ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (85)
  • Molecular Sequence Data  (83)
  • American Association for the Advancement of Science (AAAS)  (157)
  • American Association for the Advancement of Science
  • American Chemical Society
  • Periodicals Archive Online (PAO)
  • Springer Nature
  • 2000-2004  (125)
  • 1985-1989
  • 1980-1984  (32)
  • 1965-1969
  • 2003  (125)
  • 1983  (32)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (157)
  • American Association for the Advancement of Science
  • American Chemical Society
  • Periodicals Archive Online (PAO)
  • Springer Nature
Years
  • 2000-2004  (125)
  • 1985-1989
  • 1980-1984  (32)
  • 1965-1969
Year
  • 1
    Publication Date: 2003-04-26
    Description: Tubular nanostructures are suggested to have a wide range of applications in nanotechnology. We report our observation of the self-assembly of a very short peptide, the Alzheimer's beta-amyloid diphenylalanine structural motif, into discrete and stiff nanotubes. Reduction of ionic silver within the nanotubes, followed by enzymatic degradation of the peptide backbone, resulted in the production of discrete nanowires with a long persistence length. The same dipeptide building block, made of D-phenylalanine, resulted in the production of enzymatically stable nanotubes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reches, Meital -- Gazit, Ehud -- New York, N.Y. -- Science. 2003 Apr 25;300(5619):625-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12714741" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Amyloid beta-Peptides/chemistry ; Biosensing Techniques ; Birefringence ; Dipeptides/*chemistry ; Microscopy, Electron ; Microscopy, Electron, Scanning ; Molecular Sequence Data ; *Nanotechnology ; Oxidation-Reduction ; Protein Conformation ; Silver ; Solubility ; Spectroscopy, Fourier Transform Infrared
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-08-09
    Description: Amyotrophic lateral sclerosis (ALS) is a progressive, lethal neuromuscular disease that is associated with the degeneration of spinal and brainstem motor neurons, leading to atrophy of limb, axial, and respiratory muscles. The cause of ALS is unknown, and there is no effective therapy. Neurotrophic factors are candidates for therapeutic evaluation in ALS. Although chronic delivery of molecules to the central nervous system has proven difficult, we recently discovered that adeno-associated virus can be retrogradely transported efficiently from muscle to motor neurons of the spinal cord. We report that insulin-like growth factor 1 prolongs life and delays disease progression, even when delivered at the time of overt disease symptoms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaspar, Brian K -- Llado, Jeronia -- Sherkat, Nushin -- Rothstein, Jeffrey D -- Gage, Fred H -- AG12992/AG/NIA NIH HHS/ -- AG21876/AG/NIA NIH HHS/ -- NS33958/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 8;301(5634):839-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12907804" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/pathology/physiopathology/*therapy ; Animals ; Apoptosis ; Base Sequence ; Caspase 9 ; Caspases/metabolism ; Cell Count ; Dependovirus/*genetics ; Disease Models, Animal ; Disease Progression ; Gene Transfer Techniques ; *Genetic Therapy ; *Genetic Vectors/administration & dosage ; Glial Cell Line-Derived Neurotrophic Factor ; Green Fluorescent Proteins ; Insulin-Like Growth Factor I/*genetics ; Luminescent Proteins/genetics ; Male ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Motor Neurons/pathology/virology ; Muscle, Skeletal/virology ; Nerve Growth Factors/genetics ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; Random Allocation ; Spinal Cord/chemistry/pathology/virology ; Superoxide Dismutase/genetics/metabolism ; Ubiquitin/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-10-04
    Description: Analysis of the human and mouse genomes identified an abundance of conserved non-genic sequences (CNGs). The significance and evolutionary depth of their conservation remain unanswered. We have quantified levels and patterns of conservation of 191 CNGs of human chromosome 21 in 14 mammalian species. We found that CNGs are significantly more conserved than protein-coding genes and noncoding RNAS (ncRNAs) within the mammalian class from primates to monotremes to marsupials. The pattern of substitutions in CNGs differed from that seen in protein-coding and ncRNA genes and resembled that of protein-binding regions. About 0.3% to 1% of the human genome corresponds to a previously unknown class of extremely constrained CNGs shared among mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dermitzakis, Emmanouil T -- Reymond, Alexandre -- Scamuffa, Nathalie -- Ucla, Catherine -- Kirkness, Ewen -- Rossier, Colette -- Antonarakis, Stylianos E -- New York, N.Y. -- Science. 2003 Nov 7;302(5647):1033-5. Epub 2003 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Medical Genetics and National Center of Competence in Research (NCCR) Frontiers in Genetics, University of Geneva Medical School and University Hospitals, 1211 Geneva, Switzerland. Emmanouil.Dermitzakis@medecine.unige.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526086" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromosomes, Human, Pair 21/*genetics ; Chromosomes, Mammalian/*genetics ; *Conserved Sequence ; DNA, Intergenic/*genetics ; Discriminant Analysis ; *Evolution, Molecular ; Female ; Genetic Code ; Genome ; Humans ; Male ; Mammals/*genetics ; Molecular Sequence Data ; Polymerase Chain Reaction ; Proteins/genetics ; RNA, Untranslated/genetics ; Selection, Genetic ; Sequence Alignment ; Species Specificity ; Time ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2003-12-20
    Description: Approximately 80% of the maize genome comprises highly repetitive sequences interspersed with single-copy, gene-rich sequences, and standard genome sequencing strategies are not readily adaptable to this type of genome. Methodologies that enrich for genic sequences might more rapidly generate useful results from complex genomes. Equivalent numbers of clones from maize selected by techniques called methylation filtering and High C0t selection were sequenced to generate approximately 200,000 reads (approximately 132 megabases), which were assembled into contigs. Combination of the two techniques resulted in a sixfold reduction in the effective genome size and a fourfold increase in the gene identification rate in comparison to a nonenriched library.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whitelaw, C A -- Barbazuk, W B -- Pertea, G -- Chan, A P -- Cheung, F -- Lee, Y -- Zheng, L -- van Heeringen, S -- Karamycheva, S -- Bennetzen, J L -- SanMiguel, P -- Lakey, N -- Bedell, J -- Yuan, Y -- Budiman, M A -- Resnick, A -- Van Aken, S -- Utterback, T -- Riedmuller, S -- Williams, M -- Feldblyum, T -- Schubert, K -- Beachy, R -- Fraser, C M -- Quackenbush, J -- New York, N.Y. -- Science. 2003 Dec 19;302(5653):2118-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684821" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosomes, Plant/genetics ; Cloning, Molecular ; Computational Biology ; Contig Mapping ; DNA Methylation ; DNA, Plant/genetics ; Databases, Nucleic Acid ; Expressed Sequence Tags ; Gene Dosage ; Gene Library ; *Genes, Plant ; *Genome, Plant ; Molecular Sequence Data ; Repetitive Sequences, Nucleic Acid ; Retroelements ; Sequence Alignment ; Sequence Analysis, DNA/*methods ; Transcription, Genetic ; Zea mays/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-04-26
    Description: The active-site cysteine of peroxiredoxins is selectively oxidized to cysteine sulfinic acid during catalysis, which leads to inactivation of peroxidase activity. This oxidation was thought to be irreversible. However, by metabolic labeling of mammalian cells with 35S, we show that the sulfinic form of peroxiredoxin I, produced during the exposure of cells to H2O2, is rapidly reduced to the catalytically active thiol form. The mammalian cells' ability to reduce protein sulfinic acid might serve as a mechanism to repair oxidatively damaged proteins or represent a new type of cyclic modification by which the function of various proteins is regulated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woo, Hyun Ae -- Chae, Ho Zoon -- Hwang, Sung Chul -- Yang, Kap-Seok -- Kang, Sang Won -- Kim, Kanghwa -- Rhee, Sue Goo -- New York, N.Y. -- Science. 2003 Apr 25;300(5619):653-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cell Signaling Research and Division of Molecular Life Sciences, Ewha Womans University, Seoul 120-750, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12714748" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalysis ; Cell Line ; Cycloheximide/pharmacology ; Cysteine/*analogs & derivatives/*metabolism ; Dimerization ; HeLa Cells ; Humans ; Hydrogen Peroxide/*metabolism ; Methionine/metabolism ; Mice ; Neurotransmitter Agents ; Oxidation-Reduction ; Peroxidases/chemistry/*metabolism ; Peroxiredoxins ; Protein Synthesis Inhibitors/pharmacology ; Spectrometry, Mass, Electrospray Ionization ; Sulfhydryl Compounds/metabolism ; Sulfinic Acids/metabolism ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-07-26
    Description: It is well known that hunting dramatically reduced all baleen whale populations, yet reliable estimates of former whale abundances are elusive. Based on coalescent models for mitochondrial DNA sequence variation, the genetic diversity of North Atlantic whales suggests population sizes of approximately 240,000 humpback, 360,000 fin, and 265,000 minke whales. Estimates for fin and humpback whales are far greater than those previously calculated for prewhaling populations and 6 to 20 times higher than present-day population estimates. Such discrepancies suggest the need for a quantitative reevaluation of historical whale populations and a fundamental revision in our conception of the natural state of the oceans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roman, Joe -- Palumbi, Stephen R -- New York, N.Y. -- Science. 2003 Jul 25;301(5632):508-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12881568" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atlantic Ocean ; Base Sequence ; Conservation of Natural Resources ; DNA, Mitochondrial/genetics ; *Ecosystem ; Female ; Genetic Variation ; Genetics, Population ; Male ; Molecular Sequence Data ; Population Density ; Population Dynamics ; Time Factors ; *Whales/classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-01
    Description: Although curvature of biological surfaces has been considered from mathematical and biophysical perspectives, its molecular and developmental basis is unclear. We have studied the cin mutant of Antirrhinum, which has crinkly rather than flat leaves. Leaves of cin display excess growth in marginal regions, resulting in a gradual introduction of negative curvature during development. This reflects a change in the shape and the progression of a cell-cycle arrest front moving from the leaf tip toward the base. CIN encodes a TCP protein and is expressed downstream of the arrest front. We propose that CIN promotes zero curvature (flatness) by making cells more sensitive to an arrest signal, particularly in marginal regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nath, Utpal -- Crawford, Brian C W -- Carpenter, Rosemary -- Coen, Enrico -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1404-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610308" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antirrhinum/cytology/*genetics/*growth & development/metabolism ; Base Sequence ; Cell Cycle ; Cell Differentiation ; Cell Division ; Cell Size ; Cyclin D3 ; Cyclins/genetics/metabolism ; Gene Deletion ; *Gene Expression Regulation, Plant ; *Genes, Plant ; Histones/genetics/metabolism ; Molecular Sequence Data ; Mutagenesis, Insertional ; Mutation ; Plant Leaves/anatomy & histology/cytology/*growth & development/metabolism ; Plant Proteins/chemistry/genetics/metabolism ; Surface Properties ; Transcription Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-01-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rajagopal, Jayaraj -- Anderson, William J -- Kume, Shoen -- Martinez, Olga I -- Melton, Douglas A -- New York, N.Y. -- Science. 2003 Jan 17;299(5605):363.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12532008" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/immunology ; Apoptosis ; Cell Differentiation ; Cell Line ; Embryo, Mammalian/*cytology ; Humans ; Insulin/*analysis/genetics/immunology/*metabolism ; Islets of Langerhans/*cytology/metabolism ; Mice ; Microscopy, Confocal ; RNA, Messenger/genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Stem Cells/*cytology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-09-13
    Description: During spliceosome activation, a large structural rearrangement occurs that involves the release of two small nuclear RNAs, U1 and U4, and the addition of a protein complex associated with Prp19p. We show here that the Prp19p-associated complex is required for stable association of U5 and U6 with the spliceosome after U4 is dissociated. Ultraviolet crosslinking analysis revealed the existence of two modes of base pairing between U6 and the 5' splice site, as well as a switch of such base pairing from one to the other that required the Prp19p-associated complex during spliceosome activation. Moreover, a Prp19p-dependent structural change in U6 small nuclear ribonucleoprotein particles was detected that involves destabilization of Sm-like (Lsm) proteins to bring about interactions between the Lsm binding site of U6 and the intron sequence near the 5' splice site, indicating dynamic association of Lsm with U6 and a direct role of Lsm proteins in activation of the spliceosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chan, Shih-Peng -- Kao, Der-I -- Tsai, Wei-Yu -- Cheng, Soo-Chen -- New York, N.Y. -- Science. 2003 Oct 10;302(5643):279-82. Epub 2003 Sep 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Microbiology and Immunology, National Yang-Ming University, Shih-Pai, Taiwan, Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12970570" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Base Pairing ; Binding Sites ; Blotting, Northern ; Introns ; Molecular Sequence Data ; RNA Precursors/metabolism ; RNA Splicing ; RNA, Small Nuclear/metabolism ; RNA-Binding Proteins/chemistry/metabolism ; Ribonuclease H/metabolism ; Ribonucleoprotein, U4-U6 Small Nuclear/chemistry/*metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; Spliceosomes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2003-07-19
    Description: We collected and completely sequenced 28,469 full-length complementary DNA clones from Oryza sativa L. ssp. japonica cv. Nipponbare. Through homology searches of publicly available sequence data, we assigned tentative protein functions to 21,596 clones (75.86%). Mapping of the cDNA clones to genomic DNA revealed that there are 19,000 to 20,500 transcription units in the rice genome. Protein informatics analysis against the InterPro database revealed the existence of proteins presented in rice but not in Arabidopsis. Sixty-four percent of our cDNAs are homologous to Arabidopsis proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rice Full-Length cDNA Consortium -- National Institute of Agrobiological Sciences Rice Full-Length cDNA Project Team -- Kikuchi, Shoshi -- Satoh, Kouji -- Nagata, Toshifumi -- Kawagashira, Nobuyuki -- Doi, Koji -- Kishimoto, Naoki -- Yazaki, Junshi -- Ishikawa, Masahiro -- Yamada, Hitomi -- Ooka, Hisako -- Hotta, Isamu -- Kojima, Keiichi -- Namiki, Takahiro -- Ohneda, Eisuke -- Yahagi, Wataru -- Suzuki, Kohji -- Li, Chao Jie -- Ohtsuki, Kenji -- Shishiki, Toru -- Foundation of Advancement of International Science Genome Sequencing & Analysis Group -- Otomo, Yasuhiro -- Murakami, Kazuo -- Iida, Yoshiharu -- Sugano, Sumio -- Fujimura, Tatsuto -- Suzuki, Yutaka -- Tsunoda, Yuki -- Kurosaki, Takashi -- Kodama, Takeko -- Masuda, Hiromi -- Kobayashi, Michie -- Xie, Quihong -- Lu, Min -- Narikawa, Ryuya -- Sugiyama, Akio -- Mizuno, Kouichi -- Yokomizo, Satoko -- Niikura, Junko -- Ikeda, Rieko -- Ishibiki, Junya -- Kawamata, Midori -- Yoshimura, Akemi -- Miura, Junichirou -- Kusumegi, Takahiro -- Oka, Mitsuru -- Ryu, Risa -- Ueda, Mariko -- Matsubara, Kenichi -- RIKEN -- Kawai, Jun -- Carninci, Piero -- Adachi, Jun -- Aizawa, Katsunori -- Arakawa, Takahiro -- Fukuda, Shiro -- Hara, Ayako -- Hashizume, Wataru -- Hayatsu, Norihito -- Imotani, Koichi -- Ishii, Yoshiyuki -- Itoh, Masayoshi -- Kagawa, Ikuko -- Kondo, Shinji -- Konno, Hideaki -- Miyazaki, Ai -- Osato, Naoki -- Ota, Yoshimi -- Saito, Rintaro -- Sasaki, Daisuke -- Sato, Kenjiro -- Shibata, Kazuhiro -- Shinagawa, Akira -- Shiraki, Toshiyuki -- Yoshino, Masayasu -- Hayashizaki, Yoshihide -- Yasunishi, Ayako -- New York, N.Y. -- Science. 2003 Jul 18;301(5631):376-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, National Institute of Agrobiological Sciences, 2-1-2 Kannon-dai, Tsukuba, Ibaraki 305-8602, Japan. skikuchi@nias.affrc.go.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12869764" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; Cloning, Molecular ; Computational Biology ; DNA, Complementary ; Databases, Nucleic Acid ; Databases, Protein ; Genes, Plant ; *Genome, Plant ; Molecular Sequence Data ; Open Reading Frames ; Oryza/*genetics ; Plant Proteins/chemistry/genetics/physiology ; Protein Structure, Tertiary ; RNA, Antisense/genetics ; *Sequence Analysis, DNA ; Sequence Homology, Amino Acid ; Sequence Homology, Nucleic Acid ; Transcription Factors/chemistry/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2003-09-27
    Description: A survey of the dog genome sequence (6.22 million sequence reads; 1.5x coverage) demonstrates the power of sample sequencing for comparative analysis of mammalian genomes and the generation of species-specific resources. More than 650 million base pairs (〉25%) of dog sequence align uniquely to the human genome, including fragments of putative orthologs for 18,473 of 24,567 annotated human genes. Mutation rates, conserved synteny, repeat content, and phylogeny can be compared among human, mouse, and dog. A variety of polymorphic elements are identified that will be valuable for mapping the genetic basis of diseases and traits in the dog.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kirkness, Ewen F -- Bafna, Vineet -- Halpern, Aaron L -- Levy, Samuel -- Remington, Karin -- Rusch, Douglas B -- Delcher, Arthur L -- Pop, Mihai -- Wang, Wei -- Fraser, Claire M -- Venter, J Craig -- New York, N.Y. -- Science. 2003 Sep 26;301(5641):1898-903.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Institute for Genomic Research, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512627" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Mammalian/genetics ; Computational Biology ; Conserved Sequence ; Contig Mapping ; DNA, Intergenic ; Dogs/*genetics ; Genetic Variation ; *Genome ; Genome, Human ; Genomics ; Humans ; Long Interspersed Nucleotide Elements ; Male ; Mice/genetics ; Molecular Sequence Data ; Mutation ; Phylogeny ; Physical Chromosome Mapping ; Polymorphism, Single Nucleotide ; RNA, Messenger/genetics ; Repetitive Sequences, Nucleic Acid ; Sequence Alignment ; *Sequence Analysis, DNA ; Short Interspersed Nucleotide Elements ; Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2003-08-09
    Description: Alternative pre-messenger RNA splicing is an important mechanism for generating protein diversity and may explain in part how mammalian complexity arises from a surprisingly small complement of genes. Here, we describe "digital polony exon profiling,"a single molecule-based technology for studying complex alternative pre-messenger RNA splicing. This technology allows researchers to monitor the combinatorial diversity of exon inclusion in individual transcripts. A minisequencing strategy provides single nucleotide resolution, and the digital nature of the technology allows quantitation of individual splicing variants. Digital polony exon profiling can be used to investigate the physiological and pathological roles of alternately spliced messenger RNAs, as well as the mechanisms by which these messenger RNAs are produced.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, Jun -- Shendure, Jay -- Mitra, Robi D -- Church, George M -- 5U54GM62119/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 8;301(5634):836-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12907803" target="_blank"〉PubMed〈/a〉
    Keywords: Acrylamide ; *Alternative Splicing ; Animals ; Antigens, CD44/genetics ; Brain/metabolism ; Cell Line ; Cell Line, Transformed ; Cyclic AMP Response Element-Binding Protein ; *Exons ; Humans ; Mice ; Microtubule-Associated Proteins/genetics ; Nerve Tissue Proteins/genetics ; Polymerase Chain Reaction/*methods ; Polymorphism, Single Nucleotide ; Protein Isoforms ; RNA Precursors/*genetics/metabolism ; RNA-Binding Proteins ; SMN Complex Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2003-07-26
    Description: Barriers to dispersal between populations allow them to diverge through local adaptation or random genetic drift. High-resolution multilocus sequence analysis revealed that, on a global scale, populations of hyperthermophilic microorganisms are isolated from one another by geographic barriers and have diverged over the course of their recent evolutionary history. The identification of a biogeographic pattern in the archaeon Sulfolobus challenges the current model of microbial biodiversity in which unrestricted dispersal constrains the development of global species richness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whitaker, Rachel J -- Grogan, Dennis W -- Taylor, John W -- New York, N.Y. -- Science. 2003 Aug 15;301(5635):976-8. Epub 2003 Jul 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720, USA. rwhitaker@nature.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12881573" target="_blank"〉PubMed〈/a〉
    Keywords: Analysis of Variance ; Biological Evolution ; *Ecosystem ; Genes, Archaeal ; Genes, rRNA ; Genetic Drift ; Genetic Variation ; Genetics, Population ; Genotype ; Geography ; Geologic Sediments/*microbiology ; Hot Temperature ; Hydrogen-Ion Concentration ; Molecular Sequence Data ; Phylogeny ; Sequence Analysis, DNA ; Sulfolobus/genetics/isolation & purification/*physiology ; Temperature ; *Water Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2003-03-01
    Description: The mechanisms that determine how folding attempts are interrupted to target folding-incompetent proteins for endoplasmic reticulum-associated degradation (ERAD) are poorly defined. Here the alpha-mannosidase I-like protein EDEM was shown to extract misfolded glycoproteins, but not glycoproteins undergoing productive folding, from the calnexin cycle. EDEM overexpression resulted in faster release of folding-incompetent proteins from the calnexin cycle and earlier onset of degradation, whereas EDEM down-regulation prolonged folding attempts and delayed ERAD. Up-regulation of EDEM during ER stress may promote cell recovery by clearing the calnexin cycle and by accelerating ERAD of terminally misfolded polypeptides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Molinari, Maurizio -- Calanca, Verena -- Galli, Carmela -- Lucca, Paola -- Paganetti, Paolo -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1397-400.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland. Maurizio.molinari@irb.unisi.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610306" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid Endopeptidases/chemistry/*metabolism ; Calnexin/*metabolism ; Cell Line ; Down-Regulation ; Electrophoresis, Polyacrylamide Gel ; Endoplasmic Reticulum/*metabolism ; Glycoproteins/chemistry/*metabolism ; Glycosylation ; Humans ; Kinetics ; Membrane Proteins/*metabolism ; Molecular Weight ; Polysaccharides/metabolism ; Protein Conformation ; Protein Folding ; RNA Interference ; Transfection ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2003-07-12
    Description: We report the use of genetically engineered cells in a pathogen identification sensor. This sensor uses B lymphocytes that have been engineered to emit light within seconds of exposure to specific bacteria and viruses. We demonstrated rapid screening of relevant samples and identification of a variety of pathogens at very low levels. Because of its speed, sensitivity, and specificity, this pathogen identification technology could prove useful for medical diagnostics, biowarfare defense, food- and water-quality monitoring, and other applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rider, Todd H -- Petrovick, Martha S -- Nargi, Frances E -- Harper, James D -- Schwoebel, Eric D -- Mathews, Richard H -- Blanchard, David J -- Bortolin, Laura T -- Young, Albert M -- Chen, Jianzhu -- Hollis, Mark A -- New York, N.Y. -- Science. 2003 Jul 11;301(5630):213-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA 02420, USA. thor@ll.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12855808" target="_blank"〉PubMed〈/a〉
    Keywords: Aequorin/biosynthesis ; Antibodies, Bacterial/immunology ; Antibodies, Viral/immunology ; *B-Lymphocytes/immunology ; Bacillus anthracis/immunology/isolation & purification ; Bacteria/immunology/*isolation & purification ; *Bacteriological Techniques ; *Biosensing Techniques ; Cell Line ; Colony Count, Microbial ; Encephalitis Virus, Venezuelan Equine/immunology/isolation & purification ; Escherichia coli O157/immunology/isolation & purification ; Foot-and-Mouth Disease Virus/immunology/isolation & purification ; Immunoglobulin Variable Region/immunology ; Light ; Receptors, Antigen, B-Cell/immunology ; Sensitivity and Specificity ; Time Factors ; Transfection ; Viruses/immunology/*isolation & purification ; Yersinia pestis/immunology/isolation & purification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-09-13
    Description: Phototropins are light-activated kinases important for plant responses to blue light. Light initiates signaling in these proteins by generating a covalent protein-flavin mononucleotide (FMN) adduct within sensory Per-ARNT-Sim (PAS) domains. We characterized the light-dependent changes of a phototropin PAS domain by solution nuclear magnetic resonance spectroscopy and found that an alpha helix located outside the canonical domain plays a key role in this activation process. Although this helix associates with the PAS core in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent bond formation to kinase activation and identifies a signaling pathway conserved among PAS domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harper, Shannon M -- Neil, Lori C -- Gardner, Kevin H -- CA90601/CA/NCI NIH HHS/ -- GM08297/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 12;301(5639):1541-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12970567" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Avena/*chemistry ; Cryptochromes ; Darkness ; *Drosophila Proteins ; *Eye Proteins ; Flavoproteins/*chemistry/metabolism ; *Light ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; *Photoreceptor Cells, Invertebrate ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2003-06-07
    Description: Insulin resistance is a major hallmark in the development of type II diabetes, which is characterized by the failure of insulin to promote glucose uptake in muscle and to suppress glucose production in liver. The serine-threonine kinase Akt (PKB) is a principal target of insulin signaling that inhibits hepatic glucose output when glucose is available from food. Here we show that TRB3, a mammalian homolog of Drosophila tribbles, functions as a negative modulator of Akt. TRB3 expression is induced in liver under fasting conditions, and TRB3 disrupts insulin signaling by binding directly to Akt and blocking activation of the kinase. Amounts of TRB3 RNA and protein were increased in livers of db/db diabetic mice compared with those in wild-type mice. Hepatic overexpression of TRB3 in amounts comparable to those in db/db mice promoted hyperglycemia and glucose intolerance. Our results suggest that, by interfering with Akt activation, TRB3 contributes to insulin resistance in individuals with susceptibility to type II diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Du, Keyong -- Herzig, Stephan -- Kulkarni, Rohit N -- Montminy, Marc -- New York, N.Y. -- Science. 2003 Jun 6;300(5625):1574-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Peptide Biology Laboratories, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12791994" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/genetics/physiology ; Amino Acid Substitution ; Animals ; Blood Glucose/metabolism ; Cell Cycle Proteins/genetics/*metabolism ; Cell Line ; Diabetes Mellitus/genetics/metabolism ; Enzyme Activation ; Fasting ; Genetic Vectors ; Glucose/metabolism ; Glucose Intolerance ; Glycogen Synthase Kinase 3/metabolism ; Humans ; Insulin/blood/*metabolism ; Insulin Resistance ; Insulin-Like Growth Factor I/pharmacology ; Liver/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Phosphorylation ; Polymerase Chain Reaction ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; RNA Interference ; Rats ; Repressor Proteins ; Signal Transduction ; Transfection ; Transgenes ; Tumor Cells, Cultured ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2003-06-28
    Description: Human antibody 2G12 neutralizes a broad range of human immunodeficiency virus type 1 (HIV-1) isolates by binding an unusually dense cluster of carbohydrate moieties on the "silent" face of the gp120 envelope glycoprotein. Crystal structures of Fab 2G12 and its complexes with the disaccharide Manalpha1-2Man and with the oligosaccharide Man9GlcNAc2 revealed that two Fabs assemble into an interlocked VH domain-swapped dimer. Further biochemical, biophysical, and mutagenesis data strongly support a Fab-dimerized antibody as the prevalent form that recognizes gp120. The extraordinary configuration of this antibody provides an extended surface, with newly described binding sites, for multivalent interaction with a conserved cluster of oligomannose type sugars on the surface of gp120. The unique interdigitation of Fab domains within an antibody uncovers a previously unappreciated mechanism for high-affinity recognition of carbohydrate or other repeating epitopes on cell or microbial surfaces.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Calarese, Daniel A -- Scanlan, Christopher N -- Zwick, Michael B -- Deechongkit, Songpon -- Mimura, Yusuke -- Kunert, Renate -- Zhu, Ping -- Wormald, Mark R -- Stanfield, Robyn L -- Roux, Kenneth H -- Kelly, Jeffery W -- Rudd, Pauline M -- Dwek, Raymond A -- Katinger, Hermann -- Burton, Dennis R -- Wilson, Ian A -- AI33292/AI/NIAID NIH HHS/ -- GM46192/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2065-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829775" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/immunology/metabolism ; Antibody Affinity ; Antibody Specificity ; Binding Sites, Antibody ; Cell Adhesion Molecules/metabolism ; Centrifugation, Density Gradient ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Disaccharides/chemistry/metabolism ; Epitopes ; HIV Antibodies/*chemistry/genetics/*immunology/metabolism ; HIV Envelope Protein gp120/*immunology ; HIV-1/*immunology ; Humans ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/*chemistry/genetics/*immunology/metabolism ; Immunoglobulin Heavy Chains/chemistry/immunology ; Immunoglobulin Light Chains/chemistry/immunology ; Immunoglobulin Variable Region/chemistry/immunology ; Lectins/chemistry/immunology/metabolism ; Lectins, C-Type/metabolism ; Ligands ; Mannans/chemistry/metabolism ; Mannosides/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Oligosaccharides/chemistry/*immunology/metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Cell Surface/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2003-11-01
    Description: The Arabidopsis autonomous floral-promotion pathway promotes flowering independently of the photoperiod and vernalization pathways by repressing FLOWERING LOCUS C (FLC), a MADS-box transcription factor that blocks the transition from vegetative to reproductive development. Here, we report that FLOWERING LOCUS D (FLD), one of six genes in the autonomous pathway, encodes a plant homolog of a protein found in histone deacetylase complexes in mammals. Lesions in FLD result in hyperacetylation of histones in FLC chromatin, up-regulation of FLC expression, and extremely delayed flowering. Thus, the autonomous pathway regulates flowering in part by histone deacetylation. However, not all autonomous-pathway mutants exhibit FLC hyperacetylation, indicating that multiple means exist by which this pathway represses FLC expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Yuehui -- Michaels, Scott D -- Amasino, Richard M -- New York, N.Y. -- Science. 2003 Dec 5;302(5651):1751-4. Epub 2003 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593187" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Arabidopsis/genetics/*growth & development/metabolism ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Chromatin/metabolism ; Flowers/*growth & development ; Gene Expression Regulation, Plant ; Genes, Plant ; Histone Deacetylases/chemistry/genetics/*metabolism ; Histones/*metabolism ; Humans ; Introns ; MADS Domain Proteins/chemistry/*genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Phenotype ; Plants, Genetically Modified ; Precipitin Tests ; Protein Structure, Tertiary ; Regulatory Sequences, Nucleic Acid ; Repressor Proteins/chemistry/metabolism ; Sequence Deletion ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2003-04-26
    Description: Eukaryotic 2-Cys peroxiredoxins (2-Cys Prxs) not only act as antioxidants, but also appear to regulate hydrogen peroxide-mediated signal transduction. We show that bacterial 2-Cys Prxs are much less sensitive to oxidative inactivation than are eukaryotic 2-Cys Prxs. By identifying two sequence motifs unique to the sensitive 2-Cys Prxs and comparing the crystal structure of a bacterial 2-Cys Prx at 2.2 angstrom resolution with other Prx structures, we define the structural origins of sensitivity. We suggest this adaptation allows 2-Cys Prxs to act as floodgates, keeping resting levels of hydrogen peroxide low, while permitting higher levels during signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, Zachary A -- Poole, Leslie B -- Karplus, P Andrew -- ES00210/ES/NIEHS NIH HHS/ -- GM50389/GM/NIGMS NIH HHS/ -- R01 GM050389/GM/NIGMS NIH HHS/ -- R01 GM050389-10/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Apr 25;300(5619):650-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97333, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12714747" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Bacteria/enzymology ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Cysteine/metabolism ; Disulfides/chemistry/metabolism ; Evolution, Molecular ; Humans ; Hydrogen Peroxide/*metabolism ; Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Peroxidases/*chemistry/*metabolism ; Peroxiredoxins ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Salmonella typhimurium/*enzymology ; Sequence Alignment ; *Signal Transduction ; Sulfenic Acids/metabolism ; Sulfinic Acids/metabolism ; Yeasts/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2003-11-15
    Description: Prefoldins (PFDs) are members of a recently identified, small-molecular weight protein family able to assemble into molecular chaperone complexes. Here we describe an unusually large member of this family, termed URI, that forms complexes with other small-molecular weight PFDs and with RPB5, a shared subunit of all three RNA polymerases. Functional analysis of the yeast and human orthologs of URI revealed that both are targets of nutrient signaling and participate in gene expression controlled by the TOR kinase. Thus, URI is a component of a signaling pathway that coordinates nutrient availability with gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gstaiger, Matthias -- Luke, Brian -- Hess, Daniel -- Oakeley, Edward J -- Wirbelauer, Christiane -- Blondel, Marc -- Vigneron, Marc -- Peter, Matthias -- Krek, Wilhelm -- New York, N.Y. -- Science. 2003 Nov 14;302(5648):1208-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institut, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14615539" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/*metabolism ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; DNA-Binding Proteins/metabolism ; DNA-Directed RNA Polymerases/metabolism ; GATA Transcription Factors ; *Gene Expression Regulation/drug effects ; Humans ; *Intracellular Signaling Peptides and Proteins ; Molecular Sequence Data ; Phosphorylation ; Protein Kinases/metabolism ; Protein Subunits/metabolism ; RNA Interference ; Repressor Proteins/metabolism ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; *Signal Transduction ; Sirolimus/pharmacology ; TOR Serine-Threonine Kinases ; Trans-Activators/metabolism ; Transcription Factors/metabolism ; *Transcription, Genetic/drug effects ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2003-08-02
    Description: Axonal voltage-gated potassium (Kv1) channels regulate action-potential invasion and hence transmitter release. Although evolutionarily conserved, what mediates their axonal targeting is not known. We found that Kv1 axonal targeting required its T1 tetramerization domain. When fused to unpolarized CD4 or dendritic transferrin receptor, T1 promoted their axonal surface expression. Moreover, T1 mutations eliminating Kvbeta association compromised axonal targeting, but not surface expression, of CD4-T1 fusion proteins. Thus, proper association of Kvbeta with the Kv1 T1 domain is essential for axonal targeting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, Chen -- Jan, Yuh Nung -- Jan, Lily Yeh -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):646-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Departments of Physiology and Biochemistry, University of California, San Francisco, CA 94143-0725, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893943" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Substitution ; Animals ; Antigens, CD4/metabolism ; Axons/*metabolism ; Biopolymers ; COS Cells ; Cell Line ; Cell Membrane/metabolism ; Cell Polarity ; Cells, Cultured ; Dendrites/metabolism ; Endocytosis ; Hippocampus/cytology ; Humans ; Kv1.2 Potassium Channel ; Models, Molecular ; Mutagenesis ; Neurons/metabolism ; Potassium Channels/*chemistry/*metabolism ; *Potassium Channels, Voltage-Gated ; *Protein Structure, Tertiary ; Receptors, Transferrin/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Shaker Superfamily of Potassium Channels ; Shal Potassium Channels ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2003-05-06
    Description: In March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The genome of SARS-CoV is 29,727 nucleotides in length and has 11 open reading frames, and its genome organization is similar to that of other coronaviruses. Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closely related to any of the previously characterized coronaviruses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rota, Paul A -- Oberste, M Steven -- Monroe, Stephan S -- Nix, W Allan -- Campagnoli, Ray -- Icenogle, Joseph P -- Penaranda, Silvia -- Bankamp, Bettina -- Maher, Kaija -- Chen, Min-Hsin -- Tong, Suxiong -- Tamin, Azaibi -- Lowe, Luis -- Frace, Michael -- DeRisi, Joseph L -- Chen, Qi -- Wang, David -- Erdman, Dean D -- Peret, Teresa C T -- Burns, Cara -- Ksiazek, Thomas G -- Rollin, Pierre E -- Sanchez, Anthony -- Liffick, Stephanie -- Holloway, Brian -- Limor, Josef -- McCaustland, Karen -- Olsen-Rasmussen, Melissa -- Fouchier, Ron -- Gunther, Stephan -- Osterhaus, Albert D M E -- Drosten, Christian -- Pallansch, Mark A -- Anderson, Larry J -- Bellini, William J -- New York, N.Y. -- Science. 2003 May 30;300(5624):1394-9. Epub 2003 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA. prota@cdc.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730500" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Conserved Sequence ; Coronavirus/classification/genetics ; DNA, Complementary ; Endopeptidases/chemistry/genetics ; *Genome, Viral ; Humans ; Membrane Glycoproteins/chemistry/genetics ; Molecular Sequence Data ; Nucleocapsid Proteins/chemistry/genetics ; Open Reading Frames ; Phylogeny ; Polyproteins/chemistry/genetics ; RNA Replicase/chemistry/genetics ; RNA, Messenger/genetics/metabolism ; RNA, Viral/*genetics ; Regulatory Sequences, Nucleic Acid ; SARS Virus/chemistry/classification/*genetics/isolation & purification ; Sequence Analysis, DNA ; Severe Acute Respiratory Syndrome/virology ; Spike Glycoprotein, Coronavirus ; Transcription, Genetic ; Viral Envelope Proteins/chemistry/genetics ; Viral Matrix Proteins/chemistry/genetics ; Viral Proteins/chemistry/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2003-12-04
    Description: Vancomycin is usually reserved for treatment of serious infections, including those caused by multidrug-resistant Staphylococcus aureus. A clinical isolate of S. aureus with high-level resistance to vancomycin (minimal inhibitory concentration = 1024 microg/ml) was isolated in June 2002. This isolate harbored a 57.9-kilobase multiresistance conjugative plasmid within which Tn1546 (vanA) was integrated. Additional elements on the plasmid encoded resistance to trimethoprim (dfrA), beta-lactams (blaZ), aminoglycosides (aacA-aphD), and disinfectants (qacC). Genetic analyses suggest that the long-anticipated transfer of vancomycin resistance to a methicillin-resistant S. aureus occurred in vivo by interspecies transfer of Tn1546 from a co-isolate of Enterococcus faecalis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weigel, Linda M -- Clewell, Don B -- Gill, Steven R -- Clark, Nancye C -- McDougal, Linda K -- Flannagan, Susan E -- Kolonay, James F -- Shetty, Jyoti -- Killgore, George E -- Tenover, Fred C -- N01-AI-95359/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1569-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA. lweigel@cdc.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645850" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/pharmacology ; Bacterial Proteins/*genetics ; Carbon-Oxygen Ligases/*genetics ; Conjugation, Genetic ; *DNA Transposable Elements ; Drug Resistance, Multiple, Bacterial/genetics ; Enterococcus faecalis/drug effects/*genetics/isolation & purification ; Genes, Bacterial ; Humans ; Methicillin Resistance/genetics ; Microbial Sensitivity Tests ; Molecular Sequence Data ; Plasmids ; *R Factors ; Recombination, Genetic ; Renal Dialysis ; Staphylococcus aureus/*drug effects/*genetics/isolation & purification ; Vancomycin/pharmacology ; Vancomycin Resistance/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2003-08-30
    Description: The rhizobial infection of legumes has the most stringent demand toward Nod factor structure of all host responses, and therefore a specific Nod factor entry receptor has been proposed. The SYM2 gene identified in certain ecotypes of pea (Pisum sativum) is a good candidate for such an entry receptor. We exploited the close phylogenetic relationship of pea and the model legume Medicago truncatula to identify genes specifically involved in rhizobial infection. The SYM2 orthologous region of M. truncatula contains 15 putative receptor-like genes, of which 7 are LysM domain-containing receptor-like kinases (LYKs). Using reverse genetics in M. truncatula, we show that two LYK genes are specifically involved in infection thread formation. This, as well as the properties of the LysM domains, strongly suggests that they are Nod factor entry receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Limpens, Erik -- Franken, Carolien -- Smit, Patrick -- Willemse, Joost -- Bisseling, Ton -- Geurts, Rene -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):630-3. Epub 2003 Aug 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Dreijenlaan 3, 6703HA, Wageningen, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12947035" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Gene Expression ; *Genes, Plant ; Ligands ; Lipopolysaccharides/*metabolism ; Medicago/genetics/microbiology/*physiology ; Models, Biological ; Molecular Sequence Data ; Mutation ; Nitrogen Fixation ; Peas ; Phenotype ; Plant Roots/*microbiology/physiology ; Protein Kinases/chemistry/*genetics/*metabolism ; Protein Structure, Tertiary ; RNA Interference ; Signal Transduction ; Sinorhizobium meliloti/chemistry/genetics/growth & development/*physiology ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2003-07-12
    Description: Preclinical or clinical trials for muscular dystrophies have met with modest success, mainly because of inefficient delivery of viral vectors or donor cells to dystrophic muscles. We report here that intra-arterial delivery of wild-type mesoangioblasts, a class of vessel-associated stem cells, corrects morphologically and functionally the dystrophic phenotype of virtually all downstream muscles in adult immunocompetent alpha-sarcoglycan (alpha-SG) null mice, a model organism for limb-girdle muscular dystrophy. When mesoangioblasts isolated from juvenile dystrophic mice and transduced with a lentiviral vector expressing alpha-SG were injected into the femoral artery of dystrophic mice, they reconstituted skeletal muscle in a manner similar to that seen in wild-type cells. The success of this protocol was mainly due to widespread distribution of donor stem cells through the capillary network, a distinct advantage of this strategy over previous approaches.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sampaolesi, Maurilio -- Torrente, Yvan -- Innocenzi, Anna -- Tonlorenzi, Rossana -- D'Antona, Giuseppe -- Pellegrino, M Antonietta -- Barresi, Rita -- Bresolin, Nereo -- De Angelis, M Gabriella Cusella -- Campbell, Kevin P -- Bottinelli, Roberto -- Cossu, Giulio -- 1322/Telethon/Italy -- 463/BI/Telethon/Italy -- New York, N.Y. -- Science. 2003 Jul 25;301(5632):487-92. Epub 2003 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stem Cell Research Institute, H. S. Raffaele, Via Olgettina 58, 20132 Milan, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12855815" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Vessels/cytology/embryology ; Cell Differentiation ; Cell Line ; Cell Movement ; Cytoskeletal Proteins/*genetics/*metabolism ; Dystrophin/metabolism ; Endothelium, Vascular/physiology ; Female ; Femoral Artery ; Genetic Vectors ; Lentivirus/genetics ; Locomotion ; Male ; Membrane Glycoproteins/*genetics/*metabolism ; Mesoderm/cytology ; Mice ; Mice, Knockout ; Mice, Transgenic ; Muscle Contraction ; Muscle Fibers, Skeletal/cytology/physiology ; Muscle, Skeletal/cytology/metabolism/pathology/*physiology ; Muscular Dystrophy, Animal/metabolism/pathology/*therapy ; Regeneration ; Sarcoglycans ; *Stem Cell Transplantation ; Stem Cells/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2003-09-06
    Description: The earliest of a series of copper efflux genes in Escherichia coli are controlled by CueR, a member of the MerR family of transcriptional activators. Thermodynamic calibration of CueR reveals a zeptomolar (10(-21) molar) sensitivity to free Cu+, which is far less than one atom per cell. Atomic details of this extraordinary sensitivity and selectivity for +1transition-metal ions are revealed by comparing the crystal structures of CueR and a Zn2+-sensing homolog, ZntR. An unusual buried metal-receptor site in CueR restricts the metal to a linear, two-coordinate geometry and uses helix-dipole and hydrogen-bonding interactions to enhance metal binding. This binding mode is rare among metalloproteins but well suited for an ultrasensitive genetic switch.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Changela, Anita -- Chen, Kui -- Xue, Yi -- Holschen, Jackie -- Outten, Caryn E -- O'Halloran, Thomas V -- Mondragon, Alfonso -- F32 DK61868/DK/NIDDK NIH HHS/ -- GM08382/GM/NIGMS NIH HHS/ -- GM38784/GM/NIGMS NIH HHS/ -- GM51350/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 5;301(5638):1383-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2205Tech Drive, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12958362" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Binding Sites ; Copper/*metabolism ; Crystallization ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Dimerization ; Escherichia coli/*chemistry/genetics/metabolism ; Escherichia coli Proteins/*chemistry/genetics/*metabolism ; Helix-Turn-Helix Motifs ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Metals/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Secondary ; Sequence Alignment ; Thermodynamics ; Transcription Factors/chemistry/genetics/metabolism ; Transcriptional Activation ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2003-09-23
    Description: G protein-coupled receptors (GPCRs) at the cell surface activate heterotrimeric G proteins by inducing the G protein alpha (Galpha) subunit to exchange guanosine diphosphate for guanosine triphosphate. Regulators of G protein signaling (RGS) proteins accelerate the deactivation of Galpha subunits to reduce GPCR signaling. Here we identified an RGS protein (AtRGS1) in Arabidopsis that has a predicted structure similar to a GPCR as well as an RGS box with GTPase accelerating activity. Expression of AtRGS1 complemented the pheromone supersensitivity phenotype of a yeast RGS mutant, sst2Delta. Loss of AtRGS1 increased the activity of the Arabidopsis Galpha subunit, resulting in increased cell elongation in hypocotyls in darkness and increased cell production in roots grown in light. These findings suggest that AtRGS1 is a critical modulator of plant cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Jin-Gui -- Willard, Francis S -- Huang, Jirong -- Liang, Jiansheng -- Chasse, Scott A -- Jones, Alan M -- Siderovski, David P -- GM055316/GM/NIGMS NIH HHS/ -- GM62338/GM/NIGMS NIH HHS/ -- GM65533/GM/NIGMS NIH HHS/ -- GM65989/GM/NIGMS NIH HHS/ -- R01 GM065989/GM/NIGMS NIH HHS/ -- R01 GM065989-01/GM/NIGMS NIH HHS/ -- R01 GM065989-02/GM/NIGMS NIH HHS/ -- R01 GM065989-03/GM/NIGMS NIH HHS/ -- R01 GM065989-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 19;301(5640):1728-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14500984" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Arabidopsis/*cytology/genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Cell Differentiation ; *Cell Division ; Cell Membrane/metabolism ; *GTP-Binding Protein alpha Subunits ; Heterotrimeric GTP-Binding Proteins/metabolism ; Meristem/metabolism ; Mitosis ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Phenotype ; Plant Roots/cytology/growth & development/metabolism ; Protein Precursors/metabolism ; Protein Structure, Tertiary ; RGS Proteins/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/genetics/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2003-09-06
    Description: Wnt proteins, regulators of development in many organisms, bind to seven transmembrane-spanning (7TMS) receptors called frizzleds, thereby recruiting the cytoplasmic molecule dishevelled (Dvl) to the plasma membrane.Frizzled-mediated endocytosis of Wg (a Drosophila Wnt protein) and lysosomal degradation may regulate the formation of morphogen gradients. Endocytosis of Frizzled 4 (Fz4) in human embryonic kidney 293 cells was dependent on added Wnt5A protein and was accomplished by the multifunctional adaptor protein beta-arrestin 2 (betaarr2), which was recruited to Fz4 by binding to phosphorylated Dvl2. These findings provide a previously unrecognized mechanism for receptor recruitment of beta-arrestin and demonstrate that Dvl plays an important role in the endocytosis of frizzled, as well as in promoting signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Wei -- ten Berge, Derk -- Brown, Jeff -- Ahn, Seungkirl -- Hu, Liaoyuan A -- Miller, William E -- Caron, Marc G -- Barak, Larry S -- Nusse, Roel -- Lefkowitz, Robert J -- HL 16037/HL/NHLBI NIH HHS/ -- HL 61365/HL/NHLBI NIH HHS/ -- NS 19576/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 5;301(5638):1391-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12958364" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Arrestins/genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Clathrin/metabolism ; Cytoplasm/metabolism ; *Endocytosis ; Frizzled Receptors ; Humans ; Mice ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Kinase C/antagonists & inhibitors/metabolism ; Proteins/genetics/*metabolism ; Proto-Oncogene Proteins/*metabolism/pharmacology ; RNA, Small Interfering ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Wnt Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2003-10-25
    Description: The carboxyl-terminal domain (BRCT) of the Breast Cancer Gene 1 (BRCA1) protein is an evolutionarily conserved module that exists in a large number of proteins from prokaryotes to eukaryotes. Although most BRCT domain-containing proteins participate in DNA-damage checkpoint or DNA-repair pathways, or both, the function of the BRCT domain is not fully understood. We show that the BRCA1 BRCT domain directly interacts with phosphorylated BRCA1-Associated Carboxyl-terminal Helicase (BACH1). This specific interaction between BRCA1 and phosphorylated BACH1 is cell cycle regulated and is required for DNA damage-induced checkpoint control during the transition from G2 to M phase of the cell cycle. Further, we show that two other BRCT domains interact with their respective physiological partners in a phosphorylation-dependent manner. Thirteen additional BRCT domains also preferentially bind phospho-peptides rather than nonphosphorylated control peptides. These data imply that the BRCT domain is a phospho-protein binding domain involved in cell cycle control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Xiaochun -- Chini, Claudia Christiano Silva -- He, Miao -- Mer, Georges -- Chen, Junjie -- CA89239/CA/NCI NIH HHS/ -- CA92312/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):639-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncology, Mayo Clinic and Foundation, Rochester, MN 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576433" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; BRCA1 Protein/*chemistry/*metabolism ; Carrier Proteins/chemistry/metabolism ; Cell Cycle ; *Cell Cycle Proteins ; Cell Line ; DNA Damage ; DNA Repair ; *DNA-Binding Proteins ; E2F Transcription Factors ; G2 Phase ; Humans ; Mitosis ; Mutation ; Nuclear Proteins ; Peptide Library ; Phosphoprotein Phosphatases/chemistry/metabolism ; Phosphoproteins/chemistry/genetics/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein Binding ; Protein Structure, Tertiary ; RNA Helicases/chemistry/genetics/*metabolism ; RNA Polymerase II/metabolism ; RNA, Small Interfering ; Recombinant Fusion Proteins/chemistry/metabolism ; Transcription Factors/metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2003-04-12
    Description: DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate genes for developmental diseases including autism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882961/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882961/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scherer, Stephen W -- Cheung, Joseph -- MacDonald, Jeffrey R -- Osborne, Lucy R -- Nakabayashi, Kazuhiko -- Herbrick, Jo-Anne -- Carson, Andrew R -- Parker-Katiraee, Layla -- Skaug, Jennifer -- Khaja, Razi -- Zhang, Junjun -- Hudek, Alexander K -- Li, Martin -- Haddad, May -- Duggan, Gavin E -- Fernandez, Bridget A -- Kanematsu, Emiko -- Gentles, Simone -- Christopoulos, Constantine C -- Choufani, Sanaa -- Kwasnicka, Dorota -- Zheng, Xiangqun H -- Lai, Zhongwu -- Nusskern, Deborah -- Zhang, Qing -- Gu, Zhiping -- Lu, Fu -- Zeesman, Susan -- Nowaczyk, Malgorzata J -- Teshima, Ikuko -- Chitayat, David -- Shuman, Cheryl -- Weksberg, Rosanna -- Zackai, Elaine H -- Grebe, Theresa A -- Cox, Sarah R -- Kirkpatrick, Susan J -- Rahman, Nazneen -- Friedman, Jan M -- Heng, Henry H Q -- Pelicci, Pier Giuseppe -- Lo-Coco, Francesco -- Belloni, Elena -- Shaffer, Lisa G -- Pober, Barbara -- Morton, Cynthia C -- Gusella, James F -- Bruns, Gail A P -- Korf, Bruce R -- Quade, Bradley J -- Ligon, Azra H -- Ferguson, Heather -- Higgins, Anne W -- Leach, Natalia T -- Herrick, Steven R -- Lemyre, Emmanuelle -- Farra, Chantal G -- Kim, Hyung-Goo -- Summers, Anne M -- Gripp, Karen W -- Roberts, Wendy -- Szatmari, Peter -- Winsor, Elizabeth J T -- Grzeschik, Karl-Heinz -- Teebi, Ahmed -- Minassian, Berge A -- Kere, Juha -- Armengol, Lluis -- Pujana, Miguel Angel -- Estivill, Xavier -- Wilson, Michael D -- Koop, Ben F -- Tosi, Sabrina -- Moore, Gudrun E -- Boright, Andrew P -- Zlotorynski, Eitan -- Kerem, Batsheva -- Kroisel, Peter M -- Petek, Erwin -- Oscier, David G -- Mould, Sarah J -- Dohner, Hartmut -- Dohner, Konstanze -- Rommens, Johanna M -- Vincent, John B -- Venter, J Craig -- Li, Peter W -- Mural, Richard J -- Adams, Mark D -- Tsui, Lap-Chee -- 38103/Canadian Institutes of Health Research/Canada -- P01 GM061354/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 May 2;300(5620):767-72. Epub 2003 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8. steve@genet.sickkids.on.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12690205" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/genetics ; Chromosome Aberrations ; Chromosome Fragile Sites ; Chromosome Fragility ; Chromosome Mapping ; Chromosomes, Human, Pair 7/*genetics ; Computational Biology ; Congenital Abnormalities/genetics ; CpG Islands ; DNA, Complementary ; Databases, Genetic ; Euchromatin/genetics ; Expressed Sequence Tags ; Gene Duplication ; Genes, Overlapping ; Genetic Diseases, Inborn/genetics ; Genomic Imprinting ; Humans ; In Situ Hybridization, Fluorescence ; Limb Deformities, Congenital/genetics ; Mice ; Molecular Sequence Data ; Mutation ; Neoplasms/genetics ; Pseudogenes ; RNA/genetics ; Retroelements ; *Sequence Analysis, DNA ; Williams Syndrome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2003-08-02
    Description: Auxin is a plant hormone that regulates many aspects of plant growth and development. We used a chemical genetics approach to identify SIR1, a regulator of many auxin-inducible genes. The sir1 mutant was resistant to sirtinol, a small molecule that activates many auxin-inducible genes and promotes auxin-related developmental phenotypes. SIR1 is predicted to encode a protein composed of a ubiquitin-activating enzyme E1-like domain and a Rhodanese-like domain homologous to that of prolyl isomerase. We suggest a molecular context for how the auxin signal is propagated to exert its biological effects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Yunde -- Dai, Xinhua -- Blackwell, Helen E -- Schreiber, Stuart L -- Chory, Joanne -- 1R01GM68631-01/GM/NIGMS NIH HHS/ -- 2R01GM52413/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 22;301(5636):1107-10. Epub 2003 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA. yzhao@biomail.ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893885" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Arabidopsis/drug effects/genetics/growth & development/*metabolism ; Arabidopsis Proteins/*chemistry/genetics/*metabolism ; Benzamides/metabolism/pharmacology ; Binding Sites ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant ; Genes, Reporter ; Indoleacetic Acids/*metabolism/pharmacology ; Molecular Sequence Data ; Mutation ; Naphthols/metabolism/pharmacology ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Plant Leaves/drug effects/growth & development ; Plant Roots/drug effects/growth & development ; Protein Structure, Tertiary ; *Signal Transduction ; Sirtuins/antagonists & inhibitors ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2003-07-26
    Description: The multidomain proapoptotic molecules BAK or BAX are required to initiate the mitochondrial pathway of apoptosis. How cells maintain the potentially lethal proapoptotic effector BAK in a monomeric inactive conformation at mitochondria is unknown. In viable cells, we found BAK complexed with mitochondrial outer-membrane protein VDAC2, a VDAC isoform present in low abundance that interacts specifically with the inactive conformer of BAK. Cells deficient in VDAC2, but not cells lacking the more abundant VDAC1, exhibited enhanced BAK oligomerization and were more susceptible to apoptotic death. Conversely, overexpression of VDAC2 selectively prevented BAK activation and inhibited the mitochondrial apoptotic pathway. Death signals activate "BH3-only" molecules such as tBID, BIM, or BAD, which displace VDAC2 from BAK, enabling homo-oligomerization of BAK and apoptosis. Thus, VDAC2, an isoform restricted to mammals, regulates the activity of BAK and provides a connection between mitochondrial physiology and the core apoptotic pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheng, Emily H Y -- Sheiko, Tatiana V -- Fisher, Jill K -- Craigen, William J -- Korsmeyer, Stanley J -- NS42319/NS/NINDS NIH HHS/ -- R37CA50239/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Jul 25;301(5632):513-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12881569" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; BH3 Interacting Domain Death Agonist Protein ; Biopolymers ; Carrier Proteins/metabolism/pharmacology ; Cell Line ; Cells, Cultured ; Etoposide/pharmacology ; Humans ; Intracellular Membranes/metabolism ; Jurkat Cells ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Mitochondria/*metabolism ; Mitochondria, Liver/metabolism ; Porins/genetics/isolation & purification/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Proto-Oncogene Proteins/metabolism ; *Proto-Oncogene Proteins c-bcl-2 ; Recombinant Proteins/pharmacology ; Staurosporine/pharmacology ; Voltage-Dependent Anion Channel 1 ; Voltage-Dependent Anion Channel 2 ; Voltage-Dependent Anion Channels ; bcl-2 Homologous Antagonist-Killer Protein ; bcl-2-Associated X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2003-08-09
    Description: An unknown number of precursor messenger RNAs undergo genetic recoding by modification of adenosine to inosine, a reaction catalyzed by the adenosine deaminases acting on RNA (ADARs). Discovery of these edited transcripts has always been serendipitous. Using comparative genomics, we identified a phylogenetic signature of RNA editing. We report the identification and experimental verification of 16 previously unknown ADAR target genes in the fruit fly Drosophila and one in humans-more than the sum total previously reported. All of these genes are involved in rapid electrical and chemical neurotransmission, and many of the edited sites recode conserved and functionally important amino acids. These results point to a pivotal role for RNA editing in nervous system function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoopengardner, Barry -- Bhalla, Tarun -- Staber, Cynthia -- Reenan, Robert -- R01 GM062291/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 8;301(5634):832-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12907802" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/metabolism ; Adenosine Deaminase/*metabolism ; Animals ; Base Sequence ; Drosophila/*genetics ; Drosophila melanogaster/genetics ; *Genes, Insect ; Genomics ; Humans ; Inosine/metabolism ; Ion Channel Gating ; Ion Channels/*genetics/metabolism ; Molecular Sequence Data ; Nervous System/metabolism ; Phylogeny ; Potassium Channels/genetics/metabolism ; *RNA Editing ; RNA-Binding Proteins ; Reverse Transcriptase Polymerase Chain Reaction ; Synapses ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2003-08-16
    Description: The severity of many inherited disorders is influenced by genetic background. We describe a modifier interaction in C57BL/6Jmice that converts a chronic movement disorder into a lethal neurological disease. The primary mutation (medJ) changes a splice donor site of the sodium channel gene Scn8a (Nav1.6). The modifier mutation is characteristic of strain C57BL/6Jand introduces a nonsense codon into sodium channel modifier 1 (SCNM1), a zinc finger protein and a putative splice factor. An internally deleted SCNM1 protein is also predicted as a result of exon skipping associated with disruption of a consensus exonic splicing enhancer. The effect of the modifier mutation is to reduce the abundance of correctly spliced sodium channel transcripts below the threshold for survival. Our finding that genetic variation in a putative RNA splicing factor influences disease susceptibility in mice raises the possibility that a similar mechanism modifies the severity of human inherited disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buchner, David A -- Trudeau, Michelle -- Meisler, Miriam H -- GM24872/GM/NIGMS NIH HHS/ -- T32 DC00011/DC/NIDCD NIH HHS/ -- T32 GM07544/GM/NIGMS NIH HHS/ -- T32 HG00040/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 15;301(5635):967-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI 48109-0618, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12920299" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/*genetics/metabolism ; Chromosome Mapping ; Codon, Nonsense ; Codon, Terminator ; Genetic Predisposition to Disease ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Inbred Strains ; Mice, Neurologic Mutants ; Mice, Transgenic ; Molecular Sequence Data ; Movement Disorders/genetics/metabolism ; Mutation ; NAV1.6 Voltage-Gated Sodium Channel ; *Nerve Tissue Proteins ; Nervous System Diseases/*genetics/metabolism ; Phenotype ; Phylogeny ; *RNA Splicing ; RNA, Messenger/genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Sodium Channels/*genetics/metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2003-04-12
    Description: Vascular smooth muscle cell (SMC) proliferation and migration are important events in the development of atherosclerosis. The low-density lipoprotein receptor-related protein (LRP1) mediates suppression of SMC migration induced by platelet-derived growth factor (PDGF). Here we show that LRP1 forms a complex with the PDGF receptor (PDGFR). Inactivation of LRP1 in vascular SMCs of mice causes PDGFR overexpression and abnormal activation of PDGFR signaling, resulting in disruption of the elastic layer, SMC proliferation, aneurysm formation, and marked susceptibility to cholesterol-induced atherosclerosis. The development of these abnormalities was reduced by treatment with Gleevec, an inhibitor of PDGF signaling. Thus, LRP1 has a pivotal role in protecting vascular wall integrity and preventing atherosclerosis by controlling PDGFR activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boucher, Philippe -- Gotthardt, Michael -- Li, Wei-Ping -- Anderson, Richard G W -- Herz, Joachim -- GM 52016/GM/NIGMS NIH HHS/ -- HL20948/HL/NHLBI NIH HHS/ -- HL63762/HL/NHLBI NIH HHS/ -- NS43408/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Apr 11;300(5617):329-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12690199" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aorta/cytology/metabolism/*pathology ; Arteriosclerosis/*pathology/physiopathology/*prevention & control ; Benzamides ; Cattle ; Cell Division ; Cell Line ; Cholesterol, Dietary/administration & dosage ; Diet, Atherogenic ; Elastin/analysis ; Enzyme Inhibitors/pharmacology ; Imatinib Mesylate ; Ligands ; Low Density Lipoprotein Receptor-Related ; Protein-1/genetics/metabolism/*physiology ; Mesenteric Arteries/cytology/pathology ; Mice ; Mice, Knockout ; Mice, Transgenic ; Muscle, Smooth, Vascular/cytology/*metabolism/pathology ; Myocytes, Smooth Muscle/*metabolism/physiology ; Phosphorylation ; Piperazines/pharmacology ; Platelet-Derived Growth Factor/metabolism/pharmacology ; Proto-Oncogene Proteins c-sis ; Pyrimidines/pharmacology ; Receptor, Platelet-Derived Growth Factor beta/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2003-02-01
    Description: mahoganoid is a mouse coat-color mutation whose pigmentary phenotype and genetic interactions resemble those of Attractin (Atrn). Atrn mutations also cause spongiform neurodegeneration. Here, we show that a null mutation for mahoganoid causes a similar age-dependent neuropathology that includes many features of prion diseases but without accumulation of protease-resistant prion protein. The gene mutated in mahoganoid encodes a RING-containing protein with E3 ubiquitin ligase activity in vitro. Similarities in phenotype, expression, and genetic interactions suggest that mahoganoid and Atrn genes are part of a conserved pathway for regulated protein turnover whose function is essential for neuronal viability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Lin -- Lu, Xin-Yun -- Jolly, Aaron F -- Eldridge, Adam G -- Watson, Stanley J -- Jackson, Peter K -- Barsh, Gregory S -- Gunn, Teresa M -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):710-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, Department of Genetics, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12560552" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Blotting, Northern ; Brain/metabolism/*pathology ; Carrier Proteins/chemistry/*genetics/*metabolism ; Crosses, Genetic ; Female ; Gene Expression ; Ligases/metabolism ; Male ; Membrane Proteins/genetics ; Mice ; Mice, Inbred C3H ; Mice, Mutant Strains ; Mice, Transgenic ; Models, Biological ; Molecular Sequence Data ; *Mutation ; Neurodegenerative Diseases/*genetics/metabolism/*pathology ; Neurons/metabolism/pathology ; Pigmentation ; Prions/metabolism ; RNA, Messenger/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Transgenes ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases ; Vacuoles/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2003-10-11
    Description: The stone-like otoliths from the ears of teleost fishes are involved in balance and hearing and consist of calcium carbonate crystallites embedded in a protein framework. We report that a previously unknown gene, starmaker, is required in zebrafish for otolith morphogenesis. Reduction of starmaker activity by injection of modified antisense oligonucleotides causes a change in the crystal lattice structure and thus a change in otolith morphology. The expression pattern of starmaker, along with the presence of the protein on the growing otolith, suggest that the expression levels of starmaker control the shape of the otoliths.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sollner, Christian -- Burghammer, Manfred -- Busch-Nentwich, Elisabeth -- Berger, Jurgen -- Schwarz, Heinz -- Riekel, Christian -- Nicolson, Teresa -- New York, N.Y. -- Science. 2003 Oct 10;302(5643):282-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institut fur Entwicklungsbiologie, Spemannstrasse 35, 72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14551434" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Calcification, Physiologic ; Calcium Carbonate/chemistry ; Computational Biology ; Crystallization ; Crystallography, X-Ray ; Ear/embryology/physiology ; Gene Expression ; Hearing ; Hydrogen-Ion Concentration ; Microscopy, Electron, Scanning ; Molecular Sequence Data ; Morphogenesis ; Oligonucleotides, Antisense ; Otolithic Membrane/chemistry/growth & development/*physiology/ultrastructure ; Phenotype ; Postural Balance ; X-Ray Diffraction ; Zebrafish/anatomy & histology/genetics/growth & development/*physiology ; Zebrafish Proteins/chemistry/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2003-09-06
    Description: A novel coronavirus (SCoV) is the etiological agent of severe acute respiratory syndrome (SARS). SCoV-like viruses were isolated from Himalayan palm civets found in a live-animal market in Guangdong, China. Evidence of virus infection was also detected in other animals (including a raccoon dog, Nyctereutes procyonoides) and in humans working at the same market. All the animal isolates retain a 29-nucleotide sequence that is not found in most human isolates. The detection of SCoV-like viruses in small, live wild mammals in a retail market indicates a route of interspecies transmission, although the natural reservoir is not known.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guan, Y -- Zheng, B J -- He, Y Q -- Liu, X L -- Zhuang, Z X -- Cheung, C L -- Luo, S W -- Li, P H -- Zhang, L J -- Guan, Y J -- Butt, K M -- Wong, K L -- Chan, K W -- Lim, W -- Shortridge, K F -- Yuen, K Y -- Peiris, J S M -- Poon, L L M -- New York, N.Y. -- Science. 2003 Oct 10;302(5643):276-8. Epub 2003 Sep 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, The University of Hong Kong, University Pathology Building, Queen Mary Hospital, Hong Kong Special Administrative Region, People's Republic of China. yguan@hkucc.hku.hk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12958366" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Wild/*virology ; Antibodies, Viral/blood ; Blotting, Western ; Carnivora/*virology ; China ; Coronavirus/classification/genetics/immunology/*isolation & purification ; Coronavirus Infections/veterinary/virology ; Disease Reservoirs ; Feces/virology ; Genome, Viral ; Humans ; Membrane Glycoproteins/chemistry/genetics ; Molecular Sequence Data ; Neutralization Tests ; Nose/virology ; Open Reading Frames/genetics ; Phylogeny ; Polymorphism, Genetic ; Reverse Transcriptase Polymerase Chain Reaction ; SARS Virus/classification/genetics/immunology/*isolation & purification ; Sequence Deletion ; Sequence Homology, Nucleic Acid ; Spike Glycoprotein, Coronavirus ; Viral Envelope Proteins/chemistry/genetics ; Viral Proteins/chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2003-09-13
    Description: Cooling of blood platelets clusters the von Willebrand factor receptor complex. Macrophage alphaMbeta2 integrins bind to the GPIbalpha subunit of the clustered complex, resulting in rapid clearance of transfused, cooled platelets. This precludes refrigeration of platelets for transfusion, but the current practice of room temperature storage has major drawbacks. We document that alphaMbeta2 is a lectin that recognizes exposed beta-N-acetylglucosamine residues of N-linked glycans on GPIbalpha. Enzymatic galactosylation of chilled platelets blocks alphaMbeta2 recognition, prolonging the circulation of functional cooled platelets. Platelet-associated galactosyltransferase produces efficient galactosylation when uridine diphosphate-galactose is added, affording a potentially simple method for storing platelets in the cold.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoffmeister, Karin M -- Josefsson, Emma C -- Isaac, Natasha A -- Clausen, Henrik -- Hartwig, John H -- Stossel, Thomas P -- HL19429/HL/NHLBI NIH HHS/ -- HL56949/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 12;301(5639):1531-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. khoffmeister@rics.bwh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12970565" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylglucosamine/metabolism/pharmacology ; Animals ; Blood Platelets/metabolism/*physiology ; Blood Preservation ; Carbohydrate Conformation ; Cell Line ; Cell Survival ; *Cold Temperature ; Female ; Galactose/*metabolism ; Galactosyltransferases/metabolism ; Glycosylation ; Humans ; Lectins/metabolism ; Ligands ; Macrophage-1 Antigen/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Monosaccharides/pharmacology ; Phagocytosis/drug effects ; Platelet Aggregation ; Platelet Glycoprotein GPIb-IX Complex/metabolism ; *Platelet Membrane Glycoproteins ; Platelet Transfusion ; Refrigeration ; Uridine Diphosphate Galactose/metabolism ; von Willebrand Factor/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2003-10-18
    Description: Human immunodeficiency virus-1 (HIV-1) Vif is essential for viral evasion of host antiviral factor CEM15/APOBEC3G. We report that Vif interacts with cellular proteins Cul5, elongins B and C, and Rbx1 to form an Skp1-cullin-F-box (SCF)-like complex. The ability of Vif to suppress antiviral activity of APOBEC3G was specifically dependent on Cul5-SCF function, allowing Vif to interact with APOBEC3G and induce its ubiquitination and degradation. A Vif mutant that interacted with APOBEC3G but not with Cul5-SCF was functionally inactive. The Cul5-SCF was also required for Vif function in distantly related simian immunodeficiency virus mac. These results indicate that the conserved Cul5-SCF pathway used by Vif is a potential target for antiviral development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Xianghui -- Yu, Yunkai -- Liu, Bindong -- Luo, Kun -- Kong, Wei -- Mao, Panyong -- Yu, Xiao-Fang -- 1S10-RR14702/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 7;302(5647):1056-60. Epub 2003 Oct 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14564014" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/genetics/metabolism ; Cell Line ; Cullin Proteins/genetics/*metabolism ; Cytidine Deaminase ; Gene Products, vif/genetics/*metabolism ; HIV-1/genetics/*physiology ; Humans ; Mutation ; Nucleoside Deaminases ; Proteins/*metabolism ; Repressor Proteins ; Transcription Factors/genetics/metabolism ; Transfection ; Ubiquitin/*metabolism ; Virus Replication ; vif Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-05-10
    Description: The availability of human embryonic stem cell lines provides an important tool for scientists to explore the fundamental mechanisms that regulate differentiation into specific cell types. When more is known about the mechanisms that govern these processes, human embryonic stem cells may be clinically useful in generating cell types that have been damaged or depleted by a variety of human diseases. The NIH is actively pursuing a variety of initiatives to promote this developing research field, while continuing and expanding its long-standing investment in adult stem cells and research.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zerhouni, Elias -- New York, N.Y. -- Science. 2003 May 9;300(5621):911-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738840" target="_blank"〉PubMed〈/a〉
    Keywords: Advisory Committees ; Cell Culture Techniques ; Cell Line ; Education ; *Embryo Research ; Embryo, Mammalian/*cytology ; Expressed Sequence Tags ; Financing, Government ; Humans ; Internet ; *National Institutes of Health (U.S.) ; Patents as Topic ; Research Support as Topic ; *Stem Cells/cytology/physiology ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2003-03-29
    Description: Acetyl-coenzyme A carboxylases (ACCs) are required for the biosynthesis and oxidation of long-chain fatty acids. They are targets for therapeutics against obesity and diabetes, and several herbicides function by inhibiting their carboxyltransferase (CT) domain. We determined the crystal structure of the free enzyme and the coenzyme A complex of yeast CT at 2.7 angstrom resolution and found that it comprises two domains, both belonging to the crotonase/ClpP superfamily. The active site is at the interface of a dimer. Mutagenesis and kinetic studies reveal the functional roles of conserved residues here. The herbicides target the active site of CT, providing a lead for inhibitor development against human ACCs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Hailong -- Yang, Zhiru -- Shen, Yang -- Tong, Liang -- New York, N.Y. -- Science. 2003 Mar 28;299(5615):2064-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, NY 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12663926" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl-CoA Carboxylase/antagonists & inhibitors/*chemistry/genetics/metabolism ; Amino Acid Sequence ; Binding Sites ; Biotin/chemistry/metabolism ; Catalysis ; Coenzyme A/chemistry/metabolism ; Crystallography, X-Ray ; Dimerization ; Enzyme Inhibitors/metabolism/pharmacology ; Hydrogen Bonding ; Kinetics ; Molecular Sequence Data ; Mutagenesis ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyridines/metabolism/pharmacology ; Saccharomyces cerevisiae/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2003-05-31
    Description: Helicobacter pylori translocates the protein CagA into gastric epithelial cells and has been linked to peptic ulcer disease and gastric carcinoma. We show that injected CagA associates with the epithelial tight-junction scaffolding protein ZO-1 and the transmembrane protein junctional adhesion molecule, causing an ectopic assembly of tight-junction components at sites of bacterial attachment, and altering the composition and function of the apical-junctional complex. Long-term CagA delivery to polarized epithelia caused a disruption of the epithelial barrier function and dysplastic alterations in epithelial cell morphology. CagA appears to target H. pylori to host cell intercellular junctions and to disrupt junction-mediated functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369828/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369828/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amieva, Manuel R -- Vogelmann, Roger -- Covacci, Antonello -- Tompkins, Lucy S -- Nelson, W James -- Falkow, Stanley -- AI38459/AI/NIAID NIH HHS/ -- CA92229/CA/NCI NIH HHS/ -- DDC DK56339/DC/NIDCD NIH HHS/ -- R01 GM035527/GM/NIGMS NIH HHS/ -- R01GM35227/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 May 30;300(5624):1430-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA. amieva@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12775840" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Bacterial/genetics/*metabolism ; Bacterial Adhesion ; Bacterial Proteins/genetics/*metabolism ; Cell Adhesion Molecules/metabolism ; Cell Line ; Cell Polarity ; Cell Size ; Dogs ; Epithelial Cells/cytology/metabolism/*microbiology/ultrastructure ; Gastric Mucosa ; Helicobacter pylori/*pathogenicity/physiology ; Humans ; Intracellular Signaling Peptides and Proteins ; Junctional Adhesion Molecules ; Membrane Proteins/metabolism ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 ; Protein Tyrosine Phosphatases/metabolism ; Tight Junctions/*microbiology/physiology/*ultrastructure ; Tumor Cells, Cultured ; Zonula Occludens-1 Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2003-10-04
    Description: Control of integrin affinity for ligands (integrin activation) is essential for normal cell adhesion, migration, and assembly of an extracellular matrix. Integrin activation is usually mediated through the integrin beta subunit cytoplasmic tail and can be regulated by many different biochemical signaling pathways. We report that specific binding of the cytoskeletal protein talin to integrin beta subunit cytoplasmic tails leads to the conformational rearrangements of integrin extracellular domains that increase their affinity. Thus, regulated binding of talin to integrin beta tails is a final common element of cellular signaling cascades that control integrin activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tadokoro, Seiji -- Shattil, Sanford J -- Eto, Koji -- Tai, Vera -- Liddington, Robert C -- de Pereda, Jose M -- Ginsberg, Mark H -- Calderwood, David A -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):103-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, The Scripps Research Institute, The Burnham Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526080" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Antibodies, Monoclonal/immunology ; Antigens, CD29/chemistry/metabolism ; Cell Line ; Fibronectins/metabolism ; Humans ; Integrin beta Chains/chemistry/*metabolism ; Integrin beta3/chemistry/metabolism ; Molecular Sequence Data ; Mutation ; Platelet Glycoprotein GPIIb-IIIa Complex/chemistry/immunology/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Small Interfering ; Recombinant Proteins/metabolism ; *Signal Transduction ; Talin/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2003-05-15
    Description: A novel coronavirus has been identified as the causative agent of severe acute respiratory syndrome (SARS). The viral main proteinase (Mpro, also called 3CLpro), which controls the activities of the coronavirus replication complex, is an attractive target for therapy. We determined crystal structures for human coronavirus (strain 229E) Mpro and for an inhibitor complex of porcine coronavirus [transmissible gastroenteritis virus (TGEV)] Mpro, and we constructed a homology model for SARS coronavirus (SARS-CoV) Mpro. The structures reveal a remarkable degree of conservation of the substrate-binding sites, which is further supported by recombinant SARS-CoV Mpro-mediated cleavage of a TGEV Mpro substrate. Molecular modeling suggests that available rhinovirus 3Cpro inhibitors may be modified to make them useful for treating SARS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anand, Kanchan -- Ziebuhr, John -- Wadhwani, Parvesh -- Mesters, Jeroen R -- Hilgenfeld, Rolf -- New York, N.Y. -- Science. 2003 Jun 13;300(5626):1763-7. Epub 2003 May 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry, University of Lubeck, D-23538 Lubeck, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12746549" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Chloromethyl Ketones/chemistry/metabolism ; Amino Acid Sequence ; *Antiviral Agents ; Binding Sites ; Catalytic Domain ; Coronavirus 229E, Human/*enzymology ; Crystallization ; Crystallography, X-Ray ; Cysteine Endopeptidases/*chemistry/metabolism ; Cysteine Proteinase Inhibitors/chemistry/metabolism ; Dimerization ; *Drug Design ; Humans ; Isoxazoles/chemistry/metabolism/pharmacology ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyrrolidinones/chemistry/metabolism/pharmacology ; Recombinant Proteins/chemistry/metabolism ; SARS Virus/*drug effects/*enzymology ; Sequence Alignment ; Sequence Homology, Amino Acid ; Severe Acute Respiratory Syndrome/drug therapy ; Transmissible gastroenteritis virus/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2003-03-01
    Description: Molecular etiologies of heart failure, an emerging cardiovascular epidemic affecting 4.7 million Americans and costing 17.8 billion health-care dollars annually, remain poorly understood. Here we report that an inherited human dilated cardiomyopathy with refractory congestive heart failure is caused by a dominant Arg --〉 Cys missense mutation at residue 9 (R9C) in phospholamban (PLN), a transmembrane phosphoprotein that inhibits the cardiac sarcoplasmic reticular Ca2+-adenosine triphosphatase (SERCA2a) pump. Transgenic PLN(R9C) mice recapitulated human heart failure with premature death. Cellular and biochemical studies revealed that, unlike wild-type PLN, PLN(R9C) did not directly inhibit SERCA2a. Rather, PLN(R9C) trapped protein kinase A (PKA), which blocked PKA-mediated phosphorylation of wild-type PLN and in turn delayed decay of calcium transients in myocytes. These results indicate that myocellular calcium dysregulation can initiate human heart failure-a finding that may lead to therapeutic opportunities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmitt, Joachim P -- Kamisago, Mitsuhiro -- Asahi, Michio -- Li, Guo Hua -- Ahmad, Ferhaan -- Mende, Ulrike -- Kranias, Evangelia G -- MacLennan, David H -- Seidman, J G -- Seidman, Christine E -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1410-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School and Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610310" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Calcium/metabolism ; Calcium Signaling ; Calcium-Binding Proteins/chemistry/*genetics/*physiology ; Calcium-Transporting ATPases/antagonists & inhibitors/metabolism ; Cardiomegaly ; Cardiomyopathy, Dilated/*genetics/pathology/physiopathology ; Cell Line ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Female ; Heart Failure/*genetics/pathology/physiopathology ; Heart Ventricles/metabolism/pathology ; Humans ; Lod Score ; Male ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Muscle Cells/metabolism/physiology ; *Mutation, Missense ; Myocardial Contraction ; Myocardium/pathology ; Pedigree ; Phosphorylation ; Sarcoplasmic Reticulum Calcium-Transporting ATPases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2003-10-11
    Description: The genomes of several nonphotosynthetic bacteria, such as Bacillus subtilis, and some Archaea include genes for proteins with sequence homology to the large subunit of ribulose bisphosphate carboxylase/oxygenase (RuBisCO). We found that such a RuBisCO-like protein (RLP) from B. subtilis catalyzed the 2,3-diketo-5-methylthiopentyl-1-phosphate enolase reaction in the methionine salvage pathway. A growth-defective mutant, in which the gene for this RLP had been disrupted, was rescued by the gene for RuBisCOfrom the photosynthetic bacterium Rhodospirillum rubrum. Thus, the photosynthetic RuBisCO from R. rubrum retains the ability to function in the methionine salvage pathway in B. subtilis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ashida, Hiroki -- Saito, Yohtaro -- Kojima, Chojiro -- Kobayashi, Kazuo -- Ogasawara, Naotake -- Yokota, Akiho -- New York, N.Y. -- Science. 2003 Oct 10;302(5643):286-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14551435" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacillus subtilis/*enzymology/genetics/growth & development ; Bacterial Proteins/chemistry/genetics/*metabolism ; Catalysis ; Genes, Bacterial ; Magnetic Resonance Spectroscopy ; Methionine/metabolism ; Molecular Sequence Data ; Mutation ; Operon ; Phylogeny ; Recombinant Proteins/metabolism ; Rhodospirillum rubrum/*enzymology/genetics ; Ribulose-Bisphosphate Carboxylase/chemistry/genetics/*metabolism ; Sequence Alignment ; Thioglycosides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2003-10-18
    Description: Listeria monocytogenes is a Gram-positive intracytosolic pathogen that causes severe disease in pregnant and immunocompromised individuals. We found that L. monocytogenes lacking the lipoate protein ligase LplA1 was defective for growth specifically in the host cytosol and was less virulent in animals by a factor of 300. A major target for LplA1, the E2 subunit of pyruvate dehydrogenase (PDH), lacked a critical lipoyl modification when the DeltalplA1 strain was grown intracellularly, which suggests that abortive growth was due to loss of PDH function. Thus, the use of host-derived lipoic acid may be a critical process for in vivo replication of bacterial pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Riordan, Mary -- Moors, Marlena A -- Portnoy, Daniel A -- AI29619/AI/NIAID NIH HHS/ -- R01 AI027655/AI/NIAID NIH HHS/ -- R01 AI27655/AI/NIAID NIH HHS/ -- R37 AI029619/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 17;302(5644):462-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, School of Public Health, University of California, Berkeley, CA 94720-3202, USA. oriordan@umich.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14564012" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Culture Media ; Cytosol/microbiology ; Dihydrolipoyllysine-Residue Acetyltransferase ; Gene Deletion ; Lethal Dose 50 ; Listeria monocytogenes/genetics/*growth & development/metabolism/*pathogenicity ; Listeriosis/microbiology ; Macrophages/metabolism/*microbiology ; Mice ; Mice, Inbred BALB C ; Mutation ; Open Reading Frames ; Peptide Synthases/genetics/metabolism ; Pyruvate Dehydrogenase Complex/metabolism ; Thioctic Acid/*metabolism ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2003-05-31
    Description: In the genetic code, UGA serves as a stop signal and a selenocysteine codon, but no computational methods for identifying its coding function are available. Consequently, most selenoprotein genes are misannotated. We identified selenoprotein genes in sequenced mammalian genomes by methods that rely on identification of selenocysteine insertion RNA structures, the coding potential of UGA codons, and the presence of cysteine-containing homologs. The human selenoproteome consists of 25 selenoproteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kryukov, Gregory V -- Castellano, Sergi -- Novoselov, Sergey V -- Lobanov, Alexey V -- Zehtab, Omid -- Guigo, Roderic -- Gladyshev, Vadim N -- GM61603/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 May 30;300(5624):1439-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12775843" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Codon ; Codon, Terminator ; Computational Biology ; DNA Transposable Elements ; Gene Expression Profiling ; Genome, Human ; Humans ; Mice ; Molecular Sequence Data ; Open Reading Frames ; Proteins/*chemistry/*genetics ; *Proteome ; Rats ; *Selenium ; Selenocysteine/chemistry/*genetics ; Selenoproteins ; Sequence Alignment ; Sequence Analysis, DNA ; Sequence Homology, Amino Acid ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2003-11-25
    Description: A major challenge of computational protein design is the creation of novel proteins with arbitrarily chosen three-dimensional structures. Here, we used a general computational strategy that iterates between sequence design and structure prediction to design a 93-residue alpha/beta protein called Top7 with a novel sequence and topology. Top7 was found experimentally to be folded and extremely stable, and the x-ray crystal structure of Top7 is similar (root mean square deviation equals 1.2 angstroms) to the design model. The ability to design a new protein fold makes possible the exploration of the large regions of the protein universe not yet observed in nature.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuhlman, Brian -- Dantas, Gautam -- Ireton, Gregory C -- Varani, Gabriele -- Stoddard, Barry L -- Baker, David -- New York, N.Y. -- Science. 2003 Nov 21;302(5649):1364-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14631033" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Sequence ; Circular Dichroism ; Computational Biology ; Computer Graphics ; Computer Simulation ; Crystallization ; Crystallography, X-Ray ; Databases, Protein ; Models, Molecular ; Molecular Sequence Data ; Monte Carlo Method ; Nuclear Magnetic Resonance, Biomolecular ; *Protein Conformation ; Protein Denaturation ; *Protein Engineering ; *Protein Folding ; Protein Structure, Secondary ; Proteins/*chemistry ; *Software ; Solubility ; Temperature ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2003-08-30
    Description: In Drosophila, maternally supplied Nanos functions in the migration of primordial germ cells (PGCs) into the gonad; in mice, zygotic genes are involved instead. We report the cloning and the functional analyses of nanos2 and nanos3 in mice. These genes are differentially expressed in mouse PGCs. nanos2 is predominantly expressed in male germ cells, and the elimination of this gene results in a complete loss of spermatogonia. However, nanos3 is found in migrating PGCs, and the elimination of this factor results in the complete loss of germ cells in both sexes. Hence, although mice and flies differ in their mechanisms for germ cell specification, there seems to be conserved function for nanos proteins among invertebrates and vertebrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsuda, Masayuki -- Sasaoka, Yumiko -- Kiso, Makoto -- Abe, Kuniya -- Haraguchi, Seiki -- Kobayashi, Satoru -- Saga, Yumiko -- New York, N.Y. -- Science. 2003 Aug 29;301(5637):1239-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Mammalian Development, National Institute of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12947200" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis ; Carrier Proteins/chemistry/genetics/*physiology ; Cell Count ; Cell Division ; Cell Movement ; Cloning, Molecular ; Female ; Gene Expression Profiling ; Gene Targeting ; Germ Cells/*growth & development/*metabolism ; Gonads/embryology/growth & development/*metabolism ; In Situ Nick-End Labeling ; Male ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Organ Size ; Ovary/anatomy & histology/metabolism ; Ovum/physiology ; Phenotype ; *RNA-Binding Proteins ; Spermatogenesis ; Spermatozoa/physiology ; Testis/anatomy & histology/embryology/growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2003-11-08
    Description: Activated CD8+ T cells play a critical role in host defense against viruses, intracellular microbes, and tumors. It is not clear if a key regulatory transcription factor unites the effector functions of CD8+ T cells. We now show that Eomesodermin (Eomes), a paralogue of T-bet, is induced in effector CD8+ T cells in vitro and in vivo. Ectopic expression of Eomes was sufficient to invoke attributes of effector CD8+ T cells, including interferon-gamma (IFN-gamma), perforin, and granzyme B. Loss-of-function analysis suggests Eomes may also be necessary for full effector differentiation of CD8+ T cells. We suggest that Eomesodermin is likely to complement the actions of T-bet and act as a key regulatory gene in the development of cell-mediated immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pearce, Erika L -- Mullen, Alan C -- Martins, Gislaine A -- Krawczyk, Connie M -- Hutchins, Anne S -- Zediak, Valerie P -- Banica, Monica -- DiCioccio, Catherine B -- Gross, Darrick A -- Mao, Chai-An -- Shen, Hao -- Cereb, Nezih -- Yang, Soo Y -- Lindsten, Tullia -- Rossant, Janet -- Hunter, Christopher A -- Reiner, Steven L -- AI-042370/AI/NIAID NIH HHS/ -- GM-07229/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 7;302(5647):1041-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abramson Family Cancer Research Institute, and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14605368" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arenaviridae Infections/immunology ; Base Sequence ; CD8-Positive T-Lymphocytes/*immunology/physiology ; Cell Differentiation ; Cytotoxicity, Immunologic ; Gene Expression Regulation ; Granzymes ; Interferon-gamma/biosynthesis ; Lymphocyte Activation ; Lymphocytic choriomeningitis virus/immunology ; Membrane Glycoproteins/biosynthesis/genetics ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Molecular Sequence Data ; Perforin ; Pore Forming Cytotoxic Proteins ; RNA, Messenger/genetics/metabolism ; Serine Endopeptidases/biosynthesis/genetics ; T-Box Domain Proteins/chemistry/genetics/*physiology ; Th2 Cells/immunology/physiology ; Transcription Factors/chemistry/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2003-10-18
    Description: Despite a central circadian role in Drosophila for the transcriptional regulator Timeless (dTim), the relevance of mammalian Timeless (mTim) remains equivocal. Conditional knockdown of mTim protein expression in the rat suprachiasmatic nucleus (SCN) disrupted SCN neuronal activity rhythms, and altered levels of known core clock elements. Full-length mTim protein (mTIM-fl) exhibited a 24-hour oscillation, where as a truncated isoform (mTIM-s) was constitutively expressed. mTIM-fl associated with the mammalian clock Period proteins (mPERs) in oscillating SCN cells. These data suggest that mTim is required for rhythmicity and is a functional homolog of dTim on the negative-feedback arm of the mammalian molecular clockwork.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barnes, Jessica W -- Tischkau, Shelley A -- Barnes, Jeffrey A -- Mitchell, Jennifer W -- Burgoon, Penny W -- Hickok, Jason R -- Gillette, Martha U -- GM07143/GM/NIGMS NIH HHS/ -- HL67007/HL/NHLBI NIH HHS/ -- NS10170/NS/NINDS NIH HHS/ -- NS11134/NS/NINDS NIH HHS/ -- NS11158/NS/NINDS NIH HHS/ -- NS22155/NS/NINDS NIH HHS/ -- NS35859/NS/NINDS NIH HHS/ -- R01 HL067007/HL/NHLBI NIH HHS/ -- R01 NS022155/NS/NINDS NIH HHS/ -- R01 NS035859/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 17;302(5644):439-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14564007" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks ; Cell Cycle Proteins ; Cell Line ; *Circadian Rhythm ; Cryptochromes ; *Drosophila Proteins ; Electrophysiology ; *Eye Proteins ; Flavoproteins/metabolism ; Humans ; In Vitro Techniques ; Intracellular Signaling Peptides and Proteins ; Neurons/physiology ; Nuclear Proteins/metabolism ; Oligonucleotides, Antisense/pharmacology ; Period Circadian Proteins ; *Photoreceptor Cells, Invertebrate ; RNA Interference ; RNA, Messenger/genetics/metabolism ; Rats ; Rats, Inbred Strains ; Receptors, G-Protein-Coupled ; Reverse Transcriptase Polymerase Chain Reaction ; Suprachiasmatic Nucleus/*physiology ; Transcription Factors/chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2003-12-20
    Description: The Caenorhabditis elegans excretory canal is composed of a single elongated and branched cell that is tunneled by an inner lumen of apical character. Loss of the exc-4 gene causes a cystic enlargement of this intracellular tube. exc-4 encodes a member of the chloride intracellular channel (CLIC) family of proteins. EXC-4 protein localizes to various tubular membranes in distinct cell types, including the lumenal membrane of the excretory tubes. A conserved 55-amino acid domain enables EXC-4 translocation from the cytosol to the lumenal membrane. The tubular architecture of this membrane requires EXC-4 for both its formation and maintenance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berry, Katherine L -- Bulow, Hannes E -- Hall, David H -- Hobert, Oliver -- New York, N.Y. -- Science. 2003 Dec 19;302(5653):2134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684823" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Caenorhabditis elegans/cytology/*embryology/growth & development/*physiology ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Cell Membrane/*metabolism ; Chloride Channels/chemistry/genetics/*metabolism ; Cytoplasm/metabolism ; Epithelial Cells/metabolism ; Gene Expression ; Genes, Reporter ; Green Fluorescent Proteins ; Hot Temperature ; Humans ; Intracellular Membranes/*metabolism ; Luminescent Proteins ; Molecular Sequence Data ; Morphogenesis ; Mutation ; Pinocytosis ; Promoter Regions, Genetic ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Vacuoles/*metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2003 Mar 21;299(5614):1830-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12649456" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Australia ; Biotechnology/*economics/manpower ; Cell Line ; Clinical Trials as Topic ; Cloning, Organism/*economics ; Commerce ; Embryo Research/*economics ; Embryo, Mammalian/*cytology ; Financing, Government ; Humans ; *Investments ; Research Personnel ; Research Support as Topic ; *Stem Cells ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2003-08-30
    Description: Plant disease-resistance (R) proteins are thought to function as receptors for ligands produced directly or indirectly by pathogen avirulence (Avr) proteins. The biochemical functions of most Avr proteins are unknown, and the mechanisms by which they activate R proteins have not been determined. In Arabidopsis, resistance to Pseudomonas syringae strains expressing AvrPphB requires RPS5, a member of the class of R proteins that have a predicted nucleotide-binding site and leucine-rich repeats, and PBS1, a protein kinase. AvrPphB was found to proteolytically cleave PBS1, and this cleavage was required for RPS5-mediated resistance, which indicates that AvrPphB is detected indirectly via its enzymatic activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shao, Feng -- Golstein, Catherine -- Ade, Jules -- Stoutemyer, Mark -- Dixon, Jack E -- Innes, Roger W -- DK18849/DK/NIDDK NIH HHS/ -- GM46451/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 29;301(5637):1230-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Medical School and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12947197" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*metabolism/microbiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Bacterial Proteins/chemistry/genetics/*metabolism ; Carrier Proteins/genetics/metabolism ; Cell Line ; Cysteine Endopeptidases/chemistry/genetics/*metabolism ; Genes, Bacterial ; Genes, Plant ; Genetic Complementation Test ; Humans ; Models, Biological ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Plant Diseases/*microbiology ; Plant Extracts/metabolism ; Plant Proteins/genetics/metabolism ; Plants, Genetically Modified ; Precipitin Tests ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Pseudomonas/*metabolism ; Recombinant Proteins/metabolism ; Tobacco/genetics/metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2003-01-11
    Description: After transport across the cytoplasmic membrane, bacterial outer membrane proteins are assembled into the outer membrane. Meningococcal Omp85 is a highly conserved protein in Gram-negative bacteria, and its homolog Toc75 is a component of the chloroplast protein-import machinery. Omp85 appeared to be essential for viability, and unassembled forms of various outer membrane proteins accumulated upon Omp85 depletion. Immunofluorescence microscopy revealed decreased surface exposure of outer membrane proteins, which was particularly apparent at the cell-division planes. Thus, Omp85 is likely to play a role in outer membrane protein assembly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Voulhoux, Rome -- Bos, Martine P -- Geurtsen, Jeroen -- Mols, Maarten -- Tommassen, Jan -- New York, N.Y. -- Science. 2003 Jan 10;299(5604):262-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12522254" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Outer Membrane Proteins/chemistry/genetics/*metabolism/*physiology ; Cell Membrane/*metabolism ; Conserved Sequence ; Fimbriae Proteins/metabolism ; Isopropyl Thiogalactoside/pharmacology ; Lipopolysaccharides/metabolism ; Microscopy, Fluorescence ; Molecular Sequence Data ; Neisseria meningitidis/genetics/growth & development/*metabolism ; Phospholipases A/chemistry/metabolism ; Phospholipases A1 ; Porins/metabolism ; Protein Denaturation ; Protein Folding ; Protein Structure, Tertiary ; Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2003-05-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lecossier, Denise -- Bouchonnet, Francine -- Clavel, Francois -- Hance, Allan J -- New York, N.Y. -- Science. 2003 May 16;300(5622):1112.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INSERM U552, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12750511" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Line ; Cytidine Deaminase ; DNA Mutational Analysis ; DNA, Viral/biosynthesis/*genetics ; Gene Products, vif/*physiology ; HIV-1/genetics/*physiology ; HeLa Cells ; Humans ; Molecular Sequence Data ; *Mutation ; Nucleoside Deaminases ; Proteins/physiology ; Repressor Proteins ; Virion/genetics/physiology ; Virus Replication ; vif Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2003-06-07
    Description: Although the role of Toll-like receptors in extracellular bacterial sensing has been investigated intensively, intracellular detection of bacteria through Nod molecules remains largely uncharacterized. Here, we show that human Nod1 specifically detects a unique diaminopimelate-containing N-acetylglucosamine-N-acetylmuramic acid (GlcNAc-MurNAc) tripeptide motif found in Gram-negative bacterial peptidoglycan, resulting in activation of the transcription factor NF-kappaB pathway. Moreover, we show that in epithelial cells (which represent the first line of defense against invasive pathogens), Nod1is indispensable for intracellular Gram-negative bacterial sensing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Girardin, Stephen E -- Boneca, Ivo G -- Carneiro, Leticia A M -- Antignac, Aude -- Jehanno, Muguette -- Viala, Jerome -- Tedin, Karsten -- Taha, Muhamed-Kheir -- Labigne, Agnes -- Zahringer, Ulrich -- Coyle, Anthony J -- DiStefano, Peter S -- Bertin, John -- Sansonetti, Philippe J -- Philpott, Dana J -- New York, N.Y. -- Science. 2003 Jun 6;300(5625):1584-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite de Pathogenie Microbienne Moleculaire, INSERM U389, Institut Pasteur, 28, Rue du Dr. Roux, 75724Paris Cedex 15, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12791997" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Motifs ; Animals ; Antigens, Differentiation/metabolism ; Carrier Proteins/chemistry/metabolism/*physiology ; Cell Line ; Cytoplasm/microbiology ; Epithelial Cells/metabolism/microbiology ; Gram-Negative Bacteria/*chemistry/immunology ; Gram-Positive Bacteria/chemistry/immunology ; Humans ; Immunity, Innate ; Interleukin-8/metabolism ; *Intracellular Signaling Peptides and Proteins ; Lipopolysaccharides/pharmacology ; Mice ; Myeloid Differentiation Factor 88 ; NF-kappa B/chemistry/metabolism ; Nod1 Signaling Adaptor Protein ; Nod2 Signaling Adaptor Protein ; Oligopeptides/*analysis/chemistry ; Peptidoglycan/*chemistry/pharmacology ; Protein Structure, Tertiary ; Receptors, Immunologic/metabolism ; Signal Transduction ; Trisaccharides/*analysis/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2003-07-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Waller, Ross F -- Keeling, Patrick J -- van Dooren, Giel G -- McFadden, Geoffrey I -- New York, N.Y. -- Science. 2003 Jul 4;301(5629):49; author reply 49.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and, Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12843377" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apicomplexa/enzymology/*genetics/ultrastructure ; *Biological Evolution ; Chlorophyta/enzymology/*genetics ; Ciliophora/enzymology/genetics/ultrastructure ; Electron Transport Complex IV/chemistry/*genetics ; Gene Transfer, Horizontal ; Genes, Protozoan ; Hydrophobic and Hydrophilic Interactions ; Mitochondria/genetics ; Molecular Sequence Data ; *Phylogeny ; Plastids/*genetics ; Rhodophyta/enzymology/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2003-06-14
    Description: The senses of hearing and balance in vertebrates rely on the sensory hair cells (HCs) of the inner ear. The central element of the HC's transduction apparatus is a mechanically gated ion channel of unknown identity. Here we report that the zebrafish ortholog of Drosophila no mechanoreceptor potential C (nompC), which encodes a transient receptor potential (TRP) channel, is critical for HC mechanotransduction. In zebrafish larvae, nompC is selectively expressed in sensory HCs. Morpholino-mediated removal of nompC function eliminated transduction-dependent endocytosis and electrical responses in HCs, resulting in larval deafness and imbalance. These observations indicate that nompC encodes a vertebrate HC mechanotransduction channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sidi, Samuel -- Friedrich, Rainer W -- Nicolson, Teresa -- New York, N.Y. -- Science. 2003 Jul 4;301(5629):96-9. Epub 2003 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Entwicklungsbiologie, Spemannstrasse 35, 72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12805553" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cochlear Microphonic Potentials ; Computational Biology ; Deafness ; Ear, Inner/embryology ; Endocytosis ; Gene Expression ; Hair Cells, Auditory/*physiology ; Hearing ; In Situ Hybridization ; Ion Channels/chemistry/genetics/*physiology ; *Mechanotransduction, Cellular ; Molecular Sequence Data ; Oligonucleotides, Antisense ; Phenotype ; Phylogeny ; Postural Balance ; Reflex, Startle ; Reverse Transcriptase Polymerase Chain Reaction ; Transient Receptor Potential Channels ; Zebrafish ; Zebrafish Proteins/chemistry/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2003-01-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walther, Diego J -- Peter, Jens-Uwe -- Bashammakh, Saleh -- Hortnagl, Heide -- Voits, Mechthild -- Fink, Heidrun -- Bader, Michael -- New York, N.Y. -- Science. 2003 Jan 3;299(5603):76.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Delbruck Center for Molecular Medicine (MDC), Robert-Rossle-Strasse 10, D-13092 Berlin-Buch, Germany. dwalther@mdc-berlin.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12511643" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/*enzymology/metabolism ; COS Cells ; Cloning, Molecular ; Conserved Sequence ; DNA, Complementary ; Duodenum/enzymology/metabolism ; Humans ; Hydroxylation ; Isoenzymes/chemistry/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; RNA, Messenger/genetics/metabolism ; Rats ; Serotonin/*biosynthesis ; Transfection ; Tryptophan Hydroxylase/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2003-01-18
    Description: In plants, cell-to-cell communication is mediated by plasmodesmata and involves the trafficking of non-cell-autonomous proteins (NCAPs). A component in this pathway, Nicotiana tabacum NON-CELL-AUTONOMOUS PATHWAY PROTEIN1 (NtNCAPP1), was affinity purified and cloned. Protein overlay assays and in vivo studies showed that NtNCAPP1 is located on the endoplasmic reticulum at the cell periphery and displays specificity in its interaction with NCAPs. Deletion of the NtNCAPP1 amino-terminal transmembrane domain produced a dominant-negative mutant that blocked the trafficking of specific NCAPs. Transgenic tobacco plants expressing this mutant form of NtNCAPP1 and plants in which the NtNCAPP1 gene was silenced were compromised in their ability to regulate leaf and floral development. These results support a model in which NCAP delivery to plasmodesmata is both selective and regulated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jung-Youn -- Yoo, Byung-Chun -- Rojas, Maria R -- Gomez-Ospina, Natalia -- Staehelin, L Andrew -- Lucas, William J -- GM18639/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 17;299(5605):392-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Plant Biology, Division of Biological Sciences, University of California, 1 Shields Avenue, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12532017" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Communication ; Cell Line ; Cloning, Molecular ; Cytoplasm/metabolism ; Endoplasmic Reticulum/metabolism ; Flowers/growth & development ; Gene Silencing ; Green Fluorescent Proteins ; Immunohistochemistry ; Luminescent Proteins/metabolism ; Molecular Sequence Data ; Mutation ; Phenotype ; Plant Leaves/growth & development ; Plant Proteins/chemistry/genetics/*isolation & purification/*metabolism ; Plants, Genetically Modified ; Plasmodesmata/*metabolism ; Protein Transport ; Recombinant Fusion Proteins/metabolism ; Tobacco/genetics/growth & development/*metabolism ; Tobacco Mosaic Virus ; Viral Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2003-12-03
    Description: The early genetic pathway(s) triggering the pathogenesis of coronary artery disease (CAD) and myocardial infarction (MI) remain largely unknown. Here, we describe an autosomal dominant form of CAD/MI (adCAD1) that is caused by the deletion of seven amino acids in transcription factor MEF2A. The deletion disrupts nuclear localization of MEF2A, reduces MEF2A-mediated transcription activation, and abolishes synergistic activation by MEF2A and by the transcription factor GATA-1 through a dominant-negative mechanism. The MEF2A protein demonstrates strong expression in the endothelium of coronary arteries. These results identify a pathogenic gene for a familial vascular disease with features of CAD and implicate the MEF2A signaling pathway in the pathogenesis of CAD/MI.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618876/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618876/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Lejin -- Fan, Chun -- Topol, Sarah E -- Topol, Eric J -- Wang, Qing -- R01 HL065630/HL/NHLBI NIH HHS/ -- R01 HL066251/HL/NHLBI NIH HHS/ -- R01 HL65630/HL/NHLBI NIH HHS/ -- R01 HL66251/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1578-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645853" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Amino Acid Sequence ; Animals ; Arteries/metabolism ; Base Sequence ; Cell Nucleus/metabolism ; Chromosomes, Human, Pair 15/genetics ; Coronary Artery Disease/*genetics/metabolism ; Coronary Vessels/metabolism ; DNA-Binding Proteins/chemistry/*genetics/metabolism ; Dimerization ; Endothelium, Vascular/metabolism ; Erythroid-Specific DNA-Binding Factors ; Female ; Fluorescent Antibody Technique ; GATA1 Transcription Factor ; Gene Expression ; Genes, Dominant ; Genetic Linkage ; Genetic Markers ; Genetic Predisposition to Disease ; Humans ; MADS Domain Proteins ; MEF2 Transcription Factors ; Male ; Middle Aged ; Molecular Sequence Data ; Muscle, Smooth/cytology/metabolism ; Myocardial Infarction/*genetics/metabolism ; Myogenic Regulatory Factors ; Pedigree ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Protein Transport ; Rats ; Risk Factors ; *Sequence Deletion ; Signal Transduction ; Transcription Factors/chemistry/*genetics/metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-05-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Porteus, Matthew H -- Baltimore, David -- R01-GM39458/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 May 2;300(5620):763.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, California Institute of Technology, Pasadena CA 91125, USA. matthew.porteus@UTSouthwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730593" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; DNA/metabolism ; Deoxyribonucleases, Type II Site-Specific/chemistry/genetics/*metabolism ; Dimerization ; Gene Targeting/*methods ; Green Fluorescent Proteins ; Humans ; Luminescent Proteins/genetics ; Mutation ; Nuclear Localization Signals ; Recombinant Fusion Proteins/chemistry/*metabolism ; Recombination, Genetic ; Saccharomyces cerevisiae Proteins ; Transfection ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2003-08-16
    Description: During B lymphocyte development, antibodies are assembled by random gene segment reassortment to produce a vast number of specificities. A potential disadvantage of this process is that some of the antibodies produced are self-reactive. We determined the prevalence of self-reactive antibody formation and its regulation in human B cells. A majority (55 to 75%) of all antibodies expressed by early immature B cells displayed self-reactivity, including polyreactive and anti-nuclear specificities. Most of these autoantibodies were removed from the population at two discrete checkpoints during B cell development. Inefficient checkpoint regulation would lead to substantial increases in circulating autoantibodies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wardemann, Hedda -- Yurasov, Sergey -- Schaefer, Anne -- Young, James W -- Meffre, Eric -- Nussenzweig, Michel C -- New York, N.Y. -- Science. 2003 Sep 5;301(5638):1374-7. Epub 2003 Aug 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12920303" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Antinuclear/biosynthesis/immunology ; Antibody Diversity ; Antibody Specificity ; Autoantibodies/*biosynthesis/immunology ; B-Lymphocytes/cytology/*immunology/physiology ; Cell Differentiation ; Cell Line ; Complementarity Determining Regions/chemistry/immunology ; Cytosol/immunology ; Genes, Immunoglobulin ; Humans ; Immunoglobulin Heavy Chains/chemistry/immunology ; Recombination, Genetic ; Selection, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2003-05-24
    Description: Alu repetitive elements can be inserted into mature messenger RNAs via a splicing-mediated process termed exonization. To understand the molecular basis and the regulation of the process of turning intronic Alus into new exons, we compiled and analyzed a data set of human exonized Alus. We revealed a mechanism that governs 3' splice-site selection in these exons during alternative splicing. On the basis of these findings, we identified mutations that activated the exonization of a silent intronic Alu.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lev-Maor, Galit -- Sorek, Rotem -- Shomron, Noam -- Ast, Gil -- New York, N.Y. -- Science. 2003 May 23;300(5623):1288-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12764196" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Deaminase/genetics ; *Alternative Splicing ; Alu Elements/*genetics ; Cell Line ; Cloning, Molecular ; DNA, Antisense ; Dinucleoside Phosphates/genetics ; *Exons ; Genome, Human ; Glucosyltransferases/genetics ; Humans ; Introns ; Mutagenesis, Site-Directed ; Point Mutation ; Polymerase Chain Reaction ; RNA-Binding Proteins ; Ribonucleoproteins, Small Nuclear/genetics/physiology ; Spliceosomes/metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2003-12-03
    Description: The BAR (Bin/amphiphysin/Rvs) domain is the most conserved feature in amphiphysins from yeast to human and is also found in endophilins and nadrins. We solved the structure of the Drosophila amphiphysin BAR domain. It is a crescent-shaped dimer that binds preferentially to highly curved negatively charged membranes. With its N-terminal amphipathic helix and BAR domain (N-BAR), amphiphysin can drive membrane curvature in vitro and in vivo. The structure is similar to that of arfaptin2, which we find also binds and tubulates membranes. From this, we predict that BAR domains are in many protein families, including sorting nexins, centaurins, and oligophrenins. The universal and minimal BAR domain is a dimerization, membrane-binding, and curvature-sensing module.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peter, Brian J -- Kent, Helen M -- Mills, Ian G -- Vallis, Yvonne -- Butler, P Jonathan G -- Evans, Philip R -- McMahon, Harvey T -- New York, N.Y. -- Science. 2004 Jan 23;303(5657):495-9. Epub 2003 Nov 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645856" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factors/chemistry/genetics/metabolism ; *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; COP-Coated Vesicles/metabolism ; Carrier Proteins/chemistry/genetics/metabolism ; Cell Membrane/chemistry/metabolism ; Clathrin/metabolism ; Clathrin-Coated Vesicles/metabolism ; Coated Vesicles/chemistry/*metabolism ; Crystallography, X-Ray ; *Cytoskeletal Proteins ; Dimerization ; Drosophila/chemistry ; Drosophila Proteins/*chemistry/*metabolism ; GTPase-Activating Proteins/chemistry/metabolism ; Liposomes/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Nuclear Proteins/chemistry/metabolism ; Phosphoproteins/chemistry/metabolism ; Protein Binding ; Protein Structure, Secondary ; *Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2003-08-09
    Description: During early development in vertebrates, Sonic hedgehog (Shh) is produced by the notochord and the floor plate. A ventrodorsal gradient of Shh directs ventrodorsal patterning of the neural tube. However, Shh is also required for the survival of neuroepithelial cells. We show that Patched (Ptc) induces apoptotic cell death unless its ligand Shh is present to block the signal. Moreover, the blockade of Ptc-induced cell death partly rescues the chick spinal cord defect provoked by Shh deprivation. Thus, the proapoptotic activity of unbound Ptc and the positive effect of Shh-bound Ptc on cell differentiation probably cooperate to achieve the appropriate spinal cord development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thibert, Chantal -- Teillet, Marie-Aimee -- Lapointe, Francoise -- Mazelin, Laetitia -- Le Douarin, Nicole M -- Mehlen, Patrick -- New York, N.Y. -- Science. 2003 Aug 8;301(5634):843-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Apoptosis/Differentiation Laboratory, "La Ligue," Molecular and Cellular Genetic Center, CNRS Unite Mixte Recherche (UMR) 5534, University of Lyon, 69622 Villeurbanne, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12907805" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Caspase 3 ; Caspases/metabolism ; Cell Differentiation ; Cell Line ; Central Nervous System/cytology/*embryology/metabolism ; Chick Embryo ; Electroporation ; Epithelial Cells/cytology/metabolism ; Hedgehog Proteins ; Humans ; Intracellular Signaling Peptides and Proteins ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mutation ; Protein Binding ; Protein Structure, Tertiary ; Rats ; Receptors, Cell Surface ; Signal Transduction ; Spinal Cord/cytology/embryology ; Trans-Activators/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2003-09-06
    Description: Major histocompatibility complex (MHC) class I molecules display tens of thousands of peptides on the cell surface, derived from virtually all endogenous proteins, for inspection by cytotoxic T cells (CTLs). We show that, in normal mouse cells, MHC I molecules present a peptide encoded in the 3' "untranslated" region. Despite its rarity, the peptide elicits CTL responses and induces self-tolerance, establishing that immune surveillance extends well beyond conventional polypeptides. Furthermore, translation of this cryptic peptide occurs by a previously unknown mechanism that decodes the CUG initiation codon as leucine rather than the canonical methionine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwab, Susan R -- Li, Katy C -- Kang, Chulho -- Shastri, Nilabh -- New York, N.Y. -- Science. 2003 Sep 5;301(5638):1367-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12958358" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Amino Acid Sequence ; Animals ; *Antigen Presentation ; B-Lymphocytes/metabolism ; Base Sequence ; Codon, Initiator ; Codon, Terminator ; Dendritic Cells/immunology/metabolism ; Female ; Fibroblasts/metabolism ; H-2 Antigens/*immunology ; Hybridomas ; Leucine/genetics/metabolism ; Male ; Mice ; Mice, Transgenic ; Minor Histocompatibility Antigens/genetics ; Molecular Sequence Data ; Peptides/*genetics/*immunology ; *Protein Biosynthesis ; Proteins/genetics ; Self Tolerance ; Spleen/cytology/immunology ; T-Lymphocytes, Cytotoxic/immunology ; Transfection ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2003-05-31
    Description: The sifting and winnowing of DNA sequence that occur during evolution cause nonfunctional sequences to diverge, leaving phylogenetic footprints of functional sequence elements in comparisons of genome sequences. We searched for such footprints among the genome sequences of six Saccharomyces species and identified potentially functional sequences. Comparison of these sequences allowed us to revise the catalog of yeast genes and identify sequence motifs that may be targets of transcriptional regulatory proteins. Some of these conserved sequence motifs reside upstream of genes with similar functional annotations or similar expression patterns or those bound by the same transcription factor and are thus good candidates for functional regulatory sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cliften, Paul -- Sudarsanam, Priya -- Desikan, Ashwin -- Fulton, Lucinda -- Fulton, Bob -- Majors, John -- Waterston, Robert -- Cohen, Barak A -- Johnston, Mark -- R01 GM63803/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jul 4;301(5629):71-6. Epub 2003 May 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12775844" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Base Sequence ; Binding Sites ; Computational Biology ; *Conserved Sequence ; *DNA, Intergenic ; Gene Expression Profiling ; Genes, Fungal ; *Genome, Fungal ; Molecular Sequence Data ; *Phylogeny ; *Regulatory Sequences, Nucleic Acid ; Saccharomyces/classification/*genetics/physiology ; Saccharomyces cerevisiae/genetics/physiology ; Sequence Alignment ; Sequence Analysis, DNA ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2003-05-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bardelli, Alberto -- Parsons, D Williams -- Silliman, Natalie -- Ptak, Janine -- Szabo, Steve -- Saha, Saurabh -- Markowitz, Sanford -- Willson, James K V -- Parmigiani, Giovanni -- Kinzler, Kenneth W -- Vogelstein, Bert -- Velculescu, Victor E -- CA43460/CA/NCI NIH HHS/ -- CA57345/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 May 9;300(5621):949.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Howard Hughes Medical Institute and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738854" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Colorectal Neoplasms/*enzymology/*genetics ; Computational Biology ; *DNA Mutational Analysis ; Exons ; Fusion Proteins, gag-onc/genetics ; Guanylate Cyclase/genetics ; Humans ; Molecular Sequence Data ; Mutation ; Polymerase Chain Reaction ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/chemistry/*genetics/metabolism ; Receptor, EphA3/genetics ; Receptor, trkB/genetics ; Receptor, trkC/genetics ; Sequence Analysis, DNA ; Vascular Endothelial Growth Factor Receptor-2/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2003-02-01
    Description: Transit peptides mediate protein targeting into plastids and are only poorly understood. We extracted amino acid features from transit peptides that target proteins to the relict plastid (apicoplast) of malaria parasites. Based on these amino acid characteristics, we identified 466 putative apicoplast proteins in the Plasmodium falciparum genome. Altering the specific charge characteristics in a model transit peptide by site-directed mutagenesis severely disrupted organellar targeting in vivo. Similarly, putative Hsp70 (DnaK) binding sites present in the transit peptide proved to be important for correct targeting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Foth, Bernardo J -- Ralph, Stuart A -- Tonkin, Christopher J -- Struck, Nicole S -- Fraunholz, Martin -- Roos, David S -- Cowman, Alan F -- McFadden, Geoffrey I -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):705-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12560551" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Carrier Protein/metabolism ; Algorithms ; Amino Acid Sequence ; Amino Acid Substitution ; Amino Acids/analysis/chemistry ; Animals ; Asparagine/analysis ; Binding Sites ; Computational Biology ; Green Fluorescent Proteins ; HSP70 Heat-Shock Proteins/metabolism ; Heat-Shock Proteins/metabolism ; Luminescent Proteins/metabolism ; Lysine/analysis ; Models, Biological ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Neural Networks (Computer) ; Organelles/*metabolism ; Plasmodium falciparum/*metabolism ; Protein Binding ; *Protein Sorting Signals ; *Protein Transport ; Protozoan Proteins/*chemistry/*metabolism ; Vacuoles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2003-02-08
    Description: Nuclear genes control plastid differentiation in response to developmental signals, environmental signals, and retrograde signals from plastids themselves. In return, plastids emit signals that are essential for proper expression of many nuclear photosynthetic genes. Accumulation of magnesium-protoporphyrin IX (Mg-Proto), an intermediate in chlorophyll biosynthesis, is a plastid signal that represses nuclear transcription through a signaling pathway that, in Arabidopsis, requires the GUN4 gene. GUN4 binds the product and substrate of Mg- chelatase, an enzyme that produces Mg-Proto, and activates Mg-chelatase. Thus, GUN4 participates in plastid-to-nucleus signaling by regulating Mg-Proto synthesis or trafficking.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larkin, Robert M -- Alonso, Jose M -- Ecker, Joseph R -- Chory, Joanne -- New York, N.Y. -- Science. 2003 Feb 7;299(5608):902-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12574634" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Arabidopsis/*genetics/growth & development/metabolism ; Arabidopsis Proteins/chemistry/*genetics/isolation & purification/*metabolism ; Carrier Proteins/chemistry/*genetics/isolation & purification/*metabolism ; Cell Nucleus/metabolism ; Chlorophyll/*biosynthesis ; Chloroplasts/*metabolism ; Chromosome Mapping ; Chromosomes, Plant ; Cloning, Molecular ; Cyanobacteria/enzymology/genetics/metabolism ; Deuteroporphyrins/metabolism ; Enzyme Activation ; *Genes, Plant ; Genes, Reporter ; *Intracellular Signaling Peptides and Proteins ; Lyases/chemistry/isolation & purification/metabolism ; Magnesium/metabolism ; Molecular Sequence Data ; Mutation ; Mutation, Missense ; Protein Binding ; Protein Subunits/metabolism ; Protein Transport ; Protoporphyrins/*metabolism ; Recombinant Proteins/metabolism ; *Signal Transduction ; Thylakoids/chemistry/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2003-10-11
    Description: Neuronal axons connect to multiple target cells through the formation of collateral branches, but the mechanisms that regulate this process are largely unknown. We show that BAM-2, a neurexin-related transmembrane protein, is required for development of VC motoneuron branches in the worm Caenorhabditis elegans. Expression analysis and ectopic expression experiments suggest that BAM-2 functions as a branch termination cue and reveal a mechanism for selective control of branches that sprout off a primary axon.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colavita, Antonio -- Tessier-Lavigne, Marc -- New York, N.Y. -- Science. 2003 Oct 10;302(5643):293-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14551437" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Axons/*physiology/ultrastructure ; Caenorhabditis elegans/genetics/growth & development/*physiology/ultrastructure ; Caenorhabditis elegans Proteins/chemistry/genetics/*physiology ; Cues ; Female ; Gene Expression Profiling ; Genes, Helminth ; Growth Cones/physiology ; Ligands ; Membrane Proteins/chemistry/genetics/*physiology ; Molecular Sequence Data ; Motor Neurons/*physiology/ultrastructure ; Mutation ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Vulva/cytology/innervation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2003-08-02
    Description: Because nitric oxide (NO) may be a ubiquitous regulator of cellular signaling, we have modified the yeast two-hybrid system to explore the possibility of NO-dependent protein-protein interactions. We screened for binding partners of procaspase-3, a protein implicated in apoptotic signaling pathways, and identified multiple NO-dependent interactions.Two such interactions, with acid sphingomyelinase and NO synthase, were shown to occur in mammalian cells dependent on endogenous NO. Nitrosylation may thus provide a broad-based mechanism for regulating interactions between proteins. If so, systematic proteomic analyses in which redox state and NO bioavailability are carefully controlled will reveal a large array of novel interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsumoto, Akio -- Comatas, Karrie E -- Liu, Limin -- Stamler, Jonathan S -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):657-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893946" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Caspase 3 ; Caspases/*metabolism ; Cell Line ; Enzyme Inhibitors/pharmacology ; Enzyme Precursors/*metabolism ; Escherichia coli/genetics/growth & development ; Gene Library ; Humans ; Hydrogen Peroxide/metabolism ; Lysosomes/enzymology ; Mitochondria/enzymology ; Nitric Oxide/*metabolism/pharmacology ; Nitric Oxide Donors/pharmacology ; Nitric Oxide Synthase/antagonists & inhibitors/*metabolism ; Nitric Oxide Synthase Type I ; Nitric Oxide Synthase Type II ; Nitric Oxide Synthase Type III ; Oxidation-Reduction ; Precipitin Tests ; *Protein Binding ; Signal Transduction ; Sphingomyelin Phosphodiesterase/*metabolism ; Transfection ; Transformation, Bacterial ; Triazenes/pharmacology ; Two-Hybrid System Techniques ; beta-Galactosidase/metabolism ; omega-N-Methylarginine/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2003-03-01
    Description: A single antibody was shown to adopt different binding-site conformations and thereby bind unrelated antigens. Analysis by both x-ray crystallography and pre-steady-state kinetics revealed an equilibrium between different preexisting isomers, one of which possessed a promiscuous, low-affinity binding site for aromatic ligands, including the immunizing hapten. A subsequent induced-fit isomerization led to high-affinity complexes with a deep and narrow binding site. A protein antigen identified by repertoire selection made use of an unrelated antibody isomer with a wide, shallow binding site. Conformational diversity, whereby one sequence adopts multiple structures and multiple functions, can increase the effective size of the antibody repertoire but may also lead to autoimmunity and allergy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉James, Leo C -- Roversi, Pietro -- Tawfik, Dan S -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1362-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2HQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610298" target="_blank"〉PubMed〈/a〉
    Keywords: 2,4-Dinitrophenol/immunology ; Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/immunology ; Antibody Diversity ; *Antibody Specificity ; Antigen-Antibody Complex ; Antigen-Antibody Reactions ; Antigens/*immunology ; Binding Sites, Antibody ; Cross Reactions ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Haptens/immunology ; Hydrogen Bonding ; Immunoglobulin E/*chemistry/*immunology ; Immunoglobulin Fragments/chemistry/immunology ; Isomerism ; Kinetics ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Peptide Library ; Protein Conformation ; Recombinant Proteins/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2003-10-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beheregaray, Luciano B -- Ciofi, Claudio -- Geist, Dennis -- Gibbs, James P -- Caccone, Adalgisa -- Powell, Jeffrey R -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):75.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520-8106, USA. luciano.beheregaray@bio.mq.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526072" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; DNA, Mitochondrial/genetics ; Ecuador ; *Genetic Variation ; Haplotypes ; Heterozygote ; Microsatellite Repeats ; Molecular Sequence Data ; Population Density ; Time ; Turtles/*genetics ; *Volcanic Eruptions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-12-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2003 Dec 12;302(5652):1872-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14671253" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; *Embryo Research/economics/legislation & jurisprudence ; Embryo, Mammalian/*cytology ; *European Union ; *Guidelines as Topic ; Humans ; Research Support as Topic ; *Stem Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2003-06-28
    Description: The sorting of sodium channels to axons and the formation of clusters are of primary importance for neuronal electrogenesis. Here, we showed that the cytoplasmic loop connecting domains II and III of the Nav1 subunit contains a determinant conferring compartmentalization in the axonal initial segment of rat hippocampal neurons. Expression of a soluble Nav1.2II-III linker protein led to the disorganization of endogenous sodium channels. The motif was sufficient to redirect a somatodendritic potassium channel to the axonal initial segment, a process involving association with ankyrin G. Thus, this motif may play a fundamental role in controlling electrical excitability during development and plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garrido, Juan Jose -- Giraud, Pierre -- Carlier, Edmond -- Fernandes, Fanny -- Moussif, Anissa -- Fache, Marie-Pierre -- Debanne, Dominique -- Dargent, Benedicte -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2091-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut National de la Sante et de la Recherche Medicale Unite 464, Institut Jean Roche, Universite de la Mediterranee, Faculte de Medecine Secteur-Nord, Boulevard P. Dramard, 13916 Marseille Cedex 20, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829783" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Ankyrins/metabolism ; Axons/*metabolism ; Cell Membrane/metabolism ; Delayed Rectifier Potassium Channels ; Hippocampus/cytology ; Humans ; Ion Channel Gating ; Molecular Sequence Data ; Mutation ; NAV1.2 Voltage-Gated Sodium Channel ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Neurons/metabolism ; Patch-Clamp Techniques ; Potassium Channels/metabolism ; *Potassium Channels, Voltage-Gated ; Protein Structure, Tertiary ; Protein Transport ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; Sodium Channels/*chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-08-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):577.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893913" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Embryo Research/*legislation & jurisprudence ; Embryo, Mammalian/*cytology ; *Faculty ; Germany ; Government ; Humans ; Jurisprudence ; Private Sector ; Public Sector ; Research Personnel/*legislation & jurisprudence ; *Stem Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2003-12-20
    Description: Alternative pre-messenger RNA (pre-mRNA) splicing plays important roles in development, physiology, and disease, and more than half of human genes are alternatively spliced. To understand the biological roles and regulation of alternative splicing across different tissues and stages of development, systematic methods are needed. Here, we demonstrate the use of microarrays to monitor splicing at every exon-exon junction in more than 10,000 multi-exon human genes in 52 tissues and cell lines. These genome-wide data provide experimental evidence and tissue distributions for thousands of known and novel alternative splicing events. Adding to previous studies, the results indicate that at least 74% of human multi-exon genes are alternatively spliced.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Jason M -- Castle, John -- Garrett-Engele, Philip -- Kan, Zhengyan -- Loerch, Patrick M -- Armour, Christopher D -- Santos, Ralph -- Schadt, Eric E -- Stoughton, Roland -- Shoemaker, Daniel D -- New York, N.Y. -- Science. 2003 Dec 19;302(5653):2141-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rosetta Inpharmatics LLC, Merck & Co., Inc., 12040 115th Avenue N.E., Kirkland, WA 98034, USA. jason_johnson@merck.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684825" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Amyloid beta-Protein Precursor/analysis/genetics ; Cell Line ; DNA, Complementary ; *Exons ; Expressed Sequence Tags ; *Genome, Human ; Humans ; Hydroxymethylglutaryl CoA Reductases/analysis/genetics ; Molecular Sequence Data ; *Oligonucleotide Array Sequence Analysis ; *Phosphoric Monoester Hydrolases ; Protein Isoforms/analysis ; Proteins/analysis/genetics ; RNA Precursors/*genetics ; ROC Curve ; Reverse Transcriptase Polymerase Chain Reaction ; Tissue Distribution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2003-04-19
    Description: Rapid induction of type I interferon expression, a central event in establishing the innate antiviral response, requires cooperative activation of numerous transcription factors. Although signaling pathways that activate the transcription factors nuclear factor kappaB and ATF-2/c-Jun have been well characterized, activation of the interferon regulatory factors IRF-3 and IRF-7 has remained a critical missing link in understanding interferon signaling. We report here that the IkappaB kinase (IKK)-related kinases IKKepsilon and TANK-binding kinase 1 are components of the virus-activated kinase that phosphorylate IRF-3 and IRF-7. These studies illustrate an essential role for an IKK-related kinase pathway in triggering the host antiviral response to viral infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sharma, Sonia -- tenOever, Benjamin R -- Grandvaux, Nathalie -- Zhou, Guo-Ping -- Lin, Rongtuan -- Hiscott, John -- New York, N.Y. -- Science. 2003 May 16;300(5622):1148-51. Epub 2003 Apr 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lady Davis Institute for Medical Research-Jewish General Hospital, Departments of Microbiology and Immunology and Medicine, McGill University, Montreal, Quebec H3T 1E2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12702806" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; DNA-Binding Proteins/metabolism ; Enzyme Activation ; Gene Expression Regulation, Viral ; Hepacivirus/immunology/*physiology ; Humans ; I-kappa B Kinase ; Interferon Regulatory Factor-3 ; Interferon Regulatory Factor-7 ; Interferon Type I/*biosynthesis/genetics ; Phosphorylation ; Promoter Regions, Genetic ; Protein-Serine-Threonine Kinases/*metabolism ; RNA, Small Interfering/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2003-12-03
    Description: The sterol regulatory element-binding protein 2 (SREBP-2), a nuclear transcription factor that is essential for cholesterol metabolism, enters the nucleus through a direct interaction of its helix-loop-helix leucine zipper domain with importin-beta. We show the crystal structure of importin-beta complexed with the active form of SREBP-2. Importin-beta uses characteristic long helices like a pair of chopsticks to interact with an SREBP-2 dimer. Importin-beta changes its conformation to reveal a pseudo-twofold symmetry on its surface structure so that it can accommodate a symmetric dimer molecule. Importin-beta may use a similar strategy to recognize other dimeric cargoes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Soo Jae -- Sekimoto, Toshihiro -- Yamashita, Eiki -- Nagoshi, Emi -- Nakagawa, Atsushi -- Imamoto, Naoko -- Yoshimura, Masato -- Sakai, Hiroaki -- Chong, Khoon Tee -- Tsukihara, Tomitake -- Yoneda, Yoshihiro -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1571-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Protein Research, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645851" target="_blank"〉PubMed〈/a〉
    Keywords: *Active Transport, Cell Nucleus ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Binding Sites ; Cell Nucleus/metabolism ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/*metabolism ; Dimerization ; Helix-Loop-Helix Motifs ; Humans ; Hydrophobic and Hydrophilic Interactions ; Mice ; Models, Molecular ; Molecular Sequence Data ; Nuclear Localization Signals ; Nuclear Pore/metabolism ; Protein Binding ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sterol Regulatory Element Binding Protein 2 ; Transcription Factors/*chemistry/*metabolism ; beta Karyopherins/*chemistry/*metabolism ; ran GTP-Binding Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2003-05-24
    Description: Meiosis is a critical stage of gametogenesis in which alignment and synapsis of chromosomal pairs occur, allowing for the recombination of maternal and paternal genomes. Here we show that FK506 binding protein (Fkbp6) localizes to meiotic chromosome cores and regions of homologous chromosome synapsis. Targeted inactivation of Fkbp6 in mice results in aspermic males and the absence of normal pachytene spermatocytes. Moreover, we identified the deletion of Fkbp6 exon 8 as the causative mutation in spontaneously male sterile as/as mutant rats. Loss of Fkbp6 results in abnormal pairing and misalignments between homologous chromosomes, nonhomologous partner switches, and autosynapsis of X chromosome cores in meiotic spermatocytes. Fertility and meiosis are normal in Fkbp6 mutant females. Thus, Fkbp6 is a component of the synaptonemal complex essential for sex-specific fertility and for the fidelity of homologous chromosome pairing in meiosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882960/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882960/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crackower, Michael A -- Kolas, Nadine K -- Noguchi, Junko -- Sarao, Renu -- Kikuchi, Kazuhiro -- Kaneko, Hiroyuki -- Kobayashi, Eiji -- Kawai, Yasuhiro -- Kozieradzki, Ivona -- Landers, Rushin -- Mo, Rong -- Hui, Chi-Chung -- Nieves, Edward -- Cohen, Paula E -- Osborne, Lucy R -- Wada, Teiji -- Kunieda, Tetsuo -- Moens, Peter B -- Penninger, Josef M -- 38103/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2003 May 23;300(5623):1291-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), c/o Dr. Bohrgasse 7, 1030, Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12764197" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis ; Chromosome Pairing/*physiology ; Cloning, Molecular ; Exons ; Female ; Fertility/*physiology ; Gene Targeting ; Humans ; Infertility, Male/genetics/*physiopathology ; Male ; *Meiosis ; Mice ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/genetics/metabolism ; Oogenesis ; Ovary/physiology ; Prophase ; Rats ; Sequence Deletion ; Spermatids/physiology ; Spermatocytes/physiology/ultrastructure ; Spermatogenesis ; Synaptonemal Complex/*physiology ; Tacrolimus Binding Proteins/chemistry/*genetics/*physiology ; Testis/physiology ; X Chromosome/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2003-12-06
    Description: The Rho family of small guanosine triphosphatases regulates actin cytoskeleton dynamics that underlie cellular functions such as cell shape changes, migration, and polarity. We found that Smurf1, a HECT domain E3 ubiquitin ligase, regulated cell polarity and protrusive activity and was required to maintain the transformed morphology and motility of a tumor cell. Atypical protein kinase C zeta (PKCzeta), an effector of the Cdc42/Rac1-PAR6 polarity complex, recruited Smurf1 to cellular protrusions, where it controlled the local level of RhoA. Smurf1 thus links the polarity complex to degradation of RhoA in lamellipodia and filopodia to prevent RhoA signaling during dynamic membrane movements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Hong-Rui -- Zhang, Yue -- Ozdamar, Barish -- Ogunjimi, Abiodun A -- Alexandrova, Evguenia -- Thomsen, Gerald H -- Wrana, Jeffrey L -- HD32429/HD/NICHD NIH HHS/ -- R01 HD032429/HD/NICHD NIH HHS/ -- R01 HD032429-06/HD/NICHD NIH HHS/ -- R01 HD032429-07/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2003 Dec 5;302(5651):1775-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M56 1x5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14657501" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Line, Tumor ; Cell Membrane/metabolism/physiology ; *Cell Movement ; *Cell Polarity ; Cell Size ; Cell Transformation, Neoplastic ; Cytoskeleton/ultrastructure ; Guanine Nucleotide Exchange Factors/metabolism ; Humans ; Intercellular Junctions/metabolism ; Mice ; NIH 3T3 Cells ; Protein Kinase C/metabolism ; Protein Structure, Tertiary ; Pseudopodia/*metabolism/ultrastructure ; RNA, Small Interfering ; Signal Transduction ; Transfection ; Ubiquitin-Protein Ligases/chemistry/genetics/*metabolism ; cdc42 GTP-Binding Protein/metabolism ; rhoA GTP-Binding Protein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2003-12-04
    Description: During apoptosis, phosphatidylserine, which is normally restricted to the inner leaflet of the plasma membrane, is exposed on the surface of apoptotic cells and has been suggested to act as an "eat-me" signal to trigger phagocytosis. It is unclear how phagocytes recognize phosphatidylserine. Recently, a putative phosphatidylserine receptor (PSR) was identified and proposed to mediate recognition of phosphatidylserine and phagocytosis. We report that psr-1, the Caenorhabditis elegans homolog of PSR, is important for cell corpse engulfment. In vitro PSR-1 binds preferentially phosphatidylserine or cells with exposed phosphatidylserine. In C. elegans, PSR-1 acts in the same cell corpse engulfment pathway mediated by intracellular signaling molecules CED-2 (homologous to the human CrkII protein), CED-5 (DOCK180), CED-10 (Rac GTPase), and CED-12 (ELMO), possibly through direct interaction with CED-5 and CED-12. Our findings suggest that PSR-1 is likely an upstream receptor for the signaling pathway containing CED-2, CED-5, CED-10, and CED-12 proteins and plays an important role in recognizing phosphatidylserine during phagocytosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xiaochen -- Wu, Yi-Chun -- Fadok, Valerie A -- Lee, Ming-Chia -- Gengyo-Ando, Keiko -- Cheng, Li-Chun -- Ledwich, Duncan -- Hsu, Pei-Ken -- Chen, Jia-Yun -- Chou, Bin-Kuan -- Henson, Peter -- Mitani, Shohei -- Xue, Ding -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1563-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645848" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; *Apoptosis ; Caenorhabditis elegans/cytology/embryology/metabolism/*physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Carrier Proteins/genetics/*metabolism ; *Cytoskeletal Proteins ; Embryo, Nonmammalian/cytology/metabolism ; Embryonic Development ; Humans ; Jumonji Domain-Containing Histone Demethylases ; Membrane Proteins/genetics/*metabolism ; Molecular Sequence Data ; Mutation ; *Phagocytosis ; Phosphatidylserines/metabolism ; Protein Binding ; Receptors, Cell Surface/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Recombinant Proteins/metabolism ; Signal Transduction ; rac GTP-Binding Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2003-10-25
    Description: Spontaneous resolution of hepatitis C virus (HCV) infection in humans usually affords long-term immunity to persistent viremia and associated liver diseases. Here, we report that memory CD4+ Tcells are essential for this protection. Antibody-mediated depletion of CD4+ Tcells before reinfection of two immune chimpanzees resulted in persistent, low-level viremia despite functional intra-hepatic memory CD8+ Tcell responses. Incomplete control of HCV replication by memory CD8+ Tcells in the absence of adequate CD4+ Tcell help was associated with emergence of viral escape mutations in class I major histocompatibility complex-restricted epitopes and failure to resolve HCV infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grakoui, Arash -- Shoukry, Naglaa H -- Woollard, David J -- Han, Jin-Hwan -- Hanson, Holly L -- Ghrayeb, John -- Murthy, Krishna K -- Rice, Charles M -- Walker, Christopher M -- A14736/PHS HHS/ -- AI40034/AI/NIAID NIH HHS/ -- AI48231/AI/NIAID NIH HHS/ -- CA57973/CA/NCI NIH HHS/ -- CA85883/CA/NCI NIH HHS/ -- N01 HB27091/HB/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):659-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Study of Hepatitis C, Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576438" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Antigen Presentation ; Antigens, Viral/chemistry/genetics/immunology ; CD4-Positive T-Lymphocytes/*immunology ; CD8-Positive T-Lymphocytes/*immunology ; Epitopes ; Evolution, Molecular ; Hepacivirus/genetics/*immunology/*physiology ; Hepatitis C/*immunology/virology ; *Immunologic Memory ; Liver/immunology ; Major Histocompatibility Complex ; Molecular Sequence Data ; Mutation ; Pan troglodytes ; T-Lymphocyte Subsets/immunology ; Time Factors ; Viral Core Proteins/chemistry/genetics/immunology ; Viral Nonstructural Proteins/chemistry/genetics/immunology ; Viremia ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2003-12-06
    Description: Myotonic dystrophy type 1 (DM1) is caused by a CUGn expansion (n approximately 50 to 5000) in the 3' untranslated region of the mRNA of the DM protein kinase gene. We show that mutant RNA binds and sequesters transcription factors (TFs), with up to 90% depletion of selected TFs from active chromatin. Diverse genes are consequently reduced in expression, including the ion transporter CIC-1, which has been implicated in myotonia. When TF specificity protein 1 (Sp1) was overexpressed in DM1-affected cells, low levels of messenger RNA for CIC-1 were restored to normal. Transcription factor leaching from chromatin by mutant RNA provides a potentially unifying pathomechanistic explanation for this disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ebralidze, A -- Wang, Y -- Petkova, V -- Ebralidse, K -- Junghans, R P -- New York, N.Y. -- Science. 2004 Jan 16;303(5656):383-7. Epub 2003 Dec 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biotherapeutics Development Lab, Harvard Institute of Human Genetics, Harvard Medical School and Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, 4 Blackfan Circle, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14657503" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Line ; Cell Nucleus/metabolism ; Chloride Channels/genetics ; Chromatin/metabolism ; DNA-Binding Proteins/genetics/metabolism ; Humans ; Muscle Cells/*metabolism ; Mutation ; Myotonic Dystrophy/*genetics ; Myotonin-Protein Kinase ; Promoter Regions, Genetic ; Protein-Serine-Threonine Kinases/*genetics ; RNA/genetics/*metabolism ; RNA Splicing ; RNA, Messenger/genetics/metabolism ; Receptors, IgG/genetics ; Receptors, Retinoic Acid/genetics/metabolism ; Ribonucleoproteins/metabolism ; STAT1 Transcription Factor ; STAT3 Transcription Factor ; Sp1 Transcription Factor/genetics/metabolism ; Sp3 Transcription Factor ; Trans-Activators/genetics/metabolism ; Transcription Factors/genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2003-03-01
    Description: Terminally misfolded proteins in the endoplasmic reticulum (ER) are retrotranslocated to the cytoplasm and degraded by proteasomes through a mechanism known as ER-associated degradation (ERAD). EDEM, a postulated Man8B-binding protein, accelerates the degradation of misfolded proteins in the ER. Here, EDEM was shown to interact with calnexin, but not with calreticulin, through its transmembrane region. Both binding of substrates to calnexin and their release from calnexin were required for ERAD to occur. Overexpression of EDEM accelerated ERAD by promoting the release of terminally misfolded proteins from calnexin. Thus, EDEM appeared to function in the ERAD pathway by accepting substrates from calnexin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oda, Yukako -- Hosokawa, Nobuko -- Wada, Ikuo -- Nagata, Kazuhiro -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1394-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8397, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610305" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcysteine/*analogs & derivatives/pharmacology ; Calnexin/*metabolism ; Calreticulin/metabolism ; Cell Line ; Endoplasmic Reticulum/*metabolism ; Glycoproteins/chemistry/*metabolism ; Humans ; Indolizines/pharmacology ; Membrane Proteins/*metabolism ; Precipitin Tests ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Transport ; Recombinant Fusion Proteins/metabolism ; Transfection ; alpha 1-Antitrypsin/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2003-08-02
    Description: The major facilitator superfamily represents the largest group of secondary membrane transporters in the cell. Here we report the 3.3 angstrom resolution structure of a member of this superfamily, GlpT, which transports glycerol-3-phosphate into the cytoplasm and inorganic phosphate into the periplasm. The amino- and carboxyl-terminal halves of the protein exhibit a pseudo two-fold symmetry. Closed off to the periplasm, a centrally located substrate-translocation pore contains two arginines at its closed end, which comprise the substrate-binding site. Upon substrate binding, the protein adopts a more compact conformation. We propose that GlpT operates by a single-binding site, alternating-access mechanism through a rocker-switch type of movement.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Yafei -- Lemieux, M Joanne -- Song, Jinmei -- Auer, Manfred -- Wang, Da-Neng -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):616-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893936" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Biological Transport ; Cell Membrane/chemistry ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/*chemistry/enzymology ; Escherichia coli Proteins/chemistry/metabolism ; Glycerophosphates/*metabolism ; Helix-Turn-Helix Motifs ; Mass Spectrometry ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Periplasm/metabolism ; Phosphates/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2003-02-08
    Description: We report the design and total chemical synthesis of "synthetic erythropoiesis protein" (SEP), a 51-kilodalton protein-polymer construct consisting of a 166-amino-acid polypeptide chain and two covalently attached, branched, and monodisperse polymer moieties that are negatively charged. The ability to control the chemistry allowed us to synthesize a macromolecule of precisely defined covalent structure. SEP was homogeneous as shown by high-resolution analytical techniques, with a mass of 50,825 +/-10 daltons by electrospray mass spectrometry, and with a pI of 5.0. In cell and animal assays for erythropoiesis, SEP displayed potent biological activity and had significantly prolonged duration of action in vivo. These chemical methods are a powerful tool in the rational design of protein constructs with potential therapeutic applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kochendoerfer, Gerd G -- Chen, Shiah-Yun -- Mao, Feng -- Cressman, Sonya -- Traviglia, Stacey -- Shao, Haiyan -- Hunter, Christie L -- Low, Donald W -- Cagle, E Neil -- Carnevali, Maia -- Gueriguian, Vincent -- Keogh, Peter J -- Porter, Heather -- Stratton, Stephen M -- Wiedeke, M Con -- Wilken, Jill -- Tang, Jie -- Levy, Jay J -- Miranda, Les P -- Crnogorac, Milan M -- Kalbag, Suresh -- Botti, Paolo -- Schindler-Horvat, Janice -- Savatski, Laura -- Adamson, John W -- Kung, Ada -- Kent, Stephen B H -- Bradburne, James A -- New York, N.Y. -- Science. 2003 Feb 7;299(5608):884-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gryphon Therapeutics, 250 East Grand Avenue, Suite 90, South San Francisco, CA 94080, USA. Gkochendoerfer@gryphonRX.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12574628" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Circular Dichroism ; *Drug Design ; Drug Stability ; Electrophoresis, Polyacrylamide Gel ; *Erythropoiesis ; Erythropoietin/chemistry/pharmacology ; Hematocrit ; Humans ; Isoelectric Point ; Mice ; Molecular Sequence Data ; Molecular Structure ; Molecular Weight ; *Polymers/*chemical synthesis/*chemistry/pharmacokinetics/pharmacology ; Protein Folding ; Proteins/*chemical synthesis/*chemistry/pharmacokinetics/pharmacology ; Rats ; Receptors, Erythropoietin/drug effects/metabolism ; Recombinant Proteins ; Spectrometry, Mass, Electrospray Ionization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2003-01-11
    Description: A small molecule, alpha-(trichloromethyl)-4-pyridineethanol (PETCM), was identified by high-throughput screening as an activator of caspase-3 in extracts of a panel of cancer cells. PETCM was used in combination with biochemical fractionation to identify a pathway that regulates mitochondria-initiated caspase activation. This pathway consists of tumor suppressor putative HLA-DR-associated proteins (PHAP) and oncoprotein prothymosin-alpha (ProT). PHAP proteins promoted caspase-9 activation after apoptosome formation, whereas ProT negatively regulated caspase-9 activation by inhibiting apoptosome formation. PETCM relieved ProT inhibition and allowed apoptosome formation at a physiological concentration of deoxyadenosine triphosphate. Elimination of ProT expression by RNA interference sensitized cells to ultraviolet irradiation-induced apoptosis and negated the requirement of PETCM for caspase activation. Thus, this chemical-biological combinatory approach has revealed the regulatory roles of oncoprotein ProT and tumor suppressor PHAP in apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Xuejun -- Kim, Hyun-Eui -- Shu, Hongjun -- Zhao, Yingming -- Zhang, Haichao -- Kofron, James -- Donnelly, Jennifer -- Burns, Dave -- Ng, Shi-Chung -- Rosenberg, Saul -- Wang, Xiaodong -- GMRO1-57158/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 10;299(5604):223-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12522243" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Apoptosis ; Apoptotic Protease-Activating Factor 1 ; Caspase 3 ; Caspase 9 ; Caspases/metabolism ; Cell Extracts ; Cytochrome c Group/metabolism ; Deoxyadenine Nucleotides/metabolism/pharmacology ; Enzyme Activation ; HeLa Cells ; Humans ; Intracellular Signaling Peptides and Proteins ; Mitochondria/metabolism ; Molecular Sequence Data ; *Neuropeptides ; Nuclear Proteins/chemistry/isolation & purification/*metabolism/pharmacology ; Protein Precursors/chemistry/isolation & purification/*metabolism/pharmacology ; Proteins/chemistry/isolation & purification/*metabolism/pharmacology ; Pyridines/chemistry/*pharmacology ; RNA Interference ; Recombinant Proteins/metabolism/pharmacology ; Signal Transduction ; Thymosin/*analogs & derivatives/chemistry/isolation & ; purification/*metabolism/pharmacology ; Tumor Suppressor Proteins/chemistry/isolation & purification/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2003-08-23
    Description: The FACT (facilitates chromatin transcription) complex is required for transcript elongation through nucleosomes by RNA polymerase II (Pol II) in vitro. Here, we show that FACT facilitates Pol II-driven transcription by destabilizing nucleosomal structure so that one histone H2A-H2B dimer is removed during enzyme passage. We also demonstrate that FACT possesses intrinsic histone chaperone activity and can deposit core histones onto DNA. Importantly, FACT activity requires both of its constituent subunits and is dependent on the highly acidic C terminus of its larger subunit, Spt16. These findings define the mechanism by which Pol II can transcribe through chromatin without disrupting its epigenetic status.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Belotserkovskaya, Rimma -- Oh, Sangtaek -- Bondarenko, Vladimir A -- Orphanides, George -- Studitsky, Vasily M -- Reinberg, Danny -- GM37120/GM/NIGMS NIH HHS/ -- GM58650/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 22;301(5636):1090-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12934006" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Cycle Proteins/chemistry/metabolism ; Cell Line ; DNA/metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Dimerization ; HeLa Cells ; High Mobility Group Proteins/chemistry/metabolism ; Histones/metabolism ; Humans ; Models, Genetic ; Molecular Chaperones/chemistry/metabolism ; Molecular Sequence Data ; Nucleosomes/*metabolism ; Protein Binding ; Protein Subunits ; RNA Polymerase II/*metabolism ; Recombinant Proteins/chemistry/metabolism ; Templates, Genetic ; Transcription Factors/chemistry/metabolism ; *Transcription, Genetic ; Transcriptional Elongation Factors/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-04-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Georgiou, George -- Masip, Lluis -- New York, N.Y. -- Science. 2003 Apr 25;300(5619):592-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, Biomedical Engineering and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA. gg@che.utexas.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12714731" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Antioxidants/*metabolism ; Bacteria/enzymology ; Catalysis ; Cell Line ; Cysteine/*analogs & derivatives/metabolism ; Erythrocytes/enzymology ; Evolution, Molecular ; Humans ; Hydrogen Peroxide/*metabolism ; Models, Biological ; Neurotransmitter Agents ; Oxidation-Reduction ; Peroxidases/*chemistry/*metabolism ; Peroxiredoxins ; Protein Conformation ; Protein Structure, Secondary ; *Signal Transduction ; Sulfenic Acids/metabolism ; Sulfinic Acids/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2003-01-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- Holden, Constance -- New York, N.Y. -- Science. 2003 Jan 24;299(5606):493-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12543947" target="_blank"〉PubMed〈/a〉
    Keywords: Access to Information ; Advisory Committees ; Animals ; Biological Specimen Banks ; Cell Culture Techniques ; Cell Line ; Chimera ; *Embryo Research/ethics ; Embryo, Mammalian/*cytology ; Guidelines as Topic ; Humans ; International Cooperation ; Internet ; Mice ; Pluripotent Stem Cells ; *Stem Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2003-12-06
    Description: In vitro studies have indicated that reactive oxygen species (ROS) and the oxidation of signaling molecules are important mediators of signal transduction. We have identified two pathways by which the altered redox chemistry of the clk-1 mutants of Caenorhabditis elegans acts in vivo on germline development. One pathway depends on the oxidation of an analog of vertebrate low density lipoprotein (LDL) and acts on the germline through the Ack-related tyrosine kinase (ARK-1) kinase and inositol trisphosphate (IP3) signaling. The other pathway is the oncogenic ras signaling pathway, whose action on germline as well as vulval development appears to be modulated by cytoplasmic ROS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shibata, Yukimasa -- Branicky, Robyn -- Landaverde, Irene Oviedo -- Hekimi, Siegfried -- New York, N.Y. -- Science. 2003 Dec 5;302(5651):1779-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, Quebec, Canada, H3A 1B1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14657502" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apolipoproteins B/genetics/metabolism ; Base Sequence ; Caenorhabditis elegans/genetics/*growth & development/*metabolism ; Caenorhabditis elegans Proteins/chemistry/genetics/metabolism ; Cholesterol/metabolism ; Cloning, Molecular ; Disorders of Sex Development ; Female ; Inositol Phosphates/metabolism ; Lipoproteins, LDL/*metabolism ; Molecular Sequence Data ; Mutation ; Oxidation-Reduction ; Phenotype ; Protein-Tyrosine Kinases/metabolism ; RNA Interference ; Reactive Oxygen Species/*metabolism ; Transcription Factors/genetics/metabolism ; Vulva/growth & development ; ras Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2003-05-24
    Description: The capsaicin receptor (TRPV1), a heat-activated ion channel of the pain pathway, is sensitized by phosphatidylinositol-4,5-bisphosphate (PIP2) hydrolysis after phospholipase C activation. We identify a site within the C-terminal domain of TRPV1 that is required for PIP2-mediated inhibition of channel gating. Mutations that weaken PIP2-TRPV1 interaction reduce thresholds for chemical or thermal stimuli, whereas TRPV1 channels in which this region is replaced with a lipid-binding domain from PIP2-activated potassium channels remain inhibited by PIP2. The PIP2-interaction domain therefore serves as a critical determinant of thermal threshold and dynamic sensitivity range, tuning TRPV1, and thus the sensory neuron, to appropriately detect heat under normal or pathophysiological conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prescott, Elizabeth D -- Julius, David -- New York, N.Y. -- Science. 2003 May 23;300(5623):1284-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143-2140, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12764195" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arsenicals/pharmacology ; Binding Sites ; Capsaicin/metabolism/pharmacology ; Carrier Proteins ; Hot Temperature ; Humans ; Ion Channel Gating ; Membrane Proteins ; Molecular Sequence Data ; Mutation ; Oocytes ; Patch-Clamp Techniques ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphorylation ; Potassium Channels, Inwardly Rectifying/chemistry/genetics/metabolism ; Protein Structure, Tertiary ; Rats ; Receptor, Epidermal Growth Factor/metabolism ; Receptor, trkA/metabolism ; Receptors, Drug/*chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Deletion ; Type C Phospholipases/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2003-02-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fabiani, Anna -- Hoelzel, A Rus -- Galimberti, Filippo -- Muelbert, Monica M C -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):676.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3LE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12560542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antarctic Regions ; Breeding ; DNA, Mitochondrial/genetics ; Fathers ; Female ; *Genetics, Population ; Haplotypes ; Male ; Microsatellite Repeats ; Molecular Sequence Data ; Phylogeny ; Population Dynamics ; Seals, Earless/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...