ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (21,523)
  • Latest Papers from Table of Contents or Articles in Press  (21,523)
  • MDPI Publishing  (21,523)
  • Sensors  (13,573)
  • Energies  (7,950)
  • 109050
  • 15954
Collection
  • Articles  (21,523)
Source
  • Latest Papers from Table of Contents or Articles in Press  (21,523)
Publisher
Years
Journal
  • 1
    Publication Date: 2018-01-02
    Description: Energies, Vol. 11, Pages 44: Transient Stability Analysis of Islanded AC Microgrids with a Significant Share of Virtual Synchronous Generators Energies doi: 10.3390/en11010044 Authors: Chang Yuan Peilin Xie Dan Yang Xiangning Xiao As an advanced control method that could bring extra inertia and damping characteristics to inverter-based distributed generators, the virtual synchronous generator (VSG) has recently drawn considerable attention. VSGs are expected to enhance the frequency regulation capability of the local power grid, especially the AC microgrid in island mode. However, the cost of that performance promotion is potential instability. In this paper, the unstable phenomena of the islanded microgrid dominated by SGs and distributed generators (DSs) are addressed after mathematical modeling and detailed eigenvalue analyses respectively. The influence of VSG key parameters, e.g., virtual inertia, damping factor, and droop coefficient on system stability is investigated, and the corresponding mathematical calculation method of unstable region is obtained. The theoretical analysis is well supported by time domain simulation results. The predicted frequency oscillation suggests the consideration of stability constrain during the VSG parameters design procedure.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-02
    Description: Energies, Vol. 11, Pages 77: Anisotropy in Thermal Recovery of Oil Shale—Part 1: Thermal Conductivity, Wave Velocity and Crack Propagation Energies doi: 10.3390/en11010077 Authors: Guoying Wang Dong Yang Zhiqin Kang Jing Zhao In this paper, the evolution of thermal conductivity, wave velocity and microscopic crack propagation both parallel and perpendicular to the bedding plane in anisotropic rock oil shale were studied at temperatures ranging from room temperature to 600 °C. The results show that the thermal conductivity of the perpendicular to bedding direction (KPER) (PER: perpendicular to beeding direction), wave velocity of perpendicular to bedding diretion (VPER), thermal conduction coefficient of parallel to beeding direction (KPAR) and wave velocity of parallel to beeding direction (VPAR) (PAR: parallel to bedding direction) decreased with the increase in temperature, but the rates are different. KPER and VPER linearly decreased with increasing temperature from room temperature to 350 °C, with an obvious decrease at 400 °C corresponding to a large number of cracks generated along the bedding direction. KPER, VPER, KPAR and VPAR generally maintained fixed values from 500 °C to 600 °C. 400 °C has been identified as the threshold temperature for anisotropic evolution of oil shale thermal physics. In addition, the relationship between the thermal conductivity and wave velocity based on the anisotropy of oil shale was fitted using linear regression. The research in this paper can provide reference for the efficient thermal recovery of oil shale, thermal recovery of heavy oil reservoirs and the thermodynamic engineering in other sedimentary rocks.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-01-02
    Description: Energies, Vol. 11, Pages 64: Practical On-Board Measurement of Lithium Ion Battery Impedance Based on Distributed Voltage and Current Sampling Energies doi: 10.3390/en11010064 Authors: Xuezhe Wei Xueyuan Wang Haifeng Dai Battery impedance based state estimation methods receive extensive attention due to its close relation to internal dynamic processes and the mechanism of a battery. In order to provide impedance for a battery management system (BMS), a practical on-board impedance measuring method based on distributed signal sampling is proposed and implemented. Battery cell perturbing current and its response voltage for impedance calculation are sampled separately to be compatible with BMS. A digital dual-channel orthogonal lock-in amplifier is used to calculate the impedance. With the signal synchronization, the battery impedance is obtained and compensated. And the relative impedance can also be obtained without knowing the current. For verification, an impedance measuring system made up of electronic units sampling and processing signals and a DC-AC converter generating AC perturbing current is designed. A type of 8 Ah LiFePO4 battery is chosen and the valuable frequency range for state estimations is determined with a series of experiments. The battery cells are connected in series and the impedance is measured with the prototype. It is shown that the measurement error of the impedance modulus at 0.1 Hz–500 Hz at 5 °C–35 °C is less than 4.5% and the impedance phase error is less than 3% at <10 Hz at room temperature. In addition, the relative impedance can also be tracked well with the designed system.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-01-02
    Description: Energies, Vol. 11, Pages 80: Well Test Analysis for Fractured and Vuggy Carbonate Reservoirs of Well Drilling in Large Scale Cave Energies doi: 10.3390/en11010080 Authors: Cuiqiao Xing Hongjun Yin Kexin Liu Xingke Li Jing Fu A well test analysis model for fractured and vuggy carbonate reservoir of wells drilling in large scale cave considering wellbore storage and skin factor is established in this paper. The Laplace transformation and Stehfest numerical inversion are applied to obtain the results of wellbore pressure. Through the sensitivity analysis of different parameters for the well test typical curves, it is found that the change of the well test curves is in accordance with the theoretical analysis. With the increase of skin factor, the hump of well test typical curves is steeper. The storage ratio influences the depth and width of the concave in the pressure derivative curves. The cross flow coefficient mainly affects the position of the concave occurrence in the pressure derivative curves. The dimensionless reservoir radius mainly affects the middle and late stages of the log-log pressure type curves, and the later well test curves will be upturned for sealed boundary. The duration of the early stage of the log-log curves will become longer when drilling in large scale cave. The effective well radius is increased to a certain extent, which is in full agreement with the conclusions in this paper. The size of the caves has the same effect on the well test typical curves as wellbore storage coefficient. Due to acidification, fracturing, and other reasons, the boundary of the cave will collapse. Therefore, considering the wellbore storage coefficient and skin effect is very important during well testing. However, the existing models for well testing of fractured and vuggy carbonate reservoir often ignore the wellbore storage coefficient and skin effect. For fractured and vuggy carbonate reservoirs of well drilling in large scale cave, the existing models are not applicable. Since the previous models are mostly based on the triple-porosity medium and the equivalent continuum. The well test model for well drilling in large scale cave of fracture-cavity carbonate reservoirs with wellbore storage coefficient and skin factor in this work has significant application value for oil field.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-01-02
    Description: Energies, Vol. 11, Pages 32: High-Precision Speed Control Based on Multiple Phase-Shift Resonant Controllers for Gimbal System in MSCMG Energies doi: 10.3390/en11010032 Authors: Jian Feng Qing Wang Kun Liu The high precision speed control of gimbal servo system in magnetically suspended control moment gyro (MSCMG) suffers from periodic torque disturbances, which lead to periodic fluctuations in speed control. This paper proposes a novel multiple phase-shift resonant controller (MPRC) for a gimbal servo system to suppress the periodic torque ripples whose frequencies vary with the operational speed of the gimbal servo motor and high-speed motor. First, the periodic torque ripples caused by cogging torque, flux harmonics and the dynamic unbalance of the high speed rotor are analyzed. Second, the principle and structure of MPRC parallel with proportional integral (PI) controllers are discussed. The design and stability analysis of the proposed MPRC plus PI control scheme are given both for the current loop and speed loop. The closed-loop stability is ensured by adjusting the phase in the entire operational speed range. Finally, the effectiveness of the proposed control method is verified through simulation and experimental results.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-07-25
    Description: Sensors, Vol. 18, Pages 2406: Adaptive Robust Unscented Kalman Filter via Fading Factor and Maximum Correntropy Criterion Sensors doi: 10.3390/s18082406 Authors: Zhihong Deng Lijian Yin Baoyu Huo Yuanqing Xia In most practical applications, the tracking process needs to update the data constantly. However, outliers may occur frequently in the process of sensors’ data collection and sending, which affects the performance of the system state estimate. In order to suppress the impact of observation outliers in the process of target tracking, a novel filtering algorithm, namely a robust adaptive unscented Kalman filter, is proposed. The cost function of the proposed filtering algorithm is derived based on fading factor and maximum correntropy criterion. In this paper, the derivations of cost function and fading factor are given in detail, which enables the proposed algorithm to be robust. Finally, the simulation results show that the presented algorithm has good performance, and it improves the robustness of a general unscented Kalman filter and solves the problem of outliers in system.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-26
    Description: Energies, Vol. 11, Pages 1937: Evaluation of Fast Charging Efficiency under Extreme Temperatures Energies doi: 10.3390/en11081937 Authors: Germana Trentadue Alexandre Lucas Marcos Otura Konstantinos Pliakostathis Marco Zanni Harald Scholz Multi-type fast charging stations are being deployed over Europe as electric vehicle adoption becomes more popular. The growth of an electrical charging infrastructure in different countries poses different challenges related to its installation. One of these challenges is related to weather conditions that are extremely heterogeneous due to different latitudes, in which fast charging stations are located and whose impact on the charging performance is often neglected or unknown. The present study focused on the evaluation of the electric vehicle (EV) charging process with fast charging devices (up to 50 kW) at ambient (25 °C) and at extreme temperatures (−25 °C, −15 °C, +40 °C). A sample of seven fast chargers and two electric vehicles (CCS (combined charging system) and CHAdeMO (CHArge de Move)) available on the commercial market was considered in the study. Three phase voltages and currents at the wall socket, where the charger was connected, as well as voltage and current at the plug connection between the charger and vehicle have been recorded. According to SAE (Society of Automotive Engineers) J2894/1, the power conversion efficiency during the charging process has been calculated as the ratio between the instantaneous DC power delivered to the vehicle and the instantaneous AC power supplied from the grid in order to test the performance of the charger. The inverse of the efficiency of the charging process, i.e., a kind of energy return ratio (ERR), has been calculated as the ratio between the AC energy supplied by the grid to the electric vehicle supply equipment (EVSE) and the energy delivered to the vehicle’s battery. The evaluation has shown a varied scenario, confirming the efficiency values declared by the manufacturers at ambient temperature and reporting lower energy efficiencies at extreme temperatures, due to lower requested and, thus, delivered power levels. The lowest and highest power conversion efficiencies of 39% and 93% were observed at −25 °C and ambient temperature (+25 °C), respectively.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-07-26
    Description: Energies, Vol. 11, Pages 1934: Multi-Port Zero-Current Switching Switched-Capacitor Converters for Battery Management Applications Energies doi: 10.3390/en11081934 Authors: Yat Chi Fong Ka Wai Eric Cheng S. Raghu Raman Xiaolin Wang A novel implementation of multi-port zero-current switching (ZCS) switched-capacitor (SC) converters for battery management applications is presented. In addition to the auto-balancing feature offered by the SC technique, the proposed SC converter permits individual control of the charging or discharging current of the series-connected energy storage elements, such as the battery or super-capacitor cells. This approach enables advanced state control and accelerates the equalizing process by coordinated operation with the battery management system (BMS) and an adjustable voltage source, which can be implemented by a DC-DC converter interfaced to the energy storage string. Different configurations, including the single-input multi-output (SIMO), multi-input single-output (MISO) SC converters, and the corresponding altered circuits for string-to-cells, cells-to-string, as well as cells-to-cells equalizers, are discussed with a circuit analysis and derivation of the associated mathematical representation. The simulation study and experimental results indicated a significant increase in the balancing speed with the presence of BMS and closed-loop control of cell currents.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-07-26
    Description: Sensors, Vol. 18, Pages 2420: Strain Transfer Characteristics of Resistance Strain-Type Transducer Using Elastic-Mechanical Shear Lag Theory Sensors doi: 10.3390/s18082420 Authors: Yongqian Li Zhigang Wang Chi Xiao Yinming Zhao Yaxin Zhu Zili Zhou The strain transfer characteristics of resistance strain gauge are theoretically investigated. A resistance strain-type transducer is modeled to be a four-layer and two-glue (FLTG) structure model, which comprises successively the surface of an elastomer sensitive element, a ground adhesive glue, a film substrate layer, an upper adhesive glue, a sensitive grids layer, and a polymer cover. The FLTG model is studied in elastic–mechanical shear lag theory, and the strain transfer progress in a resistance strain-type transducer is described. The strain transitional zone (STZ) is defined and the strain transfer ratio (STR) of the FLTG structure is formulated. The dependences of the STR and STZ on both the dimensional sizes of the adhesive glue and structural parameters are calculated. The results indicate that the width, thickness and shear modulus of the ground adhesive glue have a greater influence on the STZ ratio. To ensure that the resistance strain gauge has excellent strain transfer performance and low hysteresis, it is recommended that the paste thickness should be strictly controlled, and the STZ ratio should be less than 10%. Moreover, the STR strongly depends on the length and width of the sensitive grids.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-07-26
    Description: Sensors, Vol. 18, Pages 2416: Design and Optimization of a Novel Three-Dimensional Force Sensor with Parallel Structure Sensors doi: 10.3390/s18082416 Authors: Guanyu Huang Dan Zhang Sheng Guo Haibo Qu To measure large external forces exerted on a loading platform, a novel three-dimensional force sensor is developed in this paper. The proposed sensor was designed with a parallel mechanism with three degrees of freedom. Kinematic analysis of this sensor was performed. Due to its structural characteristics, the working principle of the sensor was analyzed using a Jacobian matrix. The sensitivity diversity index and measuring capability were both calculated. The analysis showed that the proposed sensor is more suitable for measuring large forces than existing strain sensors. In addition, compared with existing strain sensors, this sensor is more suitable for measuring forces along the x and y axes. By changing the stiffness coefficients of the springs, the proposed sensor has reconfigurability. This sensor can change its measuring capability to meet different requirements. Next, the mode shapes and natural frequencies of the proposed sensor were performed. Finally, based on these performance indices, the design variables were optimized using a Multi-Objective Genetic Algorithm.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-07-26
    Description: Sensors, Vol. 18, Pages 2415: Cheeses Made from Raw and Pasteurized Cow’s Milk Analysed by an Electronic Nose and an Electronic Tongue Sensors doi: 10.3390/s18082415 Authors: Nuno I. P. Valente Alisa Rudnitskaya João A. B. P. Oliveira M. Teresa S. R. Gomes Elvira M. M. Gaspar Cheese prepared from whole milk, raw and pasteurized, were analysed by an electronic nose based on piezoelectric quartz crystals and an electronic tongue based on potentiometric sensors, immediately after their preparation and along ripening (after 7 and 21 days). Whey was also analysed by the potentiometric electronic tongue. Results obtained by the electronic nose and tongue were found to be complementary, with the electronic nose being more sensitive to differences in the milk and the electronic tongue being more sensitive to milk pasteurization. Electronic tongue was able to distinguish cheeses made from raw and pasteurized milk, both analysing the whey or the curd, with correct classification rate of 96% and 84%, respectively. Besides, the electronic nose was more sensitive than the electronic tongue to the ripening process, with large differences between samples after 7 and 21 days, while the electronic tongue was only sensitive to the initial maturation stages, with large difference between freshly prepared cheese and with seven days of maturation.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-07-26
    Description: Sensors, Vol. 18, Pages 2412: Validation of the Accuracy and Convergence Time of Real Time Kinematic Results Using a Single Galileo Navigation System Sensors doi: 10.3390/s18082412 Authors: Zbigniew Siejka For the last two decades, the American GPS and Russian GLONASS were the basic systems used in global positioning and navigation. In recent years, there has been significant progress in the development of positioning systems. New regional systems have been created, i.e., the Japanese Quasi-Zenith Satellite System (QZSS) and Indian Regional Navigational Satellite System (IRNSS). A plan to build its own regional navigation system named Korean Positioning System (KPS) was announced South Korea on 5 February 2018. Currently, two new global navigation systems are under development: the European Galileo and the Chinese BeiDou. The full operability of both systems by 2020 is planned. The paper deals with a possibility of determination of the user’s position from individual and independent global navigation satellite system (GNSS). The article is a broader concept aimed at independent determination of precise position from individual GPS, GLONASS, BeiDou and Galileo systems. It presents real time positioning results (Real Time Kinematic-RTK) using signals from Galileo satellites only. During the test, 14 Galileo satellites were used and the number of simultaneously observed Galileo satellites varied from five to seven. Real-time measurements were only possible in certain 24-h observation windows. However, their number was completed within 6 days at the end of 2017 and beginning of 2018, so there was possible to infer about the current availability, continuity, convergence time and accuracy of the RTK measurements. In addition, the systematic errors were demonstrated for the Galileo system.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-07-26
    Description: Sensors, Vol. 18, Pages 2409: The Bluetooth Mesh Standard: An Overview and Experimental Evaluation Sensors doi: 10.3390/s18082409 Authors: Mathias Baert Jen Rossey Adnan Shahid Jeroen Hoebeke Mesh networks enable a many-to-many relation between nodes, which means that each node in the network can communicate with every other node using multi-hop communication and path diversity. As it enables the fast roll-out of sensor and actuator networks, it is an important aspect within the Internet of Things (IoT). Utilizing Bluetooth Low Energy (BLE) as an underlying technology to implement such mesh networks has gained a lot of interest in recent years. The result was a variety of BLE meshing solutions that were not interoperable because of the lack of a common standard. This has changed recently with the advent of the Bluetooth Mesh standard. However, a detailed overview of how this standard operates, performs and how it tackles other issues concerning BLE mesh networking is missing. Therefore, this paper investigates this new technology thoroughly and evaluates its performance by means of three approaches, namely an experimental evaluation, a statistical approach and a graph-based simulation model, which can be used as the basis for future research. Apart from showing that consistent results are achieved by means of all three approaches, we also identify possible drawbacks and open issues that need to be dealt with.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-07-27
    Description: Energies, Vol. 11, Pages 1947: Design, Operation, Modeling and Grid Integration of Power-to-Gas Bioelectrochemical Systems Energies doi: 10.3390/en11081947 Authors: Raúl Santiago Muñoz-Aguilar Daniele Molognoni Pau Bosch-Jimenez Eduard Borràs Mónica Della Pirriera Álvaro Luna This paper deals with the design, operation, modeling, and grid integration of bioelectrochemical systems (BES) for power-to-gas application, through an electromethanogenesis process. The paper objective is to show that BES-based power-to-gas energy storage is feasible on a large scale, showing a first approximation that goes from the BES design and operation to the electrical grid integration. It is the first study attempting to cover all aspects of a BES-based power-to-gas technology, on authors’ knowledge. Designed BES reactors were based on a modular architecture, suitable for a future scaling-up. They were operated in steady state for eight months, and continuously monitored in terms of power consumption, water treatment, and biomethane production, in order to obtain data for the following modeling activity. A black box linear model of the BES was computed by using least-square methods, and validated through comparison with collected experimental data. Afterwards, a BES stack was simulated through several series and parallel connections of reactors, in order to obtain higher power consumption and test the grid integration of a real application system. The renewable energy surplus and energy price variability were evaluated for the grid integration of the BES stack. The BES stack was then simulated as energy storage system during low energy price periods, and tested experimentally with a real time system.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-07-27
    Description: Energies, Vol. 11, Pages 1948: The Optimization of Hybrid Power Systems with Renewable Energy and Hydrogen Generation Energies doi: 10.3390/en11081948 Authors: Fu-Cheng Wang Yi-Shao Hsiao Yi-Zhe Yang This paper discusses the optimization of hybrid power systems, which consist of solar cells, wind turbines, fuel cells, hydrogen electrolysis, chemical hydrogen generation, and batteries. Because hybrid power systems have multiple energy sources and utilize different types of storage, we first developed a general hybrid power model using the Matlab/SimPowerSystemTM, and then tuned model parameters based on the experimental results. This model was subsequently applied to predict the responses of four different hybrid power systems for three typical loads, without conducting individual experiments. Furthermore, cost and reliability indexes were defined to evaluate system performance and to derive optimal system layouts. Finally, the impacts of hydrogen costs on system optimization was discussed. In the future, the developed method could be applied to design customized hybrid power systems.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-07-27
    Description: Energies, Vol. 11, Pages 1946: A Novel Multi-Population Based Chaotic JAYA Algorithm with Application in Solving Economic Load Dispatch Problems Energies doi: 10.3390/en11081946 Authors: Jiangtao Yu Chang-Hwan Kim Abdul Wadood Tahir Khurshiad Sang-Bong Rhee The economic load dispatch (ELD) problem is an optimization problem of minimizing the total fuel cost of generators while satisfying power balance constraints, operating capacity limits, ramp-rate limits and prohibited operating zones. In this paper, a novel multi-population based chaotic JAYA algorithm (MP-CJAYA) is proposed to solve the ELD problem by applying the multi-population method (MP) and chaotic optimization algorithm (COA) on the original JAYA algorithm to guarantee the best solution of the problem. MP-CJAYA is a modified version where the total population is divided into a certain number of sub-populations to control the exploration and exploitation rates, at the same time a chaos perturbation is implemented on each sub-population during every iteration to keep on searching for the global optima. The proposed MP-CJAYA has been adopted to ELD cases and the results obtained have been compared with other well-known algorithms reported in the literature. The comparisons have indicated that MP-CJAYA outperforms all the other algorithms, achieving the best performance in all the cases, which indicates that MP-CJAYA is a promising alternative approach for solving ELD problems.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-07-27
    Description: Energies, Vol. 11, Pages 1944: Prediction of Mud Pressures for the Stability of Wellbores Drilled in Transversely Isotropic Rocks Energies doi: 10.3390/en11081944 Authors: Chiara Deangeli Omoruyi Omoman Omwanghe Serious borehole instability problems are often related to the presence of weakness planes in rock formations. In this study, we investigated the stability of wellbores drilled along a principal direction and parallel to the weakness planes. We used three different strength criteria (weakness plane model, Hoek and Brown and Nova and Zaninetti) to calculate the mud pressures to avoid slip and tensile failure along the weakness planes. We identified the orientation of the weakness planes that generate the most critical slip condition as a function of the friction angle of the planes. We also identified the range of orientations of the weakness planes that corresponds with the lower mud pressure window. We confirmed the validity of the proposed relationships with comparative stability analyses by using analytical solutions and numerical simulations (Ubiquitous Joint Model, FLAC). We found that the mud pressures calculated with the Hoek and Brown criterion show a particular trend, which cannot be predicted by the weakness plane model. We provided two normalized stability charts to predict mud pressures to prevent slip along the weakness planes in the critical slip condition. Finally, we corroborated our findings by simulating the stability of wellbores drilled in the Pedernales Field (Venezuela) and in oil fields located in Bohai Bay (China).
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-07-27
    Description: Energies, Vol. 11, Pages 1945: Baltic Power Systems’ Integration into the EU Market Coupling under Different Desynchronization Schemes: A Comparative Market Analysis Energies doi: 10.3390/en11081945 Authors: Ettore Bompard Shaghayegh Zalzar Tao Huang Arturs Purvins Marcelo Masera Currently, the power transmission system of the Baltic states is synchronized with the Integrated/Unified Power System (IPS/UPS), which includes the Russian grid, and the IPS/UPS provides frequency regulation and system security within the Baltic states. Since joining the European Union (EU) in 2004, the Baltic states have been following the EU’s energy policy targets. The Baltics are presently participating in a European electricity market, i.e., the NordPool market, while they are expected to join the pan-European electricity market—the European target model for power market integration. Moreover, from a power grid perspective, EU energy policies intend to desynchronize the power grid of the Baltic states from the IPS/UPS over the coming years. This paper evaluates these policy trends through market impacts, and it complements existing studies on Baltic-IPS/UPS desynchronization in terms of wholesale electricity prices, generation surpluses, primary reserve adequacy, and redispatch costs. Participation of the Baltic states in the integrated pan-European day-ahead electricity market with zonal pricing was modeled for 2030, followed by a national redispatch, with detailed power grid modeling of Baltic states to solve potential intrazonal congestion. The simulation results imply the superiority of the Baltics’ synchronization to continental Europe, compared to the other schemes.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-07-27
    Description: Energies, Vol. 11, Pages 1941: Assessment of Energetic, Economic and Environmental Performance of Ground-Coupled Heat Pumps Energies doi: 10.3390/en11081941 Authors: Matteo Rivoire Alessandro Casasso Bruno Piga Rajandrea Sethi Ground-coupled heat pumps (GCHPs) have a great potential for reducing the cost and climate change impact of building heating, cooling, and domestic hot water (DHW). The high installation cost is a major barrier to their diffusion but, under certain conditions (climate, building use, alternative fuels, etc.), the investment can be profitable in the long term. We present a comprehensive modeling study on GCHPs, performed with the dynamic energy simulation software TRNSYS, reproducing the operating conditions of three building types (residential, office, and hotel), with two insulation levels of the building envelope (poor/good), with the climate conditions of six European cities. Simulation results highlight the driving variables for heating/cooling peak loads and yearly demand, which are the input to assess economic performance and environmental benefits of GCHPs. We found that, in Italy, GCHPs are able to reduce CO2 emissions up to 216 g CO2/year per euro spent. However, payback times are still quite high, i.e., from 8 to 20 years. This performance can be improved by changing taxation on gas and electricity and using hybrid systems, adding a fossil-fuel boiler to cover peak heating loads, thus reducing the overall installation cost compared to full-load sized GCHP systems.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-07-27
    Description: Energies, Vol. 11, Pages 1940: The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application Energies doi: 10.3390/en11081940 Authors: Yasir Ahmed Solangi Qingmei Tan Muhammad Waris Ali Khan Nayyar Hussain Mirjat Ifzal Ahmed Pakistan has sufficient wind energy potential across various locations of the country. However, so far, wind energy development has not attained sufficient momentum matching its potential. Amongst various other challenges, the site selection for wind power development has always been a primary concern of the decision-makers. Principally, wind project site selection decisions are driven by various multifaceted criteria. As such, in this study, a robust research framework comprising of factor analysis (FA) of techno-economic and socio-political factors, and a hybrid analytical hierarchy process (AHP) and fuzzy technique for order of preference by similarity to ideal solution (FTOPSIS) have been used for the prioritization of sites in the southeastern region of Pakistan. The results of this study reveal economic and land acquisition as the most significant criteria and sub-criteria, respectively. From the eight different sites considered, Jamshoro has been prioritized as the most suitable location for wind project development followed by Hyderabad, Nooriabad, Gharo, Keti Bandar, Shahbandar, Sajawal, and Talhar. This study provides a comprehensive decision support framework comprising of FA and a hybrid AHP and Fuzzy TOPSIS for the systematic analysis to prioritize suitable sites for the wind project development in Pakistan.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-07-27
    Description: Energies, Vol. 11, Pages 1943: Impacts of Low-Carbon Fuel Standards in Transportation on the Electricity Market Energies doi: 10.3390/en11081943 Authors: Ahmad Karnama João Abel Peças Lopes Mauro Augusto da Rosa Electric Vehicles (EVs) are increasing the interdependence of transportation policies and the electricity market dimension. In this paper, an Electricity Market Model with Electric Vehicles (EMMEV) was developed, exploiting an agent-based model that analyzes how carbon reduction policy in transportation may increase the number of Electric Vehicles and how that would influence electricity price. Agents are Energy Service Providers (ESCOs) which can distribute fuels and their objective is to maximize their profit. In this paper, the EMMEV is used to analyze the impacts of the Low-Carbon Fuel Standard (LCFS), a performance-based policy instrument, on electricity prices and EV sales volume. The agents in EMMEV are regulated parties in LCFS should meet a certain Carbon Intensity (CI) target for their distributed fuel. In case they cannot meet the target, they should buy credits to compensate for their shortfall and if they exceed it, they can sell their excess. The results, considering the assumptions and limitations of the model, show that the banking strategy of the agents contributing in the LCFS might have negative impact on penetration of EVs, unless there is a regular Credit Clearance to trade credits. It is also shown that the electricity price, as a result of implementing the LCFS and increasing number of EVs, has increased between 2% and 3% depending on banking strategy.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-07-27
    Description: Sensors, Vol. 18, Pages 2436: Bio-Inspired Covert Active Sonar Strategy Sensors doi: 10.3390/s18082436 Authors: Jiajia Jiang Xianquan Wang Fajie Duan Chunyue Li Xiao Fu Tingting Huang Lingran Bu Ling Ma Zhongbo Sun The covertness of the active sonar is a very important issue and the sonar signal waveform design problem was studied to improve covertness of the system. Many marine mammals produce call pulses for communication and echolocation, and existing interception systems normally classify these biological signals as ocean noise and filter them out. Based on this, a bio-inspired covert active sonar strategy was proposed. The true, rather than man-made sperm whale, call pulses were used to serve as sonar waveforms so as to ensure the camouflage ability of sonar waveforms. A range and velocity measurement combination (RVMC) was designed by using two true sperm whale call pulses which had excellent range resolution (RR) and large Doppler tolerance (DT). The range and velocity estimation methods were developed based on the RVMC. In the sonar receiver, the correlation technology was used to confirm the start and end time of sonar signals and their echoes, and then based on the developed range and velocity estimation method, the range and velocity of the underwater target were obtained. Then, the RVMC was embedded into the true sperm whale call-train to improve the camouflage ability of the sonar signal-train. Finally, experiment results were provided to verify the performance of the proposed method.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-07-27
    Description: Sensors, Vol. 18, Pages 2435: Quantitative Contact-Less Estimation of Energy Expenditure from Video and 3D Imagery Sensors doi: 10.3390/s18082435 Authors: Gregor Koporec Goran Vučković Radoje Milić Janez Perš Measurement of energy expenditure is an important tool in sport science and medicine, especially when trying to estimate the extent and intensity of physical activity. However, most approaches still rely on sensors or markers, placed directly on the body. In this paper, we present a novel approach using a fully contact-less, fully automatic method, that relies on computer vision algorithms and widely available and inexpensive imaging sensors. We rely on the estimation of the optical and scene flow to calculate Histograms of Oriented Optical Flow (HOOF) descriptors, which we subsequently augment with the Histograms of Absolute Flow Amplitude (HAFA). Descriptors are fed into regression model, which allows us to estimate energy consumption, and to a lesser extent, the heart rate. Our method has been tested both in lab environment and in realistic conditions of a sport match. Results confirm that these energy expenditures could be derived from purely contact-less observations. The proposed method can be used with different modalities, including near infrared imagery, which extends its future potential.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-07-27
    Description: Sensors, Vol. 18, Pages 2434: Smart Portable Devices Suitable for Cultural Heritage: A Review Sensors doi: 10.3390/s18082434 Authors: Federica Valentini Andrea Calcaterra Simonetta Antonaroli Maurizio Talamo This article reviews recent portable sensor technologies to apply in the Cultural Heritage (CH) fields. The review has been prepared in the form of a retrospective description of the sensor’s history and technological evolution, having: new nanomaterials for transducers, miniaturized, portable and integrated sensors, the wireless transmission of the analytical signals, ICT_Information Communication Technology and IoT_Internet of Things to apply to the cultural heritage field. In addition, a new trend of movable tattoo sensors devices is discussed, referred to in situ analysis, which is especially important when scientists are in the presence of un-movable and un-tangible Cultural Heritage and Art Work objects. The new proposed portable contact sensors (directly applied to art work objects and surfaces) are non-invasive and non-destructive to the different materials and surfaces of which cultural heritage is composed.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-07-27
    Description: Sensors, Vol. 18, Pages 2433: Multi-Camera Imaging System for UAV Photogrammetry Sensors doi: 10.3390/s18082433 Authors: Damian Wierzbicki In the last few years, it has been possible to observe a considerable increase in the use of unmanned aerial vehicles (UAV) equipped with compact digital cameras for environment mapping. The next stage in the development of photogrammetry from low altitudes was the development of the imagery data from UAV oblique images. Imagery data was obtained from side-facing directions. As in professional photogrammetric systems, it is possible to record footprints of tree crowns and other forms of the natural environment. The use of a multi-camera system will significantly reduce one of the main UAV photogrammetry limitations (especially in the case of multirotor UAV) which is a reduction of the ground coverage area, while increasing the number of images, increasing the number of flight lines, and reducing the surface imaged during one flight. The approach proposed in this paper is based on using several head cameras to enhance the imaging geometry during one flight of UAV for mapping. As part of the research work, a multi-camera system consisting of several cameras was designed to increase the total Field of View (FOV). Thanks to this, it will be possible to increase the ground coverage area and to acquire image data effectively. The acquired images will be mosaicked in order to limit the total number of images for the mapped area. As part of the research, a set of cameras was calibrated to determine the interior orientation parameters (IOPs). Next, the method of image alignment using the feature image matching algorithms was presented. In the proposed approach, the images are combined in such a way that the final image has a joint centre of projections of component images. The experimental results showed that the proposed solution was reliable and accurate for the mapping purpose. The paper also presents the effectiveness of existing transformation models for images with a large coverage subjected to initial geometric correction due to the influence of distortion.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-07-27
    Description: Sensors, Vol. 18, Pages 2432: A Terahertz CMOS V-Shaped Patch Antenna with Defected Ground Structure Sensors doi: 10.3390/s18082432 Authors: Hyeongjin Kim Wonseok Choe Jinho Jeong In this paper, a V-shaped patch antenna with defected ground structure is proposed at terahertz to overcome the limited performance of a standard complementary metal-oxide semiconductor (CMOS) patch antenna consisting of several metal layers and very thin interdielectric layers. The proposed V-shaped patch with slots allows the increased radiation resistance and broadband performance. In addition, the patch resonating at different frequency from the V-shaped patch is stacked on the top to broaden the impedance-matching bandwidth. More importantly, the slots are formed in the ground plane, which is called the defected ground structure, to further increase the radiation resistance and thus improve the bandwidth and efficiency. It is verified from electromagnetic simulations that the leakage waves from the defected ground can enhance the antenna directivity and gain by coherently interfering with the topside radiation. The proposed on-chip antenna is fabricated using a standard 65 nm CMOS process. The on-wafer measurement shows very wide bandwidth in input reflection coefficient (<−10 dB), greater than 28.7% from 240 to >320 GHz. The measured peak gain was as high as 5.48 dBi at 295 GHz. To the best of the authors’ knowledge, these results belong to the best performance among the terahertz CMOS on-chip antennas without using additional components or processes such as dielectric resonators, lens, or substrate thinning.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-07-27
    Description: Sensors, Vol. 18, Pages 2430: Relative Pose Based Redundancy Removal: Collaborative RGB-D Data Transmission in Mobile Visual Sensor Networks Sensors doi: 10.3390/s18082430 Authors: Xiaoqin Wang Y. Ahmet Şekercioğlu Tom Drummond Vincent Frémont Enrico Natalizio Isabelle Fantoni In this paper, the Relative Pose based Redundancy Removal (RPRR) scheme is presented, which has been designed for mobile RGB-D sensor networks operating under bandwidth-constrained operational scenarios. The scheme considers a multiview scenario in which pairs of sensors observe the same scene from different viewpoints, and detect the redundant visual and depth information to prevent their transmission leading to a significant improvement in wireless channel usage efficiency and power savings. We envisage applications in which the environment is static, and rapid 3D mapping of an enclosed area of interest is required, such as disaster recovery and support operations after earthquakes or industrial accidents. Experimental results show that wireless channel utilization is improved by 250% and battery consumption is halved when the RPRR scheme is used instead of sending the sensor images independently.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-07-27
    Description: Sensors, Vol. 18, Pages 2439: HemoKinect: A Microsoft Kinect V2 Based Exergaming Software to Supervise Physical Exercise of Patients with Hemophilia Sensors doi: 10.3390/s18082439 Authors: Fernando Mateo Emilio Soria-Olivas Juan Carrasco Santiago Bonanad Felipe Querol Sofía Pérez-Alenda Patients with hemophilia need to strictly follow exercise routines to minimize their risk of suffering bleeding in joints, known as hemarthrosis. This paper introduces and validates a new exergaming software tool called HemoKinect that intends to keep track of exercises using Microsoft Kinect V2’s body tracking capabilities. The software has been developed in C++ and MATLAB. The Kinect SDK V2.0 libraries have been used to obtain 3D joint positions from the Kinect color and depth sensors. Performing angle calculations and center-of-mass (COM) estimations using these joint positions, HemoKinect can evaluate the following exercises: elbow flexion/extension, knee flexion/extension (squat), step climb (ankle exercise) and multi-directional balance based on COM. The software generates reports and progress graphs and is able to directly send the results to the physician via email. Exercises have been validated with 10 controls and eight patients. HemoKinect successfully registered elbow and knee exercises, while displaying real-time joint angle measurements. Additionally, steps were successfully counted in up to 78% of the cases. Regarding balance, differences were found in the scores according to the difficulty level and direction. HemoKinect supposes a significant leap forward in terms of exergaming applicability to rehabilitation of patients with hemophilia, allowing remote supervision.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-07-27
    Description: Sensors, Vol. 18, Pages 2428: Narrowband Characterization of Near-Ground Radio Channel for Wireless Sensors Networks at 5G-IoT Bands Sensors doi: 10.3390/s18082428 Authors: Hicham Klaina Ana Vazquez Alejos Otman Aghzout Francisco Falcone In this contribution, a narrowband radio channel model is proposed for rural scenarios in which the radio link operates under near-ground conditions for application in wireless sensor networks dedicated to smart agriculture. The received power attenuation was measured for both transmitter and receiver antennas placed at two different heights above ground: 0.2 and 0.4 m. Three frequency ranges, proposed for future 5G-IoT use case in agriculture, were chosen: 868 MHz, 2.4 GHz and 5.8 GHz. Three ground coverings were tested in a rural scenario: soil, short and tall grass fields. The path loss was then estimated as dependent of the radio link range and a three-slope log-normal path loss model was tailored. Results are explained in terms of the first Fresnel zone obstruction. Commercial Zigbee sensor nodes operating at 2.4 GHz were used in a second experiment to estimate the link quality from the experimental Radio Signal Strength Indicator (RSSI) received values. Two sensor nodes were placed at the same elevation above ground as in the previous experiment, only for short grass field case. The Quality of Service performance was determined in terms of theoretical bit error rate achieved for different digital modulations—BPSK, 8PSK and 16QAM—concluding remarkable results for an obstructed radio link.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-07-27
    Description: Sensors, Vol. 18, Pages 2429: A PUF- and Biometric-Based Lightweight Hardware Solution to Increase Security at Sensor Nodes Sensors doi: 10.3390/s18082429 Authors: Rosario Arjona Miguel Ángel Prada-Delgado Javier Arcenegui Iluminada Baturone Security is essential in sensor nodes which acquire and transmit sensitive data. However, the constraints of processing, memory and power consumption are very high in these nodes. Cryptographic algorithms based on symmetric key are very suitable for them. The drawback is that secure storage of secret keys is required. In this work, a low-cost solution is presented to obfuscate secret keys with Physically Unclonable Functions (PUFs), which exploit the hardware identity of the node. In addition, a lightweight fingerprint recognition solution is proposed, which can be implemented in low-cost sensor nodes. Since biometric data of individuals are sensitive, they are also obfuscated with PUFs. Both solutions allow authenticating the origin of the sensed data with a proposed dual-factor authentication protocol. One factor is the unique physical identity of the trusted sensor node that measures them. The other factor is the physical presence of the legitimate individual in charge of authorizing their transmission. Experimental results are included to prove how the proposed PUF-based solution can be implemented with the SRAMs of commercial Bluetooth Low Energy (BLE) chips which belong to the communication module of the sensor node. Implementation results show how the proposed fingerprint recognition based on the novel texture-based feature named QFingerMap16 (QFM) can be implemented fully inside a low-cost sensor node. Robustness, security and privacy issues at the proposed sensor nodes are discussed and analyzed with experimental results from PUFs and fingerprints taken from public and standard databases.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-07-28
    Description: Energies, Vol. 11, Pages 1961: A Novel High Efficiency Quasi-Resonant Converter Energies doi: 10.3390/en11081961 Authors: Tianyu Zhu Jianze Wang Yanchao Ji Yiqi Liu In this paper, a new constant-frequency quasi-resonant converter is proposed. Compared with the traditional LLC converter, the proposed converter can effectively reduce the range of the operating frequency. The output voltage is changed to adjust the reactance of the resonant cavity. The proposed converter has a better loss factor. To verify the theoretical analysis and soft-switching condition, a 250 W, 100 V output prototype was built and compared with the full-bridge LLC converter. Analysis and experimental results verify that a smaller operating frequency range and volume of the transformers, a soft-switching condition, and a higher overall efficiency are achieved with the proposed converter.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-07-28
    Description: Energies, Vol. 11, Pages 1957: Dual-Temperature Evaluation of a High-Temperature Insulation System for Liquid-Immersed Transformer Energies doi: 10.3390/en11081957 Authors: Xiaojing Zhang Lu Ren Haichuan Yu Yang Xu Qingquan Lei Xin Li Baojia Han A high-temperature oil–paper insulation system offers an opportunity to improve the overloading capability of distribution transformers facing seasonal load variation. A high-temperature electrical insulation system (EIS) was chosen due to thermal calculation based on a typical loading curve on the China Southern Power Grid. In order to evaluate candidate high-temperature insulation systems, Nomex® T910 (aramid-enhanced cellulose) immersed in FR3 (natural ester) was investigated by a dual-temperature thermal aging test compared with a conventional insulation system, Kraft paper impregnated with mineral oil. Throughout the thermal aging test, mechanical, chemical, and dielectric parameters of both paper and insulating oil were investigated in each aging cycle. The thermal aging results determined that the thermal class of the FR3-T910 insulation system meets the request of overloading transformer needs.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-07-28
    Description: Energies, Vol. 11, Pages 1954: Experimental Study of Flow-Induced Whistling in Pipe Systems Including a Corrugated Section Energies doi: 10.3390/en11081954 Authors: Hee-Chang LIM Faran RAZI When air flows through pipe systems that include a corrugated segment, a whistling tone is generated and increases in intensity with increasing flow velocity. This whistling sound is related to the particular geometry of corrugated pipes, which is in the form of alternating cavities. This whistling is an environmental noise problem as well as a possible structural danger because of the resulting induced vibration. This paper studies the whistling behavior of various pipe systems with a combination of smooth and corrugated pipes through a series of experiments. The considered pipe systems consist of two smooth pipes attached at the upstream and downstream ends of a corrugated segment. Experiments with smooth and corrugated pipes, which had inner diameters of 15.25 and 16.5 mm, respectively, and various lengths, were performed for flow velocities of up to approximately 30 m/s. The minimum and maximum Strouhal numbers (St) obtained during our experiments were 0.25 and 0.38, respectively. For all pipe configurations investigated in this study, the lowest Mach number at which whistling was observed was 0.017, and the maximum was 0.093. The lowest frequency at which whistling was detected in our experiments was 650 Hz, and the highest was 3080 Hz. The results presented in the form of different variables and dimensionless parameters, including the frequency, Mach number, Strouhal number, and Helmholtz number. The average mode gap and number of excited acoustic modes were also taken into account for all considered configurations. The pipe systems with longer corrugated segments had broader whistling ranges than did configurations with shorter segments, indicating that the number of cavities inside the corrugated pipe has a direct effect on whistling. Increasing the smooth pipe length (either upstream or downstream) resulted in a decrease in the average mode gap between successive modes. The number of excited acoustic modes was primarily related to the corrugated segment length, but the smooth pipe length also had a pronounced effect on the excited modes for a constant corrugation length. The highest number of excited modes (13) was seen in the case of corrugated length 450 mm and smooth pipe length (either upstream or downstream) 400 mm while the lowest number of excited modes (1) was observed for corrugated length 250 mm and smooth pipe length (downstream) 300 mm and 400 mm.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-07-28
    Description: Energies, Vol. 11, Pages 1950: Investigation of Injection Strategy of Branched-Preformed Particle Gel/Polymer/Surfactant for Enhanced Oil Recovery after Polymer Flooding in Heterogeneous Reservoirs Energies doi: 10.3390/en11081950 Authors: Hong He Jingyu Fu Baofeng Hou Fuqing Yuan Lanlei Guo Zongyang Li Qing You The heterogeneous phase combination flooding (HPCF) system which is composed of a branched-preformed particle gel (B-PPG), polymer, and surfactant has been proposed to enhance oil recovery after polymer flooding in heterogeneous reservoirs by mobility control and reducing oil–water interfacial tension. However, the high cost of chemicals can make this process economically challenging in an era of low oil prices. Thus, in an era of low oil prices, it is becoming even more essential to optimize the heterogeneous phase combination flooding design. In order to optimize the HPCF process, the injection strategy has been designed such that the incremental oil recovery can be maximized using the corresponding combination of the B-PPG, polymer, and surfactant, thereby ensuring a more economically-viable recovery process. Different HPCF injection strategies including simultaneous injection and alternation injection were investigated by conducting parallel sand pack flooding experiments and large-scale plate sand pack flooding experiments. Results show that based on the flow rate ratio, the pressure rising area and the incremental oil recovery, no matter whether the injection strategy is simultaneous injection or alternation injection of HPCF, the HPCF can significantly block high permeability zone, increase the sweep efficiency and oil displacement efficiency, and effectively improve oil recovery. Compared with the simultaneous injection mode, the alternation injection of HPCF can show better sweep efficiency and oil displacement efficiency. Moreover, when the slug of HPCF and polymer/surfactant with the equivalent economical cost is injected by alternation injection mode, as the alternating cycle increases, the incremental oil recovery increases. The remaining oil distribution at different flooding stages investigated by conducting large-scale plate sand pack flooding experiments shows that alternation injection of HPCF can recover more remaining oil in the low permeability zone than simultaneous injection. Hence, these findings could provide the guidance for developing the injection strategy of HPCF to further enhance oil recovery after polymer flooding in heterogeneous reservoirs in the era of low oil prices.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-07-28
    Description: Sensors, Vol. 18, Pages 2448: Application-Aware Anomaly Detection of Sensor Measurements in Cyber-Physical Systems Sensors doi: 10.3390/s18082448 Authors: Amin Ghafouri Aron Laszka Koutsoukos Detection errors such as false alarms and undetected faults are inevitable in any practical anomaly detection system. These errors can create potentially significant problems in the underlying application. In particular, false alarms can result in performing unnecessary recovery actions while missed detections can result in failing to perform recovery which can lead to severe consequences. In this paper, we present an approach for application-aware anomaly detection (AAAD). Our approach takes an existing anomaly detector and configures it to minimize the impact of detection errors. The configuration of the detectors is chosen so that application performance in the presence of detection errors is as close as possible to the performance that could have been obtained if there were no detection errors. We evaluate our result using a case study of real-time control of traffic signals, and show that the approach outperforms significantly several baseline detectors.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-07-28
    Description: Sensors, Vol. 18, Pages 2444: Utilization of Inexpensive Carbon-Based Substrates as Platforms for Sensing Sensors doi: 10.3390/s18082444 Authors: Minh Tran Ahmad Fallatah Alison Whale Sonal Padalkar Gold (Au) has been widely used as a material for Surface Enhanced Raman Spectroscopy (SERS) due to its plasmonic properties, stability and biocompatibility. Conventionally for SERS application, Au is deposited on a rigid substrate such as glass or silicon. The rigid substrates severely limit analyte collection efficiency as well as portability. Here, flexible substrates like carbon cloth and carbon paper were investigated as potential substrate candidates for SERS application. The flexible substrates were coated with Au nanostructures by electrodeposition. Model analyte, Rhodamine 6G was utilized to demonstrate the capabilities of the flexible SERS substrates. Additionally, the pesticide paraoxon was also detected on the flexible SERS substrates as well as on a real sample like the apple fruit.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-07-28
    Description: Sensors, Vol. 18, Pages 2441: A Label-Free Fluorescent Assay for the Rapid and Sensitive Detection of Adenosine Deaminase Activity and Inhibition Sensors doi: 10.3390/s18082441 Authors: Xinxing Tang Kefeng Wu Han Zhao Mingjian Chen Changbei Ma Adenosine deaminase (ADA), able to catalyze the irreversible deamination of adenosine into inosine, can be found in almost all tissues and plays an important role in several diseases. In this work, we developed a label-free fluorescence method for the detection of adenosine deaminase activity and inhibition. In the presence of ADA, ATP has been shown to be hydrolyzed. The ATP aptamer was shown to form a G-quadruplex/thioflavin T (ThT) complex with ThT and exhibited an obvious fluorescence signal. However, the ATP aptamer could bind with ATP and exhibited a low fluorescence signal because of the absence of ADA. This assay showed high sensitivity to ADA with a detection limit of 1 U/L based on an SNR of 3 and got a good linear relationship within the range of 1–100 U/L with R2 = 0.9909. The LOD is lower than ADA cutoff value (4 U/L) in the clinical requirement and more sensitive than most of the reported methods. This technique exhibited high selectivity for ADA against hoGG I, UDG, RNase H and λexo. Moreover, this strategy was successfully applied for assaying the inhibition of ADA using erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) and, as such, demonstrated great potential for the future use in the diagnosis of ADA-relevant diseases, particularly in advanced drug development.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-07-28
    Description: Sensors, Vol. 18, Pages 2440: A Privacy Preserving Scheme for Nearest Neighbor Query Sensors doi: 10.3390/s18082440 Authors: Yuhang Wang Zhihong Tian Hongli Zhang Shen Su Wei Shi In recent years, location privacy concerns that arise when using the nearest neighbor query services have gained increasing attention, as such services have become pervasive in mobile social networks devices and the IoT environments. State-of-the-art privacy preservation schemes focus on the obfuscation of the location information, which has suffered from various privacy attacks and the tradeoff of the quality of service. By noticing the fact that the user’s location could be replaced by their surrounding wireless sensor infrastructures in proximity, in this paper, we propose a wireless sensor access point-based scheme for the nearest neighbor query, without using the location of the user. Then, a noise-addition-based method that preserves user’s location privacy was proposed. To further strengthen the adaptability of the approach to real-world environments, several performance-enhancing methods are introduced, including an R-tree-based Noise-Data Retrieval Algorithm (RNR), and a nearest neighbor query method based on our research. Both performance and security evaluations are conducted to validate our approach. The results show the effectiveness and the practicality of our work.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-07-29
    Description: Energies, Vol. 11, Pages 1966: Possible Interactions and Interferences of Copper, Chromium, and Arsenic during the Gasification of Contaminated Waste Wood Energies doi: 10.3390/en11081966 Authors: Shurooq Badri Al-Badri Ying Jiang Stuart Thomas Wagland A considerable proportion (about 64%) of biomass energy is produced from woody biomass (wood and its wastes). However, waste wood (WW) is very often contaminated with metal(loid) elements at concentrations leading to toxicity emissions and damages to facilities during thermal conversion. Therefore, procedures for preventing and/or alleviating the negative impacts of these elements require further development, particularly by providing informative and supportive information regarding the phase transformations of the metal(loid)s during thermal conversion processes. Although it is well known that phase transformation depends on different factors such as elements’ vaporization characteristics, operational conditions, and process configuration; however, the influences of reaction atmosphere composition in terms of interactions and interferences are rarely addressed. In response, since Cu, Cr, and As (CCA-elements) are the most regulated elements in woody biomass, this paper aims to explore the possible interactions and interferences among CCA-elements themselves and with Ca, Na, S, Cl, Fe, and Ni from reaction atmosphere composition perspectives during the gasification of contaminated WW. To do so, thermodynamic equilibrium calculations were performed for Boudouard reaction (BR) and partial combustion reaction (PCR) with temperature ranges of 0–1300 °C and 0–1800 °C, respectively, and both reactions were simulated under pressure conditions of 1, 20, and 40 atm. Refinement of the occurred interactions and interferences reveals that Ni-As interactions generate dominant species As2Ni5 and As8Ni11, which increase the solid–gaseous transformation temperature of As. Moreover, the interactions between Ca and Cr predominantly form C3Cr7; whereas the absence of Ca leads to Cr2Na2O4 causing instability in the Cr phase transformation.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-07-29
    Description: Energies, Vol. 11, Pages 1967: Dry Fuel Jet Half-Angle Measurements and Correlation for an Entrained Flow Gasifier Energies doi: 10.3390/en11081967 Authors: Francis Kus Robin Hughes Arturo Macchi Poupak Mehrani Marc Duchesne Reduced order models (ROMs) are increasingly applied to entrained flow gasification development due to reduced computational requirements relative to computational fluid dynamics (CFD) models. However, they require greater a posteriori knowledge of the reactor physics. A significant parameter influencing ROM outputs is the jet half-angle of the solid fuel and oxidant mixture in the gasifier. Thus, it is important to understand the geometry of the jet in the gasifier, and how it is dependent on operating parameters, such as solid and carrier gas flow rates. In this work, an existing model for jet half-angles, which considers the ratio of surrounding gas density to jet core density, is extended to a dry solids jet with impinging gas. The model is fitted to experimental jet half-angles. The jet half-angle of a non-reactive flow was measured using laser-sheet imaging for solid fluxes in the range of 460–880 kg/m2·s and carrier gas fluxes in the range of 43–90 kg/m2·s at the transport line outlet. Jet half-angles ranged from 5.6° to 11.3°, increasing with lower solid/gas loading ratios. CFD simulations of two reactive conditions, with solid and gas fluxes similar to experiments, were used to test the applicability of the proposed jet half-angle model.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-07-29
    Description: Energies, Vol. 11, Pages 1968: A Review on Recent Advances and Future Trends of Transformerless Inverter Structures for Single-Phase Grid-Connected Photovoltaic Systems Energies doi: 10.3390/en11081968 Authors: Kamran Zeb Imran Khan Waqar Uddin Muhammad Adil Khan P. Sathishkumar Tiago Davi Curi Busarello Iftikhar Ahmad H. J. Kim The research significance of various scientific aspects of photovoltaic (PV) systems has increased over the past decade. Grid-tied inverters the vital elements for the effective interface of Renewable Energy Resources (RER) and utility in the distributed generation system. Currently, Single-Phase Transformerless Grid-Connected Photovoltaic (SPTG-CPV) inverters (1–10 kW) are undergoing further developments, with new designs, and interest of the solar market. In comparison to the transformer (TR) Galvanic Isolation (GI)-based inverters, its advantageous features are lower cost, lighter weight, smaller volume, higher efficiency, and less complexity. In this paper, a review of SPTG-CPV inverters has been carried out. The basic operational principles of all SPTG-CPV inverters are presented in details for positive, negative, and zero cycles. A comprehensive analysis of each topology has been deliberated. A comparative assessment is also performed based on weaknesses, strengths, component ratings, efficiency, total harmonic distortion (THD), semiconductor device losses, and leakage current of various SPTG-CPV inverters schemes. Typical PV inverter structures and control schemes for grid connected three-phase system and single-phase systems are also discussed, described, and reviewed. Comparison of various industrial grids-connected PV inverters is also performed. Loss analysis is also performed for various topologies at 1 kW. Selection of appropriate topologies for their particular application is thoroughly presented. Then, discussion and forthcoming progress are emphasized. Lastly, the conclusions are presented. More than 100 research publications on the topic of SPTG-CPV inverter topologies, configurations, and control schematics along with the recent developments are thoroughly reviewed and classified for quick reference.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-07-29
    Description: Energies, Vol. 11, Pages 1964: Lightning Impulse Withstand of Natural Ester Liquid Energies doi: 10.3390/en11081964 Authors: Stephanie Haegele Farzaneh Vahidi Stefan Tenbohlen Kevin J. Rapp Alan Sbravati Due to the low biodegradability of mineral oil, intense research is conducted to define alternative liquids with comparable dielectric properties. Natural ester liquids are an alternative in focus; they are used increasingly as insulating liquid in distribution and power transformers. The main advantages of natural ester liquids compared to mineral oil are their good biodegradability and mainly high flash and fire points providing better fire safety. The dielectric strength of natural ester liquids is comparable to conventional mineral oil for homogeneous field arrangements. However, many studies showed a reduced dielectric strength for highly inhomogeneous field arrangements. This study investigates at which degree of inhomogeneity differences in breakdown voltage between the two insulating liquids occur. Investigations use lightning impulses with different electrode arrangements representing different field inhomogeneity factors and different gap distances. To ensure comparisons with existing transformer geometries, investigations are application-oriented using a transformer conductor model, which is compared to other studies. Results show significant differences in breakdown voltage from an inhomogeneity factor of 0.1 (highly inhomogeneous field) depending on the gap distance. Larger electrode gaps provide a larger inhomogeneity at which differences in breakdown voltages occur.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-07-29
    Description: Energies, Vol. 11, Pages 1963: Numerical Analysis to Determine Reliable One-Diode Model Parameters for Perovskite Solar Cells Energies doi: 10.3390/en11081963 Authors: Esteban Velilla Juan Bernardo Cano Keony Jimenez Jaime Valencia Daniel Ramirez Franklin Jaramillo With the aim to determine the photo-generated current, diode saturation current, ideality factor, shunt, and series resistances related to the one-diode model for p-i-n planar perovskite solar cells, reference cells with active area of approximately 1 cm2 and efficiencies ranging between 4.6 and 12.2% were fabricated and characterized at standard test conditions. To estimated feasible parameters, the mean square error between the I-V curve data of these cells and the circuital model results were minimized using a Genetic Algorithm combined with the Nelder-Mead method. When considering the optimization process solutions, a numerical sensitivity analysis of the error as a function of the estimated parameters was carried out. Based on the errors behavior that is showed graphically through maps, it was demonstrated that the set of parameters estimated for each cell were reliable, meaningful, and realistic, and being related to errors lower than 9.1 × 10−9. Therefore, these results can be considered as global solutions of the optimization process. Moreover, based on the lower errors obtained from the optimization process, it was possible to affirm that the one-diode model is suitable to model the I-V curve of perovskite solar cells. Finally, the estimated parameters suggested that the average ideality factor is close to 2 when the fill factor of the I-V curves is higher than 0.5. Lower fill factors corresponded to ideality that was higher than 3, linked to lower efficiencies, and high loses effects reflected on lower shunt resistances. Lower ideality factor of 1.4 corresponds to the best performing solar cells.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-07-29
    Description: Energies, Vol. 11, Pages 1962: Energy Loss Allocation in Smart Distribution Systems with Electric Vehicle Integration Energies doi: 10.3390/en11081962 Authors: Paulo M. De Oliveira-De Jesus Mario A. Rios Gustavo A. Ramos This paper presents a three-phase loss allocation procedure for distribution networks. The key contribution of the paper is the computation of specific marginal loss coefficients (MLCs) per bus and per phase expressly considering non-linear load models for Electric Vehicles (EV). The method was applied in a unbalanced 12.47 kV feeder with 12,780 households and 1000 EVs under peak and off-peak load conditions. Results obtained were also compared with the traditional roll-in embedded allocation procedure (pro rata) using non-linear and standard constant power models. Results show the influence of the non-linear load model in the energy losses allocated. This result highlights the importance of considering an appropriate EV load model to appraise the overall losses encouraging the use and further development of the methodology
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-07-29
    Description: Sensors, Vol. 18, Pages 2450: Features of X-Band Radar Backscattering Simulation Based on the Ocean Environmental Parameters in China Offshore Seas Sensors doi: 10.3390/s18082450 Authors: Tao Wu Zhensen Wu Jiaji Wu Gwanggil Jeon Liwen Ma The X-band marine radar has been employed as a remote sensing tool for sea state monitoring. However, there are few literatures about sea spectra considering both the wave parameters and short wind-wave spectra in China Offshore Seas, which are of theoretical and practical significance. Based on the wave parameters acquired from the European Centre for Medium-Range Weather Forecasts reanalysis data (ERA-Interim reanalysis data) during 36 months from 2015 to 2017, a finite depth sea spectrum considering both wind speeds and ocean environmental parameters is established in this study. The wave spectrum is then built into a modified two-scale model, which can be related to the ocean environmental parameters (wind speeds and wave parameters). The final results are the mean backscattering coefficients over the variety of sea states at a given wind speed. As the model predicts, the monthly maximum backscattering coefficients in different seas change slowly (within 4 dB). In addition, the differences of the backscattering coefficients in different seas are quite small during azimuthal angles of 0° to 90° and 270° to 360° with a relative error within 1.5 dB at low wind speed (5 m/s) and 2 dB at high wind speed (10 m/s). With the method in the paper, a corrected result from the experiment can be achieved based on the relative error analysis in different conditions.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-07-29
    Description: Sensors, Vol. 18, Pages 2451: Interaction of Lamb Wave Modes with Weak Material Nonlinearity: Generation of Symmetric Zero-Frequency Mode Sensors doi: 10.3390/s18082451 Authors: Xiaoqiang Sun Xiangyan Ding Feilong Li Shijie Zhou Yaolu Liu Ning Hu Zhongqing Su Youxuan Zhao Jun Zhang Mingxi Deng The symmetric zero-frequency mode induced by weak material nonlinearity during Lamb wave propagation is explored for the first time. We theoretically confirm that, unlike the second harmonic, phase-velocity matching is not required to generate the zero-frequency mode and its signal is stronger than those of the nonlinear harmonics conventionally used, for example, the second harmonic. Experimental and numerical verifications of this theoretical analysis are conducted for the primary S0 mode wave propagating in an aluminum plate. The existence of a symmetric zero-frequency mode is of great significance, probably triggering a revolutionary progress in the field of non-destructive evaluation and structural health monitoring of the early-stage material nonlinearity based on the ultrasonic Lamb waves.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-07-31
    Description: Energies, Vol. 11, Pages 1970: Increase in Robustness against Effects of Coil Misalignment on Electrical Parameters Using Magnetic Material Layer in Planar Coils of Wireless Power Transfer Transformer Energies doi: 10.3390/en11081970 Authors: Joao Victor Pinon Pereira Dias Masafumi Miyatake Utilization of wireless power transfer in light rail transits is seen as one solution for electrification of lines. The main advantage of this supply system is the reduction of installation; moreover, the alignment between the transmitter coil in the track and the receiver coil in the train should be perfect in order not to affect the power transfer. To reduce the effects of misalignment on the input and output electric parameters of the system, a new planar core and coil design, called hybrid intercore coil, is proposed. The proposed design uses a magnetic material layer between the windings in the inner half of the coil to create a non-uniform magnetic field distribution, which makes the system more robust against the effects of coil misalignment on the system current and voltage. Simulations with finite element method software were conducted to compare designs. The results show that the proposed design is less susceptible to the effects of misalignment and is more efficient. Prototype cores were constructed to verify the simulation results. Measurements show a smaller input overcurrent and output overvoltage when operating in resonance mode. The proposed design reduced the effects of coil misalignment on electrical parameters.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-07-31
    Description: Energies, Vol. 11, Pages 1971: A New Lumped Parameter Model for Natural Gas Pipelines in State Space Energies doi: 10.3390/en11081971 Authors: Kai Wen Zijie Xia Weichao Yu Jing Gong Many algorithms and numerical methods, such as implicit and explicit finite differences and the method of characteristics, have been applied for transient flow in gas pipelines. From a computational point of view, the state space model is an effective method for solving complex transient problems in pipelines. However, the impulse output of the existing models is not the actual behavior of the pipeline. In this paper, a new lumped parameter model is proposed to describe the inertial nature of pipelines with inlet/outlet pressure and flow rate as outer variables in the state space. Starting from the basic mechanistic partial differential equations of the general one-dimensional compressible gas flow dynamics under isothermal conditions, the transfer functions are first acquired as the fundamental work. With Taylor-expansion and a transformation procedure, the inertia state space models are derived with proper simplification. Finally, three examples are used to illustrate the effectiveness of the proposed model. With the model, a real-time automatic scheduling scheme of the natural gas pipeline could be possible in the future.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-07-31
    Description: Energies, Vol. 11, Pages 1972: Comprehensive Design and Analysis of a State-Feedback Controller for a Dynamic Voltage Restorer Energies doi: 10.3390/en11081972 Authors: Javier Roldán-Pérez Aurelio García-Cerrada Alberto Rodríguez-Cabero Juan Luis Zamora-Macho Voltage sags result in unwanted operation stops and large economical losses in industrial applications. A dynamic voltage restorer (DVR) is a power-electronics-based device conceived to protect high-power installations against these events. However, the design of a DVR control system is not straightforward and it has some peculiarities. First of all, a DVR includes a resonant (LC) connection filter with a lightly damped resonance. Secondly, the control system of a DVR should work properly regardless of the type of load, which can be linear or non-linear, to be protected. In this paper, a digital state-feedback (SF) controller for a DVR is proposed to address these issues. The design and features of the SF controller are studied in detail. Two pole-placement alternatives are discussed and the system robustness is tested under variations in the system parameters. Furthermore, implementation aspects such as discretization not commonly addressed in the literature are described. The controller is implemented in its incremental form. A decoupling system for the dq-axis dynamics that takes into account system delays and the load current is proposed and analytically studied. The proposed controller is compared with two other alternatives found in the literature: a Proportional-Integral-Differential (PID) controller and a cascade controller. The effect of the load connected downstream a DVR is also studied, revealing the potential of the SF controller to damp the resonance under light load conditions. All control system developments were tested in a 5 kVA prototype of a DVR connected to a configurable grid.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-07-31
    Description: Sensors, Vol. 18, Pages 2472: Multiple Instances QoS Routing in RPL: Application to Smart Grids Sensors doi: 10.3390/s18082472 Authors: Jad Nassar Matthieu Berthomé Jérémy Dubrulle Nicolas Gouvy Nathalie Mitton Bruno Quoitin The Smart Grid (SG) aims to transform the current electric grid into a “smarter” network where the integration of renewable energy resources, energy efficiency and fault tolerance are the main benefits. This is done by interconnecting every energy source, storage point or central control point with connected devices, where heterogeneous SG applications and signalling messages will have different requirements in terms of reliability, latency and priority. Hence, data routing and prioritization are the main challenges in such networks. So far, RPL (Routing Protocol for Low-Power and Lossy networks) protocol is widely used on Smart Grids for distributing commands over the grid. RPL assures traffic differentiation at the network layer in wireless sensor networks through the logical subdivision of the network in multiple instances, each one relying on a specific Objective Function. However, RPL is not optimized for Smart Grids, as its main objective functions and their associated metric does not allow Quality of Service differentiation. To overcome this, we propose OFQS an objective function with a multi-objective metric that considers the delay and the remaining energy in the battery nodes alongside with the dynamic quality of the communication links. Our function automatically adapts to the number of instances (traffic classes) providing a Quality of Service differentiation based on the different Smart Grid applications requirements. We tested our approach on a real sensor testbed. The experimental results show that our proposal provides a lower packet delivery latency and a higher packet delivery ratio while extending the lifetime of the network compared to solutions in the literature.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-07-31
    Description: Sensors, Vol. 18, Pages 2465: Improving Classification Algorithms by Considering Score Series in Wireless Acoustic Sensor Networks Sensors doi: 10.3390/s18082465 Authors: Amalia Luque Javier Romero-Lemos Alejandro Carrasco Julio Barbancho The reduction in size, power consumption and price of many sensor devices has enabled the deployment of many sensor networks that can be used to monitor and control several aspects of various habitats. More specifically, the analysis of sounds has attracted a huge interest in urban and wildlife environments where the classification of the different signals has become a major issue. Various algorithms have been described for this purpose, a number of which frame the sound and classify these frames, while others take advantage of the sequential information embedded in a sound signal. In the paper, a new algorithm is proposed that, while maintaining the frame-classification advantages, adds a new phase that considers and classifies the score series derived after frame labelling. These score series are represented using cepstral coefficients and classified using standard machine-learning classifiers. The proposed algorithm has been applied to a dataset of anuran calls and its results compared to the performance obtained in previous experiments on sensor networks. The main outcome of our research is that the consideration of score series strongly outperforms other algorithms and attains outstanding performance despite the noisy background commonly encountered in this kind of application.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-08-01
    Description: Energies, Vol. 11, Pages 1987: Distributed Energy Resources Scheduling and Aggregation in the Context of Demand Response Programs Energies doi: 10.3390/en11081987 Authors: Pedro Faria João Spínola Zita Vale Distributed energy resources can contribute to an improved operation of power systems, improving economic and technical efficiency. However, aggregation of resources is needed to make these resources profitable. The present paper proposes a methodology for distributed resources management by a Virtual Power Player (VPP), addressing the resources scheduling, aggregation and remuneration based on the aggregation made. The aggregation is made using K-means algorithm. The innovative aspect motivating the present paper relies on the remuneration definition considering multiple scenarios of operation, by performing a multi-observation clustering. Resources aggregation and remuneration profiles are obtained for 2592 operation scenarios, considering 548 distributed generators, 20,310 consumers, and 10 suppliers.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-08-01
    Description: Energies, Vol. 11, Pages 1986: The Influence of Local Environmental, Economic and Social Variables on the Spatial Distribution of Photovoltaic Applications across China’s Urban Areas Energies doi: 10.3390/en11081986 Authors: Alin Lin Ming Lu Pingjun Sun The capacity of new installed photovoltaic (PV) in China in 2017 was increased to 53.06 GW, reaching a total of 402.5 GW around the world. Photovoltaic applications have a significant role in the reduction of greenhouse gas emissions and alleviating electricity shortages in the sustainable development process of cities. Research on the factors that influenced the spatial distribution of photovoltaic applications mostly focus on a certain project or a region. However, it is a complicated process for decision-making of photovoltaic installations in urban areas. This study uses zip code level data from 83 cities to investigate the influence of local environmental, economic and social variables on the spatial distribution of photovoltaic applications across China’s urban areas. By analyzing the current situation, the locations of urban photovoltaic applications are collected and presented. Statistical analysis software is used to evaluate the influence of selected variables. In this paper, correlation analysis, principle component analysis (PCA) and cluster analysis are generated to predict urban photovoltaic installations. The results of this research show that Gross Domestic Product (GDP), electricity consumption, policy incentives, the number of photovoltaic companies, population, age, education and rate of urbanization were important factors that influenced the adoption of urban photovoltaic systems. The results also indicate that Southeast China and Hangzhou Province are currently the most promising areas as they have a higher rate of solar photovoltaic installation. These conclusions have significancefor energy policy and planning strategies by predicting the future development of urban photovoltaic applications.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-08-01
    Description: Energies, Vol. 11, Pages 1985: Design, Construction, and Testing of a Gasifier-Specific Solid Oxide Fuel Cell System Energies doi: 10.3390/en11081985 Authors: Alvaro Fernandes Joerg Brabandt Oliver Posdziech Ali Saadabadi Mayra Recalde Liyuan Fan Eva O. Promes Ming Liu Theo Woudstra Purushothaman Vellayan Aravind This paper describes the steps involved in the design, construction, and testing of a gasifier-specific solid oxide fuel cell (SOFC) system. The design choices are based on reported thermodynamic simulation results for the entire gasifier- gas cleanup-SOFC system. The constructed SOFC system is tested and the measured parameters are compared with those given by a system simulation. Furthermore, a detailed exergy analysis is performed to determine the components responsible for poor efficiency. It is concluded that the SOFC system demonstrates reasonable agreement with the simulated results. Furthermore, based on the exergy results, the components causing major irreversible performance losses are identified.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-08-01
    Description: Energies, Vol. 11, Pages 1984: Experimental Study of Mixed Gas Hydrates from Gas Feed Containing CH4, CO2 and N2: Phase Equilibrium in the Presence of Excess Water and Gas Exchange Energies doi: 10.3390/en11081984 Authors: Ludovic Nicolas Legoix Livio Ruffine Christian Deusner Matthias Haeckel This article presents gas hydrate experimental measurements for mixtures containing methane (CH4), carbon dioxide (CO2) and nitrogen (N2) with the aim to better understand the impact of water (H2O) on the phase equilibrium. Some of these phase equilibrium experiments were carried out with a very high water-to-gas ratio that shifts the gas hydrate dissociation points to higher pressures. This is due to the significantly different solubilities of the different guest molecules in liquid H2O. A second experiment focused on CH4-CO2 exchange between the hydrate and the vapor phases at moderate pressures. The results show a high retention of CO2 in the gas hydrate phase with small pressure variations within the first hours. However, for our system containing 10.2 g of H2O full conversion of the CH4 hydrate grains to CO2 hydrate is estimated to require 40 days. This delay is attributed to the shrinking core effect, where initially an outer layer of CO2-rich hydrate is formed that effectively slows down the further gas exchange between the vapor phase and the inner core of the CH4-rich hydrate grain.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-08-01
    Description: Energies, Vol. 11, Pages 1991: Operation and Economic Assessment of Hybrid Refueling Station Considering Traffic Flow Information Energies doi: 10.3390/en11081991 Authors: Suyang Zhou Yuxuan Zhuang Wei Gu Zhi Wu It is anticipated that the penetration of “Green-Energy” vehicles, including Electric Vehicle (EV), Fuel Cell Vehicle (FCV), and Natural Gas Vehicle (NGV) will keep increasing in next decades. The demand of refueling stations will correspondingly increase for refueling these “Green-Energy” vehicles. While such kinds of “Green-Energy” vehicles can provide both social and economic benefits, effective management of refueling various kinds of these vehicles is necessary to maintain vehicle users’ comfortabilities and refueling station’s return on investment. To tackle these problems, this paper proposes a novel energy management approach for hybrid refueling stations with EV chargers, Hydrogen pumps and gas pumps. Firstly, the detailed models of EV chargers, Hydrogen pumps with electrolyte and hydrogen tank, the gas pumps with gas tank, renewable resources, and battery energy storage systems are established. The forecasting methodologies for renewable energy, electricity price and the traffic flow are also presented to support the hybrid refueling station modeling and operation. Then, a management approach is adopted to manage the refueling various kinds of vehicles with considerations of the refueling station profitability. Finally, the proposed management approach is verified under four different kinds of tariffs- Economy-7, Economy-10, Flat-rate, and Real-Time Pricing (RTP), finding that the proposed management approach has the best performance under RTP tariff. The economic assessment of the Energy Storage System (ESS) is also performed. It is found that the ESS can make the saving up to $127 per day. Different sizes of gas storage tank are compared in the final section as well. The result shows that increasing the size of the tank does not bring attractive extra benefits with the consideration of the investment on enlarging the tank size.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-08-02
    Description: Energies, Vol. 11, Pages 1998: Design Issues for Claw Pole Machines with Soft Magnetic Composite Cores Energies doi: 10.3390/en11081998 Authors: Chengcheng Liu Jiawei Lu Youhua Wang Gang Lei Jianguo Zhu Youguang Guo By using global ring winding, the torque coefficient of the transverse flux machine (TFM) is proportional to its number of pole pairs, and thus the TFM possesses high torque density ability when compared with other electrical machines. As a special kind of TFM, the claw pole machine (CPM) can have more torque due to its special claw pole teeth. The manufacturing of CPM or TFM with silicon steels was very difficult in the past, and is a handicap for the progress of this kind of machine. Thanks to the advent of soft magnetic composite (SMC) materials, the manufacturing process of CPM has become more and more simple. More attention has been paid to this kind of technology, and some mass production CPMs with SMC cores have appeared. However, there are few works that discuss the key design issues for this kind of machine. In this paper, a small CPM with SMC is used as as a research benchmark. Various design methods that can be adopted to improve its performance have been studied, including unequal stator claw pole teeth, a skewing magnet design, consequent pole design, and etc. The 3D finite element method (FEM) is used for the machine analysis, and it is verified by the experimental results of a CPM with SMC cores.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-08-02
    Description: Energies, Vol. 11, Pages 1992: Assessment and Performance Evaluation of a Wind Turbine Power Output Energies doi: 10.3390/en11081992 Authors: Akintayo Temiloluwa Abolude Wen Zhou Estimation errors have constantly been a technology bother for wind power management, often time with deviations of actual power curve (APC) from the turbine power curve (TPC). Power output dispersion for an operational 800 kW turbine was analyzed using three averaging tine steps of 1-min, 5-min, and 15-min. The error between the APC and TPC in kWh was about 25% on average, irrespective of the time of the day, although higher magnitudes of error were observed during low wind speeds and poor wind conditions. The 15-min averaged time series proved more suitable for grid management and energy load scheduling, but the error margin was still a major concern. An effective power curve (EPC) based on the polynomial parametric wind turbine power curve modeling technique was calibrated using turbine and site-specific performance data. The EPC reduced estimation error to about 3% in the aforementioned time series during very good wind conditions. By integrating statistical wind speed forecasting methods and site-specific EPCs, wind power forecasting and management can be significantly improved without compromising grid stability.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-08-02
    Description: Energies, Vol. 11, Pages 1995: Active-Current Control of Large-Scale Wind Turbines for Power System Transient Stability Improvement Based on Perturbation Estimation Approach Energies doi: 10.3390/en11081995 Authors: Peng Shen Lin Guan Zhenlin Huang Liang Wu Zetao Jiang This paper proposes an active-current control strategy for large-scale wind turbines (WTs) to improve the transient stability of power systems based on a perturbation estimation (PE) approach. The main idea of this control strategy is to mitigate the generator imbalance of mechanical and electrical powers by controlling the active-current of WTs. The effective mutual couplings of synchronous generators and WTs are identified using a Kron-reduction technique first. Then, the control object of each WT is assigned based on the identified mutual couplings. Finally, an individual controller is developed for each WT using a PE approach. In the control algorithm, a perturbation state (PS) is introduced for each WT to represent the comprehensive effect of the nonlinearities and parameter variations of the power system, and then it is estimated by a designed perturbation observer. The estimated PS is employed to compensate the actual perturbation, and to finally achieve the adaptive control design without requiring an accurate system model. The effectiveness of the proposed control approach on improving the system transient stability is validated in the modified IEEE 39-bus system.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-08-03
    Description: Energies, Vol. 11, Pages 2018: Technological Solutions for Recycling Ash Slag from the Cao Ngan Coal Power Plant in Vietnam Energies doi: 10.3390/en11082018 Authors: Thriveni Thenepalli Nguyen Thi Minh Ngoc Lai Quang Tuan Trinh Hai Son Ho Huu Hieu Dang Tran Nhu Thuy Nguyen Thi Thanh Thao Duong Thi Thanh Tam Doan Thi Ngoc Huyen Tran Tan Van Ramakrishna Chilakala Ji Whan Ahn Annually, coal-fired power plants in Vietnam discharge hundreds of thousand tons of coal ash. Most of this ash goes into the environment without treatment or any plan for the efficient reuse of this precious resource. There are many reasons for this, such as poor quality of the ash, no suitable and feasible ash treatment technology, a lack of awareness about environmental pollution and resource saving, and inappropriate sanctions and policies. This study analyzed and summarized information and data pertaining to the current status of the production, discharge, and utilization of coal ash from the Cao Ngan Power Plant (CNPP) in Thai Nguyen Province, Vietnam. In addition, the potential for applying advanced emission reduction technologies in order to recycle coal ash for cement production, as well as geographical, socio-economic, and market factors were assessed. This paper reveals the results of a preliminary assessment of carbon-mineralization technologies which seek to achieve the following three goals: (1) effectively disposing of coal ash to protect the environment and local community, (2) contributing to the nationally determined effort to mitigate greenhouse gas emissions which cause climate change, and (3) making value-added products and bringing economic benefits to a sustainable society.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-08-03
    Description: Energies, Vol. 11, Pages 2017: An Experimental Investigation of Thermal Characteristics of Phase Change Material Applied to Improve the Isothermal Operation of a Refrigerator Energies doi: 10.3390/en11082017 Authors: Seok-Joon Lee Seul-Hyun Park We investigated the thermal performance of a refrigerator with a functional duct unit (FDU) which was charged with a phase change material (PCM) and designed to replace the existing expandable polystyrene (EPS) duct unit. Since the performance of the FDU is dependent upon the thermal characteristics of the PCM, the eutectic water–salt solution as the PCM was prepared and tested to optimize the thermal characteristics. The thermal properties of the PCM were examined by the T-history method. When the PCM contained 1 wt.% eutectic molten salt compounds, the phase change temperature was approximately −0.5 °C, the supercooling temperature was approximately −2.9 °C, and the latent heat was 304.9 kJ/kg. Compared with other PCMs of different eutectic molten salt concentrations, this PCM was found to have the most appropriate thermal properties for the FDU. Therefore, the PCM with 1 wt.% eutectic molten salt compounds was used in the FDU, which was installed in a 200 L top-mounted freezer (TMF). For a quantitative comparison of the operational performance, an FDU and an EPS duct were installed alternately in a refrigerator operated under the same conditions and analyzed in terms of internal temperature variation and operational characteristics. When the EPS duct was replaced by the FDU, the temperature deviation measured during a defrosting operation was observed to become smaller. Moreover, during a power outage, the refrigerator with the FDU released heat owing to the phase change of the PCM, thereby preventing temperature rise inside the refrigerator.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-08-03
    Description: Energies, Vol. 11, Pages 2016: The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid Energies doi: 10.3390/en11082016 Authors: Riccardo Iacobucci Benjamin McLellan Tetsuo Tezuka The introduction of shared autonomous electric vehicles (SAEVs), expected within the next decade, can transform the car into a service, accelerate electrification of the transport sector, and allow for large scale control of electric vehicle charging. In this work, we investigate the potential for this system to provide aggregated storage when combined with intermittent renewable energy sources. We develop a simulation methodology for the optimization of vehicle charging in the context of a virtual power plant or microgrid, with and without grid connection or distributed dispatchable generators. The model considers aggregate storage availability from vehicles based on transport patterns taking into account the necessary vehicle redistribution. We investigate the case of a grid-connected VPP with rooftop solar and the case of a isolated microgrid with solar, wind, and dispatchable generation. We conduct a comprehensive sensitivity analysis to study the effect of several parameters on the results for both cases.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-08-03
    Description: Energies, Vol. 11, Pages 2015: Energy-Efficient Clusters for Object Tracking Networks Energies doi: 10.3390/en11082015 Authors: Yang-Hsin Fan Smart cities have hundreds of thousands of devices for tracking data on crime, the environment, and traffic (such as data collected at crossroads and on streets). This results in higher energy usage, as they are recording information persistently and simultaneously. Moreover, a single object tracking device, on a corner at an intersection for example has a limited scope of view, so more object tracking devices are added to broaden the view. As an increasing number of object tracking devices are constructed on streets, their efficient energy consumption becomes a significant issue. This work is concerned with decreasing the energy required to power these systems, and proposes energy-efficient clusters (EECs) of object tracking systems to achieve energy savings. First, we analyze a current object tracking system to establish an equivalent model. Second, we arrange the object tracking system in a cluster structure, which facilitates the evaluation of energy costs. Third, the energy consumption is assessed as either dynamic or static, which is a more accurate system for determining energy consumption. Fourth, we analyze all possible scenarios of the object’s location and the resulting energy consumption, and derive a number of formulas for the fast computation of energy consumption. Finally, the simulation results are reported. These results show the proposed EEC is an effective way to save energy, compared with the energy consumption benchmarks of current technology.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-08-03
    Description: Energies, Vol. 11, Pages 2014: Effect of Sodium Chloride and Thiourea on Pollutant Formation during Combustion of Plastics Energies doi: 10.3390/en11082014 Authors: María E. Iñiguez Juan A. Conesa Andrés Fullana Thermal decomposition of different samples containing a mixture of plastics (polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), and nylon) combined with NaCl and metal oxides (Fe2O3, CuO) was studied under an air atmosphere at 850 °C using a reactor, followed by analysis of the evolved products. Combustion runs were performed to study how the presence of such compounds influences the production of pollutants. Here, we report the analyses of the emissions of the main gases, as well as volatiles and semivolatiles, including polyaromatic hydrocarbons (PAHs), polychlorinated benzenes and phenols, and polybrominated phenols. Results show that the production of chlorinated pollutants did not increase in the presence of NaCl, but the presence of other metals during the decomposition led to the production of a great amount of pollutants. In this regard, the emission of chlorinated phenols increased from 110 to ca. 250 mg/kg when the sample included a small quantity of a transition metal oxide. Additionally, the presence of an inhibitor—thiourea (TUA)—was tested. Results confirm that adding TUA to the sample reduced these emissions to a considerable extent, with the emission of chlorinated phenols amounting to 65 mg/kg.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-08-03
    Description: Energies, Vol. 11, Pages 2013: Establishment of an Improved Material-Drilling Power Model to Support Energy Management of Drilling Processes Energies doi: 10.3390/en11082013 Authors: Shun Jia Qingwen Yuan Wei Cai Qinghe Yuan Conghu Liu Jingxiang Lv Zhongwei Zhang Drilling processes, as some of the most widely used machining processes in the manufacturing industry, play an important role in manufacturing process energy-saving programs. However, research focus on energy modeling of drilling processes, especially for the modeling of material-drilling power, are really scarce. To bridge this gap, an improved material-drilling power model is proposed in this paper. The obtained material-drilling power model can improve the accuracy of the material-drilling power and lay a good foundation for energy modeling and optimization of drilling processes. Finally, experimental studies were carried out on an XHK-714F CNC machining center (Hangzhou HangJi Machine Tool Co., Ltd., Hangzhou, China) and a JTVM6540 CNC milling machine (Jinan Third Machine Tool Co., Ltd., Jinan, China). The results showed that predictive accuracies with the proposed model are generally higher than 96% for all the test cases.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-08-03
    Description: Energies, Vol. 11, Pages 2012: Estimation of Load Pattern for Optimal Planning of Stand-Alone Microgrid Networks Energies doi: 10.3390/en11082012 Authors: Chang Koo Lee Byeong Gwan Bhang David Kwangsoon Kim Sang Hun Lee Hae Lim Cha Hyung Keun Ahn This paper proposes a method for estimating the load pattern for optimal planning of stand-alone renewable microgrids and verifies when the basic data for microgrid design are limited. To estimate a proper load pattern for optimal microgrid design when the data obtained in advance are insufficient, the least squares method is used to compare the similarity of annual power consumption between the subject area and eight islands in Korea whose actual load patterns were previously obtained. Similarity is compared in terms of annual (every month), seasonal, bi-monthly, and monthly averages. To verify the validity of the proposed estimation method, the applied proposed estimation method is used for two islands that have already installed a microgrid consisting of photovoltaic, wind power, energy storage systems, and diesel generators. In comparing the actual data from the two islands, the costs of electricity in terms of microgrid operations show improvements of 37.2% and 29.8%, respectively.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-08-03
    Description: Energies, Vol. 11, Pages 2008: Short-Term Load Forecasting of Natural Gas with Deep Neural Network Regression † Energies doi: 10.3390/en11082008 Authors: Gregory D. Merkel Richard J. Povinelli Ronald H. Brown Deep neural networks are proposed for short-term natural gas load forecasting. Deep learning has proven to be a powerful tool for many classification problems seeing significant use in machine learning fields such as image recognition and speech processing. We provide an overview of natural gas forecasting. Next, the deep learning method, contrastive divergence is explained. We compare our proposed deep neural network method to a linear regression model and a traditional artificial neural network on 62 operating areas, each of which has at least 10 years of data. The proposed deep network outperforms traditional artificial neural networks by 9.83% weighted mean absolute percent error (WMAPE).
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-08-04
    Description: Energies, Vol. 11, Pages 2024: Coupled Fluid-Thermal Analysis for Induction Motors with Broken Bars Operating under the Rated Load Energies doi: 10.3390/en11082024 Authors: Ying Xie Jinpeng Guo Peng Chen Zhiwei Li Thermal stress of the rotor in a squirrel cage induction motor is generated due to the temperature rise, it is also one of the factors causing the broken bar fault because the structure of the rotor would be destroyed if the stress of the rotor bars exceed the strength limit. The coupled fluid-thermal analysis for the induction motor with healthy and broken bar rotors is performed in this paper. Much concern has been committed to establishment of the fluid model on the basis of computational fluid dynamic (CFD) theory. The heat field of the prototypes is analysed so that the effect of the asymmetrical rotor on the motor heat performance can be investigated in depth. Eventually, the efficiency of the presented model and method, for the totally enclosed fan cooled (TEFC) induction motor, can be verified through experimental results. In addition, this paper reports a quantitative analysis of the heat flux distribution of the fault rotor, and the heat flux density of the bars is investigated in detail. Then, the part most likely to break in the rotor as a result of the thermal load is identified.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-08-04
    Description: Energies, Vol. 11, Pages 2021: Pilot Protection Based on Amplitude of Directional Travelling Wave for Voltage Source Converter-High Voltage Direct Current (VSC-HVDC) Transmission Lines Energies doi: 10.3390/en11082021 Authors: Lingtong Jiang Qing Chen Wudi Huang Lei Wang Yu Zeng Pu Zhao This paper presents a novel pilot protection scheme of DC cable line in voltage-source-converter (VSC) based multi-terminal DC (MTDC) grids, which utilizes a novel phase-mode transformation to decouple the bipolar DC cable current into six mode and it uses the stationary wavelet transform to extract the modulus maxima of fault initial traveling waves current (FITWC). With accurate amplitude and polarities of the FITWC being collected from the fault-detection devices located at each terminal, the proposed scheme can correctly determine the faulty segment and the faulty pole. In this paper, the ratio of amplitudes between sixth mode forward and backward travelling wave currents is used to judge the faulty segment and the polarity of fifth mode forward travelling wave current is used to identify the faulty pole. A four-terminal VSC-based MTDC grid was built in PSCAD/EMTDC to evaluate the performance of the fault-protection scheme. Simulation results for different cases demonstrate that the proposed protection scheme is robust against noise, and has been tested successfully for fault resistance of up to 400 Ω. Since the scheme merely needs the characteristics of FITWCs, the practical difficulties of detecting subsequent travelling waves are avoided. Moreover, only the state signal is needed to send to the other side in proposed scheme, so low communication speed can satisfy the requirement of relay protection and it does not need the data synchronization seriously.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-08-03
    Description: Sensors, Vol. 18, Pages 2534: A Gyroscope Bias Estimation Algorithm Based on Map Specific Information Sensors doi: 10.3390/s18082534 Authors: Tian Tan Ao Peng Junjun Huang Lingxiang Zheng Gang Ou In an inertial navigation system, especially in a pedestrian dead-reckoning system, gyroscope bias can demonstrably reduce positioning accuracy. A novel gyroscope bias estimation algorithm is proposed, which estimates the bias of a gyroscope under any set of angle observations. Moreover, a method for obtaining Euler angles using map corridor information is proposed. The heading information obtained from a map is used to estimate the bias, and the estimated bias is used to correct the trajectories. Experimental results show that it is feasible for the algorithm to estimate the bias of the gyroscope.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-08-07
    Description: Sensors, Vol. 18, Pages 2578: An Outlook on Physical and Virtual Sensors for a Socially Interactive Internet Sensors doi: 10.3390/s18082578 Authors: Ngombo Armando André Rodrigues Vasco Pereira Jorge Sá Silva Fernando Boavida The Internet keeps changing at a rapid pace, driven mainly by the emerging concepts and applications that make it aware of the physical world and responsive to user context. The Internet of Things (IoT) concept is quickly giving way to more advanced and highly interactive environments that go well beyond the mere sensing of the physical world. Today, in addition to traditional electronic devices, IoT sensing/actuating includes both software and human-based entities. This paper provides an outlook on the future of sensing/actuating approaches on the Internet at large, which we see increasingly related to all kinds of socially interactive technologies. With these objectives in mind, we propose a taxonomy to deal with the heterogeneity of sensing/actuating approaches in IoT. We also analyse the state-of-the-art of Social Sensing. Finally, we identify open issues and associated research opportunities, the main ones being the integration of all sensing approaches, the combination of social sciences, engineering, and computing as enablers of context-aware, cognitive applications and, last but not least, the unified management of large sets of very heterogeneous sensors/actuators.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-08-07
    Description: Sensors, Vol. 18, Pages 2576: General Signal Model for Multiple-Input Multiple-Output GMTI Radar Sensors doi: 10.3390/s18082576 Authors: Fuyou Li Feng He Zhen Dong Manqing Wu Yongsheng Zhang Multiple-input multiple-output (MIMO) ground moving target indication (GMTI) radar has been studied recently because of its excellent performance. In this paper, a general signal model is established for the MIMO GMTI radar with both fast-time and slow-time waveforms. The general signal model can be used to evaluate the performance of the MIMO GMTI radar with arbitrary waveforms such as the ideal orthogonal, code division multiple access (CDMA), frequency-division multiple access (FDMA), time division multiple access (TDMA), and Doppler division multiple access (DDMA) waveforms. We proposed a range-compensation method to eliminate the range-dependence of the FDMA waveforms. The simulation results indicate that the improved performance of FDMA waveforms is achieved utilizing the range-compensation method.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-08-07
    Description: Sensors, Vol. 18, Pages 2572: Tunable Fabry-Perot Interferometer Designed for Far-Infrared Wavelength by Utilizing Electromagnetic Force Sensors doi: 10.3390/s18082572 Authors: Dong Geon Jung Jun Yeop Lee Jae Keon Kim Daewoong Jung Seong Ho Kong A tunable Fabry-Perot interferometer (TFPI)-type wavelength filter designed for the long-wavelength infrared (LWIR) region is fabricated using micro electro mechanical systems (MEMS) technology and the novel polydimethylsiloxane (PDMS) micro patterning technique. The structure of the proposed infrared sensor consists of a Fabry-Perot interferometer (FPI)-based optical filter and infrared (IR) detector. An amorphous Si-based thermal IR detector is located under the FPI-based optical filter to detect the IR-rays filtered by the FPI. The filtered IR wavelength is selected according to the air etalon gap between reflectors, which is defined by the thickness of the patterned PDMS. The 8 μm-thick PDMS pattern is fabricated on a 3 nm-thick Al layer used as a reflector. The air etalon gap is changed using the electromagnetic force between the permanent magnet and solenoid. The measured PDMS gap height is about 2 μm, ranging from 8 μm to 6 μm, with driving current varying from 0 mA to 600 mA, resulting in a tunable wavelength range of 4 μm. The 3-dB bandwidth (full width at half maximum, FWHM) of the proposed filter is 1.5 nm, while the Free Spectral Range (FSR) is 8 μm. Experimental results show that the proposed TFPI can detect a specific wavelength at the long LWIR region.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-08-07
    Description: Sensors, Vol. 18, Pages 2574: Modeling and Control of a Micro AUV: Objects Follower Approach Sensors doi: 10.3390/s18082574 Authors: Jesus Arturo Monroy-Anieva Cyril Rouviere Eduardo Campos-Mercado Tomas Salgado-Jimenez Luis Govinda Garcia-Valdovinos This work describes the modeling, control and development of a low cost Micro Autonomous Underwater Vehicle (μ-AUV), named AR2D2. The main objective of this work is to make the vehicle to detect and follow an object with defined color by means of the readings of a depth sensor and the information provided by an artificial vision system. A nonlinear PD (Proportional-Derivative) controller is implemented on the vehicle in order to stabilize the heave and surge movements. A formal stability proof of the closed-loop system using Lyapunov’s theory is given. Furthermore, the performance of the μ-AUV is validated through numerical simulations in MatLab and real-time experiments.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-08-07
    Description: Sensors, Vol. 18, Pages 2570: The Sensory Quality and Volatile Profile of Dark Chocolate Enriched with Encapsulated Probiotic Lactobacillus plantarum Bacteria Sensors doi: 10.3390/s18082570 Authors: Milica Mirković Sanja Seratlić Kieran Kilcawley David Mannion Nemanja Mirković Zorica Radulović Cocoa and dark chocolate have a wide variety of powerful antioxidants and other nutrients that can positively affect human health. Probiotic dark chocolate has the potential to be a new product in the growing number of functional foods. In this study, encapsulated potential probiotic Lactobacillus plantarum 564 and commercial probiotic Lactobacillus plantarum 299v were added in the production of dark chocolate. The results show very good survival of probiotic bacteria after production and during storage, reaching 108cfu/g in the first 60 days and over 106cfu/g up to 180 days. No statistically significant difference (p > 0.05) in chemical composition and no major differences in the volatile profiles between control and experimental chocolate samples were observed, indicating no impact of probiotic bacteria on compositional and sensory characteristics of dark chocolate. The sensory evaluation of control and both probiotic dark chocolate samples showed excellent sensory quality after 60 and 180 days of storage, demonstrating that probiotics did not affect aroma, texture and appearance of chocolate. Due to a high viability of bacterial cells and acceptable sensory properties, it can be concluded that encapsulated probiotics Lb. plantarum 564 and Lb. plantarum 299v could be successfully used in the production of probiotic dark chocolate.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-08-06
    Description: Sensors, Vol. 18, Pages 2564: Indirect Measurement of Ground Reaction Forces and Moments by Means of Wearable Inertial Sensors: A Systematic Review Sensors doi: 10.3390/s18082564 Authors: Andrea Ancillao Salvatore Tedesco John Barton Brendan O’Flynn In the last few years, estimating ground reaction forces by means of wearable sensors has come to be a challenging research topic paving the way to kinetic analysis and sport performance testing outside of labs. One possible approach involves estimating the ground reaction forces from kinematic data obtained by inertial measurement units (IMUs) worn by the subject. As estimating kinetic quantities from kinematic data is not an easy task, several models and protocols have been developed over the years. Non-wearable sensors, such as optoelectronic systems along with force platforms, remain the most accurate systems to record motion. In this review, we identified, selected and categorized the methodologies for estimating the ground reaction forces from IMUs as proposed across the years. Scopus, Google Scholar, IEEE Xplore, and PubMed databases were interrogated on the topic of Ground Reaction Forces estimation based on kinematic data obtained by IMUs. The identified papers were classified according to the methodology proposed: (i) methods based on direct modelling; (ii) methods based on machine learning. The methods based on direct modelling were further classified according to the task studied (walking, running, jumping, etc.). Finally, we comparatively examined the methods in order to identify the most reliable approaches for the implementation of a ground reaction force estimator based on IMU data.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-08-06
    Description: Sensors, Vol. 18, Pages 2563: Joint Center Estimation Using Single-Frame Optimization: Part 2: Experimentation Sensors doi: 10.3390/s18082563 Authors: Eric Frick Salam Rahmatalla Human motion capture is driven by joint center location estimates, and error in their estimation can be compounded by subsequent kinematic calculations. Soft tissue artifact (STA), the motion of tissue relative to the underlying bones, is a primary cause of error in joint center calculations. A method for mitigating the effects of STA, single-frame optimization (SFO), was introduced and numerically verified in Part 1 of this work, and the purpose of this article (Part 2) is to experimentally compare the results of SFO with a marker-based solution. The experimentation herein employed a single-degree-of-freedom pendulum to simulate human joint motion, and the effects of STA were simulated by affixing the inertial measurement unit to the pendulum indirectly through raw, vacuum-sealed meat. The inertial sensor was outfitted with an optical marker adapter so that its location could be optically determined by a camera-based motion-capture system. During the motion, inertial effects and non-rigid attachment of the inertial sensor caused the simulated STA to manifest via unrestricted motion (six degrees of freedom) relative to the rigid pendulum. The redundant inertial and optical instrumentation allowed a time-varying joint center solution to be determined both by optical markers and by SFO, allowing for comparison. The experimental results suggest that SFO can achieve accuracy comparable to that of state-of-the-art joint center determination methods that use optical skin markers (root mean square error of 7.87–37.86 mm), and that the time variances of the SFO solutions are correlated (r =  0.58–0.99) with the true, time-varying joint center solutions. This suggests that SFO could potentially help to fill a gap in the existing literature by improving the characterization and mitigation of STA in human motion capture.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-08-06
    Description: Sensors, Vol. 18, Pages 2562: A Real-Time Imaging Algorithm Based on Sub-Aperture CS-Dechirp for GF3-SAR Data Sensors doi: 10.3390/s18082562 Authors: Guang-Cai Sun Yanbin Liu Mengdao Xing Shiyu Wang Liang Guo Jun Yang Conventional synthetic aperture radar (SAR) imaging algorithms usually require a period of time to process data that is longer than the time it takes to record one synthetic aperture or that corresponding to an adequate azimuth resolution. That is to say, the real-time processing system is idle during the long data recording time and the utilization of computational resources is low. To deal with this problem, a real-time imaging algorithm based on sub-aperture chirp scaling dechirp (CS-dechirp) is proposed in this paper. With CS-dechirp, the sub-aperture data could be processed to form an image with relatively low resolution. Subsequently, a few low-resolution images are generated as longer azimuth data are recorded. At the stage of full-resolution image generation, a coherent combination method for the low-resolution complex-value images is developed. As the low-resolution complex-value images are coherently combined one by one, the resolution is gradually improved and the full-resolution image is finally obtained. The results of a simulation and real data from the GF3-SAR validate the effectiveness of the proposed algorithm.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-08-08
    Description: Energies, Vol. 11, Pages 2042: Time-Resolved Temperature Map Prediction of Concentration Photovoltaics Systems by Means of Coupled Ray Tracing Flux Analysis and Thermal Quadrupoles Modelling Energies doi: 10.3390/en11082042 Authors: Alejandro Mateos-Canseco Manuel I. Peña-Cruz Arturo Díaz-Ponce Jean-Luc Battaglia Christophe Pradère Luis David Patino-Lopez A transient 3D thermal model based on the thermal quadrupole method, coupled to ray tracing analysis, is presented. This methodology can predict transient temperature maps under any time-fluctuating irradiance flux—either synthetic or experimental—providing a useful tool for the design and parametric optimization of concentration photovoltaics systems. Analytic simulations of a concentration photovoltaics system thermal response and assessment of in-plane thermal gradients induced by fast tracking point perturbations, like those induced by wind, are provided and discussed for the first time. Computation times for time-resolved temperature maps can be as short as 9 s for a full month of system operation, with stimuli inspired by real data. Such information could pave the way for more accurate studies of cell reliability under any set of worldwide irradiance conditions.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-08-07
    Description: Energies, Vol. 11, Pages 2035: Experimental Investigation of Flow-Induced Motion and Energy Conversion of a T-Section Prism Energies doi: 10.3390/en11082035 Authors: Nan Shao Jijian Lian Guobin Xu Fang Liu Heng Deng Quanchao Ren Xiang Yan Flow-induced motion (FIM) performs well in energy conversion but has been barely investigated, particularly for prisms with sharp sections. Previous studies have proven that T-section prisms that undergo galloping branches with high amplitude are beneficial to energy conversions. The FIM experimental setup designed by Tianjin University (TJU) was improved to conduct a series of FIM responses and energy conversion tests on a T-section prism. Experimental results are presented and discussed, to reveal the complete FIM responses and power generation characteristics of the T-section prism under different load resistances and section aspect ratios. The main findings are summarized as follows. (1) Hard galloping (HG), soft galloping (SG), and critical galloping (CG) can be observed by varying load resistances. When the load resistances are low, HG occurs; otherwise, SG occurs. (2) In the galloping branch, the highest amplitude and the most stable oscillation cause high-quality electrical energy production by the generator. Therefore, the galloping branch is the best branch for harvesting energy. (3) In the galloping branch, as the load resistances decrease, the active power continually increases until the prism is suppressed from galloping to a vortex-induced vibration (VIV) lower branch with a maximum active power Pharn of 21.23 W and a maximum ηout of 20.2%. (4) Different section aspect ratios (α) can significantly influence the FIM responses and energy conversions of the T-section prism. For small aspect ratios, galloping is hardly observed in the complete responses, but the power generation efficiency (ηout,0.8 = 27.44%) becomes larger in the galloping branch.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-08-08
    Description: Sensors, Vol. 18, Pages 2589: Design of Novel Ceramic Preconcentrator and Integration in Gas Chromatographic System for Detection of Ethylene Gas from Ripening Bananas Sensors doi: 10.3390/s18082589 Authors: Nayyer Zaidi Muhammad Tahir Micheal Vellekoop Walter Lang In this paper, a novel ceramic preconcentrator is manufactured using aluminum nitride (ALN) ceramics. The preconcentrator consists of a heater, a preconcentrator body, a gas inlet and a gas outlet. The adsorption material, Carbosieve SII, is loaded into the preconcentrator. The preconcentrator is integrated with a previously developed micro gas chromatographic system filled with ethylene. When operated, adequate ethylene gas is adsorbed into the preconcentrator. The application of heat pulse also successfully desorbs the ethylene gas. Tests are conducted with ethylene gas at concentrations of 10 ppm, 5 ppm and 2.5 ppm and 400 ppb, respectively. The system is also tested with ethylene gas from ripening bananas over a period of three days. No interference signal is observed in the chromatogram because of other ripening gases (e.g., carbon dioxide, oxygen, alcohol) and humidity. A detection limit of 25 ppb is realized with this system. The developed preconcentrator has several applications, e.g., in food industry and environmental monitoring.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-08-08
    Description: Sensors, Vol. 18, Pages 2580: Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal Sensors doi: 10.3390/s18082580 Authors: Tri Dev Acharya Anoj Subedi Dong Ha Lee Accurate and frequent updates of surface water have been made possible by remote sensing technology. Index methods are mostly used for surface water estimation which separates the water from the background based on a threshold value. Generally, the threshold is a fixed value, but can be challenging in the case of environmental noise, such as shadow, forest, built-up areas, snow, and clouds. One such challenging scene can be found in Nepal where no such evaluation has been done. Taking that in consideration, this study evaluates the performance of the most widely used water indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Modified NDWI (MNDWI), and Automated Water Extraction Index (AWEI) in a Landsat 8 scene of Nepal. The scene, ranging from 60 m to 8848 m, contains various types of water bodies found in Nepal with different forms of environmental noise. The evaluation was conducted based on measures from a confusion matrix derived using validation points. Comparing visually and quantitatively, not a single method was able to extract surface water in the entire scene with better accuracy. Upon selecting optimum thresholds, the overall accuracy (OA) and kappa coefficient (kappa) was improved, but not satisfactory. NDVI and NDWI showed better results for only pure water pixels, whereas MNDWI and AWEI were unable to reject snow cover and shadows. Combining NDVI with NDWI and AWEI with shadow improved the accuracy but inherited the NDWI and AWEI characteristics. Segmenting the test scene with elevations above and below 665 m, and using NDVI and NDWI for detecting water, resulted in an OA of 0.9638 and kappa of 0.8979. The accuracy can be further improved with a smaller interval of categorical characteristics in one or multiple scenes.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-08-08
    Description: Sensors, Vol. 18, Pages 2581: The Shared Bicycle and Its Network—Internet of Shared Bicycle (IoSB): A Review and Survey Sensors doi: 10.3390/s18082581 Authors: Shu Shen Zhao-Qing Wei Li-Juan Sun Yang-Qing Su Ru-Chuan Wang Han-Ming Jiang With the expansion of Intelligent Transport Systems (ITS) in smart cities, the shared bicycle has developed quickly as a new green public transportation mode, and is changing the travel habits of citizens heavily across the world, especially in China. The purpose of the current paper is to provide an inclusive review and survey on shared bicycle besides its benefits, history, brands and comparisons. In addition, it proposes the concept of the Internet of Shared Bicycle (IoSB) for the first time, as far as we know, to find a feasible solution for those technical problems of the shared bicycle. The possible architecture of IoSB in our opinion is presented, as well as most of key IoT technologies, and their capabilities to merge into and apply to the different parts of IoSB are introduced. Meanwhile, some challenges and barriers to IoSB’s implementation are expressed thoroughly too. As far as the advice for overcoming those barriers be concerned, the IoSB’s potential aspects and applications in smart city with respect to technology development in the future provide another valuable further discussion in this paper.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-08-09
    Description: Energies, Vol. 11, Pages 2070: A Simple Assessment of Housing Retrofit Policies for the UK: What Should Succeed the Energy Company Obligation? Energies doi: 10.3390/en11082070 Authors: Luciana Maria Miu Natalia Wisniewska Christoph Mazur Jeffrey Hardy Adam Hawkes Despite the need for large-scale retrofit of UK housing to meet emissions reduction targets, progress to date has been slow and domestic energy efficiency policies have struggled to accelerate housing retrofit processes. There is a need for housing retrofit policies that overcome key barriers within the retrofit sector while maintaining economic viability for customers, funding organizations, and effectively addressing UK emission reductions and fuel poverty targets. In this study, we use a simple assessment framework to assess three policies (the Variable Council Tax, the Variable Stamp Duty Land Tax, and Green Mortgage) proposed to replace the UK’s current major domestic retrofit programme known as the Energy Company Obligation (ECO). We show that the Variable Council Tax and Green Mortgage proposals have the greatest potential for overcoming the main barriers to retrofit policies while maintaining economic viability and contributing to high-level UK targets. We also show that, while none of the assessed schemes are capable of overcoming all retrofit barriers on their own, a mix of all three policies could address most barriers and provide key benefits such as wide coverage of property markets, operation on existing financial infrastructures, and application of a “carrot-and-stick” approach to incentivize retrofit. Lastly, we indicate that the specific support and protection of fuel-poor households cannot be achieved by a mix of these policies and a complementary scheme focused on fuel-poor households is required.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-08-09
    Description: Energies, Vol. 11, Pages 2069: Layout Optimization Design of Two Vortex Induced Piezoelectric Energy Converters (VIPECs) Using the Combined Kriging Surrogate Model and Particle Swarm Optimization Method Energies doi: 10.3390/en11082069 Authors: Xinyu An Baowei Song Zhaoyong Mao Congcong Ma The layout configuration of Vortex Induced Piezoelectric Energy Converters (VIPECs) is essential to improve its overall performance. Based on the formations of migrating geese, the configuration is characterized by two nondimensionalized layout parameters. A number of sampled points for different configurations are simulated with the two-dimensional Computation Fluid Dynamics (CFD) method. The influence of layout configurations on VIPECs’ lift force and wake structure is investigated and the generated open circuit output voltage is obtained through the derived output voltage equation. The response surface model of the output voltage of both the leading VIPEC and the following VIPEC and their summation are established using the Kriging surrogate model based on the obtained simulation results. Then, optimal layout parameters are found through the Particle Swarm Optimization (PSO) algorithm, and its predicted result is compared with that of the CFD simulation. The simulation and optimization results reveal that the output voltage is not always consistent with the lift force on the plate. When VIPECs are placed in parallel with a certain spacing, their overall performance increases. The summation of output voltage is predicted to improve by approximately 63.7% compared to two single VIPECs when they are placed at the optimal layout parameters.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-08-09
    Description: Energies, Vol. 11, Pages 2057: Heat Transfer Coefficient Identification in Mini-Channel Flow Boiling with the Hybrid Picard–Trefftz Method Energies doi: 10.3390/en11082057 Authors: Mirosław Grabowski Sylwia Hożejowska Anna Pawińska Mieczysław E. Poniewski Jacek Wernik This paper summarizes the results of the flow boiling heat transfer study with ethanol in a 1.8 mm deep and 2.0 mm wide horizontal, asymmetrically heated, rectangular mini-channel. The test section with the mini-channel was the main part of the experimental stand. One side of the mini-channel was closed with a transparent sight window allowing for the observation of two-phase flow structures with the use of a fast film camera. The other side of the channel was the foil insulated heater. The infrared camera recorded the 2D temperature distribution of the foil. The 2D temperature distributions in the elements of the test section with two-phase flow boiling were determined using (1) the Trefftz method and (2) the hybrid Picard–Trefftz method. These methods solved the triple inverse heat conduction problem in three consecutive elements of the test section, each with different physical properties. The values of the local heat transfer coefficients calculated on the basis of the Robin boundary condition were compared with the coefficients determined with the simplified approach, where the arrangement of elements in the test section was treated as a system of planar layers.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-08-09
    Description: Energies, Vol. 11, Pages 2056: Macroscopic and Microscopic Spray Characteristics of Diesel and Gasoline in a Constant Volume Chamber Energies doi: 10.3390/en11082056 Authors: Moo-Yeon Lee Gee-Soo Lee Chan-Jung Kim Jae-Hyeong Seo Ki-Hyun Kim The aim of this study is to investigate the spray characteristics of diesel and gasoline under various ambient conditions. Ambient conditions were simulated, ranging from atmospheric conditions to high pressure and temperature conditions such as those inside a combustion chamber of an internal combustion engine. Spray tip penetration and spray cross-sectional area were calculated in liquid and vapor spray development. In addition, initial spray development and end of injection near nozzle were visualized microscopically, to study spray atomization characteristics. Three injection pressures of 50 MPa, 100 MPa, and 150 MPa were tested. The ambient temperature was varied from 300 K to 950 K, and the ambient density was maintained between 1 kg/m3 and 20 kg/m3. Gasoline and diesel exhibited similar liquid penetration and spray cross-sectional area at every ambient density condition under non-evaporation. As the ambient temperature increased, liquid penetration length and spray area of both fuels’ spray were shortened and decreased by fuel evaporation near the spray boundary. However, the two fuels were characterized by different slopes in the decrement trend of spray area as the ambient temperature increased. The decrement slope trend coincided considerably with the distillation curve characteristics of the two fuels. Vapor spray boundary of gasoline and diesel was particularly similar, despite the different amount of fuel evaporation. It was assumed that the outer spray boundary of gasoline and diesel is always similar when using the same injector and injection conditions. In microscopic spray visualization, gasoline spray displayed a more unstable and asymmetric spray shape, with more dispersed and distributed fuel ligaments during initial spray development. Large amounts of fuel vapor cloud were observed near the nozzle at the end of the injection process with gasoline. Some amounts of this vapor cloud were attributed to the evaporation of residual fuel in the nozzle sac.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-08-09
    Description: Energies, Vol. 11, Pages 2055: Energy Retrofitting Strategies and Economic Assessments: The Case Study of a Residential Complex Using Utility Bills Energies doi: 10.3390/en11082055 Authors: Cesare Biserni Paolo Valdiserri Dario D’Orazio Massimo Garai Promotion of retrofit actions on existing buildings is a goal in Italy, since most of them were built before the 80′s when little attention was paid to energy saving. This paper presents an integrated passive design approach to reduce the heating demand and limit the costs of a representative existing residential complex located in Bologna, in the northern part of Italy. To this purpose, we explored different scenarios upon actions taken on the building structure: (1) High efficiency windows; (2) additional insulation on the external walls; or (3) the simultaneous application of high efficiency windows and improved thermal envelope, on both external walls and roofing. The numerical optimization has been performed dynamically using TRNSYS simulation tool, to evaluate energy consumptions in different structural conditions. Then, the developed model has been calibrated by the real consumption data deduced from energy bills (years 2009–2015). Finally, the energy results obtained in the above mentioned different scenarios have been evaluated under an economic assessment of cost investment: It has been highlighted that the payback time (PBT) results to be strongly influenced by the national policies of fiscal incentives. According to the present model, the most profitable condition is obtained when additional insulation on the external walls is applied: The total amount of energy saving resulted to be equal to 930.4 MWh, with an optimal PBT of roughly six years, when tax refund was contemplated.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-08-09
    Description: Energies, Vol. 11, Pages 2052: A Fractional Order Power System Stabilizer Applied on a Small-Scale Generation System Energies doi: 10.3390/en11082052 Authors: Florindo A. de C. Ayres Junior Carlos T. da Costa Junior Renan L. P. de Medeiros Walter Barra Junior Cleonor C. das Neves Marcelo K. Lenzi Gabriela de M. Veroneze In this paper, a Fractional Order Power System controller (FOPSS) is designed, and its performance and robustness are experimentally evaluated by tests in a 10 kVA laboratory scale power system. The FOPSS design methodology is based on the tuning of an additional design variable, namely the fractional order of the controller transfer function. This design variable is tuned aiming to obtain a tradeoff between satisfactory damping of dominant oscillating mode and improved closed-loop system robustness. For controller synthesis, transfer function models were estimated from data collected at selected operating points and subsequently applied for the controller design and for obtaining upper bounds estimates on the operating-point depends on plant uncertainties. The experimental results show that the FOPPS was able to obtain a robust performance for the considered set of the power system operating conditions.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-08-09
    Description: Energies, Vol. 11, Pages 2054: Lifetime Prediction of a Polymer Electrolyte Membrane Fuel Cell under Automotive Load Cycling Using a Physically-Based Catalyst Degradation Model Energies doi: 10.3390/en11082054 Authors: Manik Mayur Mathias Gerard Pascal Schott Wolfgang G. Bessler One of the bottlenecks hindering the usage of polymer electrolyte membrane fuel cell technology in automotive applications is the highly load-sensitive degradation of the cell components. The cell failure cases reported in the literature show localized cell component degradation, mainly caused by flow-field dependent non-uniform distribution of reactants. The existing methodologies for diagnostics of localized cell failure are either invasive or require sophisticated and expensive apparatus. In this study, with the help of a multiscale simulation framework, a single polymer electrolyte membrane fuel cell (PEMFC) model is exposed to a standardized drive cycle provided by a system model of a fuel cell car. A 2D multiphysics model of the PEMFC is used to investigate catalyst degradation due to spatio-temporal variations in the fuel cell state variables under the highly transient load cycles. A three-step (extraction, oxidation, and dissolution) model of platinum loss in the cathode catalyst layer is used to investigate the cell performance degradation due to the consequent reduction in the electro-chemical active surface area (ECSA). By using a time-upscaling methodology, we present a comparative prediction of cell end-of-life (EOL) under different driving behavior of New European Driving Cycle (NEDC) and Worldwide Harmonized Light Vehicles Test Cycle (WLTC).
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-05
    Description: Energies, Vol. 11, Pages 1453: Comments to Paper Entitled: Development of a Data-Driven Predictive Model of Supply Air Temperature in an Air-Handling Unit for Conserving Energy. Energies 2018, 11, 407 Energies doi: 10.3390/en11061453 Authors: Yaolin Lin Wei Yang I have read, with interest, the article authorized by Hong and Kim, which was published in Energies 2018, 11, 407; doi:10.3390/en11020407: entitled “Development of a Data-Driven Predictive Model of Supply Air Temperature in an Air-Handling Unit for Conserving Energy”[...]
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-05
    Description: Energies, Vol. 11, Pages 1450: Investigation of Water Hammer Protection in Water Supply Pipeline Systems Using an Intelligent Self-Controlled Surge Tank Energies doi: 10.3390/en11061450 Authors: Wuyi Wan Boran Zhang A surge tank is a common pressure control device in long pressurized pipelines. The performance is greatly influenced by the location, cross area, and the characteristics of the connector. In order to improve the property of the surge tank, the effect of the connector is numerically analyzed by the method of characteristics (MOC). A hysteretic effect can occur when the discharge capacity is limited. Therefore, the performance of the surge tank can be improved if the discharge capacity of the connector is appropriately controlled according to the different conditions. For the adjustability of the connector’s discharge capacity, a kind of intelligent self-controlled surge tank (IST) is proposed. In addition, through simulations and analysis, IST is proved to have advantages in pressure control and applicability compared to normal surge tanks.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-05
    Description: Energies, Vol. 11, Pages 1452: Impact of Demand Response Programs on Optimal Operation of Multi-Microgrid System Energies doi: 10.3390/en11061452 Authors: Anh-Duc Nguyen Van-Hai Bui Akhtar Hussain Duc-Huy Nguyen Hak-Man Kim The increased penetration of renewables is beneficial for power systems but it poses several challenges, i.e., uncertainty in power supply, power quality issues, and other technical problems. Backup generators or storage system have been proposed to solve this problem but there are limitations remaining due to high installation and maintenance cost. Furthermore, peak load is also an issue in the power distribution system. Due to the adjustable characteristics of loads, strategies on demand side such as demand response (DR) are more appropriate in order to deal with these challenges. Therefore, this paper studies how DR programs influence the operation of the multi-microgrid (MMG). The implementation is executed based on a hierarchical energy management system (HiEMS) including microgrid EMSs (MG-EMSs) responsible for local optimization in each MG and community EMS (C-EMS) responsible for community optimization in the MMG. Mixed integer linear programming (MILP)-based mathematical models are built for MMG optimal operation. Five scenarios consisting of single DR programs and DR groups are tested in an MMG test system to evaluate their impact on MMG operation. Among the five scenarios, some DR programs apply curtailing strategies, resulting in a study about the influence of base load value and curtailable load percentage on the amount of curtailed load and shifted load as well as the operation cost of the MMG. Furthermore, the impact of DR programs on the amount of external and internal trading power in the MMG is also examined. In summary, each individual DR program or group could be handy in certain situations depending on the interest of the MMG such as external trading, self-sufficiency or operation cost minimization.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-05
    Description: Energies, Vol. 11, Pages 1449: Short-Term Load Forecasting for Electric Bus Charging Stations Based on Fuzzy Clustering and Least Squares Support Vector Machine Optimized by Wolf Pack Algorithm Energies doi: 10.3390/en11061449 Authors: Xing Zhang Accurate short-term load forecasting is of momentous significance to ensure safe and economic operation of quick-change electric bus (e-bus) charging stations. In order to improve the accuracy and stability of load prediction, this paper proposes a hybrid model that combines fuzzy clustering (FC), least squares support vector machine (LSSVM), and wolf pack algorithm (WPA). On the basis of load characteristics analysis for e-bus charging stations, FC is adopted to extract samples on similar days, which can not only avoid the blindness of selecting similar days by experience, but can also overcome the adverse effects of unconventional load data caused by a sudden change of factors on training. Then, WPA with good global convergence and computational robustness is employed to optimize the parameters of LSSVM. Thus, a novel hybrid load forecasting model for quick-change e-bus charging stations is built, namely FC-WPA-LSSVM. To verify the developed model, two case studies are used for model construction and testing. The simulation test results prove that the proposed model can obtain high prediction accuracy and ideal stability.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-06-05
    Description: Energies, Vol. 11, Pages 1447: The Effect of Unbalanced Impedance Loads on the Short-Circuit Current Energies doi: 10.3390/en11061447 Authors: Insu Kim Conventional short-circuit studies often neglect the load current because the short-circuit current (SCC) flowing from generators is much greater than the SCC that is affected by various loading conditions. As distributed or clustered loads that are unbalanced in phases are connected to the grid, they can also change the magnitude and phase angle of the SCC, despite their small capacities. Thus, the objective of this study is to present algorithms that are able to analyze such an impedance unbalanced load. For this purpose, this study initially derives an SCC model of the unbalanced impedance load in phases. Since the proposed SCC model requires the pre-fault voltage, it uses a power-flow analysis algorithm that iteratively calculates the current that is to be injected and the pre-fault voltage, using the bus impedance matrix. Then, the proposed SCC calculation algorithm transforms the unbalanced loads into equivalent impedances, using the pre-fault voltage, and adds them to sequence networks as input data, using the proposed SCC model. The proposed algorithms are verified in various case studies. As a result, the proposed SCC calculation algorithms are more accurate, because they do not neglect unbalanced loads.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-06-05
    Description: Energies, Vol. 11, Pages 1451: Design of a Path-Tracking Steering Controller for Autonomous Vehicles Energies doi: 10.3390/en11061451 Authors: Chuanyang Sun Xin Zhang Lihe Xi Ying Tian This paper presents a linearization method for the vehicle and tire models under the model predictive control (MPC) scheme, and proposes a linear model-based MPC path-tracking steering controller for autonomous vehicles. The steering controller is designed to minimize lateral path-tracking deviation at high speeds. The vehicle model is linearized by a sequence of supposed steering angles, which are obtained by assuming the vehicle can reach the desired path at the end of the MPC prediction horizon and stay in a steady-state condition. The lateral force of the front tire is directly used as the control input of the model, and the rear tire’s lateral force is linearized by an equivalent cornering stiffness. The course-direction deviation, which is the angle between the velocity vector and the path heading, is chosen as a control reference state. The linearization model is validated through the simulation, and the results show high prediction accuracy even in regions of large steering angle. This steering controller is tested through simulations on the CarSim-Simulink platform (R2013b, MathWorks, Natick, MA, USA), showing the improved performance of the present controller at high speeds.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-06-05
    Description: Energies, Vol. 11, Pages 1442: Interaction of Wind Turbine Wakes under Various Atmospheric Conditions Energies doi: 10.3390/en11061442 Authors: Sang Lee Peter Vorobieff Svetlana Poroseva We present a numerical study of two utility-scale 5-MW turbines separated by seven rotor diameters. The effects of the atmospheric boundary layer flow on the turbine performance were assessed using large-eddy simulations. We found that the surface roughness and the atmospheric stability states had a profound effect on the wake diffusion and the Reynolds stresses. In the upstream turbine case, high surface roughness increased the wind shear, accelerating the decay of the wake deficit and increasing the Reynolds stresses. Similarly, atmospheric instabilities significantly expedited the wake decay and the Reynolds stress increase due to updrafts of the thermal plumes. The turbulence from the upstream boundary layer flow combined with the turbine wake yielded higher Reynolds stresses for the downwind turbine, especially in the streamwise component. For the downstream turbine, diffusion of the wake deficits and the sharp peaks in the Reynolds stresses showed faster decay than the upwind case due to higher levels of turbulence. This provides a physical explanation for how turbine arrays or wind farms can operate more efficiently under unstable atmospheric conditions, as it is based on measurements collected in the field.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-06-05
    Description: Energies, Vol. 11, Pages 1443: Impacts of the Allocation Mechanism Under the Third Phase of the European Emission Trading Scheme Energies doi: 10.3390/en11061443 Authors: Wolfgang Eichhammer Nele Friedrichsen Sean Healy Katja Schumacher This paper focuses on the following two key research questions in the context of the change in allocation rules in the move from Phase I/II (2005–2012) to Phase III (2013–2020) of the European Emission Trading Scheme (EU ETS): First, how do allocations compare with actual installation-verified emissions in Phase III? For that purpose we analyse changes in sector-country allocations and verified emissions between Phase II and Phase III. The analysis is based on a selection of 2150 installations present in all phases of the EU ETS, taken from the European Union Transaction Log (EUTL) The results show that over-allocation has been considerably reduced in Phase III. Overall, allocation for the selected sectors decreased by 20% in 2013 compared to 2008 but varying across installations. Second, we investigate, whether the introduction of benchmarks in Phase III may have triggered carbon-reducing measures for industrial processes. For that purpose, we analyse for four product groups (cement clinker, pig iron, ammonia and nitric acid) the specific emissions (per tonne of product). Care was taken to define a data set with a similar delimitation of emission and production data. The findings were cross-checked through selected expert interviews. Our findings indicate that there is no evidence so far for improving specific emissions, though the strong improvement for nitric acid, as well as some improvement linked to ammonia occurring before the start of Phase III may have been supported by the introduction of Phase III.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-06-05
    Description: Energies, Vol. 11, Pages 1448: Electrical Properties of Polyethylene/Polypropylene Compounds for High-Voltage Insulation Energies doi: 10.3390/en11061448 Authors: Sameh Ziad Ahmed Dabbak Hazlee Azil Illias Bee Chin Ang Nurul Ain Abdul Latiff Mohamad Zul Hilmey Makmud In high-voltage insulation systems, the most commonly used material is polymeric material because of its high dielectric strength, high resistivity, and low dielectric loss in addition to good chemical and mechanical properties. In this work, various polymer compounds were prepared, consisting of low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), HDPE/PP, and LDPE/PP polymer blends. The relative permittivity and breakdown strength of each sample types were evaluated. In order to determine the physical properties of the prepared samples, the samples were also characterized using differential scanning calorimetry (DSC). The results showed that the dielectric constant of PP increased with the increase of HDPE and LDPE content. The breakdown measurement data for all samples were analyzed using the cumulative probability plot of Weibull distribution. From the acquired results, it was found that the dielectric strengths of LDPE and HDPE were higher than that of PP. Consequently, the addition of LDPE and HDPE to PP increased the breakdown strength of PP, but a variation in the weight ratio (30%, 50% and 70%) did not change significantly the breakdown strength. The DSC measurements showed two exothermic crystallization peaks representing two crystalline phases. In addition, the DSC results showed that the blended samples were physically bonded, and no co-crystallization occurred in the produced blends.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-06-12
    Description: Energies, Vol. 11, Pages 1512: Experimental Investigation of the Use of Waste Mineral Oils as a Fuel with Organic-Based Mn Additive Energies doi: 10.3390/en11061512 Authors: Bülent Özdalyan Recep Ç. Orman The heat values of waste mineral oils are equal to the heat value of the fuel oil. However, heat value alone is not sufficient for the use of waste minerals oils as fuel. However, the critical physical properties of fuels such as density and viscosity need to be adapted to the system in order to be used. In this study, the engine oils used in the first 10,000 km of the vehicles were used as waste mineral oil. An organic-based Mn additive was synthesized to improve the properties of the waste mineral oil. It was observed that mixing the Mn additive with the waste mineral oil at different doses (4, 8, 12, and 16 ppm) improves the viscosity of the waste oil and the flash point. The resulting fuel was evaluated for emission using different loads in a 5 kW capacity generator to compare the fuel with standard diesel fuel and to determine the effect of Mn addition. In the experimental study, it was observed that the emission characteristics of the fuel obtained from waste mineral oil were worse than diesel fuel, but some improvement was observed with Mn addition. As a result, we found that the use of waste mineral oils in engines in fuel standards was not appropriate, but may be improved with additives.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...