal structure of a MID domain from a eukaryotic AGO protein, human AGO2. The structure, in complex with nucleoside monophosphates (AMP, CMP, GMP, and UMP) mimicking the 5' end of miRNAs, shows that there are specific contacts made between the base of UMP or AMP and a rigid loop in the MID domain. Notably, the structure of the loop discriminates against CMP and GMP and dissociation constants calculated from NMR titration experiments confirm these results, showing that AMP (0.26 mM) and UMP (0.12 mM) bind with up to 30-fold higher affinity than either CMP (3.6 mM) or GMP (3.3 mM). This study provides structural evidence for nucleotide-specific interactions in the MID domain of eukaryotic AGO proteins and explains the observed preference for U or A at the 5' end of miRNAs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frank, Filipp -- Sonenberg, Nahum -- Nagar, Bhushan -- MOP-82929/Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Jun 10;465(7299):818-22. doi: 10.1038/nature09039. Epub 2010 May 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20505670" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/metabolism ; Argonaute Proteins ; Base Sequence ; Crystallography, X-Ray ; Cytidine Monophosphate/metabolism ; Eukaryotic Initiation Factor-2/*chemistry/*metabolism ; Guanosine Monophosphate/metabolism ; Humans ; Kinetics ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Protein Structure, Tertiary ; RNA, Guide/chemistry/*genetics/*metabolism ; Structure-Activity Relationship ; Substrate Specificity ; Thermodynamics ; Uridine Monophosphate/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2010-12-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonetta, Laura -- England -- Nature. 2010 Dec 9;468(7325):852. doi: 10.1038/468852a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21150999" target="_blank"〉PubMed〈/a〉
    Keywords: High-Throughput Screening Assays ; Humans ; Immunoprecipitation ; Mass Spectrometry ; Protein Array Analysis ; Protein Interaction Mapping/*methods ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Two-Hybrid System Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abbott, Alison -- England -- Nature. 2010 Dec 16;468(7326):886-8. doi: 10.1038/468886a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21164459" target="_blank"〉PubMed〈/a〉
    Keywords: Academies and Institutes/organization & administration ; Agriculture/methods/trends ; Animals ; *Ecosystem ; Gene Knockdown Techniques ; Genetic Engineering ; Germany ; Herbicides ; Insects/drug effects/physiology ; Pheromones/genetics/*metabolism/pharmacology/toxicity ; Plants/drug effects/genetics/*metabolism ; Plants, Genetically Modified ; Predatory Behavior/drug effects ; *Research/economics ; Seeds/genetics/metabolism ; Stimulation, Chemical ; Tobacco/drug effects/genetics/metabolism ; Utah
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2010-08-21
    Description: Haemostasis in the arteriolar circulation mediated by von Willebrand factor (VWF) binding to platelets is an example of an adhesive interaction that must withstand strong hydrodynamic forces acting on cells. VWF is a concatenated, multifunctional protein that has binding sites for platelets as well as subendothelial collagen. Binding of the A1 domain in VWF to the glycoprotein Ib alpha subunit (GPIbalpha) on the surface of platelets mediates crosslinking of platelets to one another and the formation of a platelet plug for arterioles. The importance of VWF is illustrated by its mutation in von Willebrand disease, a bleeding diathesis. Here, we describe a novel mechanochemical specialization of the A1-GPIbalpha bond for force-resistance. We have developed a method that enables, for the first time, repeated measurements of the binding and unbinding of a receptor and ligand in a single molecule (ReaLiSM). We demonstrate two states of the receptor-ligand bond, that is, a flex-bond. One state is seen at low force; a second state begins to engage at 10 pN with a approximately 20-fold longer lifetime and greater force resistance. The lifetimes of the two states, how force exponentiates lifetime, and the kinetics of switching between the two states are all measured. For the first time, single-molecule measurements on this system are in agreement with bulk phase measurements. The results have important implications not only for how platelets bound to VWF are able to resist force to plug arterioles, but also how increased flow activates platelet plug formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117310/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117310/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jongseong -- Zhang, Cheng-Zhong -- Zhang, Xiaohui -- Springer, Timothy A -- HL-48675/HL/NHLBI NIH HHS/ -- P01 HL048675/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Aug 19;466(7309):992-5. doi: 10.1038/nature09295.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immune Disease Institute, Children's Hospital Boston and Department of Pathology, Harvard Medical School, 3 Blackfan Circle, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20725043" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arterioles/cytology/*physiology ; Blood Coagulation/*physiology ; Blood Platelets/chemistry/cytology/*metabolism ; Cell Line ; Hemorheology ; Humans ; Kinetics ; Ligands ; Membrane Glycoproteins/chemistry/*metabolism ; Mice ; Models, Chemical ; Models, Molecular ; Platelet Glycoprotein GPIb-IX Complex ; Protein Binding ; Protein Structure, Tertiary ; Tensile Strength ; von Willebrand Factor/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-10-09
    Description: The neutralizing antibody response to influenza virus is dominated by antibodies that bind to the globular head of haemagglutinin, which undergoes a continuous antigenic drift, necessitating the re-formulation of influenza vaccines on an annual basis. Recently, several laboratories have described a new class of rare influenza-neutralizing antibodies that target a conserved site in the haemagglutinin stem. Most of these antibodies use the heavy-chain variable region VH1-69 gene, and structural data demonstrate that they bind to the haemagglutinin stem through conserved heavy-chain complementarity determining region (HCDR) residues. However, the VH1-69 antibodies are highly mutated and are produced by some but not all individuals, suggesting that several somatic mutations may be required for their development. To address this, here we characterize 197 anti-stem antibodies from a single donor, reconstruct the developmental pathways of several VH1-69 clones and identify two key elements that are required for the initial development of most VH1-69 antibodies: a polymorphic germline-encoded phenylalanine at position 54 and a conserved tyrosine at position 98 in HCDR3. Strikingly, in most cases a single proline to alanine mutation at position 52a in HCDR2 is sufficient to confer high affinity binding to the selecting H1 antigen, consistent with rapid affinity maturation. Surprisingly, additional favourable mutations continue to accumulate, increasing the breadth of reactivity and making both the initial mutations and phenylalanine at position 54 functionally redundant. These results define VH1-69 allele polymorphism, rearrangement of the VDJ gene segments and single somatic mutations as the three requirements for generating broadly neutralizing VH1-69 antibodies and reveal an unexpected redundancy in the affinity maturation process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pappas, Leontios -- Foglierini, Mathilde -- Piccoli, Luca -- Kallewaard, Nicole L -- Turrini, Filippo -- Silacci, Chiara -- Fernandez-Rodriguez, Blanca -- Agatic, Gloria -- Giacchetto-Sasselli, Isabella -- Pellicciotta, Gabriele -- Sallusto, Federica -- Zhu, Qing -- Vicenzi, Elisa -- Corti, Davide -- Lanzavecchia, Antonio -- U19 AI-057266/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Dec 18;516(7531):418-22. doi: 10.1038/nature13764. Epub 2014 Oct 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Insitute for Research in Biomedicine, Universita della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland. ; Department of Infectious Diseases and Vaccines MedImmune LLC, One MedImmune Way, Gaithersburg, Maryland 20878, USA. ; Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. ; Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland. ; Unit of Preventive Medicine, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. ; 1] Insitute for Research in Biomedicine, Universita della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland [2] Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland [3]. ; 1] Insitute for Research in Biomedicine, Universita della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland [2] Insitute for Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25296253" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Antibodies, Neutralizing/*genetics ; Cells, Cultured ; Complementarity Determining Regions/chemistry/*genetics ; Female ; Hemagglutinin Glycoproteins, Influenza Virus/immunology ; Humans ; Immunoglobulin Heavy Chains/genetics ; Influenza, Human/*immunology/virology ; Male ; Middle Aged ; Models, Molecular ; Mutation/*genetics ; Orthomyxoviridae/*immunology/metabolism ; Polymorphism, Genetic ; Protein Binding/genetics ; Protein Structure, Tertiary ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2010-09-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayer, Paul -- England -- Nature. 2010 Sep 9;467(7312):153. doi: 10.1038/467153b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829773" target="_blank"〉PubMed〈/a〉
    Keywords: *Cities ; Conservation of Natural Resources ; Ecology ; *Ecosystem ; Human Activities ; Humans ; Urban Population
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2010-08-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Stephen M -- England -- Nature. 2010 Aug 26;466(7310):1041. doi: 10.1038/4661041a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20739991" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Culicidae/*physiology ; *Ecosystem ; *Extinction, Biological ; Insect Control/ethics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2010-04-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kokko, Hanna -- Jennions, Michael -- England -- Nature. 2010 Apr 15;464(7291):990-1. doi: 10.1038/464990b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20393552" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anura/classification/*physiology ; *Ecosystem ; Female ; Food ; Fresh Water/*analysis ; Larva/physiology ; Male ; *Maternal Behavior/physiology ; *Paternal Behavior ; Phylogeny ; Survival Rate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-12-04
    Description: Ryanodine receptors (RyRs) mediate the rapid release of calcium (Ca(2+)) from intracellular stores into the cytosol, which is essential for numerous cellular functions including excitation-contraction coupling in muscle. Lack of sufficient structural detail has impeded understanding of RyR gating and regulation. Here we report the closed-state structure of the 2.3-megadalton complex of the rabbit skeletal muscle type 1 RyR (RyR1), solved by single-particle electron cryomicroscopy at an overall resolution of 4.8 A. We fitted a polyalanine-level model to all 3,757 ordered residues in each protomer, defining the transmembrane pore in unprecedented detail and placing all cytosolic domains as tertiary folds. The cytosolic assembly is built on an extended alpha-solenoid scaffold connecting key regulatory domains to the pore. The RyR1 pore architecture places it in the six-transmembrane ion channel superfamily. A unique domain inserted between the second and third transmembrane helices interacts intimately with paired EF-hands originating from the alpha-solenoid scaffold, suggesting a mechanism for channel gating by Ca(2+).〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300236/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300236/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zalk, Ran -- Clarke, Oliver B -- des Georges, Amedee -- Grassucci, Robert A -- Reiken, Steven -- Mancia, Filippo -- Hendrickson, Wayne A -- Frank, Joachim -- Marks, Andrew R -- P01 HL081172/HL/NHLBI NIH HHS/ -- R01 AR060037/AR/NIAMS NIH HHS/ -- R01 GM029169/GM/NIGMS NIH HHS/ -- R01 HL061503/HL/NHLBI NIH HHS/ -- R01 HL083418/HL/NHLBI NIH HHS/ -- R01AR060037/AR/NIAMS NIH HHS/ -- R01GM29169/GM/NIGMS NIH HHS/ -- R01HL061503/HL/NHLBI NIH HHS/ -- U54GM095315/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jan 1;517(7532):44-9. doi: 10.1038/nature13950. Epub 2014 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA. ; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA. ; 1] Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA [2] Howard Hughes Medical Institute, Columbia University, New York, New York 10032, USA. ; 1] Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA [2] Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA. ; 1] Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA [2] Howard Hughes Medical Institute, Columbia University, New York, New York 10032, USA [3] Department of Biological Sciences, Columbia University, New York, New York 10027, USA. ; 1] Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA [2] Department of Medicine, Columbia University, New York, New York 10032, USA [3] Wu Center for Molecular Cardiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470061" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/deficiency/metabolism/pharmacology ; Cell Membrane/metabolism ; Cryoelectron Microscopy ; Cytosol/metabolism ; Ion Channel Gating/drug effects ; Muscle, Skeletal/chemistry ; Protein Structure, Tertiary ; Rabbits ; Ryanodine Receptor Calcium Release Channel/*chemistry/metabolism/*ultrastructure ; Tacrolimus Binding Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-11-05
    Description: ATP-binding cassette (ABC) transporters translocate substrates across cell membranes, using energy harnessed from ATP binding and hydrolysis at their nucleotide-binding domains. ABC exporters are present both in prokaryotes and eukaryotes, with examples implicated in multidrug resistance of pathogens and cancer cells, as well as in many human diseases. TmrAB is a heterodimeric ABC exporter from the thermophilic Gram-negative eubacterium Thermus thermophilus; it is homologous to various multidrug transporters and contains one degenerate site with a non-catalytic residue next to the Walker B motif. Here we report a subnanometre-resolution structure of detergent-solubilized TmrAB in a nucleotide-free, inward-facing conformation by single-particle electron cryomicroscopy. The reconstructions clearly resolve characteristic features of ABC transporters, including helices in the transmembrane domain and nucleotide-binding domains. A cavity in the transmembrane domain is accessible laterally from the cytoplasmic side of the membrane as well as from the cytoplasm, indicating that the transporter lies in an inward-facing open conformation. The two nucleotide-binding domains remain in contact via their carboxy-terminal helices. Furthermore, comparison between our structure and the crystal structures of other ABC transporters suggests a possible trajectory of conformational changes that involves a sliding and rotating motion between the two nucleotide-binding domains during the transition from the inward-facing to outward-facing conformations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372080/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372080/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, JungMin -- Wu, Shenping -- Tomasiak, Thomas M -- Mergel, Claudia -- Winter, Michael B -- Stiller, Sebastian B -- Robles-Colmanares, Yaneth -- Stroud, Robert M -- Tampe, Robert -- Craik, Charles S -- Cheng, Yifan -- 1P41CA196276-01/CA/NCI NIH HHS/ -- P41 CA196276/CA/NCI NIH HHS/ -- P50 GM073210/GM/NIGMS NIH HHS/ -- P50 GM082250/GM/NIGMS NIH HHS/ -- P50GM073210/GM/NIGMS NIH HHS/ -- P50GM082250/GM/NIGMS NIH HHS/ -- R01 GM024485/GM/NIGMS NIH HHS/ -- R01 GM098672/GM/NIGMS NIH HHS/ -- R01GM098672/GM/NIGMS NIH HHS/ -- R37 GM024485/GM/NIGMS NIH HHS/ -- R37GM024485/GM/NIGMS NIH HHS/ -- S10 RR026814/RR/NCRR NIH HHS/ -- S10RR026814/RR/NCRR NIH HHS/ -- England -- Nature. 2015 Jan 15;517(7534):396-400. doi: 10.1038/nature13872. Epub 2014 Nov 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, California 94158, USA. ; Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, California 94158, USA. ; Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany. ; 1] Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, California 94158, USA [2] Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, California 94158, USA. ; 1] Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany [2] Cluster of Excellence - Macromolecular Complexes, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25363761" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/immunology/*ultrastructure ; Antigens/chemistry/immunology ; Binding Sites ; *Cryoelectron Microscopy ; Crystallography, X-Ray ; Models, Molecular ; Nucleotides/metabolism ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Rotation ; Thermus thermophilus/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-12-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gruber, Nicolas -- England -- Nature. 2015 Jan 8;517(7533):148-9. doi: 10.1038/nature14082. Epub 2014 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Environmental Physics Group, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487156" target="_blank"〉PubMed〈/a〉
    Keywords: Aquatic Organisms/metabolism ; Atmosphere/chemistry ; Carbon Dioxide/*analysis ; *Carbon Sequestration ; *Ecosystem ; Human Activities ; *Oceans and Seas ; Photosynthesis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2014-11-11
    Description: DNA methylation is an important epigenetic modification that is essential for various developmental processes through regulating gene expression, genomic imprinting, and epigenetic inheritance. Mammalian genomic DNA methylation is established during embryogenesis by de novo DNA methyltransferases, DNMT3A and DNMT3B, and the methylation patterns vary with developmental stages and cell types. DNA methyltransferase 3-like protein (DNMT3L) is a catalytically inactive paralogue of DNMT3 enzymes, which stimulates the enzymatic activity of Dnmt3a. Recent studies have established a connection between DNA methylation and histone modifications, and revealed a histone-guided mechanism for the establishment of DNA methylation. The ATRX-DNMT3-DNMT3L (ADD) domain of Dnmt3a recognizes unmethylated histone H3 (H3K4me0). The histone H3 tail stimulates the enzymatic activity of Dnmt3a in vitro, whereas the molecular mechanism remains elusive. Here we show that DNMT3A exists in an autoinhibitory form and that the histone H3 tail stimulates its activity in a DNMT3L-independent manner. We determine the crystal structures of DNMT3A-DNMT3L (autoinhibitory form) and DNMT3A-DNMT3L-H3 (active form) complexes at 3.82 and 2.90 A resolution, respectively. Structural and biochemical analyses indicate that the ADD domain of DNMT3A interacts with and inhibits enzymatic activity of the catalytic domain (CD) through blocking its DNA-binding affinity. Histone H3 (but not H3K4me3) disrupts ADD-CD interaction, induces a large movement of the ADD domain, and thus releases the autoinhibition of DNMT3A. The finding adds another layer of regulation of DNA methylation to ensure that the enzyme is mainly activated at proper targeting loci when unmethylated H3K4 is present, and strongly supports a negative correlation between H3K4me3 and DNA methylation across the mammalian genome. Our study provides a new insight into an unexpected autoinhibition and histone H3-induced activation of the de novo DNA methyltransferase after its initial genomic positioning.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Xue -- Wang, Ling -- Li, Jie -- Ding, Zhanyu -- Xiao, Jianxiong -- Yin, Xiaotong -- He, Shuang -- Shi, Pan -- Dong, Liping -- Li, Guohong -- Tian, Changlin -- Wang, Jiawei -- Cong, Yao -- Xu, Yanhui -- England -- Nature. 2015 Jan 29;517(7536):640-4. doi: 10.1038/nature13899. Epub 2014 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Fudan University Shanghai Cancer Center, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China [2] State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China. ; Fudan University Shanghai Cancer Center, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China. ; National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. ; 1] High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China [2] National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China [3] School of Life Sciences, University of Science and Technology of China, Hefei 230026, China. ; 1] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China [2] University of Chinese Academy of Science, Beijing 100049, China. ; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China. ; State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383530" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalytic Domain ; Crystallography, X-Ray ; DNA/metabolism ; DNA (Cytosine-5-)-Methyltransferase/*antagonists & ; inhibitors/*chemistry/*metabolism ; DNA Methylation ; Enzyme Activation ; Histones/*chemistry/*metabolism ; Humans ; Mice ; Models, Molecular ; Protein Structure, Tertiary ; Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-11-05
    Description: Lantibiotics are a class of peptide antibiotics that contain one or more thioether bonds. The lantibiotic nisin is an antimicrobial peptide that is widely used as a food preservative to combat food-borne pathogens. Nisin contains dehydroalanine and dehydrobutyrine residues that are formed by the dehydration of Ser/Thr by the lantibiotic dehydratase NisB (ref. 2). Recent biochemical studies revealed that NisB glutamylates Ser/Thr side chains as part of the dehydration process. However, the molecular mechanism by which NisB uses glutamate to catalyse dehydration remains unresolved. Here we show that this process involves glutamyl-tRNA(Glu) to activate Ser/Thr residues. In addition, the 2.9-A crystal structure of NisB in complex with its substrate peptide NisA reveals the presence of two separate domains that catalyse the Ser/Thr glutamylation and glutamate elimination steps. The co-crystal structure also provides insights into substrate recognition by lantibiotic dehydratases. Our findings demonstrate an unexpected role for aminoacyl-tRNA in the formation of dehydroamino acids in lantibiotics, and serve as a basis for the functional characterization of the many lantibiotic-like dehydratases involved in the biosynthesis of other classes of natural products.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430201/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430201/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ortega, Manuel A -- Hao, Yue -- Zhang, Qi -- Walker, Mark C -- van der Donk, Wilfred A -- Nair, Satish K -- 5T32-GM070421/GM/NIGMS NIH HHS/ -- F32 GM112284/GM/NIGMS NIH HHS/ -- R01 GM 058822/GM/NIGMS NIH HHS/ -- R01 GM058822/GM/NIGMS NIH HHS/ -- R01 GM079038/GM/NIGMS NIH HHS/ -- S10 RR027109 A/RR/NCRR NIH HHS/ -- T32 GM070421/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jan 22;517(7535):509-12. doi: 10.1038/nature13888. Epub 2014 Oct 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA. ; Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA. ; 1] Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA [2] Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA. ; 1] Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA [2] Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25363770" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/classification/*metabolism ; Bacteriocins/biosynthesis/*metabolism ; Crystallography, X-Ray ; Escherichia coli/genetics ; Glutamic Acid/metabolism ; Hydro-Lyases/*chemistry/classification/*metabolism ; Lactococcus lactis/*enzymology/genetics ; Membrane Proteins/*chemistry/classification/*metabolism ; Models, Molecular ; Nisin/biosynthesis/metabolism ; Phylogeny ; Protein Structure, Tertiary ; RNA, Transfer, Glu/genetics/*metabolism ; Serine/metabolism ; Threonine/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-08-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bascompte, Jordi -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):765-6. doi: 10.1126/science.1194255.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Integrative Ecology Group, Estacion Biologica de Donana, Consejo Superior de Investigaciones Cientificas, Americo Vespucio s/n, E-41092 Sevilla, Spain. bascompte@ebd.csic.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20705836" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ecosystem ; Food Chain ; Insects/*physiology ; Models, Biological ; *Plant Physiological Phenomena ; Pollination ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-03-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clutton-Brock, Tim -- Sheldon, Ben C -- New York, N.Y. -- Science. 2010 Mar 5;327(5970):1207-8. doi: 10.1126/science.1187796.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK. thcb@cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20203037" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior, Animal ; *Ecosystem ; Female ; Interdisciplinary Communication ; Male ; *Mammals/physiology ; Pan troglodytes/physiology ; *Primates/physiology ; Reproduction ; *Research ; Research Support as Topic ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-01-23
    Description: Forests both take up CO2 and enhance absorption of solar radiation, with contrasting effects on global temperature. Based on a 9-year study in the forests' dry timberline, we show that substantial carbon sequestration (cooling effect) is maintained in the large dry transition zone (precipitation from 200 to 600 millimeters) by shifts in peak photosynthetic activities from summer to early spring, and this is counteracted by longwave radiation (L) suppression (warming effect), doubling the forestation shortwave (S) albedo effect. Several decades of carbon accumulation are required to balance the twofold S + L effect. Desertification over the past several decades, however, contributed negative forcing at Earth's surface equivalent to approximately 20% of the global anthropogenic CO2 effect over the same period, moderating warming trends.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rotenberg, Eyal -- Yakir, Dan -- New York, N.Y. -- Science. 2010 Jan 22;327(5964):451-4. doi: 10.1126/science.1179998.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot 76100, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20093470" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon/*metabolism ; Carbon Dioxide/metabolism ; *Climatic Processes ; Conservation of Natural Resources ; *Ecosystem ; Geography ; Israel ; Photosynthesis ; Seasons ; Temperature ; *Trees/growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2010-03-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bawa, Kamaljit S -- Koh, Lian Pin -- Lee, Tien Ming -- Liu, Jianguo -- Ramakrishnan, P S -- Yu, Douglas W -- Zhang, Ya-ping -- Raven, Peter H -- New York, N.Y. -- Science. 2010 Mar 19;327(5972):1457, 1459. doi: 10.1126/science.1185164.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Massachusetts, Boston, MA 02125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20299578" target="_blank"〉PubMed〈/a〉
    Keywords: Biodiversity ; China ; *Climate Change ; *Conservation of Natural Resources ; *Ecosystem ; *Environment ; India ; *International Cooperation ; Politics ; Trees ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2010-05-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stroud, David A -- Meisinger, Chris -- Pfanner, Nikolaus -- Wiedemann, Nils -- New York, N.Y. -- Science. 2010 May 14;328(5980):831-2. doi: 10.1126/science.1190507.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Biochemie und Molekularbiologie, ZBMZ, Trinationales Graduiertenkolleg 1478, Fakultat fur Biologie, and Centre for Biological Signalling Studies, Universitat Freiburg, 79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20466908" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/chemistry/*metabolism ; Carrier Proteins/metabolism ; Cell Membrane/*metabolism ; Chloroplasts/metabolism ; Escherichia coli/*metabolism ; Escherichia coli Proteins/chemistry/*metabolism ; Intracellular Membranes/metabolism ; Liposomes ; Mitochondria/metabolism ; Molecular Chaperones/chemistry/metabolism ; Multiprotein Complexes/chemistry/metabolism ; Peptidylprolyl Isomerase/metabolism ; Protein Folding ; Protein Precursors/chemistry/metabolism ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...