ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Articles  (1,570)
  • Signal Transduction  (1,508)
  • Environmental Microbiology
  • American Association for the Advancement of Science (AAAS)  (1,519)
  • Oxford University Press  (51)
Collection
  • Books
  • Articles  (1,570)
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2017-03-25
    Description: Author: L. Bryan Ray
    Keywords: Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-13
    Description: Animal-associated microbiotas form complex communities, which play crucial functions for their host, including susceptibility to infections. Despite increasing attention to bats as reservoirs of zoonotic pathogens, their microbiota is poorly documented, especially for samples potentially implicated in pathogen transmission such as urine and saliva. Here, using low-biomass individual samples, we examined the composition and structure of bacterial communities excreted by insectivorous bats, focusing on three body habitats (saliva, urine and faeces). We show that niche specialisation occurs as bacterial community composition was distinct across body habitats with the majority of phylotypes being body habitat specific. Our results suggest that urine harbours more diverse bacterial communities than saliva and faeces and reveal potentially zoonotic bacteria such as Leptospira , Rickettsia , Bartonella and Coxiella in all body habitats. Our study emphasised that, in addition to the traditional use of gut-associated samples such as faeces, both urine and saliva are also of interest because of their diverse microbiota and the potential transmission of pathogenic bacteria. Our results represent a critical baseline for future studies investigating the interactions between microbiota and infection dynamics in bats.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-19
    Description: R-type bacteriocins are contractile phage tail-like structures that are bactericidal towards related bacterial species. The C-terminal region of the phage tail fiber protein determines target-binding specificity. The mutualistic bacteria Xenorhabdus nematophila and X. bovienii produce R-type bacteriocins (xenorhabdicins) that are selectively active against different Xenorhabdus species. We analyzed the P2-type remnant prophage clusters in draft sequences of nine strains of X. bovienii . The C-terminal tail fiber region in each of the respective strains was unique and consisted of mosaics of modular units. The region between the main tail fiber gene ( xbpH1 ) and the sheath gene ( xbpS1 ) contained a variable number of modules encoding tail fiber fragments. DNA inversion and module exchange between strains was involved in generating tail fiber diversity. Xenorhabdicin-enriched fractions from three different X. bovienii strains isolated from the same nematode species displayed distinct activities against each other. In one set of strains, the strain that produced highly active xenorhabdicin was able to eliminate a sensitive strain. In contrast, xenorhabdicin activity was not a determining factor in the competitive fitness of a second set of strains. These findings suggest that related strains of X. bovienii use xenorhabdicin and additional antagonistic molecules to compete against each other.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-19
    Description: Anabaena PCC7120 has two annotated toxin–antitoxin systems: MazEF and HicAB. Overexpression of either of the toxins severely inhibited the growth of Escherichia coli BL21(p lysS )(DE3). Of the two Anabaena toxins, MazF exhibited higher toxicity than HicA as evidenced by (i) 100-fold lower viability upon overexpression of MazF compared to HicA; (ii) complete loss of cell viability within 1 h of induction of MazF expression, as against 〉10 3 colony forming units mL –1 in case of HicA; (iii) inability to maintain the MazF overexpressing plasmid in E. coli cells; and (iv) neutralisation of the toxin was effective at the molar ratio of 1:1.9 for MazF:MazE and 13:1 for HicA:HicB, indicating higher antitoxin requirement for neutralisation of MazF. The growth inhibitory effect of MazF was found to be higher in lag phase cultures compared to mid-logarithmic phase cultures of E. coli , while the reverse was true for HicA. The results suggest possible distinct roles for MazEF and HicAB systems of Anabaena .
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-20
    Description: Four antibiotics (pamamycin, oligomycin A, oligomycin B and echinosporin) were isolated and characterized from the fermentation broth of the marine Streptomyces strains B8496 and B8739. Bioassays revealed that each of these compounds impaired motility and caused subsequent lysis of P. viticola zoospores in a dose- and time-dependent manner. Pamamycin displayed the strongest motility inhibitory and lytic activities (IC 50 0.1 μg mL –1 ) followed by oligomycin B (IC 50 0.15 and 0.2 μg mL –1 ) and oligomycin F (IC 50 0.3 and 0.5 μg mL –1 ). Oligomycin A and echinosporin also showed motility inhibitory activities against the zoospores with IC 50 values of 3.0 and 10.0 μg mL –1 , respectively. This is the first report of motility inhibitory and lytic activities of these antibiotics against zoospores of a phytopathogenic peronosporomycete. Structures of all the isolated compounds were determined based on detailed spectroscopic analysis.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-31
    Description: In sulfidic environments, microbes oxidize reduced sulfur compounds via several pathways. We used metagenomics to investigate sulfur metabolic pathways from microbial mat communities in two subterranean sulfidic streams in Lower Kane Cave, WY, USA and from Glenwood Hot Springs, CO, USA. Both unassembled and targeted recA gene assembly analyses revealed that these streams were dominated by Epsilonproteobacteria and Gammaproteobacteria , including groups related to Sulfurovum , Sulfurospirillum , Thiothrix and an epsilonproteobacterial group with no close cultured relatives. Genes encoding sulfide:quinone oxidoreductase (SQR) were abundant at all sites, but the specific SQR type and the taxonomic affiliation of each type differed between sites. The abundance of thiosulfate oxidation pathway genes (Sox) was not consistent between sites, although overall they were less abundant than SQR genes. Furthermore, the Sox pathway appeared to be incomplete in all samples. This work reveals both variations in sulfur metabolism within and between taxonomic groups found in these systems, and the presence of novel epsilonproteobacterial groups.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-31
    Description: Pseudomonas aeruginosa is an opportunistic pathogen with high resistance to a wide variety of antimicrobials. The multidrug resistance pump MexAB-OprM promotes the efflux of various antibiotics, mostly when mutations accumulate in the transcriptional regulators MexR, NalC and NalD, thereby causing MexAB-OprM overexpression. In this work, a characterization of 50 P. aeruginosa isolates obtained from Brazilian agricultural soils to determine the reasons of their resistance to aztreonam was done. The majority of the isolates showed higher aztreonam resistance than wild-type strain by MIC method. DNA sequence analysis of mexR , nalC and nalD genes from 13 of these isolates showed the amino acid substitution in NalC for all tested isolates, just one mutation was detected in MexR and none in NalD. Furthermore, an increase in the level of mexA expression by real-time RT-PCR analysis in eight isolates harboring mutations in NalC was found. Although there was not a relationship between MIC of aztreonam and the level of mexA expression, on the other hand, the results presented here suggest that novel mutations in NalC, including Arg 97 -Gly and Ala 186 -Thr, are related to MexAB-OprM overexpression causing aztreonam resistance in P. aeruginosa environmental isolates.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-31
    Description: Sedge-dominated wetlands on the Qinghai–Tibetan Plateau are methane emission centers. Methanotrophs at these sites play a role in reducing methane emissions, but relatively little is known about the composition of active methanotrophs in these wetlands. Here, we used DNA stable isotope probing to identify the key active aerobic methanotrophs in three sedge-dominated wetlands on the plateau. We found that Methylocystis species were active in two peatlands, Hongyuan and Dangxiong. Methylobacter species were found to be active only in Dangxiong peat. Hongyuan peat had the highest methane oxidation rate, and cross-feeding of carbon from methanotrophs to methylotrophic Hyphomicrobium species was observed. Owing to a low methane oxidation rate during the incubation, the labeling of methanotrophs in Maduo wetland samples was not detected. Our results indicate that there are large differences in the activity of methanotrophs in the wetlands of this region.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-08-05
    Description: Here we present the generation and function of two sets of bacterial plasmids that harbor fluorescent genes encoding either blue, cyan, yellow or red fluorescent proteins. In the first set, protein expression is controlled by the strong and constitutive nptII promoter whereas in the second set, the strong tac promoter was chosen that underlies LacI q regulation. Furthermore, the plasmids are mobilizable, contain Tn 7 transposons and a temperature-sensitive origin of replication. Using Escherichia coli S17-1 as donor strain, the plasmids allow fast and convenient Tn 7 -transposon delivery into many enterobacterial hosts, such as the here-used E. coli O157:H7. This procedure omits the need of preparing competent recipient cells and antibiotic resistances are only transiently conferred to the recipients. As the fluorescence proteins show little to no overlap in fluorescence emission, the constructs are well suited for the study of multicolored synthetic bacterial communities during biofilm production or in host colonization studies, e.g. of plant surfaces. Furthermore, tac promoter-reporter constructs allow the generation of so-called reproductive success reporters, which allow to estimate past doublings of bacterial individuals after introduction into environments, emphasizing the role of individual cells during colonization.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-06-23
    Description: Spa -typing and microarray techniques were used to study epidemiological changes in methicillin-resistant Staphylococcus aureus (MRSA) in South-East Austria. The population structure of 327 MRSA isolated between 2002 and 2012 was investigated. MRSA was assigned to 58 different spa types and 14 different MLST CC (multilocus sequence type clonal complexes); in particular, between 2007 and 2012, an increasing diversity in MRSA clones could be observed. The most abundant clonal complex was CC5. On the respective SCC mec cassettes, the CC5 isolates differed clearly within this decade and CC5/SCC mec I, the South German MRSA, predominant in 2002, was replaced by CC5/SCC mec II, the Rhine-Hesse MRSA in 2012. Whereas in many European countries MLST CC22-MRSA (EMRSA 15, the Barnim epidemic MRSA) is predominant, this clone occurred in Austria nearly 10 years later than in neighbouring countries. CC45, the Berlin EMRSA, epidemic in Germany, was only sporadically found in South-East Austria. The Irish ST8-MRSA-II represented by spa -type t190 was frequently found in 2002 and 2007, but disappeared in 2012. Our results demonstrate clonal replacement of MRSA clones within the last years in Austria. Ongoing surveillance is warranted for detection of changes within the MRSA population.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-06-23
    Description: This study aimed to investigate the effects of dietary fibre sources on the gut microbiota in suckling piglets, and to test the hypothesis that a moderate increase of dietary fibre may affect the gut microbiota during the suckling period. Suckling piglets were fed different fibre-containing diets or a control diet from postnatal day 7 to 22. Digesta samples from cecum, proximal colon and distal colon were used for Pig Intestinal Tract Chip analysis. The data showed that the effects of fibre-containing diet on the gut microbiota differed in the fibre source and gut location. The alfalfa diet increased Clostridium cluster XIVb and Sporobacter termitidis in the cecum compared to the pure cellulose diet. Compared to the control diet, the alfalfa diet also increased Coprococcus eutactus in the distal colon, while the pure cellulose diet decreased Eubacterium pyruvativorans in the cecum. The pure cellulose diet increased Prevotella ruminicola compared to the wheat bran diet. Interestingly, the alfalfa group had the lowest abundance of the potential pathogen Streptococcus suis in the cecum and distal colon. These results indicated that a moderate increase in dietary fibres affected the microbial composition in suckling piglets, and that the alfalfa inclusion produced some beneficial effects on the microbial communities.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-06-23
    Description: One function of the gut microbiota gaining recent attention, especially in herbivorous mammals and insects, is the metabolism of plant secondary metabolites (PSMs). We investigated whether this function exists within the gut communities of a specialist avian herbivore. We sequenced the cecal metagenome of the Greater Sage-Grouse ( Centrocercus urophasianus ), which specializes on chemically defended sagebrush ( Artemisia spp.). We predicted that the cecal metagenome of the sage-grouse would be enriched in genes associated with the metabolism of PSMs when compared to the metagenome of the domestic chicken. We found that representation of microbial genes associated with ‘xenobiotic degradation and metabolism’ was 3-fold higher in the sage-grouse cecal metagenomes when compared to that of the domestic chicken. Further, we identified a complete metabolic pathway for the degradation of phenol to pyruvate, which was not detected in the metagenomes of the domestic chicken, bovine rumen or 14 species of mammalian herbivores. Evidence of monoterpene degradation (a major class of PSMs in sagebrush) was less definitive, although we did detect genes for several enzymes associated with this process. Overall, our results suggest that the gut microbiota of specialist avian herbivores plays a similar role to the microbiota of mammalian and insect herbivores in degrading PSMs.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-06-23
    Description: Intracellular endosymbiotic bacteria are common and can play a crucial role for insect pathology. Therefore, such bacteria could be a potential key to our understanding of major losses of Western honey bees ( Apis mellifera ) colonies. However, the transmission and potential effects of endosymbiotic bacteria in A. mellifera and other Apis spp. are poorly understood. Here, we explore the prevalence and transmission of the genera Arsenophonus , Wolbachia , Spiroplasma and Rickettsia in Apis spp. Colonies of A. mellifera ( N = 33, with 20 eggs from worker brood cells and 100 adult workers each) as well as mated honey bee queens of A. cerana , A. dorsata and A. florea ( N = 12 each) were screened using PCR. While Wolbachia , Spiroplasma and Rickettsia were not detected, Arsenophonus spp. were found in 24.2% of A. mellifera colonies and respective queens as well as in queens of A. dorsata (8.3%) and A. florea (8.3%), but not in A. cerana . The absence of Arsenophonus spp. from reproductive organs of A. mellifera queens and surface-sterilized eggs does not support transovarial vertical transmission. Instead, horizontal transmission is most likely.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-05-12
    Description: Wood-rotting fungi possess remarkably diverse extracellular oxidation mechanisms, including enzymes, such as laccase and peroxidases, and Fenton chemistry. The ability to biologically drive Fenton chemistry by the redox cycling of quinones has previously been reported to be present in both ecologically diverging main groups of wood-rotting basidiomycetes. Therefore, we investigated whether it is even more widespread among fungal organisms. Screening of a diverse selection of a total of 18 ascomycetes and basidiomycetes for reduction of the model compound 2,6-dimethoxy benzoquinone revealed that all investigated strains were capable of reducing it to its corresponding hydroquinone. In a second step, depolymerization of the synthetic polymer polystyrene sulfonate was used as a proxy for quinone-dependent Fenton-based biodegradation capabilities. A diverse subset of the strains, including environmentally ubiquitous molds, white-rot fungi, as well as peatland and aquatic isolates, caused substantial depolymerization indicative for the effective employment of quinone redox cycling as biodegradation tool. Our results may also open up new paths to utilize diverse fungi for the bioremediation of recalcitrant organic pollutants.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-05-12
    Description: Ice-binding proteins (IBPs), such as antifreeze proteins (AFPs) and ice-nucleating proteins (INPs), have been described in diverse cold-adapted organisms, and their potential applications in biotechnology have been recognized in various fields. Currently, both IBPs are being applied to biotechnological processes, primarily in medicine and the food industry. However, our knowledge regarding the diversity of bacterial IBPs is limited; few studies have purified and characterized AFPs and INPs from bacteria. Phenotypically verified IBPs have been described in members belonging to Gammaproteobacteria, Actinobacteria and Flavobacteriia classes, whereas putative IBPs have been found in Gammaproteobacteria, Alphaproteobacteria and Bacilli classes. Thus, the main goal of this minireview is to summarize the current information on bacterial IBPs and their application in biotechnology, emphasizing the potential application in less explored fields such as agriculture. Investigations have suggested the use of INP-producing bacteria antagonists and AFPs-producing bacteria (or their AFPs) as a very attractive strategy to prevent frost damages in crops. UniProt database analyses of reported IBPs (phenotypically verified) and putative IBPs also show the limited information available on bacterial IBPs and indicate that major studies are required.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-05-12
    Description: Triazophos is a broad-spectrum and highly effective insecticide, and the residues of triazophos have been frequently detected in the environment. A triazophos-degrading bacterium, Burkholderia sp. SZL-1, was isolated from a long-term triazophos-polluted soil. Strain SZL-1 could hydrolyze triazophos to 1-phenyl-3-hydroxy-1,2,4-triazole, which was further utilized as the carbon sources for growth. The triazophos hydrolase gene trhA , cloned from strain SZL-1, was expressed and homogenously purified using Ni-nitrilotriacetic acid affinity chromatography. TrhA is 55 kDa and displays maximum activity at 25°C, pH 8.0. This enzyme still has nearly 60% activity at the range of 15°C–50°C for 30 min. TrhA was mutated by sequential error prone PCR and screened for improved activity for triazophos degradation. One purified variant protein (Val89-Gly89) named TrhA-M1 showed up to 3-fold improvement in specific activity against triazophos, and the specificity constants of K cat and K cat / K m for TrhA-M1 were improved up to 2.3- and 8.28-fold, respectively, compared to the wild-type enzyme. The results in this paper provided potential material for the contaminated soil remediation and hydrolase genetic structure research.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-05-12
    Description: The metal mining industry faces many large challenges in future years, among which is the increasing need to process low-grade ores as accessible higher grade ores become depleted. This is against a backdrop of increasing global demands for base and precious metals, and rare earth elements. Typically about 99% of solid material hauled to, and ground at, the land surface currently ends up as waste (rock dumps and mineral tailings). Exposure of these to air and water frequently leads to the formation of acidic, metal-contaminated run-off waters, referred to as acid mine drainage, which constitutes a severe threat to the environment. Formation of acid drainage is a natural phenomenon involving various species of lithotrophic (literally ‘rock-eating’) bacteria and archaea, which oxidize reduced forms of iron and/or sulfur. However, other microorganisms that reduce inorganic sulfur compounds can essentially reverse this process. These microorganisms can be applied on industrial scale to precipitate metals from industrial mineral leachates and acid mine drainage streams, resulting in a net improvement in metal recovery, while minimizing the amounts of leachable metals to the tailings storage dams. Here, we advocate that more extensive exploitation of microorganisms in metal mining operations could be an important way to green up the industry, reducing environmental risks and improving the efficiency and the economy of metal recovery.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-04-01
    Description: Differential inhibitors are important for measuring the relative contributions of microbial groups, such as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), to biogeochemical processes in environmental samples. In particular, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) represents a nitric oxide scavenger used for the specific inhibition of AOA, implicating nitric oxide as an intermediate of thaumarchaeotal ammonia oxidation. This study investigated four alternative nitric oxide scavengers for their ability to differentially inhibit AOA and AOB in comparison to PTIO. Caffeic acid, curcumin, methylene blue hydrate and trolox were tested on Nitrosopumilus maritimus , two unpublished AOA representatives (AOA-6f and AOA-G6) as well as the AOB representative Nitrosomonas europaea . All four scavengers inhibited ammonia oxidation by AOA at lower concentrations than for AOB. In particular, differential inhibition of AOA and AOB by caffeic acid (100 μM) and methylene blue hydrate (3 μM) was comparable to carboxy-PTIO (100 μM) in pure and enrichment culture incubations. However, when added to aquarium sponge biofilm microcosms, both scavengers were unable to inhibit ammonia oxidation consistently, likely due to degradation of the inhibitors themselves. This study provides evidence that a variety of nitric oxide scavengers result in differential inhibition of ammonia oxidation in AOA and AOB, and provides support to the proposed role of nitric oxide as a key intermediate in the thaumarchaeotal ammonia oxidation pathway.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-07-02
    Description: Peatlands of all latitudes play an integral role in global climate change by serving as a carbon sink and a primary source of atmospheric methane; however, the microbial ecology of mid-latitude peatlands is vastly understudied. Herein, next generation Illumina amplicon sequencing of small subunit rRNA genes was utilized to elucidate the microbial communities in three southern Appalachian peatlands. In contrast to northern peatlands, Proteobacteria dominated over Acidobacteria in all three sites. An average of 11 bacterial phyla was detected at relative abundance values 〉1%, with three candidate divisions (OP3, WS3 and NC10) represented, indicating high phylogenetic diversity. Physiological traits of isolates within the candidate alphaproteobacterial order, Ellin 329, obtained here and in previous studies indicate that bacteria of this order may be involved in hydrolysis of poly-, di- and monosaccharides. Community analyses indicate that Ellin 329 is the third most abundant order and is most abundant near the surface layers where plant litter decomposition should be primarily occurring. In sum, members of Ellin 329 likely play important roles in organic matter decomposition, in southern Appalachian peatlands and should be investigated further in other peatlands and ecosystem types.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-07-02
    Description: Marine viruses are the most abundant biological entity in the oceans, the majority of which infect bacteria and are known as bacteriophages. Yet, the bulk of bacteriophages form part of the vast uncultured dark matter of the microbial biosphere. In spite of the paucity of cultured marine bacteriophages, it is known that marine bacteriophages have major impacts on microbial population structure and the biogeochemical cycling of key elements. Despite the ecological relevance of marine bacteriophages, there are relatively few isolates with complete genome sequences. This minireview focuses on knowledge gathered from these genomes put in the context of viral metagenomic data and highlights key advances in the field, particularly focusing on genome structure and auxiliary metabolic genes.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-07-02
    Description: The fynbos biome in South Africa is globally recognised as a plant biodiversity hotspot. However, very little is known about the bacterial communities associated with fynbos plants, despite interactions between primary producers and bacteria having an impact on the physiology of both partners and shaping ecosystem diversity. This study reports on the structure, phylogenetic composition and potential roles of the endophytic bacterial communities located in the stems of three fynbos plants ( Erepsia anceps , Phaenocoma prolifera and Leucadendron laureolum ). Using Illumina MiSeq 16S rRNA sequencing we found that different subpopulations of Deinococcus-Thermus, Alphaproteobacteria, Acidobacteria and Firmicutes dominated the endophytic bacterial communities. Alphaproteobacteria and Actinobacteria were prevalent in P. prolifera , whereas Deinococcus-Thermus dominated in L. laureolum , revealing species-specific host–bacteria associations. Although a high degree of variability in the endophytic bacterial communities within hosts was observed, we also detected a core microbiome across the stems of the three plant species, which accounted for 72% of the sequences. Altogether, it seems that both deterministic and stochastic processes shaped microbial communities. Endophytic bacterial communities harboured putative plant growth-promoting bacteria, thus having the potential to influence host health and growth.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-07-03
    Description: The functioning of many natural and engineered environments is dependent on long distance electron transfer mediated through electrical currents. These currents have been observed in exoelectrogenic biofilms and it has been proposed that microbial biofilms can mediate electron transfer via electrical currents on the centimeter scale. However, direct evidence to confirm this hypothesis has not been demonstrated and the longest known electrical transfer distance for single species exoelectrogenic biofilms is limited to 100 μm. In the present study, biofilms were developed on electrodes with electrically non-conductive gaps from 50 μm to 1 mm and the in situ conductance of biofilms was evaluated over time. Results demonstrated that the exoelectrogenic mixed species biofilms in the present study possess the ability to transfer electrons through electrical currents over a distance of up to 1 mm, 10 times further than previously observed. Results indicate the possibility of interspecies interactions playing an important role in the spatial development of exoelectrogenic biofilms, suggesting that these biological networks might remain conductive even at longer distance. These findings have significant implications in regards to future optimization of microbial electrochemical systems.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-08-28
    Description: Bacteriophages are increasingly being used as water quality indicators. Two groups of phages infecting Escherichia coli , somatic and F-specific coliphages, are being considered as indicators of fecal and viral contamination for several types of water around the world. However, some uncertainties remain regarding which coliphages to assess. Recently, E. coli strain CB390 has been reported to be suitable for simultaneous detection of both groups, which seems to be more informative than determining only one of the groups. Here, a significant number of samples from different settings, mostly those where F-specific phages have been reported to outnumber somatic coliphages, are analyzed for somatic coliphages, F-specific RNA phages by standardized methods and coliphages detected by host strain CB390. The results presented here confirm that the numbers of phages counted using CB390 are equivalent to the sum of the somatic and F-specific coliphages counted independently in all settings. Hence the usefulness of this strain for simultaneous detection of somatic and F-specific coliphages is confirmed. Also, sets of data on the presence of coliphages in reclaimed and groundwater are reported.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-06-04
    Description: It is well known that Methylosinus trichosporium OB3b has two forms of methane monooxygenase (MMO) responsible for the initial conversion of methane to methanol, a cytoplasmic (soluble) methane monooxygenase and a membrane-associated (particulate) methane monooxygenase, and that copper strongly regulates expression of these alternative forms of MMO. More recently, it has been discovered that M. trichosporium OB3b has multiple types of the methanol dehydrogenase (MeDH), i.e. the Mxa-type MeDH (Mxa-MeDH) and Xox-type MeDH (Xox-MeDH), and the expression of these two forms is regulated by the availability of the rare earth element (REE), cerium. Here, we extend these studies and show that lanthanum, praseodymium, neodymium and samarium also regulate expression of alternative forms of MeDH. The effect of these REEs on MeDH expression, however, was only observed in the absence of copper. Further, a mutant of M. trichosporium OB3b, where the Mxa-MeDH was knocked out, was able to grow in the presence of lanthanum, praseodymium and neodymium, but was not able to grow in the presence of samarium. Collectively, these data suggest that multiple levels of gene regulation by metals exist in M. trichosporium OB3b, but that copper overrides the effect of other metals by an as yet unknown mechanism.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-09-03
    Description: Author: L. Bryan Ray
    Keywords: Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-05-12
    Description: Polysulfides (S x 2– ) are sulfide oxidation intermediates that are important for a variety of environmentally relevant processes including pyrite formation, organic matter sulfidization, isotope exchange among reduced sulfur species, and metal chelation. In addition to their chemical reactivity, laboratory experiments with microbial cultures and enzymes indicate both indirect and direct roles for microorganisms in affecting polysulfide chemistry in natural environments through production and consumption. As polysulfides have been detected in a wide array of natural systems ranging from microbial mats to hydrothermal vents, constraining their biogeochemical cycling has broad impacts. However, many questions remain regarding the processes responsible for polysulfide dynamics in these environments and the precise role that microorganisms play in these processes. This review provides a summary of laboratory experiments investigating the role of polysulfides in microbial metabolism, and observations of polysulfides in the environment in order to provide further insight into and highlight open questions about this significant component of the sulfur cycle.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-02-20
    Description: A total of 65 spore-forming mercury-resistant bacteria were isolated from natural environments worldwide in order to understand the acquisition of additional genes by and dissemination of mercury resistance transposons across related Bacilli genera by horizontal gene movement. PCR amplification using a single primer complementary to the inverted repeat sequence of Tn MERI1 -like transposons showed that 12 of 65 isolates had a transposon-like structure. There were four types of amplified fragments: Tn 5084 , Tn 5085 , Tn d MER3 (a newly identified deleted transposon-like fragment) and Tn 6294 (a newly identified transposon). Tn d MER3 is a 3.5-kb sequence that carries a merRETPA operon with no merB or transposase genes. It is related to the mer operon of Bacillus licheniformis strain FA6-12 from Russia. DNA homology analysis shows that Tn 6294 is an 8.5-kb sequence that is possibly derived from Tn d MER3 by integration of a Tn MERI1 -type transposase and resolvase genes and in addition the merR2 and merB1 genes. Bacteria harboring Tn 6294 exhibited broad-spectrum mercury resistance to organomercurial compounds, although Tn 6294 had only merB1 and did not have the merB2 and merB3 sequences for organomercurial lyases found in Tn 5084 of B. cereus strain RC607. Strains with Tn 6294 encode mercuric reductase (MerA) of less than 600 amino acids in length with a single N-terminal mercury-binding domain, whereas MerA encoded by strains MB1 and RC607 has two tandem domains. Thus, Tn d MER3 and Tn 6294 are shorter prototypes for Tn MERI1 -like transposons. Identification of Tn 6294 in Bacillus sp. from Taiwan and in Paenibacillus sp. from Antarctica indicates the wide horizontal dissemination of Tn MERI1 -like transposons across bacterial species and geographical barriers.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-02-07
    Description: Fungi may play an important role in the production of the greenhouse gas nitrous oxide (N 2 O). Bipolaris sorokiniana is a ubiquitous saprobe found in soils worldwide, yet denitrification by this fungal strain has not previously been reported. We aimed to test if B. sorokiniana would produce N 2 O and CO 2 in the presence of organic and inorganic forms of nitrogen (N) under microaerobic and anaerobic conditions. Nitrogen source (organic-N, inorganic-N, no-N control) significantly affected N 2 O and CO 2 production both in the presence and absence of oxygen, which contrasts with bacterial denitrification. Inorganic N addition increased denitrification of N 2 O (from 0 to 0.3 μg N 2 0-N h –1  g –1 biomass) and reduced respiration of CO 2 (from 0.1 to 0.02 mg CO 2 h –1  g –1 biomass). Isotope analyses indicated that nitrite, rather than ammonium or glutamine, was transformed to N 2 O. Results suggest the source of N may play a larger role in fungal N 2 O production than oxygen status.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-02-20
    Description: Legionella pneumophila is a pathogenic bacterium commonly found in water and responsible for severe pneumonia. Free-living amoebae are protozoa also found in water, which feed on bacteria by phagocytosis. Under favorable conditions, some L. pneumophila are able to resist phagocytic digestion and even multiply within amoebae. However, it is not clear whether L. pneumophila could infect at a same rate a large range of amoebae or if there is some selectivity towards specific amoebal genera or strains. Also, most studies have been performed using collection strains and not with freshly isolated strains. In our study, we assess the permissiveness of freshly isolated environmental strains of amoebae, belonging to three common genera (i.e. Acanthamoeba, Naegleria and Vermamoeba ), for growth of L. pneumophila at three different temperatures. Our results indicated that all the tested strains of amoebae were permissive to L. pneumophila Lens and that there was no significant difference between the strains. Intracellular proliferation was more efficient at a temperature of 40°C. In conclusion, our work suggests that, under favorable conditions, virulent strains of L. pneumophila could equally infect a large number of isolates of common freshwater amoeba genera.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-05-20
    Description: Author: L. Bryan Ray
    Keywords: Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-04-24
    Description: Growth media have been developed to facilitate the enrichment and isolation of acidophilic and acid-tolerant sulfate-reducing bacteria (aSRB) from environmental and industrial samples, and to allow their cultivation in vitro . The main features of the ‘standard’ solid and liquid devised media are as follows: (i) use of glycerol rather than an aliphatic acid as electron donor; (ii) inclusion of stoichiometric concentrations of zinc ions to both buffer pH and to convert potentially harmful hydrogen sulphide produced by the aSRB to insoluble zinc sulphide; (iii) inclusion of Acidocella aromatica (an heterotrophic acidophile that does not metabolize glycerol or yeast extract) in the gel underlayer of double layered (overlay) solid media, to remove acetic acid produced by aSRB that incompletely oxidize glycerol and also aliphatic acids (mostly pyruvic) released by acid hydrolysis of the gelling agent used (agarose). Colonies of aSRB are readily distinguished from those of other anaerobes due to their deposition and accumulation of metal sulphide precipitates. Data presented illustrate the effectiveness of the overlay solid media described for isolating aSRB from acidic anaerobic sediments and low pH sulfidogenic bioreactors.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-04-29
    Description: Author: L. Bryan Ray
    Keywords: Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-03-13
    Description: A common dye of prussian blue (PB) as an indicator was used to develop a colorimetric method for detecting the efficacy of the antibiotics in vitro. Considering the electronic production capacity of microbial respiration, ferricyanide was employed in transferring electrons from target microorganism of Escherichia coli ( E. coli ) to produce ferrocyanide. Subsequently, ferrocyanide reacted with ferric ions to form PB. In view of relationship between the PB yield and the bacterial activity, the efficacy of the antibiotics on E. coli was directly detected at 700 nm of PB absorption. When the 5% activity of antibiotics on 20 isolates of E. coli was quantified as 5% efficacy, the applied concentrations of eight antibiotics, such as cefepime, ceftriaxone sodium, cefoperazone sodium, piperacillin sodium, amoxicillin, gentamicin, amikacin and levofloxacin were 2, 2, 4, 4, 10, 4, 8 and 8 μg mL –1 , respectively. To compare with minimum inhibitory concentration results obtained by Clinical and Laboratory Standards Institute broth macrodilution method, the results of PB methods showed good agreements except with gentamicin. Paired t- test result ( P ) also showed that difference between two methods was statistically significant ( P = 0.006).
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-03-04
    Description: Metarhizium acridum is an entomopathogenic fungus commonly used as a bioinsecticide. The conidium is the fungal stage normally employed as field inoculum in biological control programs and must survive under field conditions such as high ultraviolet-B (UV-B) exposure. Light, which is an important stimulus for many fungi, has been shown to induce the production of M. robertsii conidia with increased stress tolerance. Here we show that a two-hour exposure to white or blue/UV-A light of fast-growing mycelium induces tolerance to subsequent UV-B irradiation. Red light, however, does not have the same effect. In addition, we established that this induction can take place with as little as 1 min of white-light exposure. This brief illumination scheme could be relevant in future studies of M. acridum photobiology and for the production of UV-B resistant mycelium used in mycelium-based formulations for biological control.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-03-04
    Description: Photorhabdus (Enterobacteriaceae) bacteria are pathogenic to insects and mutualistic with entomopathogenic Heterorhabditis nematodes . Photorhabdus luminescens subsp. akhurstii LN2, associated with Heterorhabditis indica LN2, shows nematicidal activity against H. bacteriophora H06 infective juveniles (IJs). In the present study, an rpoS mutant of P. luminescens LN2 was generated through allelic exchange to examine the effects of rpoS deletion on the nematicidal activity and nematode development. The results showed that P. luminescens LN2 required rpoS for nematicidal activity against H06 nematodes, normal IJ recovery and development of H. indica LN2, however, not for the bacterial colonization in LN2 and H06 IJs. This provides cues for further understanding the role of rpoS in the mutualistic association between entomopathogenic nematodes and their symbionts.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-05-05
    Description: Catechol 2, 3-dioxygenase (C23O) is the key enzyme for aerobic aromatic degradation. Based on clone libraries and quantitative real-time polymerase chain reaction, we characterized diversity and distribution patterns of C23O genes in surface sediments of the Bohai Sea. The results showed that sediments of the Bohai Sea were dominated by genes related to C23O subfamily I.2.A. The samples from wastewater discharge area (DG) and aquaculture farm (KL) showed distinct composition of C23O genes when compared to the samples from Bohai Bay (BH), and total organic carbon was a crucial determinant accounted for the composition variation. C6BH12-38 and C2BH2-35 displayed the highest gene copies and highest ratios to the 16S rRNA genes in KL, and they might prefer biologically labile aromatic hydrocarbons via aquaculture inputs. Meanwhile, C7BH3-48 showed the highest gene copies and highest ratios to the 16S rRNA genes in DG, and this could be selective effect of organic loadings from wastewater discharge. An evident increase in C6BH12-38 and C7BH3-48 gene copies and reduction in diversity of C23O genes in DG and KL indicated composition perturbations of C23O genes and potential loss in functional redundancy. We suggest that ecological habitat and trophic specificity could shape the distribution of C23O genes in the Bohai Sea sediments.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-05-20
    Description: LysR-type transcriptional regulators (LTTRs) regulate various cellular processes in bacteria. pnpR is an LTTR-encoding gene involved in the regulation of hydroquinone (HQ) degradation, and its effects on the cellular processes of Pseudomonas putida DLL-E4 were investigated at the physiological, biochemical and molecular levels. Reverse transcription polymerase chain reaction revealed that pnpR positively regulated its own expression and that of the pnpC1C2DECX1X2 operon; additionally, pnpR partially regulated the expression of pnpA when P. putida was grown on para -nitrophenol (PNP) or HQ. Strains DLL-E4 and DLL- pnpR exhibited similar cellular morphologies and growth rates. Transcriptome analysis revealed that pnpR regulated the expression of genes in addition to those involved in PNP degradation. A total of 20 genes were upregulated and 19 genes were downregulated by at least 2-fold in strain DLL- pnpR relative to strain DLL-E4. Bioinformatic analysis revealed putative PnpR-binding sites located in the upstream regions of genes involved in PNP degradation, carbon catabolite repression and other cellular processes. The utilization of L-aspartic acid, L-histidine, L-pyroglutamic acid, L-serine, -aminobutyric acid, D,L-lactic acid, D-saccharic acid, succinic acid and L-alaninamide was increased at least 1.3-fold in strain DLL- pnpR as shown by BIOLOG assays, indicating that pnpR plays a potential negative regulation role in the utilization of carbon sources.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-04-20
    Description: Landfills are significant global sources of atmospheric methane, but little is known about the ecology and community structure of methanogens in these sites. Here, we investigated the methanogen community based on methyl coenzyme M reductase A gene amplicons in the vertical profiles of three different sites at a municipal landfill complex in China. Links between methanogen communities and refuse properties were explored using multivariate analysis. Clone library results showed that most clones (92%) were related to the hydrogenotrophic methanogens, Methanomicrobiales. Almost all of the Methanomicrobiales clones retrieved in this study are members of the genus Methanoculleus . Eight clones were affiliated with the genus Methanofollis . The remaining clones were clustered within the genus Methanosarcina . Terminal restriction fragment length polymorphism profiles showed that the landfill was predominated by 22 taxa, making up 69%–96% of the community. Of these, a single taxon comprised 36%–65% of the communities across all sites and depths. Principal components analysis separated the methanogen community into three groups, irrespective of site or depth. Redundancy analysis suggested that total phosphorus and pH play roles in structuring methanogen communities in landfills.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-02-12
    Description: Here we report a newly identified ‘Chalky back’ phenomenon in banana prawns ( Fenneropenaeus merguiensis ) farmed in North Queensland, Australia. This was characterized by localized white discoloured segmentation of the cervical groove, moreover, after cooking the prawns exploded, making them unfit for commercial sale. Histological examination revealed breakdown of gut and abdominal muscle tissue in some moribund specimens. We selectively isolated Vibrio spp., which are known prawn pathogens, from healthy and Chalky back specimens. Isolated bacteria were identified, typed and tested for the presence of eight virulence genes (VGs), biofilm formation, adherence and cytotoxicity to fish cells. In all, 32 isolates were recovered and identified as Vibrio harveyi , V. owensii , V. sinaloensis -like, V. campbellii , V. shilonii , Vibrio sp. and Photobacterium damselae using 16S rRNA gene sequencing. All V. harveyi carried VGs coding for haemolysin, tox R and flagella; formed biofilm; and adhered to both cell lines. This was similar to the V. sinaloensis -like strains that were only isolated from Chalky back specimens. Our data suggest that Vibrio spp. may play a role in the pathogenesis of Chalky back. This study is the first report of Chalky back phenomenon in farmed banana prawns that needs to be closely monitored by the industry.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-04-09
    Description: Activation of various cell surface receptors triggers the reorganization of downstream signaling molecules into micrometer- or submicrometer-sized clusters. However, the functional consequences of such clustering have been unclear. We biochemically reconstituted a 12-component signaling pathway on model membranes, beginning with T cell receptor (TCR) activation and ending with actin assembly. When TCR phosphorylation was triggered, downstream signaling proteins spontaneously separated into liquid-like clusters that promoted signaling outputs both in vitro and in human Jurkat T cells. Reconstituted clusters were enriched in kinases but excluded phosphatases and enhanced actin filament assembly by recruiting and organizing actin regulators. These results demonstrate that protein phase separation can create a distinct physical and biochemical compartment that facilitates signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, Xiaolei -- Ditlev, Jonathon A -- Hui, Enfu -- Xing, Wenmin -- Banjade, Sudeep -- Okrut, Julia -- King, David S -- Taunton, Jack -- Rosen, Michael K -- Vale, Ronald D -- 5-F32-DK101188/DK/NIDDK NIH HHS/ -- F32 DK101188/DK/NIDDK NIH HHS/ -- R01 GM056322/GM/NIGMS NIH HHS/ -- R01-GM56322/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Apr 29;352(6285):595-9. doi: 10.1126/science.aad9964. Epub 2016 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA. Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA. ; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA. Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. ; HHMI Mass Spectrometry Laboratory and Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA. ; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA. Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. ron.vale@ucsf.edu michael.rosen@utsouthwestern.edu. ; Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA. Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA. ron.vale@ucsf.edu michael.rosen@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27056844" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Adaptor Proteins, Signal Transducing/*metabolism ; Fluorescence Recovery After Photobleaching ; Humans ; Jurkat Cells ; Membrane Proteins/*metabolism ; Mitogen-Activated Protein Kinase Kinases ; Phosphorylation ; Polymerization ; Receptors, Antigen, T-Cell/*agonists ; Signal Transduction ; T-Lymphocytes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2016-03-19
    Description: Systemic inflammation, which results from the massive release of proinflammatory molecules into the circulatory system, is a major risk factor for severe illness, but the precise mechanisms underlying its control are not fully understood. We observed that prostaglandin E2 (PGE2), through its receptor EP4, is down-regulated in human systemic inflammatory disease. Mice with reduced PGE2 synthesis develop systemic inflammation, associated with translocation of gut bacteria, which can be prevented by treatment with EP4 agonists. Mechanistically, we demonstrate that PGE2-EP4 signaling acts directly on type 3 innate lymphoid cells (ILCs), promoting their homeostasis and driving them to produce interleukin-22 (IL-22). Disruption of the ILC-IL-22 axis impairs PGE2-mediated inhibition of systemic inflammation. Hence, the ILC-IL-22 axis is essential in protecting against gut barrier dysfunction, enabling PGE2-EP4 signaling to impede systemic inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841390/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841390/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duffin, Rodger -- O'Connor, Richard A -- Crittenden, Siobhan -- Forster, Thorsten -- Yu, Cunjing -- Zheng, Xiaozhong -- Smyth, Danielle -- Robb, Calum T -- Rossi, Fiona -- Skouras, Christos -- Tang, Shaohui -- Richards, James -- Pellicoro, Antonella -- Weller, Richard B -- Breyer, Richard M -- Mole, Damian J -- Iredale, John P -- Anderton, Stephen M -- Narumiya, Shuh -- Maizels, Rick M -- Ghazal, Peter -- Howie, Sarah E -- Rossi, Adriano G -- Yao, Chengcan -- 106122/Wellcome Trust/United Kingdom -- BB/K091121/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- DK37097/DK/NIDDK NIH HHS/ -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2016 Mar 18;351(6279):1333-8. doi: 10.1126/science.aad9903.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK. ; Division of Pathway Medicine, Edinburgh Infectious Diseases, The University of Edinburgh, Edinburgh EH16 4SB, UK. ; Institute for Immunology and Infection Research, The University of Edinburgh, Edinburgh EH9 3JT, UK. ; MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK. ; Department of Gastroenterology, First Affiliated Hospital of Jinan University, Guangzhou 510630, China. ; Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37212, USA. Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA. ; Center for Innovation in Immunoregulative Technology and Therapeutics (AK Project), Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan. Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan. ; Division of Pathway Medicine, Edinburgh Infectious Diseases, The University of Edinburgh, Edinburgh EH16 4SB, UK. Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh EH9 3JD, UK. ; Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK. chengcan.yao@ed.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26989254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Infections/genetics/immunology ; Dinoprostone/*immunology ; Gene Expression ; Humans ; Immunity, Innate ; Inflammation/drug therapy/*immunology/microbiology ; Interleukins/*immunology ; Intestines/*immunology/microbiology ; Lymphocytes/*immunology ; Mice ; Receptors, Prostaglandin E, EP4 Subtype/antagonists & ; inhibitors/genetics/*immunology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-01-23
    Description: Oligodendrocytes myelinate axons in the central nervous system and develop from oligodendrocyte precursor cells (OPCs) that must first migrate extensively during brain and spinal cord development. We show that OPCs require the vasculature as a physical substrate for migration. We observed that OPCs of the embryonic mouse brain and spinal cord, as well as the human cortex, emerge from progenitor domains and associate with the abluminal endothelial surface of nearby blood vessels. Migrating OPCs crawl along and jump between vessels. OPC migration in vivo was disrupted in mice with defective vascular architecture but was normal in mice lacking pericytes. Thus, physical interactions with the vascular endothelium are required for OPC migration. We identify Wnt-Cxcr4 (chemokine receptor 4) signaling in regulation of OPC-endothelial interactions and propose that this signaling coordinates OPC migration with differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsai, Hui-Hsin -- Niu, Jianqin -- Munji, Roeben -- Davalos, Dimitrios -- Chang, Junlei -- Zhang, Haijing -- Tien, An-Chi -- Kuo, Calvin J -- Chan, Jonah R -- Daneman, Richard -- Fancy, Stephen P J -- 1P01 NS083513/NS/NINDS NIH HHS/ -- 1R01NS064517/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Jan 22;351(6271):379-84. doi: 10.1126/science.aad3839.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, University of California at San Francisco (UCSF), San Francisco, CA 94158, USA. ; Departments of Pharmacology and Neuroscience, University of California at San Diego (UCSD), San Diego, CA 92093, USA. ; Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA. ; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. ; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. Department of Urology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA. Howard Hughes Medical Institute (HHMI), Chevy Chase, MD 20815, USA. Duke University School of Medicine, Durham, NC 27710, USA. ; Department of Neurology, UCSF, San Francisco, CA 94158, USA. ; Department of Pediatrics, University of California at San Francisco (UCSF), San Francisco, CA 94158, USA. Department of Neurology, UCSF, San Francisco, CA 94158, USA. Division of Neonatology, UCSF, San Francisco, CA 94158, USA. Newborn Brain Research Institute, UCSF, San Francisco, CA 94158, USA. stephen.fancy@ucsf.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26798014" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Vessels/cytology/embryology ; *Cell Movement ; Cerebral Cortex/blood supply/*embryology ; Endothelium, Vascular/cytology ; Humans ; Mice ; Neural Stem Cells/cytology/*physiology ; *Neurogenesis ; Oligodendroglia/cytology/*physiology ; *Organogenesis ; Pericytes/cytology/physiology ; Receptors, CXCR4/metabolism ; Signal Transduction ; Spinal Cord/blood supply/cytology/*embryology ; Wnt Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-02-26
    Description: Astrocytes are specialized and heterogeneous cells that contribute to central nervous system function and homeostasis. However, the mechanisms that create and maintain differences among astrocytes and allow them to fulfill particular physiological roles remain poorly defined. We reveal that neurons actively determine the features of astrocytes in the healthy adult brain and define a role for neuron-derived sonic hedgehog (Shh) in regulating the molecular and functional profile of astrocytes. Thus, the molecular and physiological program of astrocytes is not hardwired during development but, rather, depends on cues from neurons that drive and sustain their specialized properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farmer, W Todd -- Abrahamsson, Therese -- Chierzi, Sabrina -- Lui, Christopher -- Zaelzer, Cristian -- Jones, Emma V -- Bally, Blandine Ponroy -- Chen, Gary G -- Theroux, Jean-Francois -- Peng, Jimmy -- Bourque, Charles W -- Charron, Frederic -- Ernst, Carl -- Sjostrom, P Jesper -- Murai, Keith K -- FDN 143337/Canadian Institutes of Health Research/Canada -- MOP 111152/Canadian Institutes of Health Research/Canada -- MOP 123390/Canadian Institutes of Health Research/Canada -- MOP 126137/Canadian Institutes of Health Research/Canada -- NIA 288936/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):849-54. doi: 10.1126/science.aab3103.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada. ; Department of Psychiatry, McGill University, Montreal, Quebec, Canada. McGill Group for Suicide Studies, Douglas Hospital, Montreal, Quebec, Canada. ; Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montreal, Department of Medicine, University of Montreal, Montreal, Quebec, Canada. Department of Biology, McGill University, Montreal, Quebec, Canada. ; Department of Psychiatry, McGill University, Montreal, Quebec, Canada. McGill Group for Suicide Studies, Douglas Hospital, Montreal, Quebec, Canada. Department of Human Genetics, McGill University, Montreal, Quebec, Canada. Douglas Hospital Research Institute, Verdun, Quebec, Canada. ; Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada. keith.murai@mcgill.ca.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912893" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/*metabolism ; Cerebellar Cortex/*cytology ; Female ; Gene Deletion ; Hedgehog Proteins/genetics/*metabolism ; Male ; Mice ; Mice, Mutant Strains ; Neurons/*metabolism ; Receptors, G-Protein-Coupled/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-02-26
    Description: Purine biosynthetic enzymes organize into dynamic cellular bodies called purinosomes. Little is known about the spatiotemporal control of these structures. Using super-resolution microscopy, we demonstrated that purinosomes colocalized with mitochondria, and these results were supported by isolation of purinosome enzymes with mitochondria. Moreover, the number of purinosome-containing cells responded to dysregulation of mitochondrial function and metabolism. To explore the role of intracellular signaling, we performed a kinome screen using a label-free assay and found that mechanistic target of rapamycin (mTOR) influenced purinosome assembly. mTOR inhibition reduced purinosome-mitochondria colocalization and suppressed purinosome formation stimulated by mitochondria dysregulation. Collectively, our data suggest an mTOR-mediated link between purinosomes and mitochondria, and a general means by which mTOR regulates nucleotide metabolism by spatiotemporal control over protein association.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉French, Jarrod B -- Jones, Sara A -- Deng, Huayun -- Pedley, Anthony M -- Kim, Doory -- Chan, Chung Yu -- Hu, Haibei -- Pugh, Raymond J -- Zhao, Hong -- Zhang, Youxin -- Huang, Tony Jun -- Fang, Ye -- Zhuang, Xiaowei -- Benkovic, Stephen J -- 1R33EB019785-01/EB/NIBIB NIH HHS/ -- GM024129/GM/NIGMS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):733-7. doi: 10.1126/science.aac6054.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Cell Biology, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA. jarrod.french@stonybrook.edu fangy2@corning.com zhuang@chemistry.harvard.edu sjb1@psu.edu. ; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. ; Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA. ; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA. ; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA. ; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. ; Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA. jarrod.french@stonybrook.edu fangy2@corning.com zhuang@chemistry.harvard.edu sjb1@psu.edu. ; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA. Department of Physics, Harvard University, Cambridge, MA 02138, USA. jarrod.french@stonybrook.edu fangy2@corning.com zhuang@chemistry.harvard.edu sjb1@psu.edu. ; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA. jarrod.french@stonybrook.edu fangy2@corning.com zhuang@chemistry.harvard.edu sjb1@psu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912862" target="_blank"〉PubMed〈/a〉
    Keywords: HeLa Cells ; Humans ; Microscopy ; Mitochondria/*metabolism/ultrastructure ; Purines/*metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-01-23
    Description: The plant root cap, surrounding the very tip of the growing root, perceives and transmits environmental signals to the inner root tissues. In Arabidopsis thaliana, auxin released by the root cap contributes to the regular spacing of lateral organs along the primary root axis. Here, we show that the periodicity of lateral organ induction is driven by recurrent programmed cell death at the most distal edge of the root cap. We suggest that synchronous bursts of cell death in lateral root cap cells release pulses of auxin to surrounding root tissues, establishing the pattern for lateral root formation. The dynamics of root cap turnover may therefore coordinate primary root growth with root branching in order to optimize the uptake of water and nutrients from the soil.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xuan, Wei -- Band, Leah R -- Kumpf, Robert P -- Van Damme, Daniel -- Parizot, Boris -- De Rop, Gieljan -- Opdenacker, Davy -- Moller, Barbara K -- Skorzinski, Noemi -- Njo, Maria F -- De Rybel, Bert -- Audenaert, Dominique -- Nowack, Moritz K -- Vanneste, Steffen -- Beeckman, Tom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2016 Jan 22;351(6271):384-7. doi: 10.1126/science.aad2776.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Ghent, Belgium. Department of Plant Biotechnology and Bioinformatics, Gent University, Technologiepark 927, 9052 Ghent, Belgium. State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, PR China. ; Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK. ; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Ghent, Belgium. Department of Plant Biotechnology and Bioinformatics, Gent University, Technologiepark 927, 9052 Ghent, Belgium. ; Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tubingen, Germany. ; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Ghent, Belgium. Department of Plant Biotechnology and Bioinformatics, Gent University, Technologiepark 927, 9052 Ghent, Belgium. Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, Netherlands. ; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Ghent, Belgium. Department of Plant Biotechnology and Bioinformatics, Gent University, Technologiepark 927, 9052 Ghent, Belgium. tobee@psb.vib-ugent.be.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26798015" target="_blank"〉PubMed〈/a〉
    Keywords: *Apoptosis ; Arabidopsis/cytology/*growth & development/metabolism ; Indoleacetic Acids/*metabolism ; Plant Epidermis/cytology/growth & development/metabolism ; Plant Root Cap/cytology/*growth & development/metabolism ; Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics/metabolism ; Signal Transduction ; Soil ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2016-02-06
    Description: The intestinal epithelium forms an essential barrier between a host and its microbiota. Protozoa and helminths are members of the gut microbiota of mammals, including humans, yet the many ways that gut epithelial cells orchestrate responses to these eukaryotes remain unclear. Here we show that tuft cells, which are taste-chemosensory epithelial cells, accumulate during parasite colonization and infection. Disruption of chemosensory signaling through the loss of TRMP5 abrogates the expansion of tuft cells, goblet cells, eosinophils, and type 2 innate lymphoid cells during parasite colonization. Tuft cells are the primary source of the parasite-induced cytokine interleukin-25, which indirectly induces tuft cell expansion by promoting interleukin-13 production by innate lymphoid cells. Our results identify intestinal tuft cells as critical sentinels in the gut epithelium that promote type 2 immunity in response to intestinal parasites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Howitt, Michael R -- Lavoie, Sydney -- Michaud, Monia -- Blum, Arthur M -- Tran, Sara V -- Weinstock, Joel V -- Gallini, Carey Ann -- Redding, Kevin -- Margolskee, Robert F -- Osborne, Lisa C -- Artis, David -- Garrett, Wendy S -- F31DK105653/DK/NIDDK NIH HHS/ -- F32DK098826/DK/NIDDK NIH HHS/ -- R01 CA154426/CA/NCI NIH HHS/ -- R01 GM099531/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 18;351(6279):1329-33. doi: 10.1126/science.aaf1648. Epub 2016 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA. ; Division of Gastroenterology, Tufts Medical Center, Boston, MA 02111, USA. ; Monell Chemical Senses Center, Philadelphia, PA 19104, USA. ; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA. ; Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. wgarrett@hsph.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26847546" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chemoreceptor Cells/*immunology ; Eosinophils/immunology ; Goblet Cells/immunology ; Helminthiasis/immunology/parasitology ; Helminths/immunology ; Immunity, Mucosal ; Interleukin-13/immunology ; Interleukin-17/immunology ; Intestinal Diseases, Parasitic/*immunology/parasitology ; Intestinal Mucosa/*immunology/*parasitology ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Microbiota/*immunology ; Protein-Serine-Threonine Kinases/immunology ; Protozoan Infections/immunology/parasitology ; Signal Transduction ; TRPM Cation Channels/*immunology ; Taste ; Transducin/genetics/immunology ; Tritrichomonas/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016-02-06
    Description: SH3 and multiple ankyrin repeat domains 3 (SHANK3) haploinsufficiency is causative for the neurological features of Phelan-McDermid syndrome (PMDS), including a high risk of autism spectrum disorder (ASD). We used unbiased, quantitative proteomics to identify changes in the phosphoproteome of Shank3-deficient neurons. Down-regulation of protein kinase B (PKB/Akt)-mammalian target of rapamycin complex 1 (mTORC1) signaling resulted from enhanced phosphorylation and activation of serine/threonine protein phosphatase 2A (PP2A) regulatory subunit, B56beta, due to increased steady-state levels of its kinase, Cdc2-like kinase 2 (CLK2). Pharmacological and genetic activation of Akt or inhibition of CLK2 relieved synaptic deficits in Shank3-deficient and PMDS patient-derived neurons. CLK2 inhibition also restored normal sociability in a Shank3-deficient mouse model. Our study thereby provides a novel mechanistic and potentially therapeutic understanding of deregulated signaling downstream of Shank3 deficiency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bidinosti, Michael -- Botta, Paolo -- Kruttner, Sebastian -- Proenca, Catia C -- Stoehr, Natacha -- Bernhard, Mario -- Fruh, Isabelle -- Mueller, Matthias -- Bonenfant, Debora -- Voshol, Hans -- Carbone, Walter -- Neal, Sarah J -- McTighe, Stephanie M -- Roma, Guglielmo -- Dolmetsch, Ricardo E -- Porter, Jeffrey A -- Caroni, Pico -- Bouwmeester, Tewis -- Luthi, Andreas -- Galimberti, Ivan -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):1199-203. doi: 10.1126/science.aad5487. Epub 2016 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland. ; Friedrich Miescher Institute, Basel, Switzerland. ; Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland. ; Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, USA. ; Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland. ivan.galimberti@novartis.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26847545" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Autism Spectrum Disorder/*drug therapy/enzymology/genetics ; Chromosome Deletion ; Chromosome Disorders/genetics ; Chromosomes, Human, Pair 22/genetics ; Disease Models, Animal ; Down-Regulation ; Gene Knockdown Techniques ; Humans ; Insulin-Like Growth Factor I/metabolism ; Mice ; Molecular Sequence Data ; Multiprotein Complexes/metabolism ; Nerve Tissue Proteins/*genetics ; Neurons/enzymology ; Phosphorylation ; Protein Phosphatase 2/metabolism ; Protein-Serine-Threonine Kinases/*antagonists & inhibitors/metabolism ; Protein-Tyrosine Kinases/*antagonists & inhibitors/metabolism ; Proteomics ; Proto-Oncogene Proteins c-akt/genetics/metabolism ; Rats ; Signal Transduction ; TOR Serine-Threonine Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-04-29
    Description: Metastatic disease is the leading cause of cancer-related deaths and involves critical interactions between tumor cells and the microenvironment. Hypoxia is a potent microenvironmental factor promoting metastatic progression. Clinically, hypoxia and the expression of the hypoxia-inducible transcription factors HIF-1 and HIF-2 are associated with increased distant metastasis and poor survival in a variety of tumor types. Moreover, HIF signaling in malignant cells influences multiple steps within the metastatic cascade. Here we review research focused on elucidating the mechanisms by which the hypoxic tumor microenvironment promotes metastatic progression. These studies have identified potential biomarkers and therapeutic targets regulated by hypoxia that could be incorporated into strategies aimed at preventing and treating metastatic disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rankin, Erinn B -- Giaccia, Amato J -- CA-197713/CA/NCI NIH HHS/ -- CA-198291/CA/NCI NIH HHS/ -- CA-67166/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 8;352(6282):175-80. doi: 10.1126/science.aaf4405. Epub 2016 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA 94305-5152, USA. Department of Obstetrics and Gynecology, Stanford University Medical Center, Stanford, CA 94305-5152, USA. ; Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA 94305-5152, USA. giaccia@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27124451" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/*metabolism ; Biomarkers, Tumor/analysis/metabolism ; Cell Hypoxia ; Cell Movement ; Disease Progression ; Drug Resistance, Neoplasm ; Epithelial-Mesenchymal Transition ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit/*metabolism ; Neoplasm Invasiveness ; Neoplasm Metastasis/*pathology/*therapy ; Radiation Tolerance ; Signal Transduction ; *Tumor Microenvironment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-03-12
    Description: The oncogene MDMX is overexpressed in many cancers, leading to suppression of the tumor suppressor p53. Inhibitors of the oncogene product MDMX therefore might help reactivate p53 and enhance the efficacy of DNA-damaging drugs. However, we currently lack a quantitative understanding of how MDMX inhibition affects the p53 signaling pathway and cell sensitivity to DNA damage. Live cell imaging showed that MDMX depletion triggered two distinct phases of p53 accumulation in single cells: an initial postmitotic pulse, followed by low-amplitude oscillations. The response to DNA damage was sharply different in these two phases; in the first phase, MDMX depletion was synergistic with DNA damage in causing cell death, whereas in the second phase, depletion of MDMX inhibited cell death. Thus a quantitative understanding of signal dynamics and cellular states is important for designing an optimal schedule of dual-drug administration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Sheng-Hong -- Forrester, William -- Lahav, Galit -- F32GM105205/GM/NIGMS NIH HHS/ -- GM083303/GM/NIGMS NIH HHS/ -- R01 GM083303/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):1204-8. doi: 10.1126/science.aac5610. Epub 2016 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, MA, USA. ; Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, MA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26965628" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/*administration & dosage ; Apoptosis ; *DNA Damage ; Gene Knockdown Techniques ; Humans ; MCF-7 Cells ; Molecular Imaging ; Neoplasms/*drug therapy ; Proto-Oncogene Proteins c-mdm2/*antagonists & inhibitors/genetics ; RNA, Small Interfering/genetics ; Signal Transduction ; Time Factors ; Tumor Suppressor Protein p53/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016-10-30
    Description: Plant-growth-promoting bacteria belonging to Azospirillum and Pseudomonas genera are major inhabitants of the rhizosphere. Both are increasingly commercialized as crops inoculants. Interspecific interaction in the rhizosphere is critical for inoculants aptness. The objective of this work was to evaluate Azospirillum and Pseudomonas interaction in mixed biofilms by co-cultivation of the model strains Azospirillum brasilense Sp245 and Pseudomonas protegens CHA0. The results revealed enhanced growth of both strains when co-cultured in static conditions. Moreover, Sp245 biofilm formed in plastic surfaces was increased 2-fold in the presence of CHA0. Confocal microscopy revealed highly structured mixed biofilms showing Sp245 mainly on the bottom and CHA0 towards the biofilm surface. In addition, A. brasilense biofilm was thicker and denser when co-cultured with P. protegens. In a colony–colony interaction assay, Sp245 changed nearby CHA0 producing small colony phenotype, which accounts for a diffusible metabolite mediator; though CHA0 spent medium did not affect Sp245 colony phenotype. Altogether, these results point to a cooperative interaction between A. brasilense Sp245 and P. protegens CHA0 in which both strains increase their static growth and produce structured mixed biofilms with a strain-specific distribution.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-10-26
    Description: Knowledge about the factors shaping the rumen microbiota in wild animals is limited. Therefore, the aim of this study was to compare the microbiota from the three cervid species moose ( Alces alces , n = 5), red deer ( Cervus elaphus , n = 4) and roe deer ( Capreolus capreolus , n = 12), sharing the same habitat. Using deep 16S rRNA gene sequencing, we found that the largest species moose had the highest number of unique operational taxonomic units. Furthermore, red deer and moose shared more of the microbiota, compared with the smallest species, roe deer, with Firmicutes and Euryarchaeota being significantly overrepresented for the shared microbiota. These differences could not be explained by diet or range. The animals largely shared the same range, and there are no systematic differences in diet. We therefore believe rumen physiology can be one of the main contributing factors to the observed distribution of the rumen microbiota in cervid species.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-08-16
    Description: Author: L. Bryan Ray
    Keywords: Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-10-12
    Description: Mesorhizobium loti MAFF303099 has a functional Type III secretion system (T3SS) that is involved in the determination of competitiveness for legume nodulation. Here we demonstrate that the transcriptional factor TtsI, which positively regulates T3SS genes expression, is involved in a negative regulation of M. loti swimming motility in soft-agar. Conditions that induce T3SS expression affect flagella production. The same conditions also affect promoter activity of M. loti visN gene, a homolog to the positive regulator of flagellar genes that has been described in other rhizobia. Defects in T3SS complex assembly at membranes limited the negative regulation of motility by the expression of TtsI.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-10-14
    Description: Authors: Caroline Ash, L. Bryan Ray
    Keywords: Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-09-08
    Description: Frequent burning is commonly undertaken to maintain diversity in temperate grasslands of southern Australia. How burning affects below-ground fungal community diversity remains unknown. We show, using a fungal rDNA metabarcoding approach (Illumina MiSeq), that the fungal community composition was influenced by fire regime (frequency) but not time-since-fire. Fungal community composition was resilient to direct fire effects, most likely because grassland fires transfer little heat to the soil. Differences in the fungal community composition due to fire regime was likely due to associated changes that occur in vegetation with recurrent fire, via the break up of obligate symbiotic relationships. However, fire history only partially explains the observed dissimilarity in composition among the soil samples, suggesting a distinctiveness in composition in each grassland site. The importance of considering changes in soil microbe communities when managing vegetation with fire is highlighted.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-09-11
    Description: Soil is thought to be important both as a source and a sink of carbonyl sulfide (COS) in the troposphere, but the mechanism affecting COS uptake, especially for fungi, remains uncertain. Fungal isolates that were collected randomly from forest soil showed COS-degrading ability at high frequencies: 38 out of 43 isolates grown on potato dextrose agar showed degradation of 30 ppmv COS within 24 h. Of these isolates, eight degraded 30 ppmv of COS to below the detection limit within 2 h. These isolates also showed an ability to degrade COS included in ambient air (around 500 pptv) and highly concentrated (12 500 ppmv) level, even though the latter is higher than the lethal level for mammals. COS-degrading activity was estimated by using ergosterol as a biomass index for fungi. Trichoderma sp. THIF08 had the highest COS-degrading activity of all the isolates. Interestingly, Umbelopsis/Mortierella spp. THIF09 and THIF13 were unable to degrade 30 ppmv COS within 24 h, and actually emitted COS during the cultivation in ambient air. These results indicate a fungal contribution to the flux of COS between the terrestrial and atmospheric environments.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-09-17
    Description: A composite transposon is a mobile genetic element consisting of two insertion sequences (ISs) flanking a segment of cargo DNA often containing antibiotic resistance (AR) genes. Composite transposons can move as a discreet unit. There have been recently several reports on a novel mechanism of movement of an IS 26 -based composite transposon through the formation of a translocatable unit (TU), carrying the internal DNA segment of a composite transposon and one copy of a flanking IS. In this study, we determined the presence of composite transposons and TUs in human oral metagenomic DNA using PCR primers from common IS elements. Analysis of resulting amplicons showed four different IS 1216 composite transposons and one IS 257 composite transposon in our metagenomic sample. As our PCR strategy would also detect TUs, PCR was carried out to detect circular TUs predicted to originate from these composite transposons. We confirmed the presence of two novel TUs, one containing an experimentally proven antiseptic resistance gene and another containing a putative universal stress response protein (UspA) encoding gene. This is the first report of a PCR strategy to amplify the DNA segment on composite transposons and TUs in metagenomic DNA. This can be used to identify AR genes associated with a variety of mobile genetic elements from metagenomes.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-10-12
    Description: Carbonyl sulfide (COS) is an atmospheric trace gas and one of the sources of stratospheric aerosol contributing to climate change. Although one of the major sinks of COS is soil, the distribution of COS degradation ability among bacteria remains unclear. Seventeen out of 20 named bacteria belonging to Actinomycetales had COS degradation activity at mole fractions of 30 parts per million by volume (ppmv) COS. Dietzia maris NBRC 15801 T and Mycobacterium sp. THI405 had the activity comparable to a chemolithoautotroph Thiobacillus thioparus THI115 that degrade COS by COS hydrolase for energy production. Among 12 bacteria manifesting rapid degradation at 30 ppmv COS, D. maris NBRC 15801 T and Streptomyces ambofaciens NBRC 12836 T degraded ambient COS (~500 parts per trillion by volume). Geodermatophilus obscurus NBRC 13315 T and Amycolatopsis orientalis NBRC 12806 T increased COS concentrations. Moreover, six of eight COS-degrading bacteria isolated from soils had partial nucleotide sequences similar to that of the gene encoding clade D of β-class carbonic anhydrase, which included COS hydrolase. These results indicate the potential importance of Actinomycetes in the role of soils as sinks of atmospheric COS.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-10-14
    Description: Reversible protein phosphorylation plays a fundamental role in signal transduction networks. Phosphorylation alters protein function by regulating enzymatic activity, stability, cellular localization, or binding partners. Over three-quarters of human proteins may be phosphorylated, with many targeted at multiple sites. Such multisite phosphorylation substantially increases the scope for modulating protein function—a protein with n phosphorylation sites has the potential to exist in 2n distinct phosphorylation states, each of which could, in theory, display modified functionality. Proteins can be substrates for several protein kinases, thereby integrating distinct signals to provide a coherent biological response. However, they can also be phosphorylated at multiple sites by a single protein kinase to promote a specific functional output that can be reversed by dephosphorylation by protein phosphatases. On page 233 of this issue, Mylona et al. (1) reveal an unexpected role for multisite phosphorylation, whereby a protein kinase progressively phosphorylates sites on a transcription factor to promote and then subsequently limit its activity independently of dephosphorylation. Authors: Alan J. Whitmarsh, Roger J. Davis
    Keywords: Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-12-23
    Description: Neonicotinoids are neurotoxic systemic insecticides used in plant protection worldwide. Unfortunately, application of neonicotinoids affects both beneficial and target insects indiscriminately. Being water soluble and persistent, these pesticides are capable of disrupting both food chains and biogeochemical cycles. This review focuses on the biodegradation of neonicotinoids in soil and water systems by the bacterial community. Several bacterial strains have been isolated and identified as capable of transforming neonicotinoids in the presence of an additional carbon source. Environmental parameters have been established for accelerated transformation in some of these strains. Studies have also indicated that enhanced biotransformation of these pesticides can be accomplished by mixed microbial populations under optimised environmental conditions. Substantial research into the identification of neonicotinoid-mineralising bacterial strains and identification of the genes and enzymes responsible for neonicotinoid degradation is still required to complete the understanding of microbial biodegradation pathways, and advance bioremediation efforts.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-12-29
    Description: Many toxic insecticides used worldwide as well as some chemical warfare agents are phosphotriester derivatives. Therefore, detoxification of organophosphorus compounds has become the subject of many studies and in particular bioremediation, based on the phosphotriesterase catalysed hydrolysis of these compounds, has shown to be an effective and ecological methodology. In order to identify new bacterial phosphotriesterases, a simple and sensitive fluorimetric screening method on solid media was employed that allowed the selection of six strains with phosphotriesterase activity. Since pH and temperature are important parameters for bioremediation of contaminated soils and waters, the influence of these variables on the rate of the enzymatic hydrolysis was assessed. This study afforded notable results, being the most remarkable one the increased activity exhibited by Nocardia asteroides and Streptomyces setonii strains at 50°C, 7 and 30 times higher than at 30°C, respectively. Compared with the results obtained with Brevundimonas diminuta , whose activity is usually considered as reference, an increase of 26 and 75 times is observed, respectively.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-10-30
    Description: Phosphorus (P) is a critical, non-renewable nutrient; yet excess discharges can lead to eutrophication and deterioration of water quality. Thus, P removal from water must be coupled with P recovery to achieve sustainable P management. P-specific proteins provide a novel, promising approach to recover P from water. Bacterial phosphate-binding proteins (PBPs) are able to effectively remove phosphate, achieving extremely low levels in water (i.e. 0.015 mg-P L –1 ). A prerequisite of using PBP for P recovery, however, is not only removal, but also controlled P release, which has not yet been reported. Phosphate release using recombinant PBP-expressing Escherichia coli was explored in this study. Escherichia coli was genetically modified to overexpress PBP in the periplasmic space. The impacts of ionic strength, temperature and pH on phosphate release were assessed. PBP-expressed E. coli demonstrated consistently superior ability to adsorb more phosphate from liquid and release more phosphate under controlled conditions relative to negative controls (unexpressed PBP E. coli and E. coli K12). Lower pH (3.8), higher temperature (35ºC) and higher ionic strength (100 mM KCl) facilitated increased phosphate release, providing a maximum of 2.1% P recovery within 3 h. This study provides proof of concept of the feasibility of using PBP to recover P.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-11-17
    Description: Clostridium difficile is both a hospital and community-acquired pathogen. The current study determined if C. difficile could be cultured from clinical laundry facility surfaces. A total of 240 surface samples were collected from dirty areas ( n = 120), which handle soiled clinical linens, and from clean areas ( n = 120), which process and fold the clean linens, within the University of Washington Consolidated Laundry facility in 2015. Sampling was done four times over the course of 1 year. The dirty area was significantly more contaminated than the clean area (21% vs 2%, P 〈 0.001). Clostridium difficile isolates were genetically characterized using multilocus sequence typing and PCR for the detection of genes encoding toxin A and toxin B. The MLST types 1, 2, 3, 15, 26, 34, 35, 39, 42, 43, 44, 53, 63 and 284 were identified and have previously been found in both clinical and community settings. Toxin positive isolates were identified in both the dirty ( n = 16/25) and clean areas ( n = 2/2). Seasonal variation was observed with 40% of the 27 isolates cultured in April 2015. The study suggests that soiled clinical linens may be a source of C. difficile surface contamination.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-11-17
    Description: Polyploidy is a well-described trait in some prokaryotic organisms; however, it is unusual in marine microbes from oligotrophic environments, which typically display a tendency towards genome streamlining. The biogeochemically significant diazotrophic cyanobacterium Trichodesmium is a potential exception. With a relatively large genome and a comparatively high proportion of non-protein-coding DNA, Trichodesmium appears to allocate relatively more resources to genetic material than closely related organisms and microbes within the same environment. Through simultaneous analysis of gene abundance and direct cell counts, we show for the first time that Trichodesmium spp. can also be highly polyploid, containing as many as 100 genome copies per cell in field-collected samples and 〉600 copies per cell in laboratory cultures. These findings have implications for the widespread use of the abundance of the nifH gene (encoding a subunit of the N 2 -fixing enzyme nitrogenase) as an approach for quantifying the abundance and distribution of marine diazotrophs. Moreover, polyploidy may combine with the unusual genomic characteristics of this genus both in reflecting evolutionary dynamics and influencing phenotypic plasticity and ecological resilience.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-12-16
    Description: This study aimed to evaluate the survival and gene expression of Vibrio harveyi under starvation conditions. The microcosms V. harveyi were incubated in sterilized seawater for 4 weeks at room temperature. Overall, the cell numeration declined rapidly about 10 3 CFU/ml during starvation, with a tiny rebound at day 21. Scanning electron microscopy revealed that rod-shaped cells became sphere with a rippled cell surface. By polymerase chain reaction (PCR) assay, nine genes, named lux R, tox R, vhh B, fla A, top A, fur , rpo S, mre B and fts Z, were detected in the non-starved cells. In the starved cells, the expression levels of the detected genes declined substantially ranging from 0.005-fold to 0.028-fold compared to the non-starved cells performed by reverse transcription quantitative real-time PCR with 16S rRNA as the internal control. In the recovering cells, the expression levels of the detected genes, except lux R and mre B, were upregulated dramatically compared to the wild, especially top A (23.720-fold), fur (39.400-fold) and tox R (9.837-fold), validating that the expressions of both the metabolism and virulence genes were important for growth and survival of V. harveyi. The results may shed a new light on understanding of stress adaptation in bacteria.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-12-16
    Description: Type 1 fimbriae (T1F) are well characterised cell surface organelles expressed by Escherichia coli and required for adherence to mannosylated host tissue. They satisfy molecular Koch's postulates as a virulence determinant and a host-adapted role has been reinforced by reports that T1F expression is repressed at submammalian temperatures. Analysis of a group of 136 environmental and animal E. coli isolates that express T1F at 37°C showed that 28% are also capable of expression at 20°C, in a phase variable manner. The heterogeneous proportions varied widely, and although growth temperature impacted the total proportion expressing T1F, there was no direct correlation between growth at 37°C and 20°C, indicative of differences in thermoregulation of the genetic switch ( fimS ) that controls phase variation. Specificities of the adhesin (FimH) also varied between the isolates: most bound to α-(1-3) mannan and yeast extracts as expected, but some recognised β-(1-4)-mannans and N -linked glycoproteins from plants, and T1F from two of the isolates mediated binding to plant roots. The results expand our view of a well-described adherence factor to show alternative expression profiles and adhesin specificities, which in turn may confer an advantage for certain isolates in alternative hosts and habitats.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-12-16
    Description: If the in situ growth rate of filamentous bacteria in activated sludge can be quantified, researchers can more accurately assess the effect of operating conditions on the growth of filaments and improve the mathematical modeling of filamentous bulking. We developed a method to quantify the in situ specific growth rate of Sphaerotilus natans (a model filament) in activated sludge using the species-specific 16S rRNA:rDNA ratio. Primers targeting the 16S rRNA of S. natans were designed, and real-time PCR and RT-PCR were used to quantify DNA and RNA levels of S. natans , respectively. A positive linear relationship was found between the rRNA:rDNA ratio (from 440 to 4500) and the specific growth rate of S. natans (from 0.036 to 0.172 h –1 ) using chemostat experiments. The in situ growth rates of S. natans in activated sludge samples from three water reclamation facilities were quantified, illustrating how the approach can be applied in a complex environment such as activated sludge.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-11-17
    Description: Members of subdivision 1 of the phylum Acidobacteria were grown at different pH values in a new medium formulation named PSYL 5, which includes sucrose as a carbon source and other compounds (such as KH 2 PO 4 and MgSO 4 .7H 2 O). Growth rate was nearly constant at pH 5.0 and declined at pH 3–4 and 6–7. However, it was found that effects involving good carbon/nitrogen ratios and pH on the growth of the members of Acidobacteria subdivision 1 were significant, and the strongest effect of these conditions was at pH 5.0. In addition, incubation time of 48, 72, 96 and 120 h was shorter than that described previously for members of Acidobacteria subdivision 1 on solid laboratory media.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2015-04-11
    Description: Protein phosphorylation regulates virtually all biological processes. Although protein kinases are popular drug targets, targeting protein phosphatases remains a challenge. Here, we describe Sephin1 (selective inhibitor of a holophosphatase), a small molecule that safely and selectively inhibited a regulatory subunit of protein phosphatase 1 in vivo. Sephin1 selectively bound and inhibited the stress-induced PPP1R15A, but not the related and constitutive PPP1R15B, to prolong the benefit of an adaptive phospho-signaling pathway, protecting cells from otherwise lethal protein misfolding stress. In vivo, Sephin1 safely prevented the motor, morphological, and molecular defects of two otherwise unrelated protein-misfolding diseases in mice, Charcot-Marie-Tooth 1B, and amyotrophic lateral sclerosis. Thus, regulatory subunits of phosphatases are drug targets, a property exploited here to safely prevent two protein misfolding diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490275/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490275/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Das, Indrajit -- Krzyzosiak, Agnieszka -- Schneider, Kim -- Wrabetz, Lawrence -- D'Antonio, Maurizio -- Barry, Nicholas -- Sigurdardottir, Anna -- Bertolotti, Anne -- 309516/European Research Council/International -- MC_U105185860/Medical Research Council/United Kingdom -- R01-NS55256/NS/NINDS NIH HHS/ -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Apr 10;348(6231):239-42. doi: 10.1126/science.aaa4484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. ; Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy. ; Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. aberto@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25859045" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/drug therapy/metabolism/pathology ; Animals ; Cells, Cultured ; Charcot-Marie-Tooth Disease/drug therapy/metabolism/pathology ; Disease Models, Animal ; Endoplasmic Reticulum Stress/drug effects ; Enzyme Inhibitors/metabolism/pharmacokinetics/*pharmacology/toxicity ; Guanabenz/*analogs & derivatives/chemical ; synthesis/metabolism/pharmacology/toxicity ; HeLa Cells ; Humans ; Mice ; Mice, Transgenic ; Molecular Targeted Therapy ; Phosphorylation ; Protein Folding ; Protein Phosphatase 1/*antagonists & inhibitors ; Proteostasis Deficiencies/*drug therapy/*prevention & control ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-08-22
    Description: Plasma membrane depolarization can trigger cell proliferation, but how membrane potential influences mitogenic signaling is uncertain. Here, we show that plasma membrane depolarization induces nanoscale reorganization of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate but not other anionic phospholipids. K-Ras, which is targeted to the plasma membrane by electrostatic interactions with phosphatidylserine, in turn undergoes enhanced nanoclustering. Depolarization-induced changes in phosphatidylserine and K-Ras plasma membrane organization occur in fibroblasts, excitable neuroblastoma cells, and Drosophila neurons in vivo and robustly amplify K-Ras-dependent mitogen-activated protein kinase (MAPK) signaling. Conversely, plasma membrane repolarization disrupts K-Ras nanoclustering and inhibits MAPK signaling. By responding to voltage-induced changes in phosphatidylserine spatiotemporal dynamics, K-Ras nanoclusters set up the plasma membrane as a biological field-effect transistor, allowing membrane potential to control the gain in mitogenic signaling circuits.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687752/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687752/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Yong -- Wong, Ching-On -- Cho, Kwang-jin -- van der Hoeven, Dharini -- Liang, Hong -- Thakur, Dhananiay P -- Luo, Jialie -- Babic, Milos -- Zinsmaier, Konrad E -- Zhu, Michael X -- Hu, Hongzhen -- Venkatachalam, Kartik -- Hancock, John F -- R01 NS081301/NS/NINDS NIH HHS/ -- R01NS081301/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2015 Aug 21;349(6250):873-6. doi: 10.1126/science.aaa5619.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Biology and Pharmacology, Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA. ; Department of Diagnostic and Biomedical Sciences, Dental School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA. ; Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA. ; Department of Integrative Biology and Pharmacology, Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA. Program in Cell and Regulatory Biology, University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA. ; Department of Integrative Biology and Pharmacology, Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA. Program in Cell and Regulatory Biology, University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA. john.f.hancock@uth.tmc.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26293964" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Cell Membrane/metabolism/*physiology ; Cricetinae ; Drosophila melanogaster ; Fibroblasts ; *Membrane Potentials ; Mice ; Neurons ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphatidylserines/*metabolism ; Signal Transduction ; ras Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-09-19
    Description: Prostate cancer is initially responsive to androgen deprivation, but the effectiveness of androgen receptor (AR) inhibitors in recurrent disease is variable. Biopsy of bone metastases is challenging; hence, sampling circulating tumor cells (CTCs) may reveal drug-resistance mechanisms. We established single-cell RNA-sequencing (RNA-Seq) profiles of 77 intact CTCs isolated from 13 patients (mean six CTCs per patient), by using microfluidic enrichment. Single CTCs from each individual display considerable heterogeneity, including expression of AR gene mutations and splicing variants. Retrospective analysis of CTCs from patients progressing under treatment with an AR inhibitor, compared with untreated cases, indicates activation of noncanonical Wnt signaling (P = 0.0064). Ectopic expression of Wnt5a in prostate cancer cells attenuates the antiproliferative effect of AR inhibition, whereas its suppression in drug-resistant cells restores partial sensitivity, a correlation also evident in an established mouse model. Thus, single-cell analysis of prostate CTCs reveals heterogeneity in signaling pathways that could contribute to treatment failure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyamoto, David T -- Zheng, Yu -- Wittner, Ben S -- Lee, Richard J -- Zhu, Huili -- Broderick, Katherine T -- Desai, Rushil -- Fox, Douglas B -- Brannigan, Brian W -- Trautwein, Julie -- Arora, Kshitij S -- Desai, Niyati -- Dahl, Douglas M -- Sequist, Lecia V -- Smith, Matthew R -- Kapur, Ravi -- Wu, Chin-Lee -- Shioda, Toshi -- Ramaswamy, Sridhar -- Ting, David T -- Toner, Mehmet -- Maheswaran, Shyamala -- Haber, Daniel A -- 2R01CA129933/CA/NCI NIH HHS/ -- EB008047/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Sep 18;349(6254):1351-6. doi: 10.1126/science.aab0917.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Urology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Center for Bioengineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. haber@helix.mgh.harvard.edu smaheswaran@mgh.harvard.edu. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. haber@helix.mgh.harvard.edu smaheswaran@mgh.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26383955" target="_blank"〉PubMed〈/a〉
    Keywords: Androgen Antagonists/pharmacology/*therapeutic use ; Animals ; Cell Line, Tumor ; Drug Resistance, Neoplasm/*genetics ; Humans ; Male ; Mice ; Neoplastic Cells, Circulating/drug effects/*metabolism ; Phenylthiohydantoin/*analogs & derivatives/pharmacology/therapeutic use ; Prostate/drug effects/metabolism/pathology ; Prostatic Neoplasms/*drug therapy/*pathology ; Proto-Oncogene Proteins/genetics/metabolism ; RNA Splicing ; Receptors, Androgen/*genetics ; Sequence Analysis, RNA/methods ; Signal Transduction ; Single-Cell Analysis/methods ; Transcriptome ; Wnt Proteins/genetics/*metabolism ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-06-20
    Description: G protein-coupled receptors (GPCRs) relay diverse extracellular signals into cells by catalyzing nucleotide release from heterotrimeric G proteins, but the mechanism underlying this quintessential molecular signaling event has remained unclear. Here we use atomic-level simulations to elucidate the nucleotide-release mechanism. We find that the G protein alpha subunit Ras and helical domains-previously observed to separate widely upon receptor binding to expose the nucleotide-binding site-separate spontaneously and frequently even in the absence of a receptor. Domain separation is necessary but not sufficient for rapid nucleotide release. Rather, receptors catalyze nucleotide release by favoring an internal structural rearrangement of the Ras domain that weakens its nucleotide affinity. We use double electron-electron resonance spectroscopy and protein engineering to confirm predictions of our computationally determined mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dror, Ron O -- Mildorf, Thomas J -- Hilger, Daniel -- Manglik, Aashish -- Borhani, David W -- Arlow, Daniel H -- Philippsen, Ansgar -- Villanueva, Nicolas -- Yang, Zhongyu -- Lerch, Michael T -- Hubbell, Wayne L -- Kobilka, Brian K -- Sunahara, Roger K -- Shaw, David E -- P30EY00331/EY/NEI NIH HHS/ -- R01EY05216/EY/NEI NIH HHS/ -- R01GM083118/GM/NIGMS NIH HHS/ -- T32 GM008294/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1361-5. doi: 10.1126/science.aaa5264.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉D. E. Shaw Research, New York, NY 10036, USA. ron.dror@deshawresearch.com david.shaw@deshawresearch.com. ; D. E. Shaw Research, New York, NY 10036, USA. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. ; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA. ; Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA. ; D. E. Shaw Research, New York, NY 10036, USA. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. ron.dror@deshawresearch.com david.shaw@deshawresearch.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089515" target="_blank"〉PubMed〈/a〉
    Keywords: GTP-Binding Protein alpha Subunits, Gi-Go/*chemistry ; GTP-Binding Protein alpha Subunits, Gs/*chemistry ; Guanine Nucleotide Exchange Factors/*chemistry ; Humans ; Models, Chemical ; Molecular Dynamics Simulation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/*chemistry ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2015-08-22
    Description: Elucidating the signaling mechanism of strigolactones has been the key to controlling the devastating problem caused by the parasitic plant Striga hermonthica. To overcome the genetic intractability that has previously interfered with identification of the strigolactone receptor, we developed a fluorescence turn-on probe, Yoshimulactone Green (YLG), which activates strigolactone signaling and illuminates signal perception by the strigolactone receptors. Here we describe how strigolactones bind to and act via ShHTLs, the diverged family of alpha/beta hydrolase-fold proteins in Striga. Live imaging using YLGs revealed that a dynamic wavelike propagation of strigolactone perception wakes up Striga seeds. We conclude that ShHTLs function as the strigolactone receptors mediating seed germination in Striga. Our findings enable access to strigolactone receptors and observation of the regulatory dynamics for strigolactone signal transduction in Striga.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsuchiya, Yuichiro -- Yoshimura, Masahiko -- Sato, Yoshikatsu -- Kuwata, Keiko -- Toh, Shigeo -- Holbrook-Smith, Duncan -- Zhang, Hua -- McCourt, Peter -- Itami, Kenichiro -- Kinoshita, Toshinori -- Hagihara, Shinya -- New York, N.Y. -- Science. 2015 Aug 21;349(6250):864-8. doi: 10.1126/science.aab3831.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada. yuichiro@itbm.nagoya-u.ac.jp hagi@itbm.nagoya-u.ac.jp. ; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. ; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. ; Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada. ; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. Japan Science and Technology Agency-Exploratory Research for Advanced Technology, Itami Molecular Nanocarbon Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. ; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. yuichiro@itbm.nagoya-u.ac.jp hagi@itbm.nagoya-u.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26293962" target="_blank"〉PubMed〈/a〉
    Keywords: Fluoresceins/chemistry/metabolism ; Fluorescence ; Fluorescent Dyes/chemistry/metabolism ; *Germination ; Hydrolases/metabolism ; Hydrolysis ; Lactones/*metabolism ; Molecular Imaging/methods ; Molecular Sequence Data ; Plant Growth Regulators/*metabolism ; Plant Proteins/genetics/*metabolism ; Receptors, Cell Surface/genetics/*metabolism ; Seeds/*growth & development/metabolism ; Signal Transduction ; Striga/*growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2015-01-31
    Description: The mechanistic basis of eukaryotic circadian oscillators in model systems as diverse as Neurospora, Drosophila, and mammalian cells is thought to be a transcription-and-translation-based negative feedback loop, wherein progressive and controlled phosphorylation of one or more negative elements ultimately elicits their own proteasome-mediated degradation, thereby releasing negative feedback and determining circadian period length. The Neurospora crassa circadian negative element FREQUENCY (FRQ) exemplifies such proteins; it is progressively phosphorylated at more than 100 sites, and strains bearing alleles of frq with anomalous phosphorylation display abnormal stability of FRQ that is well correlated with altered periods or apparent arrhythmicity. Unexpectedly, we unveiled normal circadian oscillations that reflect the allelic state of frq but that persist in the absence of typical degradation of FRQ. This manifest uncoupling of negative element turnover from circadian period length determination is not consistent with the consensus eukaryotic circadian model.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432837/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432837/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larrondo, Luis F -- Olivares-Yanez, Consuelo -- Baker, Christopher L -- Loros, Jennifer J -- Dunlap, Jay C -- P01 GM68087/GM/NIGMS NIH HHS/ -- R01 GM034985/GM/NIGMS NIH HHS/ -- R01 GM083336/GM/NIGMS NIH HHS/ -- R01 GM34985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 30;347(6221):1257277. doi: 10.1126/science.1257277.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile. Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. jay.c.dunlap@dartmouth.edu llarrondo@bio.puc.cl. ; Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile. ; Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. ; Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. ; Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. jay.c.dunlap@dartmouth.edu llarrondo@bio.puc.cl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25635104" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/analogs & derivatives/pharmacology ; Alleles ; *Circadian Clocks ; *Circadian Rhythm ; Feedback, Physiological ; Fungal Proteins/biosynthesis/*genetics/*metabolism ; Half-Life ; Neurospora crassa/*physiology ; Phosphorylation ; Proteasome Endopeptidase Complex/metabolism ; Protein Kinase Inhibitors/pharmacology ; Protein Stability ; Proteolysis ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2015-02-28
    Description: Ebola virus causes sporadic outbreaks of lethal hemorrhagic fever in humans, but there is no currently approved therapy. Cells take up Ebola virus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebola virus entry into host cells requires the endosomal calcium channels called two-pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs, or small-molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule that we tested, inhibited infection of human macrophages, the primary target of Ebola virus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebola virus infection and may be effective targets for antiviral therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550587/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550587/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sakurai, Yasuteru -- Kolokoltsov, Andrey A -- Chen, Cheng-Chang -- Tidwell, Michael W -- Bauta, William E -- Klugbauer, Norbert -- Grimm, Christian -- Wahl-Schott, Christian -- Biel, Martin -- Davey, Robert A -- R01 AI063513/AI/NIAID NIH HHS/ -- R01AI063513/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2015 Feb 27;347(6225):995-8. doi: 10.1126/science.1258758.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Texas Biomedical Research Institute, San Antonio, TX, USA. ; The University of Texas Medical Branch, Galveston, TX, USA. ; Center for Integrated Protein Science Munich (CIPSM) at the Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universitat Munchen, Munich, Germany. ; Southwest Research Institute, San Antonio, TX, USA. ; Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universitat Freiburg, Freiburg, Germany. ; Texas Biomedical Research Institute, San Antonio, TX, USA. rdavey@txbiomed.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25722412" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiviral Agents/*pharmacology/therapeutic use ; BALB 3T3 Cells ; Benzylisoquinolines/pharmacology/therapeutic use ; Calcium Channel Blockers/*pharmacology/therapeutic use ; Calcium Channels/genetics/*physiology ; Ebolavirus/drug effects/*physiology ; Female ; Gene Knockout Techniques ; HeLa Cells ; Hemorrhagic Fever, Ebola/drug therapy/*therapy/virology ; Humans ; Macrophages/drug effects/virology ; Mice ; *Molecular Targeted Therapy ; NADP/analogs & derivatives/metabolism ; RNA Interference ; Signal Transduction ; Verapamil/pharmacology/therapeutic use ; Virus Internalization/*drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2015-09-01
    Description: Human mutations that truncate the massive sarcomere protein titin [TTN-truncating variants (TTNtvs)] are the most common genetic cause for dilated cardiomyopathy (DCM), a major cause of heart failure and premature death. Here we show that cardiac microtissues engineered from human induced pluripotent stem (iPS) cells are a powerful system for evaluating the pathogenicity of titin gene variants. We found that certain missense mutations, like TTNtvs, diminish contractile performance and are pathogenic. By combining functional analyses with RNA sequencing, we explain why truncations in the A-band domain of TTN cause DCM, whereas truncations in the I band are better tolerated. Finally, we demonstrate that mutant titin protein in iPS cell-derived cardiomyocytes results in sarcomere insufficiency, impaired responses to mechanical and beta-adrenergic stress, and attenuated growth factor and cell signaling activation. Our findings indicate that titin mutations cause DCM by disrupting critical linkages between sarcomerogenesis and adaptive remodeling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hinson, John T -- Chopra, Anant -- Nafissi, Navid -- Polacheck, William J -- Benson, Craig C -- Swist, Sandra -- Gorham, Joshua -- Yang, Luhan -- Schafer, Sebastian -- Sheng, Calvin C -- Haghighi, Alireza -- Homsy, Jason -- Hubner, Norbert -- Church, George -- Cook, Stuart A -- Linke, Wolfgang A -- Chen, Christopher S -- Seidman, J G -- Seidman, Christine E -- EB017103/EB/NIBIB NIH HHS/ -- HG005550/HG/NHGRI NIH HHS/ -- HL007374/HL/NHLBI NIH HHS/ -- HL115553/HL/NHLBI NIH HHS/ -- HL125807/HL/NHLBI NIH HHS/ -- K08 HL125807/HL/NHLBI NIH HHS/ -- T32 HL007208/HL/NHLBI NIH HHS/ -- Department of Health/United Kingdom -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):982-6. doi: 10.1126/science.aaa5458.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. jthinson@partners.org cseidman@genetics.med.harvard.edu. ; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA. The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA. ; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. ; Department of Cardiovascular Physiology, Ruhr University Bochum, MA 3/56 D-44780, Bochum, Germany. ; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Cardiovascular and Metabolic Sciences, Max Delbruck Center for Molecular Medicine, Berlin, Germany. ; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. ; Cardiovascular and Metabolic Sciences, Max Delbruck Center for Molecular Medicine, Berlin, Germany. DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany. ; National Institute for Health Research (NIHR) Biomedical Research Unit in Cardiovascular Disease at Royal Brompton and Harefield National Health Service (NHS) Foundation Trust, Imperial College London, London, UK. National Heart Centre and Duke-National University, Singapore, Singapore. ; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. jthinson@partners.org cseidman@genetics.med.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26315439" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-Agonists/pharmacology ; Cardiomyopathy, Dilated/*genetics/pathology/*physiopathology ; Cells, Cultured ; Connectin/chemistry/*genetics/*physiology ; Heart Rate ; Humans ; Induced Pluripotent Stem Cells/*physiology ; Isoproterenol/pharmacology ; Mutant Proteins/chemistry/physiology ; *Mutation, Missense ; Myocardial Contraction ; Myocytes, Cardiac/*physiology ; RNA/genetics/metabolism ; Sarcomeres/*physiology/ultrastructure ; Sequence Analysis, RNA ; Signal Transduction ; Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-06-13
    Description: Cell division progresses to anaphase only after all chromosomes are connected to spindle microtubules through kinetochores and the spindle assembly checkpoint (SAC) is satisfied. We show that the amino-terminal localization module of the SAC protein kinase MPS1 (monopolar spindle 1) directly interacts with the HEC1 (highly expressed in cancer 1) calponin homology domain in the NDC80 (nuclear division cycle 80) kinetochore complex in vitro, in a phosphorylation-dependent manner. Microtubule polymers disrupted this interaction. In cells, MPS1 binding to kinetochores or to ectopic NDC80 complexes was prevented by end-on microtubule attachment, independent of known kinetochore protein-removal mechanisms. Competition for kinetochore binding between SAC proteins and microtubules provides a direct and perhaps evolutionarily conserved way to detect a properly organized spindle ready for cell division.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hiruma, Yoshitaka -- Sacristan, Carlos -- Pachis, Spyridon T -- Adamopoulos, Athanassios -- Kuijt, Timo -- Ubbink, Marcellus -- von Castelmur, Eleonore -- Perrakis, Anastassis -- Kops, Geert J P L -- New York, N.Y. -- Science. 2015 Jun 12;348(6240):1264-7. doi: 10.1126/science.aaa4055. Epub 2015 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. ; Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. ; Division of Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. ; Leiden Institute of Chemistry, Leiden University, Post Office Box 9502, 2300 RA Leiden, Netherlands. ; Division of Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. g.j.p.l.kops@umcutrecht.nl a.perrakis@nki.nl. ; Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands. g.j.p.l.kops@umcutrecht.nl a.perrakis@nki.nl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26068855" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Binding, Competitive ; Calcium-Binding Proteins/genetics/metabolism ; *Cell Cycle Checkpoints ; Cell Cycle Proteins/*metabolism ; HeLa Cells ; Humans ; Kinetochores/*metabolism ; Microfilament Proteins/genetics/metabolism ; Microtubules/*metabolism ; Nuclear Proteins/chemistry/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Protein-Tyrosine Kinases/*metabolism ; Signal Transduction ; Spindle Apparatus/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-10-03
    Description: Body-size constancy and symmetry are signs of developmental stability. Yet, it is unclear exactly how developing animals buffer size variation. Drosophila insulin-like peptide Dilp8 is responsive to growth perturbations and controls homeostatic mechanisms that coordinately adjust growth and maturation to maintain size within the normal range. Here we show that Lgr3 is a Dilp8 receptor. Through the use of functional and adenosine 3',5'-monophosphate assays, we defined a pair of Lgr3 neurons that mediate homeostatic regulation. These neurons have extensive axonal arborizations, and genetic and green fluorescent protein reconstitution across synaptic partners show that these neurons connect with the insulin-producing cells and prothoracicotropic hormone-producing neurons to attenuate growth and maturation. This previously unrecognized circuit suggests how growth and maturation rate are matched and co-regulated according to Dilp8 signals to stabilize organismal size.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vallejo, Diana M -- Juarez-Carreno, Sergio -- Bolivar, Jorge -- Morante, Javier -- Dominguez, Maria -- OD010949-10/OD/NIH HHS/ -- P40OD018537/OD/NIH HHS/ -- R01-GM084947/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Nov 13;350(6262):aac6767. doi: 10.1126/science.aac6767. Epub 2015 Oct 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas and Universidad Miguel Hernandez, Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain. ; Departamento de Biomedicina, Biotecnologia y Salud Publica, Facultad de Ciencias, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real, Spain. ; Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas and Universidad Miguel Hernandez, Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain. m.dominguez@umh.es j.morante@umh.es.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26429885" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/metabolism ; Animals ; Body Size ; Brain/cytology/*growth & development/metabolism ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/*growth & development/metabolism ; Homeostasis ; Insect Hormones/genetics/metabolism ; Insulin/*metabolism ; Intercellular Signaling Peptides and Proteins/genetics/*metabolism ; Nerve Net/cytology/metabolism ; Neurons/*metabolism ; Receptors, G-Protein-Coupled/genetics/*metabolism ; Receptors, Peptide/genetics/*metabolism ; Signal Transduction ; Synapses/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2015-11-21
    Description: Stabilization of the hypoxia-inducible factor 1 (HIF-1) increases life span and health span in nematodes through an unknown mechanism. We report that neuronal stabilization of HIF-1 mediates these effects in Caenorhabditis elegans through a cell nonautonomous signal to the intestine, which results in activation of the xenobiotic detoxification enzyme flavin-containing monooxygenase-2 (FMO-2). This prolongevity signal requires the serotonin biosynthetic enzyme TPH-1 in neurons and the serotonin receptor SER-7 in the intestine. Intestinal FMO-2 is also activated by dietary restriction (DR) and is necessary for DR-mediated life-span extension, which suggests that this enzyme represents a point of convergence for two distinct longevity pathways. FMOs are conserved in eukaryotes and induced by multiple life span-extending interventions in mice, which suggests that these enzymes may play a critical role in promoting health and longevity across phyla.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leiser, Scott F -- Miller, Hillary -- Rossner, Ryan -- Fletcher, Marissa -- Leonard, Alison -- Primitivo, Melissa -- Rintala, Nicholas -- Ramos, Fresnida J -- Miller, Dana L -- Kaeberlein, Matt -- P30AG013280/AG/NIA NIH HHS/ -- R00AGA0033050/PHS HHS/ -- R01AG038518/AG/NIA NIH HHS/ -- T32AG000057/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2015 Dec 11;350(6266):1375-8. doi: 10.1126/science.aac9257. Epub 2015 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Washington, Seattle, WA 98195, USA. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. ; Department of Pathology, University of Washington, Seattle, WA 98195, USA. kaeber@uw.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26586189" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/metabolism ; Caenorhabditis elegans/genetics/metabolism/*physiology ; Caenorhabditis elegans Proteins/chemistry/genetics/metabolism/*physiology ; Diet ; Intestines/*enzymology ; Longevity/genetics/*physiology ; Mice ; Neurons/*metabolism ; Oxygenases/genetics/*physiology ; Protein Stability ; RNA Interference ; Receptors, Serotonin/metabolism ; Signal Transduction ; Transcription Factors/chemistry/*metabolism ; Tryptophan Hydroxylase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2015-01-03
    Description: Lysosomes are crucial cellular organelles for human health that function in digestion and recycling of extracellular and intracellular macromolecules. We describe a signaling role for lysosomes that affects aging. In the worm Caenorhabditis elegans, the lysosomal acid lipase LIPL-4 triggered nuclear translocalization of a lysosomal lipid chaperone LBP-8, which promoted longevity by activating the nuclear hormone receptors NHR-49 and NHR-80. We used high-throughput metabolomic analysis to identify several lipids in which abundance was increased in worms constitutively overexpressing LIPL-4. Among them, oleoylethanolamide directly bound to LBP-8 and NHR-80 proteins, activated transcription of target genes of NHR-49 and NHR-80, and promoted longevity in C. elegans. These findings reveal a lysosome-to-nucleus signaling pathway that promotes longevity and suggest a function of lysosomes as signaling organelles in metazoans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425353/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425353/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Folick, Andrew -- Oakley, Holly D -- Yu, Yong -- Armstrong, Eric H -- Kumari, Manju -- Sanor, Lucas -- Moore, David D -- Ortlund, Eric A -- Zechner, Rudolf -- Wang, Meng C -- F30 AG046043/AG/NIA NIH HHS/ -- F30AG046043/AG/NIA NIH HHS/ -- R00 AG034988/AG/NIA NIH HHS/ -- R00AG034988/AG/NIA NIH HHS/ -- R01 AG045183/AG/NIA NIH HHS/ -- R01 DK095750/DK/NIDDK NIH HHS/ -- R01AG045183/AG/NIA NIH HHS/ -- R01DK095750/DK/NIDDK NIH HHS/ -- T32 GM008602/GM/NIGMS NIH HHS/ -- T32GM008602/GM/NIGMS NIH HHS/ -- T32HD055200/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 2;347(6217):83-6. doi: 10.1126/science.1258857.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA. ; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA. ; Department of Biochemistry, Discovery and Developmental Therapeutics, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA. ; Institute of Molecular Biosciences, University of Graz, Graz, A-8010, Austria. ; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA. ; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. ; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA. Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA. wmeng@bcm.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25554789" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; Caenorhabditis elegans/genetics/*physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Cell Nucleus/metabolism ; Lipase/metabolism ; Lipid Metabolism ; Longevity/genetics/*physiology ; Lysosomes/*metabolism ; Molecular Chaperones/genetics/*metabolism ; Receptors, Cytoplasmic and Nuclear/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2015-09-01
    Description: A challenge of synthetic biology is the creation of cooperative microbial systems that exhibit population-level behaviors. Such systems use cellular signaling mechanisms to regulate gene expression across multiple cell types. We describe the construction of a synthetic microbial consortium consisting of two distinct cell types-an "activator" strain and a "repressor" strain. These strains produced two orthogonal cell-signaling molecules that regulate gene expression within a synthetic circuit spanning both strains. The two strains generated emergent, population-level oscillations only when cultured together. Certain network topologies of the two-strain circuit were better at maintaining robust oscillations than others. The ability to program population-level dynamics through the genetic engineering of multiple cooperative strains points the way toward engineering complex synthetic tissues and organs with multiple cell types.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597888/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597888/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Ye -- Kim, Jae Kyoung -- Hirning, Andrew J -- Josic, Kresimir -- Bennett, Matthew R -- R01 GM104974/GM/NIGMS NIH HHS/ -- R01GM104974/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):986-9. doi: 10.1126/science.aaa3794.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biosciences, Rice University, Houston, TX 77005, USA. ; Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea. Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210, USA. ; Department of Mathematics, University of Houston, Houston, TX 77204, USA. Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA. ; Department of Biosciences, Rice University, Houston, TX 77005, USA. Institute of Biosciences and Bioengineering, Rice University, Houston, TX 77005, USA. matthew.bennett@rice.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26315440" target="_blank"〉PubMed〈/a〉
    Keywords: 4-Butyrolactone/analogs & derivatives/metabolism ; Escherichia coli/*genetics/*physiology ; Escherichia coli Proteins/genetics/metabolism ; Feedback, Physiological ; *Gene Expression Regulation, Bacterial ; *Gene Regulatory Networks ; Genetic Engineering ; Lab-On-A-Chip Devices ; Microbial Consortia/*genetics/*physiology ; Microbial Interactions ; Models, Biological ; Promoter Regions, Genetic ; Quorum Sensing ; Signal Transduction ; Synthetic Biology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2015-01-09
    Description: The mechanistic target of rapamycin complex 1 (mTORC1) protein kinase is a master growth regulator that responds to multiple environmental cues. Amino acids stimulate, in a Rag-, Ragulator-, and vacuolar adenosine triphosphatase-dependent fashion, the translocation of mTORC1 to the lysosomal surface, where it interacts with its activator Rheb. Here, we identify SLC38A9, an uncharacterized protein with sequence similarity to amino acid transporters, as a lysosomal transmembrane protein that interacts with the Rag guanosine triphosphatases (GTPases) and Ragulator in an amino acid-sensitive fashion. SLC38A9 transports arginine with a high Michaelis constant, and loss of SLC38A9 represses mTORC1 activation by amino acids, particularly arginine. Overexpression of SLC38A9 or just its Ragulator-binding domain makes mTORC1 signaling insensitive to amino acid starvation but not to Rag activity. Thus, SLC38A9 functions upstream of the Rag GTPases and is an excellent candidate for being an arginine sensor for the mTORC1 pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Shuyu -- Tsun, Zhi-Yang -- Wolfson, Rachel L -- Shen, Kuang -- Wyant, Gregory A -- Plovanich, Molly E -- Yuan, Elizabeth D -- Jones, Tony D -- Chantranupong, Lynne -- Comb, William -- Wang, Tim -- Bar-Peled, Liron -- Zoncu, Roberto -- Straub, Christoph -- Kim, Choah -- Park, Jiwon -- Sabatini, Bernardo L -- Sabatini, David M -- AI47389/AI/NIAID NIH HHS/ -- F30 CA180754/CA/NCI NIH HHS/ -- F31 AG044064/AG/NIA NIH HHS/ -- F31 CA180271/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32 GM007287/GM/NIGMS NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Jan 9;347(6218):188-94. doi: 10.1126/science.1257132. Epub 2015 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. ; Harvard Medical School, 260 Longwood Avenue, Boston, MA 02115, USA. ; Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. ; Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. sabatini@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25567906" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Transport Systems/chemistry/genetics/*metabolism ; Arginine/deficiency/*metabolism ; HEK293 Cells ; Humans ; Lysosomes/*enzymology ; Molecular Sequence Data ; Monomeric GTP-Binding Proteins/*metabolism ; Multiprotein Complexes/*metabolism ; Protein Structure, Tertiary ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2015-02-01
    Description: During virus infection, the adaptor proteins MAVS and STING transduce signals from the cytosolic nucleic acid sensors RIG-I and cGAS, respectively, to induce type I interferons (IFNs) and other antiviral molecules. Here we show that MAVS and STING harbor two conserved serine and threonine clusters that are phosphorylated by the kinases IKK and/or TBK1 in response to stimulation. Phosphorylated MAVS and STING then bind to a positively charged surface of interferon regulatory factor 3 (IRF3) and thereby recruit IRF3 for its phosphorylation and activation by TBK1. We further show that TRIF, an adaptor protein in Toll-like receptor signaling, activates IRF3 through a similar phosphorylation-dependent mechanism. These results reveal that phosphorylation of innate adaptor proteins is an essential and conserved mechanism that selectively recruits IRF3 to activate the type I IFN pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Siqi -- Cai, Xin -- Wu, Jiaxi -- Cong, Qian -- Chen, Xiang -- Li, Tuo -- Du, Fenghe -- Ren, Junyao -- Wu, You-Tong -- Grishin, Nick V -- Chen, Zhijian J -- AI-93967/AI/NIAID NIH HHS/ -- GM-094575/GM/NIGMS NIH HHS/ -- GM-63692/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):aaa2630. doi: 10.1126/science.aaa2630. Epub 2015 Jan 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. zhijian.chen@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25636800" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/*metabolism ; Adaptor Proteins, Vesicular Transport/chemistry/*metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Humans ; I-kappa B Kinase/metabolism ; Interferon Regulatory Factor-3/chemistry/*metabolism ; Interferon-alpha/biosynthesis ; Interferon-beta/biosynthesis ; Membrane Proteins/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein Binding ; Protein Multimerization ; Protein-Serine-Threonine Kinases/metabolism ; Recombinant Proteins/metabolism ; Sendai virus/physiology ; Serine/metabolism ; Signal Transduction ; Ubiquitination ; Vesiculovirus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2015-07-18
    Description: Secretion of the cytokine interleukin-1beta (IL-1beta) by macrophages, a major driver of pathogenesis in atherosclerosis, requires two steps: Priming signals promote transcription of immature IL-1beta, and then endogenous "danger" signals activate innate immune signaling complexes called inflammasomes to process IL-1beta for secretion. Although cholesterol crystals are known to act as danger signals in atherosclerosis, what primes IL-1beta transcription remains elusive. Using a murine model of atherosclerosis, we found that cholesterol crystals acted both as priming and danger signals for IL-1beta production. Cholesterol crystals triggered neutrophils to release neutrophil extracellular traps (NETs). NETs primed macrophages for cytokine release, activating T helper 17 (TH17) cells that amplify immune cell recruitment in atherosclerotic plaques. Therefore, danger signals may drive sterile inflammation, such as that seen in atherosclerosis, through their interactions with neutrophils.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warnatsch, Annika -- Ioannou, Marianna -- Wang, Qian -- Papayannopoulos, Venizelos -- MC_UP_1202/13/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Jul 17;349(6245):316-20. doi: 10.1126/science.aaa8064. Epub 2015 Jul 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mill Hill Laboratory, Francis Crick Institute, London NW7 1AA, UK. ; Mill Hill Laboratory, Francis Crick Institute, London NW7 1AA, UK. veni.p@crick.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26185250" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apolipoproteins E/genetics ; Atherosclerosis/*immunology ; Cells, Cultured ; Cholesterol/chemistry/immunology ; Disease Models, Animal ; Extracellular Traps/*immunology ; Humans ; Inflammasomes/immunology ; Inflammation/immunology ; Interleukin-1beta/*biosynthesis/genetics ; Macrophages/*immunology ; Mice ; Mice, Mutant Strains ; Neutrophils/*immunology ; Signal Transduction ; Th17 Cells/immunology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-07-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garber, Ken -- New York, N.Y. -- Science. 2015 Jul 10;349(6244):129. doi: 10.1126/science.349.6244.129.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26160924" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Oxidoreductases/chemistry/metabolism ; Collagen/metabolism ; Copper/*metabolism ; Humans ; Melanoma/drug therapy/pathology ; Neoplasms/*drug therapy/pathology ; Proto-Oncogene Proteins B-raf/*antagonists & inhibitors/genetics ; Signal Transduction ; Skin Diseases/drug therapy/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2015-03-15
    Description: Rgs2, a regulator of G proteins, lowers blood pressure by decreasing signaling through Galphaq. Human patients expressing Met-Leu-Rgs2 (ML-Rgs2) or Met-Arg-Rgs2 (MR-Rgs2) are hypertensive relative to people expressing wild-type Met-Gln-Rgs2 (MQ-Rgs2). We found that wild-type MQ-Rgs2 and its mutant, MR-Rgs2, were destroyed by the Ac/N-end rule pathway, which recognizes N(alpha)-terminally acetylated (Nt-acetylated) proteins. The shortest-lived mutant, ML-Rgs2, was targeted by both the Ac/N-end rule and Arg/N-end rule pathways. The latter pathway recognizes unacetylated N-terminal residues. Thus, the Nt-acetylated Ac-MX-Rgs2 (X = Arg, Gln, Leu) proteins are specific substrates of the mammalian Ac/N-end rule pathway. Furthermore, the Ac/N-degron of Ac-MQ-Rgs2 was conditional, and Teb4, an endoplasmic reticulum (ER) membrane-embedded ubiquitin ligase, was able to regulate G protein signaling by targeting Ac-MX-Rgs2 proteins for degradation through their N(alpha)-terminal acetyl group.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748709/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748709/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Sang-Eun -- Kim, Jeong-Mok -- Seok, Ok-Hee -- Cho, Hanna -- Wadas, Brandon -- Kim, Seon-Young -- Varshavsky, Alexander -- Hwang, Cheol-Sang -- DK039520/DK/NIDDK NIH HHS/ -- GM031530/GM/NIGMS NIH HHS/ -- R01 DK039520/DK/NIDDK NIH HHS/ -- R01 GM031530/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):1249-52. doi: 10.1126/science.aaa3844.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, South Korea. ; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. ; Medical Genomics Research Center, KRIBB, Daejeon, South Korea. Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea. ; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. cshwang@postech.ac.kr avarsh@caltech.edu. ; Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, South Korea. cshwang@postech.ac.kr avarsh@caltech.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25766235" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; GTP-Binding Protein alpha Subunits, Gq-G11/metabolism ; HEK293 Cells ; HeLa Cells ; Humans ; Membrane Proteins/genetics/metabolism ; Mutant Proteins/chemistry/metabolism ; Protein Processing, Post-Translational ; Protein Stability ; Proteolysis ; RGS Proteins/chemistry/genetics/*metabolism ; Saccharomyces cerevisiae/genetics/metabolism ; Signal Transduction ; Ubiquitin-Protein Ligases/genetics/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2015-02-24
    Description: Navigation depends on multiple neural systems that encode the moment-to-moment changes in an animal's direction and location in space. These include head direction (HD) cells representing the orientation of the head and grid cells that fire at multiple locations, forming a repeating hexagonal grid pattern. Computational models hypothesize that generation of the grid cell signal relies upon HD information that ascends to the hippocampal network via the anterior thalamic nuclei (ATN). We inactivated or lesioned the ATN and subsequently recorded single units in the entorhinal cortex and parasubiculum. ATN manipulation significantly disrupted grid and HD cell characteristics while sparing theta rhythmicity in these regions. These results indicate that the HD signal via the ATN is necessary for the generation and function of grid cell activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476794/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476794/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winter, Shawn S -- Clark, Benjamin J -- Taube, Jeffrey S -- NS053907/NS/NINDS NIH HHS/ -- R01 MH048924/MH/NIMH NIH HHS/ -- R01 NS053907/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):870-4. doi: 10.1126/science.1259591. Epub 2015 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH 03755, USA. ; Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH 03755, USA. jeffrey.taube@dartmouth.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700518" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anterior Thalamic Nuclei/drug effects/*physiology ; Entorhinal Cortex/cytology/*physiology ; Female ; Head ; Hippocampus/cytology/physiology ; Lidocaine/pharmacology ; Nerve Net/cytology/drug effects/*physiology ; Neurons/*physiology ; Orientation/*physiology ; Rats ; Rats, Inbred LEC ; Signal Transduction ; Spatial Navigation/*physiology ; Theta Rhythm
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2015-11-14
    Description: In healthy individuals, the intestinal microbiota cannot access the liver, spleen, or other peripheral tissues. Some pathogenic bacteria can reach these sites, however, and can induce a systemic immune response. How such compartmentalization is achieved is unknown. We identify a gut-vascular barrier (GVB) in mice and humans that controls the translocation of antigens into the blood stream and prohibits entry of the microbiota. Salmonella typhimurium can penetrate the GVB in a manner dependent on its pathogenicity island (Spi) 2-encoded type III secretion system and on decreased beta-catenin-dependent signaling in gut endothelial cells. The GVB is modified in celiac disease patients with elevated serum transaminases, which indicates that GVB dismantling may be responsible for liver damage in these patients. Understanding the GVB may provide new insights into the regulation of the gut-liver axis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spadoni, Ilaria -- Zagato, Elena -- Bertocchi, Alice -- Paolinelli, Roberta -- Hot, Edina -- Di Sabatino, Antonio -- Caprioli, Flavio -- Bottiglieri, Luca -- Oldani, Amanda -- Viale, Giuseppe -- Penna, Giuseppe -- Dejana, Elisabetta -- Rescigno, Maria -- New York, N.Y. -- Science. 2015 Nov 13;350(6262):830-4. doi: 10.1126/science.aad0135.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental Oncology, European Institute of Oncology, Milan, Italy. ; The Italian Foundation for Cancer Research (FIRC) Institute of Molecular Oncology (IFOM), Milan, Italy. ; First Department of Medicine, St. Matteo Hospital, University of Pavia, Pavia, Italy. ; Unita Operativa Gastroenterologia ed Endoscopia, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico di Milano, and Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Universita degli Studi di Milano, Milan, Italy. ; Department of Pathology and Laboratory Medicine, European Institute of Oncology, Milan, Italy. ; The Italian Foundation for Cancer Research (FIRC) Institute of Molecular Oncology (IFOM), Milan, Italy. Department of Biosciences, Universita degli Studi di Milano, Italy. Department of Genetics, Immunology and Pathology, Uppsala University, Uppsala, Sweden. ; Department of Experimental Oncology, European Institute of Oncology, Milan, Italy. Department of Biosciences, Universita degli Studi di Milano, Italy. maria.rescigno@ieo.eu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26564856" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Bacterial/blood/immunology ; Capillary Permeability/*immunology ; Celiac Disease/blood/immunology/microbiology ; Genomic Islands/genetics/immunology ; Humans ; Ileum/blood supply/immunology/microbiology ; Intestinal Mucosa/immunology/microbiology ; Intestines/blood supply/*immunology/*microbiology ; Liver/immunology ; Mice ; Mice, Inbred C57BL ; Microbiota/*immunology ; Salmonella Infections/*immunology ; Salmonella typhimurium/genetics/*immunology/pathogenicity ; Signal Transduction ; Spleen/immunology ; Transaminases/blood ; Type III Secretion Systems/genetics/immunology ; Wnt Signaling Pathway ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-10-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Jeremiah Y -- New York, N.Y. -- Science. 2015 Oct 2;350(6256):47. doi: 10.1126/science.aad3003.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. jeremiah.cohen@jhmi.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26430113" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*physiology ; Dopamine/*metabolism ; Dopaminergic Neurons/*metabolism ; Electric Stimulation ; Humans ; Mice ; Neurophysiology/trends ; *Reward ; Serotonin/*metabolism ; Signal Transduction ; Time Factors ; Ventral Tegmental Area/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2015-08-15
    Description: Astrocytes are important regulatory elements in brain function. They respond to neurotransmitters and release gliotransmitters that modulate synaptic transmission. However, the cell- and synapse-specificity of the functional relationship between astrocytes and neurons in certain brain circuits remains unknown. In the dorsal striatum, which mainly comprises two intermingled subtypes (striatonigral and striatopallidal) of medium spiny neurons (MSNs) and synapses belonging to two neural circuits (the direct and indirect pathways of the basal ganglia), subpopulations of astrocytes selectively responded to specific MSN subtype activity. These subpopulations of astrocytes released glutamate that selectively activated N-methyl-d-aspartate receptors in homotypic, but not heterotypic, MSNs. Likewise, astrocyte subpopulations selectively regulated homotypic synapses through metabotropic glutamate receptor activation. Therefore, bidirectional astrocyte-neuron signaling selectively occurs between specific subpopulations of astrocytes, neurons, and synapses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martin, R -- Bajo-Graneras, R -- Moratalla, R -- Perea, G -- Araque, A -- New York, N.Y. -- Science. 2015 Aug 14;349(6249):730-4. doi: 10.1126/science.aaa7945.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto Cajal, Consejo Superior de Investigaciones Cientificas, 28002 Madrid, Spain. ; Instituto Cajal, Consejo Superior de Investigaciones Cientificas, 28002 Madrid, Spain. Centro de Investigacion Biomedica en Red Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain. ; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA. araque@umn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26273054" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/*physiology ; Basal Ganglia/cytology/*physiology ; Cell Communication ; Glutamates/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nerve Net/physiology ; Neurons/*physiology ; Receptors, Metabotropic Glutamate/agonists/metabolism ; Receptors, N-Methyl-D-Aspartate/agonists/metabolism ; Signal Transduction ; Synapses/*physiology ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-09-26
    Description: Dying cells initiate adaptive immunity by providing both antigens and inflammatory stimuli for dendritic cells, which in turn activate CD8(+) T cells through a process called antigen cross-priming. To define how different forms of programmed cell death influence immunity, we established models of necroptosis and apoptosis, in which dying cells are generated by receptor-interacting protein kinase-3 and caspase-8 dimerization, respectively. We found that the release of inflammatory mediators, such as damage-associated molecular patterns, by dying cells was not sufficient for CD8(+) T cell cross-priming. Instead, robust cross-priming required receptor-interacting protein kinase-1 (RIPK1) signaling and nuclear factor kappaB (NF-kappaB)-induced transcription within dying cells. Decoupling NF-kappaB signaling from necroptosis or inflammatory apoptosis reduced priming efficiency and tumor immunity. Our results reveal that coordinated inflammatory and cell death signaling pathways within dying cells orchestrate adaptive immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651449/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651449/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yatim, Nader -- Jusforgues-Saklani, Helene -- Orozco, Susana -- Schulz, Oliver -- Barreira da Silva, Rosa -- Reis e Sousa, Caetano -- Green, Douglas R -- Oberst, Andrew -- Albert, Matthew L -- 5R01AI108685-02/AI/NIAID NIH HHS/ -- AI44848/AI/NIAID NIH HHS/ -- R01 AI108685/AI/NIAID NIH HHS/ -- R01AI108685/AI/NIAID NIH HHS/ -- R21 CA185681/CA/NCI NIH HHS/ -- R21CA185681/CA/NCI NIH HHS/ -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2015 Oct 16;350(6258):328-34. doi: 10.1126/science.aad0395. Epub 2015 Sep 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Dendritic Cell Biology, Department of Immunology, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France. Institut National de la Sante et de la Recherche Medicale, U818, 25 Rue du Docteur Roux, 75015 Paris, France. Frontieres du Vivant Doctoral School, Ecole Doctorale 474, Universite Paris Diderot-Paris 7, Sorbonne Paris Cite, 8-10 Rue Charles V, 75004 Paris, France. ; Laboratory of Dendritic Cell Biology, Department of Immunology, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France. Institut National de la Sante et de la Recherche Medicale, U818, 25 Rue du Docteur Roux, 75015 Paris, France. ; Department of Immunology, University of Washington, Campus Box 358059, 750 Republican Street, Seattle, WA 98109, USA. ; Immunobiology Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK. ; Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26405229" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/*immunology ; CD8-Positive T-Lymphocytes/*immunology ; Caspase 8/metabolism ; Cell Survival ; Cross-Priming ; Dendritic Cells/immunology ; Mice ; Mice, Inbred C57BL ; NF-kappa B/*metabolism ; NIH 3T3 Cells ; Receptor-Interacting Protein Serine-Threonine Kinases/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-08-01
    Description: The inefficient clearance of dying cells can lead to abnormal immune responses, such as unresolved inflammation and autoimmune conditions. We show that tumor suppressor p53 controls signaling-mediated phagocytosis of apoptotic cells through its target, Death Domain1alpha (DD1alpha), which suggests that p53 promotes both the proapoptotic pathway and postapoptotic events. DD1alpha appears to function as an engulfment ligand or receptor that engages in homophilic intermolecular interaction at intercellular junctions of apoptotic cells and macrophages, unlike other typical scavenger receptors that recognize phosphatidylserine on the surface of dead cells. DD1alpha-deficient mice showed in vivo defects in clearing dying cells, which led to multiple organ damage indicative of immune dysfunction. p53-induced expression of DD1alpha thus prevents persistence of cell corpses and ensures efficient generation of precise immune responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoon, Kyoung Wan -- Byun, Sanguine -- Kwon, Eunjeong -- Hwang, So-Young -- Chu, Kiki -- Hiraki, Masatsugu -- Jo, Seung-Hee -- Weins, Astrid -- Hakroush, Samy -- Cebulla, Angelika -- Sykes, David B -- Greka, Anna -- Mundel, Peter -- Fisher, David E -- Mandinova, Anna -- Lee, Sam W -- CA142805/CA/NCI NIH HHS/ -- CA149477/CA/NCI NIH HHS/ -- CA80058/CA/NCI NIH HHS/ -- DK062472/DK/NIDDK NIH HHS/ -- DK091218/DK/NIDDK NIH HHS/ -- DK093378/DK/NIDDK NIH HHS/ -- DK57683/DK/NIDDK NIH HHS/ -- S10RR027673/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 31;349(6247):1261669. doi: 10.1126/science.1261669.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA. ; Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA. ; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA. ; Center for Regenerative Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. ; Department of Medicine, Glom-NExT Center for Glomerular Kidney Disease and Novel Experimental Therapeutics, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA. ; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA. Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA. ; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA. Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA. swlee@mgh.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26228159" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis/genetics/*immunology ; Autoimmune Diseases/genetics/immunology ; Cell Line, Tumor ; Female ; Humans ; Inflammation/genetics/immunology ; Macrophages/immunology ; Male ; Membrane Proteins/genetics/*metabolism ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Phagocytosis/*immunology ; Phosphatidylserines/*metabolism ; Signal Transduction ; Tumor Suppressor Protein p53/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-11-21
    Description: Drosophila intestinal stem cells (ISCs) generate enterocytes (ECs) and enteroendocrine (ee) cells. Previous work suggests that different levels of the Notch ligand Delta (Dl) in ISCs unidirectionally activate Notch in daughters to control multipotency. However, the mechanisms driving different outcomes remain unknown. We found that during ee cell formation, the ee cell marker Prospero localizes to the basal side of dividing ISCs. After asymmetric division, the ee daughter cell acts as a source of Dl that induces low Notch activity in the ISC to maintain identity. Alternatively, ISCs expressing Dl induce high Notch activity in daughter cells to promote EC formation. Our data reveal a conserved role for Notch in Drosophila and mammalian ISC maintenance and suggest that bidirectional Notch signaling may regulate multipotency in other systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Zheng -- Ohlstein, Benjamin -- New York, N.Y. -- Science. 2015 Nov 20;350(6263). pii: aab0988. doi: 10.1126/science.aab0988.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA. ; Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA. bo2160@columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26586765" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; Cell Division ; Cell Polarity ; Drosophila Proteins/*metabolism ; Drosophila melanogaster/cytology/*growth & development/metabolism ; Enterocytes/*cytology ; Enteroendocrine Cells/*cytology ; Multipotent Stem Cells/*cytology/metabolism ; Nuclear Proteins/*metabolism ; Phosphoproteins/*metabolism ; Receptors, Notch/*metabolism ; Signal Transduction ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-10-10
    Description: Leucine is a proteogenic amino acid that also regulates many aspects of mammalian physiology, in large part by activating the mTOR complex 1 (mTORC1) protein kinase, a master growth controller. Amino acids signal to mTORC1 through the Rag guanosine triphosphatases (GTPases). Several factors regulate the Rags, including GATOR1, aGTPase-activating protein; GATOR2, a positive regulator of unknown function; and Sestrin2, a GATOR2-interacting protein that inhibits mTORC1 signaling. We find that leucine, but not arginine, disrupts the Sestrin2-GATOR2 interaction by binding to Sestrin2 with a dissociation constant of 20 micromolar, which is the leucine concentration that half-maximally activates mTORC1. The leucine-binding capacity of Sestrin2 is required for leucine to activate mTORC1 in cells. These results indicate that Sestrin2 is a leucine sensor for the mTORC1 pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698017/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698017/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wolfson, Rachel L -- Chantranupong, Lynne -- Saxton, Robert A -- Shen, Kuang -- Scaria, Sonia M -- Cantor, Jason R -- Sabatini, David M -- AI47389/AI/NIAID NIH HHS/ -- F30 CA189333/CA/NCI NIH HHS/ -- F31 CA180271/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Jan 1;351(6268):43-8. doi: 10.1126/science.aab2674. Epub 2015 Oct 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. ; Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. sabatini@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26449471" target="_blank"〉PubMed〈/a〉
    Keywords: GTPase-Activating Proteins/*metabolism ; HEK293 Cells ; Humans ; Leucine/*metabolism ; Metabolic Networks and Pathways ; Multiprotein Complexes/*metabolism ; Nuclear Proteins/chemistry/genetics/*metabolism ; Protein Binding ; Proteins/chemistry/*metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-05-17
    Description: A switchlike response in nuclear factor-kappaB (NF-kappaB) activity implies the existence of a threshold in the NF-kappaB signaling module. We show that the CARD-containing MAGUK protein 1 (CARMA1, also called CARD11)-TAK1 (MAP3K7)-inhibitor of NF-kappaB (IkappaB) kinase-beta (IKKbeta) module is a switch mechanism for NF-kappaB activation in B cell receptor (BCR) signaling. Experimental and mathematical modeling analyses showed that IKK activity is regulated by positive feedback from IKKbeta to TAK1, generating a steep dose response to BCR stimulation. Mutation of the scaffolding protein CARMA1 at serine-578, an IKKbeta target, abrogated not only late TAK1 activity, but also the switchlike activation of NF-kappaB in single cells, suggesting that phosphorylation of this residue accounts for the feedback.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shinohara, Hisaaki -- Behar, Marcelo -- Inoue, Kentaro -- Hiroshima, Michio -- Yasuda, Tomoharu -- Nagashima, Takeshi -- Kimura, Shuhei -- Sanjo, Hideki -- Maeda, Shiori -- Yumoto, Noriko -- Ki, Sewon -- Akira, Shizuo -- Sako, Yasushi -- Hoffmann, Alexander -- Kurosaki, Tomohiro -- Okada-Hatakeyama, Mariko -- 5R01CA141722/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 May 16;344(6185):760-4. doi: 10.1126/science.1250020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ; Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan. Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Graduate School of Engineering, Tottori University 4-101, Koyama-minami, Tottori 680-8552, Japan. ; Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833394" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/metabolism ; CARD Signaling Adaptor Proteins/genetics/*metabolism ; Cell Line ; Chickens ; Feedback, Physiological ; Guanylate Cyclase/genetics/*metabolism ; I-kappa B Kinase/*metabolism ; MAP Kinase Kinase Kinases/genetics/*metabolism ; Mice ; Mice, Knockout ; Mutation ; NF-kappa B/*agonists ; Phosphorylation ; Receptors, Antigen, B-Cell/genetics/*metabolism ; Serine/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2014-02-08
    Description: Neuronal intracellular chloride concentration [Cl(-)](i) is an important determinant of gamma-aminobutyric acid type A (GABA(A)) receptor (GABA(A)R)-mediated inhibition and cytoplasmic volume regulation. Equilibrative cation-chloride cotransporters (CCCs) move Cl(-) across the membrane, but accumulating evidence suggests factors other than the bulk concentrations of transported ions determine [Cl(-)](i). Measurement of [Cl(-)](i) in murine brain slice preparations expressing the transgenic fluorophore Clomeleon demonstrated that cytoplasmic impermeant anions ([A](i)) and polyanionic extracellular matrix glycoproteins ([A](o)) constrain the local [Cl(-)]. CCC inhibition had modest effects on [Cl(-)](i) and neuronal volume, but substantial changes were produced by alterations of the balance between [A](i) and [A](o). Therefore, CCCs are important elements of Cl(-) homeostasis, but local impermeant anions determine the homeostatic set point for [Cl(-)], and hence, neuronal volume and the polarity of local GABA(A)R signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220679/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220679/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Glykys, J -- Dzhala, V -- Egawa, K -- Balena, T -- Saponjian, Y -- Kuchibhotla, K V -- Bacskai, B J -- Kahle, K T -- Zeuthen, T -- Staley, K J -- NS 40109-06/NS/NINDS NIH HHS/ -- R01 EB000768/EB/NIBIB NIH HHS/ -- R01 NS040109/NS/NINDS NIH HHS/ -- R01 NS074772/NS/NINDS NIH HHS/ -- R25 NS065743/NS/NINDS NIH HHS/ -- S10 RR025645/RR/NCRR NIH HHS/ -- U41 RR019703/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):670-5. doi: 10.1126/science.1245423.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24503855" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*metabolism ; Cell Membrane Permeability ; Cell Polarity ; Chloride Channels/*metabolism ; Chlorides/*metabolism ; Cytoplasm/metabolism ; Extracellular Matrix Proteins/metabolism ; Glycoproteins/metabolism ; Mice ; Mice, Transgenic ; Neurons/*metabolism ; Receptors, GABA-A/*metabolism ; Recombinant Fusion Proteins/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2014-04-05
    Description: Development of vertebrate embryos involves tightly regulated molecular and cellular processes that progressively instruct proliferating embryonic cells about their identity and behavior. Whereas numerous gene activities have been found to be essential during early embryogenesis, little is known about the minimal conditions and factors that would be sufficient to instruct pluripotent cells to organize the embryo. Here, we show that opposing gradients of bone morphogenetic protein (BMP) and Nodal, two transforming growth factor family members that act as morphogens, are sufficient to induce molecular and cellular mechanisms required to organize, in vivo or in vitro, uncommitted cells of the zebrafish blastula animal pole into a well-developed embryo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Peng-Fei -- Houssin, Nathalie -- Ferri-Lagneau, Karine F -- Thisse, Bernard -- Thisse, Christine -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):87-9. doi: 10.1126/science.1248252.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24700857" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastula/*physiology ; Body Patterning ; Bone Morphogenetic Proteins/genetics/*physiology ; Embryo, Nonmammalian/*physiology ; *Embryonic Development ; Gastrula/physiology ; Gastrulation ; Gene Expression Regulation, Developmental ; Morphogenesis ; Nodal Protein/genetics/*physiology ; RNA, Messenger/genetics ; Signal Transduction ; Zebrafish/*embryology/genetics ; Zebrafish Proteins/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-12-06
    Description: Immune and inflammatory responses require leukocytes to migrate within and through the vasculature, a process that is facilitated by their capacity to switch to a polarized morphology with an asymmetric distribution of receptors. We report that neutrophil polarization within activated venules served to organize a protruding domain that engaged activated platelets present in the bloodstream. The selectin ligand PSGL-1 transduced signals emanating from these interactions, resulting in the redistribution of receptors that drive neutrophil migration. Consequently, neutrophils unable to polarize or to transduce signals through PSGL-1 displayed aberrant crawling, and blockade of this domain protected mice against thromboinflammatory injury. These results reveal that recruited neutrophils scan for activated platelets, and they suggest that the neutrophils' bipolarity allows the integration of signals present at both the endothelium and the circulation before inflammation proceeds.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4280847/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4280847/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sreeramkumar, Vinatha -- Adrover, Jose M -- Ballesteros, Ivan -- Cuartero, Maria Isabel -- Rossaint, Jan -- Bilbao, Izaskun -- Nacher, Maria -- Pitaval, Christophe -- Radovanovic, Irena -- Fukui, Yoshinori -- McEver, Rodger P -- Filippi, Marie-Dominique -- Lizasoain, Ignacio -- Ruiz-Cabello, Jesus -- Zarbock, Alexander -- Moro, Maria A -- Hidalgo, Andres -- HL03463/HL/NHLBI NIH HHS/ -- HL085607/HL/NHLBI NIH HHS/ -- HL090676/HL/NHLBI NIH HHS/ -- P01 HL085607/HL/NHLBI NIH HHS/ -- R01 HL034363/HL/NHLBI NIH HHS/ -- R01 HL090676/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1234-8. doi: 10.1126/science.1256478. Epub 2014 Dec 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. ; Unidad de Investigacion Neurovascular, Department of Pharmacology, Faculty of Medicine, Universidad Complutense and Instituto de Investigacion Hospital 12 de Octubre (i+12), Madrid, Spain. ; Department of Anesthesiology and Critical Care Medicine, University of Munster and Max Planck Institute Munster, Munster, Germany. ; Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain. ; Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia. ; Division of Immunogenetics, Department of Immunobiology and Neuroscience, Kyushu University, Japan. ; Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA. ; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, USA. ; Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany. ahidalgo@cnic.es.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477463" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Circulation ; Blood Platelets/*immunology ; Cell Movement ; Cell Polarity ; Endothelium, Vascular/immunology ; Inflammation/blood/*immunology ; Male ; Membrane Glycoproteins ; Mice ; Mice, Inbred C57BL ; Neutrophils/*immunology ; *Platelet Activation ; Signal Transduction ; Thrombosis/*immunology ; Venules/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-10-18
    Description: Nitrogen (N) is a critical nutrient for plants but is often distributed unevenly in the soil. Plants therefore have evolved a systemic mechanism by which N starvation on one side of the root system leads to a compensatory and increased nitrate uptake on the other side. Here, we study the molecular systems that support perception of N and the long-distance signaling needed to alter root development. Rootlets starved of N secrete small peptides that are translocated to the shoot and received by two leucine-rich repeat receptor kinases (LRR-RKs). Arabidopsis plants deficient in this pathway show growth retardation accompanied with N-deficiency symptoms. Thus, signaling from the root to the shoot helps the plant adapt to fluctuations in local N availability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tabata, Ryo -- Sumida, Kumiko -- Yoshii, Tomoaki -- Ohyama, Kentaro -- Shinohara, Hidefumi -- Matsubayashi, Yoshikatsu -- New York, N.Y. -- Science. 2014 Oct 17;346(6207):343-6. doi: 10.1126/science.1257800.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan. ; Department of Applied Molecular Biosciences, Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan. ; Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan. matsu@bio.nagoya-u.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25324386" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*growth & development/metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Molecular Sequence Data ; Nitrogen/*metabolism ; Peptides/*metabolism ; Plant Roots/genetics/*growth & development/metabolism ; Plant Shoots/genetics/*growth & development/metabolism ; Receptors, Peptide/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-09-06
    Description: Pathogens traverse multiple barriers during infection, including cell membranes. We found that during this transition, pathogens carried covalently attached complement C3 into the cell, triggering immediate signaling and effector responses. Sensing of C3 in the cytosol activated mitochondrial antiviral signaling (MAVS)-dependent signaling cascades and induced proinflammatory cytokine secretion. C3 also flagged viruses for rapid proteasomal degradation, preventing their replication. This system could detect both viral and bacterial pathogens but was antagonized by enteroviruses, such as rhinovirus and poliovirus, which cleave C3 using their 3C protease. The antiviral rupintrivir inhibited 3C protease and prevented C3 cleavage, rendering enteroviruses susceptible to intracellular complement sensing. Thus, complement C3 allows cells to detect and disable pathogens that have invaded the cytosol.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172439/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172439/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tam, Jerry C H -- Bidgood, Susanna R -- McEwan, William A -- James, Leo C -- 281627/European Research Council/International -- MC_U105181010/Medical Research Council/United Kingdom -- U105181010/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Sep 5;345(6201):1256070. doi: 10.1126/science.1256070. Epub 2014 Sep 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. lcj@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25190799" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/*immunology ; Adenovirus Infections, Human/*immunology ; Animals ; Antibodies, Viral/immunology ; Complement C3/*immunology ; Cytokines/biosynthesis/genetics ; Dogs ; HEK293 Cells ; Host-Pathogen Interactions/*immunology ; Humans ; *Immunity, Innate ; Interferon Regulatory Factors/metabolism ; NF-kappa B/metabolism ; Proteasome Endopeptidase Complex/metabolism ; Ribonucleoproteins/genetics/metabolism ; Signal Transduction ; Transcription Factor AP-1/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...