ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Kinetics  (158)
  • Protein Conformation  (136)
  • American Association for the Advancement of Science (AAAS)  (286)
  • Molecular Diversity Preservation International
  • 1985-1989  (286)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (286)
  • Molecular Diversity Preservation International
  • Springer  (23)
  • Wiley-Blackwell  (1)
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-05-05
    Description: Tumor promoters may bring about events that lead to neoplastic transformation by inducing specific promotion-relevant effector genes. Functional activation of the transacting transcription factor AP-1 by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) may play an essential role in this process. Clonal genetic variants of mouse epidermal JB6 cells that are genetically susceptible (P+) or resistant (P-) to promotion of transformation by TPA were transfected with 3XTRE-CAT, a construct that has AP-1 cis-enhancer sequences attached to a reporter gene encoding chloramphenicol acetyltransferase (CAT). Transfected JB6 P+, but not P- variants, showed TPA-inducible CAT synthesis. Epidermal growth factor, another transformation promoter in JB6 cells, also caused P+ specific induction of CAT gene expression. These results demonstrate an association between induced AP-1 function and sensitivity to promotion of neoplastic transformation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bernstein, L R -- Colburn, N H -- New York, N.Y. -- Science. 1989 May 5;244(4904):566-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Johns Hopkins University, Department of Biology, Baltimore, MD 21218.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2541502" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; *Cell Transformation, Neoplastic ; Chloramphenicol O-Acetyltransferase/genetics ; Cloning, Molecular ; DNA-Binding Proteins/genetics/*physiology ; Epidermal Growth Factor/pharmacology ; Epidermis ; Gene Expression Regulation ; Genetic Variation ; Kinetics ; Mice ; Nucleic Acid Hybridization ; Plasmids ; Promoter Regions, Genetic ; Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-jun ; Simplexvirus/genetics ; Tetradecanoylphorbol Acetate/*pharmacology ; Transcription Factors/genetics/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-04-28
    Description: The specific hydrolysis of unactivated esters bearing an R or S enantiomeric alcohol has been achieved by two separate classes of catalytic antibodies induced to bind either the R or S substrates. The antibodies exhibit rate accelerations (10(3) to 10(5] above background hydrolysis that, coupled with their antipodal specificity, provide a novel set of reagents for use in synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janda, K D -- Benkovic, S J -- Lerner, R A -- New York, N.Y. -- Science. 1989 Apr 28;244(4903):437-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2717936" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibodies, Monoclonal/immunology ; Antibody Specificity ; Antigens/immunology ; Benzyl Alcohols/metabolism ; *Catalysis ; Esters/metabolism ; Haptens ; Hemocyanin/immunology ; Hydrolysis ; Immunization ; Kinetics ; Lipase/*metabolism ; Mice ; Mice, Inbred A ; Molecular Structure ; Organophosphonates/immunology ; Stereoisomerism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1989-01-13
    Description: The chemical synthesis of biologically active peptides and polypeptides can be achieved by using a convergent strategy of condensing protected peptide segments to form the desired molecule. An oxime support increases the ease with which intermediate protected peptides can be synthesized and makes this approach useful for the synthesis of peptides in which secondary structural elements have been redesigned. The extension of these methods to large peptides and proteins, for which folding of secondary structures into functional tertiary structures is critical, is discussed. Models of apolipoproteins, the homeo domain from the developmental protein encoded by the Antennapedia gene of Drosophila, a part of the Cro repressor, and the enzyme ribonuclease T1 and a structural analog have been synthesized with this method.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, E T -- Mihara, H -- Laforet, G A -- Kelly, J W -- Walters, L -- Findeis, M A -- Sasaki, T -- DK07825/DK/NIDDK NIH HHS/ -- GM12054/GM/NIGMS NIH HHS/ -- HL-186577/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Jan 13;243(4888):187-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Bioorganic Chemistry and Biochemistry, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2492114" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Apolipoprotein A-I ; Apolipoproteins A/chemical synthesis ; Humans ; Indicators and Reagents ; Lipoproteins, HDL/chemical synthesis ; Peptides/*chemical synthesis ; Protein Conformation ; Proteins/*chemical synthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1989-03-10
    Description: Antisense RNA-mediated inhibition of gene expression was used to investigate the biological function of the c-raf-1 gene in a radiation-resistant human squamous carcinoma cell line, SQ-20B. S1 nuclease protection assays revealed that transfection of full-length raf complementary DNA in the antisense orientation (AS) leads to a specific reduction (greater than tenfold) of steady-state levels of the endogenous c-raf-1 sense (S) transcript in SQ-20B cells. In nude mice, the malignant potential of SQ-20B cells transfected with raf (S) was significantly increased relative to that of SQ-20B cells transfected with raf (AS). SQ-20B cells containing transfected raf (S) maintained a radiation-resistant phenotype as compared to those cells harboring the AS version, which appeared to have enhanced radiation sensitivity. These data indicate that the reduced expression of endogenous c-raf-1 is sufficient to modulate the tumorigenicity and the radiation-resistant phenotype of SQ-20B cells, thus implicating c-raf-1 in a pathway important to the genesis of this type of cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kasid, U -- Pfeifer, A -- Brennan, T -- Beckett, M -- Weichselbaum, R R -- Dritschilo, A -- Mark, G E -- New York, N.Y. -- Science. 1989 Mar 10;243(4896):1354-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Radiation Medicine, Vincent T. Lombardi Comprehensive Cancer Research Center, Georgetown University Medical Center, Washington 20007.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2466340" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blotting, Southern ; Carcinoma, Squamous Cell/*genetics ; Cell Line ; Cell Survival/*radiation effects ; Clone Cells ; Dose-Response Relationship, Radiation ; *Gene Expression Regulation ; Humans ; Kinetics ; Mice ; Mice, Nude ; Neoplasm Transplantation ; Nucleic Acid Hybridization ; *Proto-Oncogenes ; RNA/*genetics ; RNA, Antisense ; RNA, Messenger/*antagonists & inhibitors ; Transcription, Genetic ; Transfection ; Transplantation, Heterologous ; Tumor Cells, Cultured/*radiation effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-06-09
    Description: Two types of potassium-selective channels activated by intracellular arachidonic acid or phosphatidylcholine have been found in neonatal rat atrial cells. In inside-out patches, arachidonic acid and phosphatidylcholine each opened outwardly rectifying potassium-selective channels with conductances of 160 picosiemens (IK.AA) and 68 picosiemens (IK.PC), respectively. These potassium channels were not sensitive to internally applied adenosine triphosphate (ATP), magnesium, or calcium. Lowering the intracellular pH from 7.2 to 6.8 or 6.4 reversibly increased IK.AA channel activity three- or tenfold, respectively. A number of fatty acid derivatives were tested for their ability to activate IK.AA. These potassium-selective channels may help explain the increase in potassium conductance observed in ischemic cells and raise the possibility that fatty acid derivatives act as second messengers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, D -- Clapham, D E -- HL 34873/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Jun 9;244(4909):1174-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Mayo Foundation, Rochester, MN 55905.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2727703" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Arachidonic Acids/*pharmacology ; Atrial Function ; Heart/*physiology ; Hydrogen-Ion Concentration ; In Vitro Techniques ; Kinetics ; Membrane Potentials ; Phosphatidylcholines/*pharmacology ; Potassium Channels/drug effects/*physiology ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1989-09-15
    Description: The neutrophil Mac-1 and gp100MEL-14 adhesion proteins are involved in neutrophil extravasation during inflammation. Both the expression and activity of Mac-1 are greatly increased after neutrophil activation. In contrast, neutrophils shed gp100MEL-14 from the cell surface within 4 minutes after activation with chemotactic factors or phorbol esters, releasing a 96-kilodalton fragment of the antigen into the supernatant. Immunohistology showed that gp100MEL-14 was downregulated on neutrophils that had extravasated into inflamed tissue. The gp100MEL-14 adhesion protein may participate in the binding of unactivated neutrophils to the endothelium; rapid shedding of gp100MEL-14 may prevent extravasation into and damage of normal tissues by activated neutrophils.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kishimoto, T K -- Jutila, M A -- Berg, E L -- Butcher, E C -- AI 19957/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1989 Sep 15;245(4923):1238-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2551036" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Differentiation/*immunology ; Antigens, Surface/*immunology ; Bone Marrow Cells ; Cell Adhesion ; Cell Adhesion Molecules ; Chemotactic Factors/*physiology ; Complement C5/physiology ; Complement C5a ; Fluorescent Antibody Technique ; Interleukin-1/physiology ; Interleukin-8 ; Kinetics ; Leukotriene B4/physiology ; Lipopolysaccharides/physiology ; Lymphocyte Activation ; Macrophage Activation ; Macrophage-1 Antigen ; Mice ; Mice, Inbred BALB C ; Neutrophils/cytology/*immunology ; Tetradecanoylphorbol Acetate ; Tumor Necrosis Factor-alpha/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1989-04-07
    Description: Protein engineering and x-ray crystallography have been used to study the role of a surface loop that is present in pancreatic phospholipases but is absent in snake venom phospholipases. Removal of residues 62 to 66 from porcine pancreatic phospholipase A2 does not change the binding constant for micelles significantly, but it improves catalytic activity up to 16 times on micellar (zwitterionic) lecithin substrates. In contrast, the decrease in activity on negatively charged substrates is greater than fourfold. A crystallographic study of the mutant enzyme shows that the region of the deletion has a well-defined structure that differs from the structure of the wild-type enzyme. No structural changes in the active site of the enzyme were detected.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuipers, O P -- Thunnissen, M M -- de Geus, P -- Dijkstra, B W -- Drenth, J -- Verheij, H M -- de Haas, G H -- New York, N.Y. -- Science. 1989 Apr 7;244(4900):82-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2704992" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Crystallography ; Enzyme Activation ; Kinetics ; Molecular Sequence Data ; Mutation ; Pancreas/enzymology ; Phospholipases/*metabolism ; Phospholipases A/genetics/*metabolism/physiology ; Phospholipases A2 ; *Protein Conformation ; Snake Venoms/analysis ; Structure-Activity Relationship ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1989-06-30
    Description: Complementary DNA's that encode an adenylyl cyclase were isolated from a bovine brain library. Most of the deduced amino acid sequence of 1134 residues is divisible into two alternating sets of hydrophobic and hydrophilic domains. Each of the two large hydrophobic domains appears to contain six transmembrane spans. Each of the two large hydrophilic domains contains a sequence that is homologous to a single cytoplasmic domain of several guanylyl cyclases; these sequences may represent nucleotide binding sites. An unexpected topographical resemblance between adenylyl cyclase and various plasma membrane channels and transporters was observed. This structural complexity suggests possible, unappreciated functions for this important enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krupinski, J -- Coussen, F -- Bakalyar, H A -- Tang, W J -- Feinstein, P G -- Orth, K -- Slaughter, C -- Reed, R R -- Gilman, A G -- CA16519/CA/NCI NIH HHS/ -- GM12230/GM/NIGMS NIH HHS/ -- GM34497/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1989 Jun 30;244(4912):1558-64.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2472670" target="_blank"〉PubMed〈/a〉
    Keywords: *Adenylyl Cyclases/genetics/isolation & purification ; Amino Acid Sequence ; Animals ; Base Sequence ; Brain/enzymology ; *Carrier Proteins ; Cattle ; Cell Line ; Cloning, Molecular ; DNA/genetics ; Electrophoresis, Polyacrylamide Gel ; *Ion Channels ; Membrane Proteins ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Protein Conformation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-08-04
    Description: The origin of allostery is an unanswered question in the evolution of complex regulatory proteins. Anabolic ornithine transcarbamoylase, a trimer of identical subunits, is not an allosteric enzyme per se. However, when the active-site residue arginine-106 of the Escherichia coli enzyme is replaced with a glycine through site-directed mutagenesis, the resultant mutant enzyme manifests substrate cooperativity that is absent in the wild-type enzyme. Both homotropic and heterotropic interactions occur in the mutant enzyme. The initial velocity saturation curves of the substrates, carbamoyl phosphate and L-ornithine, conform to the Hill equation. The observed cooperativity depends on substrate but not enzyme concentration. The finding underscores the possibility that a single mutation of the enzyme in the cell could turn transcarbamoylation into a regulatory junction in the biosynthesis of L-arginine and urea.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuo, L C -- Zambidis, I -- Caron, C -- DK01721/DK/NIDDK NIH HHS/ -- DK38089/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 4;245(4917):522-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Metcalf Center for Science and Engineering, Boston University, MA 02215.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2667139" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Binding Sites ; Carbamyl Phosphate/metabolism ; Escherichia coli/*enzymology ; Glycine ; Kinetics ; Macromolecular Substances ; *Mutation ; Ornithine/metabolism ; Ornithine Carbamoyltransferase/*genetics/metabolism ; Structure-Activity Relationship ; Zinc/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-31
    Description: C/EBP is a rat liver nuclear protein capable of sequence-specific interaction with DNA. The DNA sequences to which C/EBP binds in vitro have been implicated in the control of messenger RNA synthesis. It has therefore been predicted that C/EBP will play a role in regulating gene expression in mammalian cells. The region of the C/EBP polypeptide required for direct interaction with DNA has been identified and shown to bear amino acid sequence relatedness with the product of the myc, fos, and jun proto-oncogenes. The arrangement of these related amino acid sequences led to the prediction of a new structural motif, termed the "leucine zipper," that plays a role in facilitating sequence-specific interaction between protein and DNA. Experimental tests now provide support for the leucine zipper hypothesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Landschulz, W H -- Johnson, P F -- McKnight, S L -- New York, N.Y. -- Science. 1989 Mar 31;243(4899):1681-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2494700" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; CCAAT-Enhancer-Binding Proteins ; Cross-Linking Reagents ; DNA/*metabolism ; Glutaral ; Leucine ; Liver/*analysis ; Macromolecular Substances ; Molecular Weight ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Protein Conformation ; Rats ; Repetitive Sequences, Nucleic Acid ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1989-07-07
    Description: Basic fibroblast growth factor (bFGF) participates in many processes including early developmental events, angiogenesis, wound healing, and maintenance of neuronal cell viability. A 130-kilodalton protein was isolated on the basis of its ability to specifically bind to bFGF. A complementary DNA clone was isolated with an oligonucleotide probe corresponding to determined amino acid sequences of tryptic peptide fragments of the purified protein. The putative bFGF receptor encoded by this complementary DNA is a transmembrane protein that contains three extracellular immunoglobulin-like domains, an unusual acidic region, and an intracellular tyrosine kinase domain. These domains are arranged in a pattern that is different from that of any growth factor receptor described.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, P L -- Johnson, D E -- Cousens, L S -- Fried, V A -- Williams, L T -- CA 21765/CA/NCI NIH HHS/ -- R01 HL32898/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Jul 7;245(4913):57-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Medicine, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2544996" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cells, Cultured ; Chick Embryo ; *Cloning, Molecular ; DNA/*genetics ; Fibroblast Growth Factors/*genetics ; Kinetics ; Mice ; Molecular Sequence Data ; Peptide Fragments/analysis ; Receptors, Cell Surface/*genetics/metabolism ; Receptors, Fibroblast Growth Factor ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1989-08-11
    Description: The three-dimensional solution structure of a zinc finger nucleic acid binding motif has been determined by nuclear magnetic resonance (NMR) spectroscopy. Spectra of a synthetic peptide corresponding to a single zinc finger from the Xenopus protein Xfin yielded distance and dihedral angle constraints that were used to generate structures from distance geometry and restrained molecular dynamics calculations. The zinc finger is an independently folded domain with a compact globular structure in which the zinc atom is bound by two cysteine and two histidine ligands. The polypeptide backbone fold consists of a well-defined helix, starting as alpha and ending as 3(10) helix, packed against two beta strands that are arranged in a hairpin structure. A high density of basic and polar amino acid side chains on the exposed face of the helix are probably involved in DNA binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, M S -- Gippert, G P -- Soman, K V -- Case, D A -- Wright, P E -- GM 36643/GM/NIGMS NIH HHS/ -- GM38794/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 11;245(4918):635-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2503871" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cysteine/metabolism ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; Histidine/metabolism ; Hydrogen Bonding ; Magnetic Resonance Spectroscopy ; Metalloproteins/*metabolism ; Molecular Sequence Data ; Molecular Structure ; Protein Conformation ; Solutions ; Thermodynamics ; Xenopus ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-11-17
    Description: Rana esculenta tropomyosin assembles in vivo into a coiled-coil alpha helix from two different subunits, alpha and beta, which are present in about equal concentrations. Although the native composition is alpha beta, a mixture of equal amounts of alpha alpha and beta beta is produced by refolding dissociated alpha and beta at low temperature in vitro. Refolding kinetics showed that alpha alpha formed first and was relatively stable with regard to chain exchange below approximately 20 degrees C. Equilibration of the homodimer mixture at 30 degrees and 34 degrees C for long times, however, resulted in the formation of the native alpha beta molecule by chain exchange. Biosynthesis of alpha beta from separate alpha and beta genes is, therefore, favored thermodynamically over the formation of homodimers, and biological factors need not be invoked to explain the preferred native alpha beta composition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lehrer, S S -- Qian, Y D -- Hvidt, S -- HL22461/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Nov 17;246(4932):926-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Muscle Research, Boston Biomedical Research Institute, MA 02114.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2814515" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Kinetics ; Macromolecular Substances ; Muscle, Smooth/metabolism ; Muscles/metabolism ; Myocardium/metabolism ; Protein Conformation ; Protein Denaturation ; Protein Processing, Post-Translational ; Rana esculenta ; Thermodynamics ; Tropomyosin/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1989-01-13
    Description: An important question in protein folding is whether the natural amino and carboxyl termini and the given order of secondary structure segments are critical to the stability and to the folding pathway of proteins. Here it is shown that two circularly permuted versions of the gene of a single-domain beta alpha barrel enzyme can be expressed in Escherichia coli. The variants are enzymically active and are practically indistinguishable from the original enzyme by several structural and spectroscopic criteria, despite the creation of new termini and the cleavage of a surface loop. This novel genetic approach should be useful for protein folding studies both in vitro and in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luger, K -- Hommel, U -- Herold, M -- Hofsteenge, J -- Kirschner, K -- New York, N.Y. -- Science. 1989 Jan 13;243(4888):206-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abteilung Biophysikalische Chemie, Universitat Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2643160" target="_blank"〉PubMed〈/a〉
    Keywords: *Aldose-Ketose Isomerases ; Amino Acid Sequence ; Base Sequence ; Carbohydrate Epimerases/*genetics/metabolism ; Circular Dichroism ; *Cloning, Molecular ; Enzyme Stability ; Escherichia coli/*enzymology/genetics ; *Genes ; Genetic Variation ; Kinetics ; Molecular Sequence Data ; *Protein Conformation ; Spectrometry, Fluorescence ; Spectrophotometry, Ultraviolet
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-11-03
    Description: An important control point in gene expression is at the level of messenger RNA (mRNA) stability. The mRNAs of certain regulatory cellular proteins such as oncogenes, cytokines, lymphokines, and transcriptional activators are extremely labile. These messages share a common AUUUA pentamer in their 3' untranslated region, which confers cytoplasmic instability. A cytosolic protein was identified that binds specifically to RNA molecules containing four reiterations of the AUUUA structural element. This protein consists of three subunits and binds rapidly to AUUUA-containing RNA. Such protein-RNA complexes are resistant to the actions of denaturing and reducing agents, demonstrating very stable binding. The time course, stability, and specificity of the protein-AUUUA interaction suggests the possibility that the formation of this complex may target susceptible mRNA for rapid cytoplasmic degradation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malter, J S -- CA01427-01/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1989 Nov 3;246(4930):664-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Tulane University School of Medicine, New Orleans, LA 70112.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2814487" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding, Competitive ; Carrier Proteins/isolation & purification/*metabolism ; Cell Line ; Humans ; Kinetics ; Macromolecular Substances ; Molecular Weight ; *Nucleocytoplasmic Transport Proteins ; RNA, Messenger/*metabolism ; *RNA-Binding Proteins ; Ribonuclease, Pancreatic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1989-06-09
    Description: Arachidonic acid, as well as fatty acids that are not substrates for cyclooxygenase and lipoxygenase enzymes, activated a specific type of potassium channel in freshly dissociated smooth muscle cells. Activation occurred in excised membrane patches in the absence of calcium and all nucleotides. Therefore signal transduction pathways that require such soluble factors, including the NADPH-dependent cytochrome P450 pathway, do not mediate the response. Thus, fatty acids directly activate potassium channels and so may constitute a class of signal molecules that regulate ion channels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ordway, R W -- Walsh, J V Jr -- Singer, J J -- DK-31620/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1989 Jun 9;244(4909):1176-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Massachusetts Medical School, Worcester 01655.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2471269" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arachidonic Acid ; Arachidonic Acids/*pharmacology ; Bufo marinus ; Fatty Acids, Nonesterified/*pharmacology ; In Vitro Techniques ; Ion Channels/drug effects/*physiology ; Kinetics ; Membrane Potentials/drug effects ; Muscle, Smooth/*physiology ; Stomach/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1989-08-11
    Description: The products of the nuclear oncogenes fos and jun are known to form heterodimers that bind to DNA and modulate transcription. Both proteins contain a leucine zipper that is important for heterodimer formation. Peptides corresponding to these leucine zippers were synthesized. When mixed, these peptides preferentially form heterodimers over homodimers by at least 1000-fold. Both homodimers and the heterodimer are parallel alpha helices. The leucine zipper regions from Fos and Jun therefore correspond to autonomous helical dimerization sites that are likely to be short coiled coils, and these regions are sufficient to determine the specificity of interaction between Fos and Jun. The Fos leucine zipper forms a relatively unstable homodimer. Instability of homodimers provides a thermodynamic driving force for preferential heterodimer formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Shea, E K -- Rutkowski, R -- Stafford, W F 3rd -- Kim, P S -- RR05711/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 11;245(4918):646-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2503872" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Circular Dichroism ; *DNA-Binding Proteins ; Disulfides ; *Leucine ; Macromolecular Substances ; Molecular Sequence Data ; Peptide Fragments/chemical synthesis ; Protein Conformation ; *Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-fos ; Proto-Oncogene Proteins c-jun ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1989-01-06
    Description: The temperature dependences of the reduction potentials (E degrees') of wild-type human myoglobin (Mb) and three site-directed mutants have been measured by the use of thin-layer spectroelectrochemistry. Residue Val68, which is in van der Waals contact with the heme in Mb, has been replaced by Glu, Asp, and Asn. The changes in E degrees' and the standard entropy (delta S degrees') and enthalpy (delta H degrees') of reduction in the mutant proteins were determined relative to values for wild type; the change in E degrees' at 25 degrees C was about -200 millivolts for the Glu and Asp mutants, and about -80 millivolts for the Asn mutant. At pH 7.0, reduction of Fe(III) to Fe(II) in the Glu and Asp mutants is accompanied by uptake of a proton by the protein. These studies demonstrate that Mb can tolerate substitution of a buried hydrophobic group by potentially charged and polar residues and that such amino acid replacements can lead to substantial changes in the redox thermodynamics of the protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Varadarajan, R -- Zewert, T E -- Gray, H B -- Boxer, S G -- DK 19038/DK/NIDDK NIH HHS/ -- GM 27738/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Jan 6;243(4887):69-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2563171" target="_blank"〉PubMed〈/a〉
    Keywords: Asparagine ; Aspartic Acid ; Glutamates ; Glutamic Acid ; Heme/metabolism ; Humans ; Mutation ; Myoglobin/*metabolism ; Oxidation-Reduction ; Protein Conformation ; Recombinant Proteins/*metabolism ; Thermodynamics ; Valine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-12-22
    Description: The contribution of the anticodon to the discrimination between cognate and noncognate tRNAs by Escherichia coli Arg-tRNA synthetase has been investigated by in vitro synthesis and aminoacylation of elongator methionine tRNA (tRNA(mMet) mutants. Substitution of the Arg anticodon CCG for the Met anticodon CAU leads to a dramatic increase in Arg acceptance by tRNA(mMet). A nucleotide (A20) previously identified by others in the dihydrouridine loop of tRNA(Arg)s makes a smaller contribution to the conversion of tRNA(mMet) identity from Met to Arg. The combined anticodon and dihydrouridine loop mutations yield a tRNA(mMet) derivative that is aminoacylated with near-normal kinetics by the Arg-tRNA synthetase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schulman, L H -- Pelka, H -- New York, N.Y. -- Science. 1989 Dec 22;246(4937):1595-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology and Cancer, Albert Einstein College of Medicine, Bronx, NY 10461.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2688091" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon/*genetics ; Arginine-tRNA Ligase/metabolism ; Base Sequence ; Escherichia coli/enzymology/genetics ; Kinetics ; Methionine-tRNA Ligase/metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Transfer/*genetics ; RNA, Transfer, Amino Acid-Specific/*genetics ; RNA, Transfer, Arg/*genetics ; Substrate Specificity ; T-Phages/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-07-21
    Description: In the Table of Contents of the 24 March 1989 issue, the title of the report "Histamine is an intracellular messenger mediating platelet aggregation" by S. P. Saxena et al. appearing on page 1596 was incorrectly printed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tong, L -- Milburn, M V -- de Vos, A M -- Kim, S H -- New York, N.Y. -- Science. 1989 Jul 21;245(4915):244.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2665078" target="_blank"〉PubMed〈/a〉
    Keywords: Humans ; Molecular Structure ; Protein Conformation ; *Proto-Oncogene Proteins ; Proto-Oncogene Proteins p21(ras)
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1989-01-06
    Description: The high affinity of the noncovalent interaction between biotin and streptavidin forms the basis for many diagnostic assays that require the formation of an irreversible and specific linkage between biological macromolecules. Comparison of the refined crystal structures of apo and a streptavidin:biotin complex shows that the high affinity results from several factors. These factors include the formation of multiple hydrogen bonds and van der Waals interactions between biotin and the protein, together with the ordering of surface polypeptide loops that bury the biotin in the protein interior. Structural alterations at the biotin binding site produce quaternary changes in the streptavidin tetramer. These changes apparently propagate through cooperative deformations in the twisted beta sheets that link tetramer subunits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weber, P C -- Ohlendorf, D H -- Wendoloski, J J -- Salemme, F R -- New York, N.Y. -- Science. 1989 Jan 6;243(4887):85-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Central Research & Development Department, E. I. du Pont de Neumours and Company, Inc., Wilmington, DE 19880-0228.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2911722" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*metabolism ; Binding Sites ; Biotin/*metabolism ; Macromolecular Substances ; Models, Molecular ; Protein Conformation ; Streptavidin ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1989-07-28
    Description: Two members of the hsp70 family, termed hsc70 and BiP, have been implicated in promoting protein folding and assembly processes in the cytoplasm and the lumen of the endoplasmic reticulum, respectively. Short hydrophilic (8 to 25 residues) synthetic peptides have now been tested as possible mimics of polypeptide chain substrates to help define an enzymatic basis for these activities. Both BiP and hsc70 have specific peptide binding sites. Peptide binding elicits hydrolysis of adenosine triphosphate, with the subsequent release of bound peptide.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flynn, G C -- Chappell, T G -- Rothman, J E -- GM-25662/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Jul 28;245(4916):385-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Lewis Thomas Laboratory, Princeton University, NJ 08544.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2756425" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Carrier Proteins/*metabolism ; Cattle ; Endoplasmic Reticulum/metabolism ; Heat-Shock Proteins/*metabolism ; Hydrolysis ; Microsomes, Liver/metabolism ; *Molecular Chaperones ; Molecular Sequence Data ; Peptides/*metabolism ; Protein Binding ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-01-06
    Description: Plasminogen activator therapy for acute myocardial infarction has become standard medical practice. Bleeding complications, however, limit the utility of the currently available agents. This article reviews how the tools of molecular biology and protein engineering are being used to develop safer and more effective plasminogen activators.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haber, E -- Quertermous, T -- Matsueda, G R -- Runge, M S -- HL-19259/HL/NHLBI NIH HHS/ -- HL-28015/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Jan 6;243(4887):51-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiac Unit, Massachusetts General Hospital, Boston 02114.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2492113" target="_blank"〉PubMed〈/a〉
    Keywords: Humans ; Myocardial Infarction/*drug therapy ; Plasminogen Activators/*therapeutic use ; Protein Conformation ; Recombinant Proteins/therapeutic use ; Streptokinase/therapeutic use ; Tissue Plasminogen Activator/therapeutic use ; Urokinase-Type Plasminogen Activator/therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-01-27
    Description: Recently, a hypothetical structure called a leucine zipper was proposed that defines a new class of DNA binding proteins. The common feature of these proteins is a region spanning approximately 30 amino acids that contains a periodic repeat of leucines every seven residues. A peptide corresponding to the leucine zipper region of the yeast transcriptional activator GCN4 was synthesized and characterized. This peptide associates in the micromolar concentration range to form a very stable dimer of alpha helices with a parallel orientation. Although some features of the leucine zipper model are supported by our experimental data, the peptide has the characteristics of a coiled coil.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Shea, E K -- Rutkowski, R -- Kim, P S -- New York, N.Y. -- Science. 1989 Jan 27;243(4890):538-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2911757" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chromatography, High Pressure Liquid ; Circular Dichroism ; DNA/metabolism ; *DNA-Binding Proteins ; Disulfides ; *Fungal Proteins ; *Leucine ; Macromolecular Substances ; Molecular Sequence Data ; Peptide Fragments ; Protein Conformation ; *Protein Kinases ; Repetitive Sequences, Nucleic Acid ; *Saccharomyces cerevisiae Proteins ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-08-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J L -- New York, N.Y. -- Science. 1989 Aug 11;245(4918):598.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2669127" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Endopeptidases ; HIV/*enzymology ; HIV Protease ; Molecular Structure ; *Protease Inhibitors ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1989-06-09
    Description: Vasoactive intestinal peptide (VIP) labeled with 125I, [Tyr10-125I]VIP, can be hydrolyzed by immunoglobulin G (IgG) purified from a human subject, as judged by trichloroacetic acid precipitation and reversed-phase high-performance liquid chromatography (HPLC). The hydrolytic activity was precipitated by antibody to human IgG, it was bound by immobilized protein G and showed a molecular mass close to 150 kilodaltons by gel filtration chromatography, properties similar to those of authentic IgG. The Fab fragment, prepared from IgG by papain treatment, retained the VIP hydrolytic activity of the IgG. Peptide fragments produced by treatment of VIP with the antibody fraction were purified by reversed-phase HPLC and identified by fast atom bombardment-mass spectrometry and peptide sequencing. The scissile bond in VIP deduced from these experiments was Gln16-Met17. The antibody concentration (73.4 fmol per milligram of IgG) and the Kd (0.4 nM) were computed from analysis of VIP binding under conditions that did not result in peptide hydrolysis. Analysis of the antibody-mediated VIP hydrolysis at varying concentrations of substrate suggested conformity with Michaelis-Menton kinetics (Km). The values for Km (37.9 X 10(-9) M) and the turnover number kcat (15.6 min-1) suggested relatively tight VIP binding and a moderate catalytic efficiency of the antibody.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paul, S -- Volle, D J -- Beach, C M -- Johnson, D R -- Powell, M J -- Massey, R J -- HL 35506/HL/NHLBI NIH HHS/ -- HL 40348/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Jun 9;244(4909):1158-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Nebraska Medical Center, Omaha 68105.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2727702" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Autoantibodies ; Catalysis ; Chromatography, High Pressure Liquid ; Humans ; Hydrolysis ; Immunoglobulin Fab Fragments ; *Immunoglobulin G ; Kinetics ; Molecular Sequence Data ; Peptide Fragments/isolation & purification ; Vasoactive Intestinal Peptide/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-11-17
    Description: A phosphonate monoester, m-carboxyphenyl phenylacetamidomethylphosphonate, has been found to be a specific inhibitor of the class C beta-lactamase of Enterobacter cloacae P99. Inactivation is rapid (10(3) per second per molar concentration) and reactivation very slow (2.2 X 10(-6) per second). Apparently concerted with the inactivation, one equivalent (with respect to the enzyme) of m-hydroxybenzoate is released. Reactivation is accelerated by hydroxylamine and benzohydroxamate. This suggests that the loss of enzyme activity is due to phosphonylation of an active site functional group. This discovery holds the promise of a new general class of beta-lactamase inhibitors and, perhaps, antibiotics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pratt, R F -- New York, N.Y. -- Science. 1989 Nov 17;246(4932):917-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chemistry Department, Wesleyan University, Middletown, CT 06457.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2814513" target="_blank"〉PubMed〈/a〉
    Keywords: Enterobacter/*enzymology ; Enterobacteriaceae/*enzymology ; Hydroxamic Acids/pharmacology ; Hydroxylamine ; Hydroxylamines/pharmacology ; Kinetics ; Organophosphorus Compounds/*pharmacology ; Protein Binding ; *beta-Lactamase Inhibitors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1989-04-28
    Description: The rapid transductional sequences initiated by interferon-gamma (IFN-gamma) on binding to its receptor regulate functional and genomic responses in many cells but are not well defined. Induction of macrophage activation is an example of such functional and genomic changes in response to IFN-gamma. Addition of IFN-gamma to murine macrophages, at activating concentrations, produced rapid (within 60 seconds) alkalinization of the cytosol and a concomitant, rapid influx of 22Na+. Amiloride inhibited the ion fluxes and the accumulation of specific messenger RNA for two genes induced by IFN-gamma (the early gene JE and the beta chain of the class II major histocompatibility complex gene I-A). The data indicate that IFN-gamma initiates rapid exchange of Na+ and H+ by means of the Na+/H+ antiporter and that these amiloride-sensitive ion fluxes are important to some of the genomic effects of IFN-gamma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prpic, V -- Yu, S F -- Figueiredo, F -- Hollenbach, P W -- Gawdi, G -- Herman, B -- Uhing, R J -- Adams, D O -- New York, N.Y. -- Science. 1989 Apr 28;244(4903):469-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Duke University Medical Center, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2541500" target="_blank"〉PubMed〈/a〉
    Keywords: Amiloride/pharmacology ; Animals ; Carrier Proteins/antagonists & inhibitors/metabolism ; Cells, Cultured ; Cytosol/metabolism ; *Gene Expression Regulation ; Histocompatibility Antigens Class II/*genetics ; Hydrogen-Ion Concentration ; Interferon-gamma/*physiology ; Kinetics ; Macrophage Activation ; Macrophages/drug effects/metabolism ; Mice ; *Protons ; RNA, Messenger/biosynthesis ; Sodium/*metabolism ; Sodium-Hydrogen Antiporter
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-03
    Description: Passage of proteins across membranes during export from their site of synthesis to their final destination is mediated by leader peptides that paradoxically exhibit a unity of function in spite of a diversity of sequence. These leader peptides act in at least two stages of the export process: at entry into the pathway and subsequently during translocation across the membrane. How selectivity is imposed on the system in the absence of a consensus among the sequences of leader peptides is the main issue discussed here.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Randall, L L -- Hardy, S J -- GM29798/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Mar 3;243(4895):1156-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry/Biophysics Program, Washington State University, Pullman 99164.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2646712" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biological Transport ; Cell Membrane/*metabolism ; Escherichia coli/metabolism ; *Models, Biological ; Protein Conformation ; Protein Precursors/metabolism ; Protein Sorting Signals/*physiology ; Proteins/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-08-04
    Description: Membrane-exposed residues are more hydrophobic than buried interior residues in the transmembrane regions of the photosynthetic reaction center from Rhodobacter sphaeroides. This hydrophobic organization is opposite to that of water-soluble proteins. The relative polarities of interior and surface residues of membrane and water soluble proteins are not simply reversed, however. The hydrophobicities of interior residues of both membrane and water-soluble proteins are comparable, whereas the bilayer-exposed residues of membrane proteins are more hydrophobic than the interior residues, and the aqueous-exposed residues of water-soluble proteins are more hydrophilic than the interior residues. A method of sequence analysis is described, based on the periodicity of residue replacement in homologous sequences, that extends conclusions derived from the known atomic structure of the reaction center to the more extensive database of putative transmembrane helical sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rees, D C -- DeAntonio, L -- Eisenberg, D -- GM31299/GM/NIGMS NIH HHS/ -- GM39558/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 4;245(4917):510-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2667138" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacterial Proteins ; Cell Membrane/analysis ; Chemistry, Physical ; Fourier Analysis ; *Membrane Proteins ; Photosynthetic Reaction Center Complex Proteins ; Physicochemical Phenomena ; Protein Conformation ; Rhodobacter sphaeroides/*ultrastructure ; Solubility ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1989-09-08
    Description: Complementary DNAs for the beta subunit of the dihydropyridine-sensitive calcium channel of rabbit skeletal muscle were isolated on the basis of peptide sequences derived from the purified protein. The deduced primary structure is without homology to other known protein sequences and is consistent with the beta subunit being a peripheral membrane protein associated with the cytoplasmic aspect of the sarcolemma. The protein contains sites that might be expected to be preferentially phosphorylated by protein kinase C and guanosine 3',5'-monophosphate-dependent protein kinase. A messenger RNA for this protein appears to be expressed in brain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruth, P -- Rohrkasten, A -- Biel, M -- Bosse, E -- Regulla, S -- Meyer, H E -- Flockerzi, V -- Hofmann, F -- New York, N.Y. -- Science. 1989 Sep 8;245(4922):1115-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Physiologische Chemie, Medizinische Fakultat, Homburg/Saar, Federal Republic of Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2549640" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium Channel Blockers/*metabolism/pharmacology ; Calcium Channels/drug effects/*metabolism ; Dihydropyridines/*metabolism/pharmacology ; Molecular Sequence Data ; Muscles/*analysis ; Phosphorylation ; Protein Conformation ; RNA, Messenger/isolation & purification ; Rabbits ; Receptors, Nicotinic/drug effects/*isolation & purification/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1989-08-11
    Description: The endogenous c-mos product, pp39mos, is required for progesterone-induced meiotic maturation in Xenopus oocytes. Treatment of oocytes with progesterone induced a rapid increase in pp39mos that preceded both the activation of maturation promoting factor (MPF) and germinal vesicle breakdown (GVBD). Microinjection of synthetic mos RNA into oocytes activated MPF and induced GVBD in the absence of progesterone. Thus, the mos proto-oncogene product may qualify as a candidate "initiator" protein of MPF and is at least one of the "triggers" for G2 to M transition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sagata, N -- Daar, I -- Oskarsson, M -- Showalter, S D -- Vande Woude, G F -- N01-CO-74101/CO/NCI NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 11;245(4918):643-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BRI-Basic Research Program, National Cancer Institute, Frederick Cancer Research Facility, MD 21701.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2474853" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cycloheximide/pharmacology ; Female ; Growth Substances/physiology ; Kinetics ; Maturation-Promoting Factor ; Meiosis/drug effects ; Microinjections ; Oocytes/*physiology ; Progesterone/pharmacology ; Protein Biosynthesis ; Proto-Oncogene Proteins/genetics/*physiology ; Proto-Oncogene Proteins c-mos ; RNA/genetics ; Transcription, Genetic ; Transfection ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-11-17
    Description: The proposal that the absorption maximum of the visual pigments is governed by interaction of the 11-cis-retinal chromophore with charged carboxylic acid side chains in the membrane-embedded regions of the proteins has been tested by mutating five Asp and Glu residues thought to be buried in rhodopsin. Changing Glu113 to Gln causes a dramatic shift in the absorption maximum from 500 nanometers to 380 nanometers, a decrease in the pKa (acidity constant) of the protonated Schiff base of the chromophore to about 6, and a greatly increased reactivity with hydroxylamine. Thus Glu113 appears to be the counterion to the protonated Schiff base. Wavelength modulation in visual pigments apparently is not governed by electrostatic interaction with carboxylate residues, other than the counterion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhukovsky, E A -- Oprian, D D -- 5T32 GM07596-11/GM/NIGMS NIH HHS/ -- EY07965/EY/NEI NIH HHS/ -- R01 EY007965/EY/NEI NIH HHS/ -- S07 RR07044/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1989 Nov 17;246(4932):928-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2573154" target="_blank"〉PubMed〈/a〉
    Keywords: *Aspartic Acid ; Glutamates ; Glutamic Acid ; Hydrogen-Ion Concentration ; Hydroxylamine ; Hydroxylamines/pharmacology ; Models, Molecular ; Mutation ; Protein Conformation ; Retinal Pigments/*metabolism ; Retinaldehyde/*metabolism ; Retinoids/*metabolism ; Rhodopsin/genetics/*metabolism ; Schiff Bases ; Spectrophotometry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1989-02-17
    Description: Salmonella bacteria are capable of entering (invading) and multiplying within eukaryotic cells. Stable adherence to and invasion of epithelial cells by S. choleraesuis and S. typhimurium were found to require de novo synthesis of several new bacterial proteins. This inducible event appears to be a coordinately regulated system dependent on trypsin- and neuraminidase-sensitive structures present on the epithelial cell surface. Mutants of S. choleraesuis and S. typhimurium were unable to synthesize these proteins and did not stably adhere to nor invade eukaryotic cells. Two such S. typhimurium mutants were avirulent in mice, an indication that these proteins are required for Salmonella virulence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finlay, B B -- Heffron, F -- Falkow, S -- AI26195/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1989 Feb 17;243(4893):940-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Microbiology, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2919285" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bacterial Adhesion ; Bacterial Proteins/*biosynthesis ; Cell Line ; Epithelium/physiology ; Kinetics ; Methionine/metabolism ; Salmonella/pathogenicity/*physiology ; Sulfur Radioisotopes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-12-22
    Description: Analysis of crosslinked complexes of M1 RNA, the catalytic RNA subunit of ribonuclease P from Escherichia coli, and transfer RNA precursor substrates has led to the identification of regions in the enzyme and in the substrate that are in close physical proximity to each other. The nucleotide in M1 RNA, residue C92, which participates in a crosslink with the substrate was deleted and the resulting mutant M1 RNA was shown to cleave substrates lacking the 3' terminal CCAUCA sequence at sites several nucleotides away from the normal site of cleavage. The presence or absence of the 3' terminal CCAUCA sequence in transfer RNA precursor substrates markedly affects the way in which these substrates interact with the catalytic RNA in the enzyme-substrate complex. The contacts between wild-type M1 RNA and its substrate are in a region that resembles part of the transfer RNA "E" (exit) site in 23S ribosomal RNA. These data demonstrate that in RNA's with very different cellular functions, there are domains with similar structural and functional properties and that there is a nucleotide in M1 RNA that affects the site of cleavage by the enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guerrier-Takada, C -- Lumelsky, N -- Altman, S -- New York, N.Y. -- Science. 1989 Dec 22;246(4937):1578-84.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Yale University, New Haven, CT 06520.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2480641" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Endoribonucleases/genetics/*metabolism ; Escherichia coli/enzymology/*genetics ; *Escherichia coli Proteins ; Kinetics ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA Precursors/genetics ; RNA, Bacterial/*genetics/metabolism ; RNA, Transfer/genetics ; Ribonuclease P ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1989-05-12
    Description: The intervening sequence of the ribosomal RNA precursor of Tetrahymena is a catalytic RNA molecule, or ribozyme. Acting as a sequence-specific endoribonuclease, it cleaves single-stranded RNA substrates with concomitant addition of guanosine. The chemistry of the reaction has now been studied by introduction of a single phosphorothioate in the substrate RNA at the cleavage site. Kinetic studies show no significant effect of this substitution on kcat (rate constant) or Km (Michaelis constant), providing evidence that some step other than the chemical step is rate-limiting. Product analysis reveals that the reaction proceeds with inversion of configuration at phosphorus, consistent with an in-line, SN2 (P) mechanism. Thus, the ribozyme reaction is in the same mechanistic category as the individual displacement reactions catalyzed by protein nucleotidyltransferases, phosphotransferases, and nucleases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McSwiggen, J A -- Cech, T R -- GM28039/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 May 12;244(4905):679-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2470150" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Guanosine/metabolism ; Hydrolysis ; Kinetics ; Molecular Conformation ; Phosphates/metabolism ; Phosphorus ; RNA/*metabolism ; RNA Precursors/*metabolism ; RNA Splicing ; RNA, Catalytic ; RNA, Ribosomal/*metabolism ; Tetrahymena/*genetics ; Thionucleotides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-06-02
    Description: Double-stranded (ds) RNA and many viruses are inducers of interferon (IFN), the latter presumably because they contain, or can form, dsRNA. Concomitant with the induction of IFN in chicken embryo cells was the induction of a novel double-stranded ribonuclease (dsRNase), which was released into the medium and continued to accumulate long after IFN production ceased. Only avian cells (chicken, quail, turkey, or duck) expressed high levels of this dsRNase; mammalian, turtle, or fish cells did not. Production of the nuclease was inducer dose-dependent. Optimum pH and cation requirements distinguished it from other dsRNase activities. Degradation of dsRNA was endonucleolytic. Activity resided in a molecule of an Mr of approximately 34,500. Low levels of a single-stranded (ss) RNase activity were inseparable from the dsRNase. The role for a dsRNA-inducible dsRNase released from cells is unknown.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meegan, J M -- Marcus, P I -- AI18381/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1989 Jun 2;244(4908):1089-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, The University of Connecticut, Storrs 06269.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2471268" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/embryology/*metabolism ; Cations ; Chick Embryo ; Ducks/embryology ; Endoribonucleases/*biosynthesis ; Enzyme Induction ; Hydrogen-Ion Concentration ; Interferon Inducers/pharmacology ; Interferons/*metabolism ; Kinetics ; Newcastle disease virus/physiology/radiation effects ; Poly I-C/pharmacology ; Quail/embryology ; RNA, Double-Stranded/metabolism ; Species Specificity ; Substrate Specificity ; Turkeys/embryology ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1989-11-17
    Description: The zona pellucida surrounding mouse oocytes is an extracellular matrix composed of three sulfated glycoproteins, ZP1, ZP2, and ZP3. It has been demonstrated that a monoclonal antibody to ZP3 injected into female mice inhibits fertilization by binding to the zona pellucida and blocking sperm penetration. A complementary DNA encoding ZP3 was randomly cleaved and 200- to 1000-base pair fragments were cloned into the expression vector lambda gt11. This epitope library was screened with the aforementioned contraceptive antibody, and the positive clones were used to map the seven-amino acid epitope recognized by the antibody. Female mice were immunized with a synthetic peptide containing this B cell epitope coupled to a carrier protein to provide helper T cell epitopes. The resultant circulating antibodies to ZP3 bound to the zona pellucida of immunized animals and produced long-lasting contraception. The lack of ovarian histopathology or cellular cytotoxicity among the immunized animals may be because of the absence of zona pellucida T cell epitopes in this vaccine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Millar, S E -- Chamow, S M -- Baur, A W -- Oliver, C -- Robey, F -- Dean, J -- New York, N.Y. -- Science. 1989 Nov 17;246(4932):935-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2479101" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens/immunology ; Base Sequence ; Cloning, Molecular ; *Contraception ; *Contraception, Immunologic ; DNA/genetics ; *Egg Proteins ; Epitopes/analysis ; Female ; Glycoproteins/genetics/*immunology ; Male ; *Membrane Glycoproteins ; Mice ; Molecular Sequence Data ; Ovum/*physiology ; Protein Conformation ; RNA, Messenger/genetics ; *Receptors, Cell Surface ; *Vaccination ; Zona Pellucida/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1989-12-01
    Description: The structure of a complex between a peptide inhibitor with the sequence N-acetyl-Thr-Ile-Nle-psi[CH2-NH]-Nle-Gln-Arg.amide (Nle, norleucine) with chemically synthesized HIV-1 (human immunodeficiency virus 1) protease was determined at 2.3 A resolution (R factor of 0.176). Despite the symmetric nature of the unliganded enzyme, the asymmetric inhibitor lies in a single orientation and makes extensive interactions at the interface between the two subunits of the homodimeric protein. Compared with the unliganded enzyme, the protein molecule underwent substantial changes, particularly in an extended region corresponding to the "flaps" (residues 35 to 57 in each chain), where backbone movements as large as 7 A are observed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, M -- Schneider, J -- Sathyanarayana, B K -- Toth, M V -- Marshall, G R -- Clawson, L -- Selk, L -- Kent, S B -- Wlodawer, A -- A-127302/PHS HHS/ -- N01-C0-74101/PHS HHS/ -- SM-24483/SM/CMHS SAMHSA HHS/ -- New York, N.Y. -- Science. 1989 Dec 1;246(4934):1149-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NCI-Frederick Cancer Research Facility, BRI-Basic Research Program, MD 21701.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2686029" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Chemistry, Physical ; Crystallization ; Endopeptidases/*metabolism ; Gene Products, gag/metabolism ; HIV Protease ; HIV-1/*enzymology ; Hydrogen Bonding ; Molecular Sequence Data ; Molecular Structure ; Oligopeptides/*metabolism ; Physicochemical Phenomena ; Protease Inhibitors/*metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 1989-05-12
    Description: Methotrexate coupled to maleylated bovine serum albumin was taken up efficiently through the "scavenger" receptors present on macrophages and led to selective killing of intracellular Leishmania mexicana amazonensis amastigotes in cultured hamster peritoneal macrophages. The drug conjugate was nearly 100 times as effective as free methotrexate in eliminating the intracellular parasites. Furthermore, in a model of experimental cutaneous leishmaniasis in hamsters, the drug conjugate brought about more than 90% reduction in the size of footpad lesions within 11 days. In contrast, the free drug at a similar concentration did not significantly affect lesion size. These studies demonstrate the potential of receptor-mediated drug delivery in the therapy of macrophage-associated diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mukhopadhyay, A -- Chaudhuri, G -- Arora, S K -- Sehgal, S -- Basu, S K -- New York, N.Y. -- Science. 1989 May 12;244(4905):705-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Microbial Technology, Chandigarh, India.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2717947" target="_blank"〉PubMed〈/a〉
    Keywords: Albumins/*administration & dosage/metabolism ; Animals ; Cells, Cultured ; Cricetinae ; Female ; Kinetics ; Leishmania mexicana/*drug effects ; Leishmaniasis/*drug therapy ; Macrophages/metabolism/*parasitology ; Male ; *Membrane Proteins ; Mesocricetus ; Methotrexate/*administration & dosage/pharmacology/therapeutic use ; *Receptors, Immunologic/metabolism ; *Receptors, Lipoprotein ; Receptors, Scavenger ; Scavenger Receptors, Class B ; Serum Albumin, Bovine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1989-08-04
    Description: The crystal structure of glycogen phosphorylase a complexed with its substrates, orthophosphate and maltopentaose, has been determined and refined at a resolution of 2.8 angstroms. With oligosaccaride bound at the glycogen storage site, the phosphate ion binds at the catalytic site and causes the regulatory and catalytic domains to separate with the loss of stabilizing interactions between them. Homotropic cooperativity between the active sites of the allosteric dimer results from rearrangements in isologous contacts between symmetry-related helices in the subunit interface. The conformational changes in the core of the interface are correlated with those observed on covalent activation by phosphorylation at Ser14 (phosphorylase b----a).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goldsmith, E J -- Sprang, S R -- Hamlin, R -- Xuong, N H -- Fletterick, R J -- DK31507-05/DK/NIDDK NIH HHS/ -- GM00085-05/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 4;245(4917):528-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2756432" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Site ; Amino Acid Sequence ; Binding Sites ; Catalysis ; Crystallization ; Crystallography ; Enzyme Activation ; Glucosephosphates/metabolism ; Glycogen/metabolism ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Structure ; Oligosaccharides ; Phosphates/metabolism ; Phosphorylase a/*metabolism ; Phosphorylases/*metabolism ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-12-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwarz, S -- Pohl, P -- Zhou, G Z -- New York, N.Y. -- Science. 1989 Dec 22;246(4937):1635-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2556797" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding, Competitive ; Brain/metabolism ; Kinetics ; Ligands ; Lymphocytes/metabolism ; Progesterone/blood/cerebrospinal fluid/metabolism ; Receptors, Opioid/*metabolism ; Receptors, sigma ; Steroids/*metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-10-06
    Description: A microscopic method for simulating quantum mechanical, nuclear tunneling effects in biological electron transfer reactions is presented and applied to several electron transfer steps in photosynthetic bacterial reaction centers. In this "dispersed polaron" method the fluctuations of the protein and the electron carriers are projected as effective normal modes onto an appropriate reaction coordinate and used to evaluate the quantum mechanical rate constant. The simulations, based on the crystallographic structure of the reaction center from Rhodopseudomonas viridis, focus on electron transfer from a bacteriopheophytin to a quinone and the subsequent back-reaction. The rates of both of these reactions are almost independent of temperature or even increase with decreasing temperature. The simulations reproduce this unusual temperature dependence in a qualitative way, without the use of adjustable parameters for the protein's Franck-Condon factors. The observed dependence of the back-reaction on the free energy of the reaction also is reproduced, including the special behavior in the "inverted region."〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warshel, A -- Chu, Z T -- Parson, W W -- GM-40283/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Oct 6;246(4926):112-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Southern California, Los Angeles 90007.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2675313" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*metabolism ; *Electron Transport ; Kinetics ; Models, Chemical ; *Photosynthesis ; Photosynthetic Reaction Center Complex Proteins ; Rhodopseudomonas/metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-02-03
    Description: The dynamic character of phospholipid aggregates limits conventional structural studies to the determination of average molecular features. In order to develop more detailed descriptions of phospholipid structure for comparison with experiment, the molecular dynamics of a hydrated lysophosphatidylethanolamine (LPE) micelle, incorporating 85 LPE and 1591 water molecules, have been simulated. Comparison of the initial and equilibrated micelles shows substantial differences both in LPE hydrocarbon chain conformation and polar head-group-solvent interactions. Although these changes produce only subtle effects on the averaged structural properties of the system, the alterations in hydrocarbon chain packing and head-group solvation appear to mimic a polymorphic pretransition from a spherical toward a cylindrical micelle structure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wendoloski, J J -- Kimatian, S J -- Schutt, C E -- Salemme, F R -- New York, N.Y. -- Science. 1989 Feb 3;243(4891):636-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉E. I. du Pont de Nemours & Company, Central Research and Development Department, Wilmington, DE 19880.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2916118" target="_blank"〉PubMed〈/a〉
    Keywords: *Colloids ; *Computer Simulation ; Crystallization ; Fatty Acids ; Glycerol ; Hydrogen Bonding ; Lipid Bilayers ; *Lysophospholipids ; *Micelles ; Molecular Structure ; Protein Conformation ; Solutions ; Solvents
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1989-03-10
    Description: The x-ray crystal structure of recombinant human renin has been determined. Molecular dynamics techniques that included crystallographic data as a restraint were used to improve an initial model based on porcine pepsinogen. The present agreement factor for data from 8.0 to 2.5 angstroms (A) is 0.236. Some of the surface loops are poorly determined, and these disordered regions border a 30 A wide solvent channel. Comparison of renin with other aspartyl proteinases shows that, although the structural cores and active sites are highly conserved, surface residues, some of which are critical for specificity, vary greatly (up to 10A). Knowledge of the actual structure, as opposed to the use of models based on related enzymes, should facilitate the design of renin inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sielecki, A R -- Hayakawa, K -- Fujinaga, M -- Murphy, M E -- Fraser, M -- Muir, A K -- Carilli, C T -- Lewicki, J A -- Baxter, J D -- James, M N -- New York, N.Y. -- Science. 1989 Mar 10;243(4896):1346-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Alberta, Edmonton, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2493678" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid Endopeptidases ; Cardiovascular Agents/pharmacology ; Endopeptidases/metabolism ; Humans ; Models, Molecular ; Pepsin A/metabolism ; Protein Conformation ; *Recombinant Proteins/metabolism ; *Renin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1989-05-19
    Description: The gramicidin A transmembrane channel is believed to consist of two head-to-head beta helices. Computer-generated models were used to formulate the structure of new single-chain channel molecules based on the gramicidin motif. The chemical synthesis of two tartaric acid-gramicidin A hybrids and single-channel analyses of their conducting properties are reported. These studies illustrate the rational design and synthesis of long-lived channels with tunable conductance properties and provide support for current molecular models of the natural (dimeric) gramicidin channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stankovic, C J -- Heinemann, S H -- Delfino, J M -- Sigworth, F J -- Schreiber, S L -- NS-21501/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1989 May 19;244(4906):813-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2471263" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Computer Simulation ; Electric Conductivity ; Gramicidin/*metabolism ; Ion Channels/*metabolism ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Structure ; Protein Conformation ; Protein Multimerization ; Tartrates/*metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 1989-03-31
    Description: The protein products of the fos and jun proto-oncogenes form a heterodimeric complex that participates in a stable high affinity interaction with DNA elements containing AP-1 binding sites. The effects of deletions and point mutations in Fos and Jun on protein complex formation and DNA binding have been examined. The data suggest that Fos and Jun dimerize via a parallel interaction of helical domains containing a heptad repeat of leucine residues (the leucine zipper). Dimerization is required for DNA binding and results in the appropriate juxtaposition of basic amino acid regions from Fos and Jun, both of which are required for association with DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gentz, R -- Rauscher, F J 3rd -- Abate, C -- Curran, T -- New York, N.Y. -- Science. 1989 Mar 31;243(4899):1695-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Roche Institute of Molecular Biology, Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2494702" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cross-Linking Reagents ; DNA/*metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Glutaral ; Immunosorbent Techniques ; *Leucine ; Macromolecular Substances ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins c-fos ; Proto-Oncogene Proteins c-jun ; Rats ; Repetitive Sequences, Nucleic Acid ; Structure-Activity Relationship ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-17
    Description: A true Bronsted analysis of proton transfer in an enzyme mechanism is made possible by the chemical rescue of an inactive mutant of aspartate aminotransferase, where the endogenous general base, Lys258, is replaced with Ala by site-directed mutagenesis. Catalytic activity is restored to this inactive mutant by exogenous amines. The eleven amines studied generate a Bronsted correlation with beta of 0.4 for the transamination of cysteine sulfinate, when steric effects are included in the regression analysis. Localized mutagenesis thus allows the classical Bronsted analysis of transition-state structure to be applied to enzyme-catalyzed reactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Toney, M D -- Kirsch, J F -- GM07232/GM/NIGMS NIH HHS/ -- GM35393/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Mar 17;243(4897):1485-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2538921" target="_blank"〉PubMed〈/a〉
    Keywords: Amines ; Aspartate Aminotransferases/*metabolism ; Binding Sites ; Catalysis ; Escherichia coli/enzymology ; Kinetics ; Lysine ; Mutation ; Protons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-11-17
    Description: C/EBP is a sequence-specific DNA binding protein that regulates gene expression in certain mammalian cells. The region of the C/EBP polypeptide required for specific recognition of DNA is related in amino acid sequence to other regulatory proteins, including the Fos and Jun transforming proteins. It has been proposed that these proteins bind DNA via a bipartite structural motif, consisting of a dimerization interface termed the "leucine zipper" and a DNA contact surface termed the "basic region." An evaluation of the properties of conserved amino acids within the basic region of 11 deduced protein sequences, coupled with the observation that they are located at an invariant distance from the leucine zipper, has led to the formulation of a "scissors-grip" model for DNA binding. The architectural features of this model are well suited for interaction with directly abutted, dyadsymmetric DNA sequences. Data supportive of the model were obtained with chemical probes of protein: DNA complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vinson, C R -- Sigler, P B -- McKnight, S L -- New York, N.Y. -- Science. 1989 Nov 17;246(4932):911-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Research Laboratories, Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2683088" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; *Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides ; Protein Conformation ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 1989-02-17
    Description: The human immunodeficiency virus (HIV-1) encodes a protease that is essential for viral replication and is a member of the aspartic protease family. The recently determined three-dimensional structure of the related protease from Rous sarcoma virus has been used to model the smaller HIV-1 dimer. The active site has been analyzed by comparison to the structure of the aspartic protease, rhizopuspepsin, complexed with a peptide inhibitor. The HIV-1 protease is predicted to interact with seven residues of the protein substrate. This information can be used to design protease inhibitors and possible antiviral drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weber, I T -- Miller, M -- Jaskolski, M -- Leis, J -- Skalka, A M -- Wlodawer, A -- CA-06927/CA/NCI NIH HHS/ -- CA38046/CA/NCI NIH HHS/ -- N01-CO-74101/CO/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1989 Feb 17;243(4893):928-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Crystallography Laboratory, NCI-Frederick Cancer Research Facility, MD 21701.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2537531" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Avian Sarcoma Viruses/enzymology ; Binding Sites ; HIV-1/*enzymology ; Hydrogen Bonding ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Peptide Hydrolases/*metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-02-24
    Description: Gadolinium ions produce three distinct kinds of block of the stretch-activated (SA) ion channels in Xenopus oocytes: a concentration-dependent reduction in channel open time, a concentration-dependent reduction in open channel current, and a unique, steeply concentration-dependent, reversible inhibition of channel opening. This last effect reduces the probability of a channel being open from about 10(-1) at 5 microM to less than 10(-5) at 10 microM gadolinium. Calcium has effects on open time and current similar to that of gadolinium, but this channel is permeable to calcium and calcium does not completely inhibit channel activity. The availability of a blocker for SA ion channels may help to define their physiological function, and will simplify the use of oocytes as an expression system for ion channels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, X C -- Sachs, F -- DK-37792/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1989 Feb 24;243(4894 Pt 1):1068-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State University of New York, Buffalo 14214.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2466333" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding, Competitive ; Calcium/*pharmacology ; Cations ; Electric Conductivity ; Female ; Gadolinium/*pharmacology ; Ion Channels/drug effects/*physiology ; Kinetics ; Oocytes/*physiology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-07-07
    Description: beta-Adrenergic agonists activate the G protein, Gs, which stimulates cardiac calcium currents by both cytoplasmic, indirect and membrane-delimited, direct pathways. To test whether beta-adrenergic agonists might use both pathways in the heart, isoproterenol was rapidly applied to cardiac myocytes, resulting in a biphasic increase in cardiac calcium channel currents that had time constants of 150 milliseconds and 36 seconds. beta-Adrenergic antagonists of a G protein inhibitor blocked both the fast and slow responses, whereas the adenylyl cyclase activator forskolin produced only the slow response. The presence of a fast pathway in the heart can explain what the slow pathway cannot account for: the ability of cardiac sympathetic nerves to change heart rate within a single beat.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yatani, A -- Brown, A M -- HL36930/HL/NHLBI NIH HHS/ -- HL37044/HL/NHLBI NIH HHS/ -- NS23877/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1989 Jul 7;245(4913):71-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2544999" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atrial Function ; Calcium Channels/drug effects/*physiology ; Carbachol/pharmacology ; Cells, Cultured ; Colforsin/pharmacology ; GTP-Binding Proteins/*physiology ; Guinea Pigs ; Heart/*physiology ; Isoproterenol/*pharmacology ; Kinetics ; Membrane Potentials/drug effects ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-04-21
    Description: Sodium channels from diverse excitable membranes are very similar in their structure, yet surprisingly heterogeneous in their behavior. The processes that govern the opening and closing of sodium channels have appeared difficult to describe in terms of a single, unifying molecular scheme. Now cardiac sodium channels have been analyzed by high-resolution single-channel recordings over a broad range of potentials. Channels exhibited both complex and simple gating patterns at different voltages. Such behavioral diversity can be explained by the balance between two molecular transitions whereby channels can exit the open state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yue, D T -- Lawrence, J H -- Marban, E -- HL01874/HL/NHLBI NIH HHS/ -- HL36957/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Apr 21;244(4902):349-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2540529" target="_blank"〉PubMed〈/a〉
    Keywords: Electric Conductivity ; Heart/*physiology ; Membrane Potentials ; Neurons/physiology ; Probability ; Protein Conformation ; Sodium Channels/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 1989-08-11
    Description: The rational design of drugs that can inhibit the action of viral proteases depends on obtaining accurate structures of these enzymes. The crystal structure of chemically synthesized HIV-1 protease has been determined at 2.8 angstrom resolution (R factor of 0.184) with the use of a model based on the Rous sarcoma virus protease structure. In this enzymatically active protein, the cysteines were replaced by alpha-amino-n-butyric acid, a nongenetically coded amino acid. This structure, in which all 99 amino acids were located, differs in several important details from that reported previously by others. The interface between the identical subunits forming the active protease dimer is composed of four well-ordered beta strands from both the amino and carboxyl termini and residues 86 to 94 have a helical conformation. The observed arrangement of the dimer interface suggests possible designs for dimerization inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wlodawer, A -- Miller, M -- Jaskolski, M -- Sathyanarayana, B K -- Baldwin, E -- Weber, I T -- Selk, L M -- Clawson, L -- Schneider, J -- Kent, S B -- N01-CO-74101/CO/NCI NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 11;245(4918):616-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Crystallography Laboratory, NCI-Frederick Cancer Research Facility, MD 21701.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2548279" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aspartic Acid Endopeptidases ; Avian Sarcoma Viruses/enzymology ; Binding Sites ; Crystallization ; *Endopeptidases/chemical synthesis ; HIV Protease ; HIV-1/*enzymology ; Hydrogen Bonding ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Protein Conformation ; Solutions ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1989-11-03
    Description: Many Gram-negative bacteria export proteins to the exterior. Some of these proteins are first secreted into the periplasm and then cross the outer membrane in a separate step. The source of energy required for the translocation is unknown. Export of the extracellular protein proaerolysin from the periplasm through the outer membrane of Aeromonas salmonicida is inhibited by a proton ionophore and by low extracellular pH. One possible explanation of these results is that a proton gradient across the outer membrane is required for export.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wong, K R -- Buckley, J T -- New York, N.Y. -- Science. 1989 Nov 3;246(4930):654-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Microbiology, University of Victoria, BC, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2814486" target="_blank"〉PubMed〈/a〉
    Keywords: Aeromonas/drug effects/*metabolism ; Bacterial Toxins/*metabolism ; Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology ; Cell Membrane/metabolism ; Culture Media ; Hemolysin Proteins/*metabolism ; Hydrogen-Ion Concentration ; Kinetics ; Pore Forming Cytotoxic Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 1989-07-14
    Description: Nearly 20 percent of the packaged RNA in bean-pod mottle virus (BPMV) binds to the capsid interior in a symmetric fashion and is clearly visible in the electron density map. The RNA displaying icosahedral symmetry is single-stranded with well-defined polarity and stereochemical properties. Interactions with protein are dominated by nonbonding forces with few specific contacts. The tertiary and quaternary structures of the BPMV capsid proteins are similar to those observed in animal picornaviruses, supporting the close relation between plant comoviruses and animal picornaviruses established by previous biological studies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Z G -- Stauffacher, C -- Li, Y -- Schmidt, T -- Bomu, W -- Kamer, G -- Shanks, M -- Lomonossoff, G -- Johnson, J E -- AI18764/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1989 Jul 14;245(4914):154-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2749253" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Capsid/*metabolism/ultrastructure ; Crystallography ; Electron Probe Microanalysis ; Electrophoresis, Polyacrylamide Gel ; Macromolecular Substances ; Molecular Sequence Data ; Mosaic Viruses/*analysis/genetics/ultrastructure ; Plant Viruses/*analysis/genetics/ultrastructure ; Protein Conformation ; RNA, Viral/*metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1989-05-26
    Description: The eye needs to biosynthesize 11-cis-retinoids because the chromophore of rhodopsin is 11-cis-retinal. The critical metabolic step is the endergonic isomerization of free all-trans-retinol (vitamin A) into 11-cis-retinol. This isomerization process can take place in isolated membranes from the retinal pigment epithelium in the absence of added energy sources. Specific binding proteins probably do not serve as an energy source, and since all of the reactions in the visual cycle are shown here to be reversible, trapping reactions also do not participate in the isomerization reaction. One previously unexplored possibility is that the chemical energy in the bonds of the membrane itself may drive the isomerization reaction. A group transfer reaction is proposed that forms a retinyl ester from a lipid acyl donor and vitamin A. This transfer can drive the isomerization reaction because the all-trans-retinyl ester is isomerized directly to 11-cis-retinol. Thus, the free energy of hydrolysis of the ester is coupled to the thermodynamically uphill trans to cis isomerization. The prediction of an obligate C-O bond cleavage in the vitamin A moiety during isomerization is borne out. Although the natural substrate for isomerization is not known, all-trans-retinyl palmitate is processed in vitro to 11-cis-retinol by pigment epithelial membranes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deigner, P S -- Law, W C -- Canada, F J -- Rando, R R -- EY04096/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1989 May 26;244(4907):968-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2727688" target="_blank"〉PubMed〈/a〉
    Keywords: Amphibians ; Animals ; Cattle ; Cell Membrane/*metabolism ; *Energy Metabolism ; Isomerases/metabolism ; Isomerism ; Kinetics ; Molecular Structure ; Pigment Epithelium of Eye/*metabolism/radiation effects ; Ultraviolet Rays ; Vitamin A/analogs & derivatives/*metabolism ; *cis-trans-Isomerases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-01-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Catterall, W A -- New York, N.Y. -- Science. 1989 Jan 13;243(4888):236-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2536189" target="_blank"〉PubMed〈/a〉
    Keywords: Kinetics ; Ligands ; Receptors, Adrenergic, alpha/*metabolism ; Receptors, Adrenergic, beta/*metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-10
    Description: Primary and secondary protium-to-tritium (H/T) and deuterium-to-tritium (D/T) kinetic isotope effects for the catalytic oxidation of benzyl alcohol to benzaldehyde by yeast alcohol dehydrogenase (YADH) at 25 degrees Celsius have been determined. Previous studies showed that this reaction is nearly or fully rate limited by the hydrogen-transfer step. Semiclassical mass considerations that do not include tunneling effects would predict that kH/kT = (kD/kT)3.26, where kH, kD, and kT are the rate constants for the reaction of protium, deuterium, and tritium derivatives, respectively. Significant deviations from this relation have now been observed for both primary and especially secondary effects, such that experimental H/T ratios are much greater than those calculated from the above expression. These deviations also hold in the temperature range from 0 to 40 degrees Celsius. Such deviations were previously predicted to result from a reaction coordinate containing a significant contribution from hydrogen tunneling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cha, Y -- Murray, C J -- Klinman, J P -- New York, N.Y. -- Science. 1989 Mar 10;243(4896):1325-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2646716" target="_blank"〉PubMed〈/a〉
    Keywords: Alcohol Dehydrogenase/*metabolism ; Benzyl Alcohols ; *Hydrogen ; Kinetics ; Mathematics ; Models, Theoretical ; Oxidation-Reduction ; Saccharomyces cerevisiae/enzymology ; Thermodynamics ; Tritium
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-02-10
    Description: As the originator of the oxygen in our atmosphere, the photosynthetic water-splitting enzyme of chloroplasts is vital for aerobic life on the earth. It has a manganese cluster at its active site, but it is poorly understood at the molecular level. Polarized synchrotron radiation was used to examine the x-ray absorption of manganese in oriented chloroplasts. The manganese site, in the "resting" (S1) state, is an asymmetric cluster, which probably contains four manganese atoms, with interatomic separations of 2.7 and 3.3 angstroms; the vector formed by the 3.3-angstrom manganese pair is oriented perpendicular to the membrane plane. Comparisons with model compounds suggest that the cluster contains bridging oxide or hydroxide ligands connecting the manganese atoms, perhaps with carboxylate bridges connecting the 3.3-angstrom manganese pair.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉George, G N -- Prince, R C -- Cramer, S P -- New York, N.Y. -- Science. 1989 Feb 10;243(4892):789-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉EXXON Research and Engineering Company, Annandale, NJ 08801.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2916124" target="_blank"〉PubMed〈/a〉
    Keywords: Chloroplasts/*ultrastructure ; *Manganese ; Particle Accelerators ; *Photosynthesis ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-02-03
    Description: The question of how the amino acid sequence of a protein specifies its three-dimensional structure remains to be answered. Proteins are so large and complex that it is difficult to discern the features in their sequences that contribute to their structural stability and function. One approach to this problem is de novo design of model proteins, much simpler than their natural counterparts, yet containing sufficient information in their sequences to specify a given function (for example, folding in aqueous solution, folding in membranes, or formation of ion channels). Designed proteins provide simple model systems for understanding protein structure and function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeGrado, W F -- Wasserman, Z R -- Lear, J D -- New York, N.Y. -- Science. 1989 Feb 3;243(4891):622-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉E. I. du Pont de Nemours & Company, Central Research and Development Department, Wilmington, DE 19898.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2464850" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Ion Channels ; Macromolecular Substances ; Models, Molecular ; Protein Conformation ; *Proteins ; Solubility ; Structure-Activity Relationship ; Tropomyosin ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-31
    Description: Uncoated recA-DNA complexes were imaged with the scanning tunneling microscope (STM). The images, which reveal the right-handed helical structure of the complexes with subunits clearly resolved, are comparable in quality to STM images of metal-coated specimens. Possible conduction mechanisms that allow STM imaging of biological macromolecules are discussed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amrein, M -- Durr, R -- Stasiak, A -- Gross, H -- Travaglini, G -- New York, N.Y. -- Science. 1989 Mar 31;243(4899):1708-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Cell Biology, Swiss Federal Institute of Technology, Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2928803" target="_blank"〉PubMed〈/a〉
    Keywords: Acetates ; Acetic Acid ; Adsorption ; Aluminum Silicates ; DNA/*metabolism ; Electrochemistry ; Macromolecular Substances ; Magnesium ; Magnesium Chloride ; *Microscopy, Electron ; Molecular Structure ; Protein Conformation ; Rec A Recombinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1989-09-01
    Description: Human alpha- and beta-globin genes were separately fused downstream of two erythroid-specific deoxyribonuclease (DNase) I super-hypersensitive sites that are normally located 50 kilobases upstream of the human beta-globin gene. These two constructs were coinjected into fertilized mouse eggs, and expression was analyzed in transgenic animals that developed. Mice that had intact copies of the transgenes expressed high levels of correctly initiated human alpha- and beta-globin messenger RNA specifically in erythroid tissue. An authentic human hemoglobin was formed in adult erythrocytes that when purified had an oxygen equilibrium curve identical to the curve of native human hemoglobin A (Hb A). Thus, functional human hemoglobin can be synthesized in transgenic mice. This provides a foundation for production of mouse models of human hemoglobinopathies such as sickle cell disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Behringer, R R -- Ryan, T M -- Reilly, M P -- Asakura, T -- Palmiter, R D -- Brinster, R L -- Townes, T M -- HD-09172/HD/NICHD NIH HHS/ -- HL-35559/HL/NHLBI NIH HHS/ -- HL-38632/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1989 Sep 1;245(4921):971-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Reproductive Physiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2772649" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Deoxyribonuclease I ; Female ; *Genes ; Globins/biosynthesis/*genetics ; Hemoglobins/biosynthesis/*genetics ; Humans ; Kinetics ; Mice ; Mice, Transgenic ; Oxyhemoglobins/metabolism ; RNA, Messenger/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-02-17
    Description: Mutant flies in which the gene coding for the Shaker potassium channel is deleted still have potassium currents similar to those coded by the Shaker gene. This suggests the presence of a family of Shaker-like genes in Drosophila. By using a Shaker complementary DNA probe and low-stringency hybridization, three additional family members have now been isolated, Shab, Shaw, and Shal. The Shaker family genes are not clustered in the genome. The deduced proteins of Shab, Shaw, and Shal have high homology to the Shaker protein; the sequence identity of the integral membrane portions is greater than 50 percent. These genes are organized similarly to Shaker in that only a single homology domain containing six presumed membrane-spanning segments common to all voltage-gated ion channels is coded by each messenger RNA. Thus, potassium channel diversity could result from an extended gene family, as well as from alternate splicing of the Shaker primary transcript.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Butler, A -- Wei, A G -- Baker, K -- Salkoff, L -- 1 RO1 NS24785-01/NS/NINDS NIH HHS/ -- GMO 7200/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Feb 17;243(4893):943-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2493160" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Blotting, Northern ; Carrier Proteins/*genetics ; Drosophila Proteins ; Drosophila melanogaster/*genetics ; *Genes ; Molecular Sequence Data ; *Multigene Family ; Potassium Channels/*physiology ; Protein Conformation ; RNA, Messenger/genetics ; Shab Potassium Channels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 1989-06-09
    Description: The three-dimensional structure of human serum albumin has been solved at 6.0 angstrom (A) resolution by the method of multiple isomorphous replacement. Crystals were grown from solutions of polyethylene glycol in the infrequently observed space group P42(1)2 (unit cell constants a = b = 186.5 +/- 0.5 A and c = 81.0 +/- 0.5 A) and diffracted x-rays to lattice d-spacings of less than 2.9 A. The electron density maps are of high quality and revealed the structure as a predominantly alpha-helical globin protein in which the course of the polypeptide can be traced. The binding loci of several organic compounds have been determined.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carter, D C -- He, X M -- Munson, S H -- Twigg, P D -- Gernert, K M -- Broom, M B -- Miller, T Y -- New York, N.Y. -- Science. 1989 Jun 9;244(4909):1195-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Aeronautics and Space Administration, Space Sciences Laboratory, Marshall Space Flight Center, AL 35812.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2727704" target="_blank"〉PubMed〈/a〉
    Keywords: Humans ; *Models, Molecular ; Polyethylene Glycols ; Protein Conformation ; *Serum Albumin ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 1989-03-10
    Description: A strategy, termed homolog-scanning mutagenesis, was used to identify the epitopes on human growth hormone (hGH) for binding to its cloned liver receptor and eight different monoclonal antibodies (Mab's). Segments of sequences (7 to 30 residues long) that were derived from homologous hormones known not to bind to the hGH receptor or Mab's, were systematically substituted throughout the hGH gene to produce a set of 17 chimeric hormones. Each Mab or receptor was categorized by a particular subset of mutant hormones was categorized by a particular subset of mutant hormones that disrupted binding. Each subset of the disruptive mutations mapped within close proximity on a three-dimensional model of hGH, even though the residues changed within each subset were usually distant in the primary sequence. The mapping analysis correctly predicted those Mab's which could or could not block binding of the receptor to hGH and further suggested (along with other data) that the folding of these chimeric hormones is like that of HGH. By this analysis, three discontinuous polypeptide determinants in hGH--the loop between residues 54 and 74, the central portion of helix 4 to the carboxyl terminus, and to a lesser extent the amino-terminal region of helix 1--modulate binding to the liver receptor. Homolog-scanning mutagenesis should be of general use in identifying sequences that cause functional variation among homologous proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, B C -- Jhurani, P -- Ng, P -- Wells, J A -- New York, N.Y. -- Science. 1989 Mar 10;243(4896):1330-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomolecular Chemistry, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2466339" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal ; Chimera ; Cloning, Molecular ; Epitopes/*analysis ; Genes ; Growth Hormone/*genetics/immunology/metabolism ; Humans ; Liver/metabolism ; Molecular Sequence Data ; *Mutation ; Protein Conformation ; Receptors, Somatotropin/*genetics/metabolism ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 1989-06-02
    Description: A strategy, called alanine-scanning mutagenesis, was used to identify specific side chains in human growth hormone (hGH) that strongly modulate binding to the hGH receptor cloned from human liver. Single alanine mutations (62 in total) were introduced at every residue contained within the three discontinuous segments of hGH (residues 2 to 19, 54 to 74, and 167 to 191) that have been implicated in receptor recognition. The alanine scan revealed a cluster of a dozen large side chains that when mutated to alanine each showed more than a four times lower binding affinity to the hGH receptor. Many of these residues that promote binding to the hGH receptor are altered in homologs of hGH (such as placental lactogens and prolactins) that do not bind tightly to the hGH receptor. The overall folding of these mutant proteins was indistinguishable from that of the wild-type hGH, as determined by strong cross-reactivities with seven different conformationally sensitive monoclonal antibodies. The alanine scan also identified at least one side chain, Glu174, that hindered binding because when it was mutated to alanine the receptor affinity increased by more than a factor of four.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, B C -- Wells, J A -- New York, N.Y. -- Science. 1989 Jun 2;244(4908):1081-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomolecular Chemistry, Genentech, South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2471267" target="_blank"〉PubMed〈/a〉
    Keywords: *Alanine ; Amino Acid Sequence ; Antibodies, Monoclonal ; Disulfides ; Epitopes/immunology ; Growth Hormone/genetics/immunology/*metabolism ; Humans ; Hydrogen Bonding ; Molecular Sequence Data ; Molecular Structure ; *Mutation ; Placental Lactogen ; Prolactin ; Protein Conformation ; Receptors, Somatotropin/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-06-30
    Description: High-resolution differential interference contrast microscopy and digital imaging of the fluorescent calcium indicator dye fura-2 were performed simultaneously in single rat salivary gland acinar cells to examine the effects of muscarinic stimulation on cell volume and cytoplasmic calcium concentration ([Ca2+]i). Agonist stimulation of fluid secretion is initially associated with a rapid tenfold increase in [Ca2+]i as well as a substantial cell shrinkage. Subsequent changes of cell volume in the continued presence of agonist are tightly coupled to dynamic levels of [Ca2+]i, even during [Ca2+]i oscillations. Experiments with Ca2+ chelators and ionophores showed that physiological elevations of [Ca2+]i are necessary and sufficient to cause changes in cell volume. The relation between [Ca2+]i and cell volume suggests that the latter reflects the secretory state of the acinar cell. Agonist-induced changes in [Ca2+]i, by modulating specific ion permeabilities, result in solute movement into or out of the cell. The resultant cell volume changes may be important in modulating salivary secretion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Foskett, J K -- Melvin, J E -- New York, N.Y. -- Science. 1989 Jun 30;244(4912):1582-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physiology Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2500708" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzofurans ; Calcium/*metabolism ; Carbachol/pharmacology ; Cell Membrane/physiology ; Chelating Agents ; Chlorides/metabolism ; Cytoplasm/metabolism ; Egtazic Acid/analogs & derivatives ; Ethers/pharmacology ; Fluorescent Dyes ; Fura-2 ; Ionomycin ; Ionophores ; Kinetics ; Potassium/metabolism ; Rats ; Saliva/*secretion ; Salivary Glands/*cytology/drug effects/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-11-25
    Description: The human immunodeficiency virus type 1 (HIV-1) shows extensive genetic variation and undergoes rapid evolution. The fidelity of purified HIV-1 reverse transcriptase was measured during DNA polymerization in vitro by means of three different assays. Reverse transcriptase from HIV-1 introduced base-substitution errors in DNA from the bacteriophage phi X174 amber3 at estimated frequencies of 1/2000 to 1/4000. Analyses of misincorporation rates opposite a single template adenine residue showed that HIV-1 reverse transcriptase catalyzed nucleotide mismatches with a specificity of A:C much greater than A:G greater than A:A. The high error rate of HIV-1 reverse transcriptase in vitro translates to approximately five to ten errors per HIV-1 genome per round of replication in vivo. This high error rate suggests that misincorporation by HIV-1 reverse transcriptase is, at least in part, responsible for the hypermutability of the AIDS virus. The specificity of misincorporation may provide a basis for the systematic construction of antiviral nucleosides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Preston, B D -- Poiesz, B J -- Loeb, L A -- CA-07263-03/CA/NCI NIH HHS/ -- N01AI72654/AI/NIAID NIH HHS/ -- R35-CA-39903/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1988 Nov 25;242(4882):1168-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2460924" target="_blank"〉PubMed〈/a〉
    Keywords: Avian Myeloblastosis Virus/enzymology ; Bacteriophage phi X 174/genetics ; DNA/*biosynthesis ; DNA Polymerase II/metabolism ; DNA, Viral/biosynthesis ; Electrophoresis, Polyacrylamide Gel ; HIV/*enzymology/genetics ; Kinetics ; Moloney murine leukemia virus/enzymology ; Mutation ; Nucleotides/metabolism ; RNA-Directed DNA Polymerase/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 1988-04-22
    Description: BC3H1 myocytes release membrane-bound alkaline phosphatase to the incubation medium upon stimulation with insulin, following a time course that is consistent with the generation of dimyristoylglycerol and the appearance of a putative insulin mediator in the extracellular medium. The use of specific blocking agents shows, however, that alkaline phosphatase release and dimyristoylglycerol production are independent processes and that the blockade of either event inhibits the production of insulin mediator. These experiments suggest a new model of insulin action.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Romero, G -- Luttrell, L -- Rogol, A -- Zeller, K -- Hewlett, E -- Larner, J -- AI 18000/AI/NIAID NIH HHS/ -- AM 14334/AM/NIADDK NIH HHS/ -- AM 22125/AM/NIADDK NIH HHS/ -- New York, N.Y. -- Science. 1988 Apr 22;240(4851):509-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Virginia School of Medicine, Charlottesville 22908.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3282305" target="_blank"〉PubMed〈/a〉
    Keywords: Alkaline Phosphatase/metabolism/secretion ; Animals ; Diglycerides/metabolism ; Enzyme Activation/drug effects ; Extracellular Space/enzymology ; Glycolipids/*physiology ; In Vitro Techniques ; Insulin/*pharmacology ; Kinetics ; Membrane Glycoproteins/*physiology ; Phosphatidylinositols/*physiology ; Pyruvate Dehydrogenase Complex/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-11-04
    Description: The anticodon has previously been shown to play a role in recognition of certain transfer RNAs by aminoacyl-tRNA synthetases; however, the extent to which this sequence dictates tRNA identity is generally unknown. To investigate the contribution of the anticodon to the identity of Escherichia coli methionine and valine tRNAs, in vitro transcripts of these tRNAs were prepared that contained normal and interchanged anticodon sequences. Transcripts containing wild-type tRNA sequences were excellent substrates for their respective cognate aminoacyl-tRNA synthetases and were effectively discriminated against by a variety of noncognate enzymes. The mutant tRNAs produced by switching the anticodon sequences lost their original tRNA identity and assumed an identity corresponding to the acquired anticodon sequence. These results indicate that the anticodon contains sufficient information to distinguish methionine and valine tRNAs with high fidelity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schulman, L H -- Pelka, H -- New York, N.Y. -- Science. 1988 Nov 4;242(4879):765-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology and Cancer, Albert Einstein College of Medicine, Bronx, New York 10461.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3055296" target="_blank"〉PubMed〈/a〉
    Keywords: *Anticodon ; Escherichia coli ; Kinetics ; Methionine-tRNA Ligase/metabolism ; *RNA, Transfer ; RNA, Transfer, Amino Acid-Specific/*physiology ; RNA, Transfer, Met/*physiology ; RNA, Transfer, Val/*physiology ; Substrate Specificity ; *Transfer RNA Aminoacylation ; Valine-tRNA Ligase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 1988-11-25
    Description: A cell-free translation system has been constructed that uses a continuous flow of the feeding buffer [including amino acids, adenosine triphosphate (ATP), and guanosine triphosphate (GTP)] through the reaction mixture and a continuous removal of a polypeptide product. Both prokaryotic (Escherichia coli) and eukaryotic (wheat embryos, Triticum sp.) versions of the system have been tested. In both cases the system has proven active for long times, synthesizing polypeptides at a high constant rate for tens of hours. With the use of MS2 phage RNA or brome mosaic virus RNA 4 as templates, 100 copies of viral coat proteins per RNA were synthesized for 20 hours in the prokaryotic or eukaryotic system, respectively. With synthetic calcitonin messenger RNA, 150 to 300 copies of calcitonin polypeptide were produced per messenger RNA in both types of continuous translation systems for 40 hours.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spirin, A S -- Baranov, V I -- Ryabova, L A -- Ovodov, S Y -- Alakhov, Y B -- New York, N.Y. -- Science. 1988 Nov 25;242(4882):1162-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Protein Research, Academy of Sciences, Moscow Region, USSR.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3055301" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophages/genetics ; Calcitonin/biosynthesis/genetics ; Capsid/biosynthesis/genetics ; Electrophoresis ; Escherichia coli/*metabolism ; Kinetics ; Mosaic Viruses/genetics ; *Peptide Biosynthesis ; Plants/*metabolism ; *Protein Biosynthesis ; RNA, Messenger/metabolism ; RNA, Viral/genetics ; Ribosomes/metabolism ; Templates, Genetic ; Triticum
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1988-09-16
    Description: In the proposed "zinc finger" DNA-binding motif, each repeat unit binds a zinc metal ion through invariant Cys and His residues and this drives the folding of each 30-residue unit into an independent nucleic acid-binding domain. To obtain structural information, we synthesized single and double zinc finger peptides from the yeast transcription activator ADR1, and assessed the metal-binding and DNA-binding properties of these peptides, as well as the solution structure of the metal-stabilized domains, with the use of a variety of spectroscopic techniques. A single zinc finger can exist as an independent structure sufficient for zinc-dependent DNA binding. An experimentally determined model of the single finger is proposed that is consistent with circular dichroism, one- and two-dimensional nuclear magnetic resonance, and visual spectroscopy of the single-finger peptide reconstituted in the presence of zinc.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parraga, G -- Horvath, S J -- Eisen, A -- Taylor, W E -- Hood, L -- Young, E T -- Klevit, R E -- New York, N.Y. -- Science. 1988 Sep 16;241(4872):1489-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3047872" target="_blank"〉PubMed〈/a〉
    Keywords: Circular Dichroism ; DNA Mutational Analysis ; *DNA-Binding Proteins ; Magnetic Resonance Spectroscopy ; Metalloproteins ; Protein Conformation ; Saccharomyces cerevisiae ; Structure-Activity Relationship ; *Transcription Factors ; Zinc/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-01-08
    Description: The Bacillus subtilis ribonuclease P consists of a protein and an RNA. At high ionic strength the reaction is protein-independent; the RNA alone is capable of cleaving precursor transfer RNA, but the turnover is slow. Kinetic analyses show that high salt concentrations facilitate substrate binding in the absence of the protein, probably by decreasing the repulsion between the polyanionic enzyme and substrate RNAs, and also slow product release and enzyme turnover. It is proposed that the ribonuclease P protein, which is small and basic, provides a local pool of counter-ions that facilitates substrate binding without interfering with rapid product release.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reich, C -- Olsen, G J -- Pace, B -- Pace, N R -- GM34527/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Jan 8;239(4836):178-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington 47405.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3122322" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/*enzymology ; Endoribonucleases/*physiology ; Kinetics ; Nucleic Acid Precursors/metabolism ; RNA, Transfer/metabolism ; Ribonuclease P ; Ribonucleoproteins/*physiology ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 1988-07-01
    Description: A method of combinatorial cassette mutagenesis was designed to readily determine the informational content of individual residues in protein sequences. The technique consists of simultaneously randomizing two or three positions by oligonucleotide cassette mutagenesis, selecting for functional protein, and then sequencing to determine the spectrum of allowable substitutions at each position. Repeated application of this method to the dimer interface of the DNA-binding domain of lambda repressor reveals that the number and type of substitutions allowed at each position are extremely variable. At some positions only one or two residues are functionally acceptable; at other positions a wide range of residues and residue types are tolerated. The number of substitutions allowed at each position roughly correlates with the solvent accessibility of the wild-type side chain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reidhaar-Olson, J F -- Sauer, R T -- AI-15706/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1988 Jul 1;241(4861):53-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3388019" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Codon ; DNA/genetics/metabolism ; *DNA-Binding Proteins ; Macromolecular Substances ; Molecular Sequence Data ; Mutation ; Plasmids ; Protein Conformation ; Repressor Proteins/*genetics ; Structure-Activity Relationship ; Transcription Factors/*genetics ; Viral Proteins ; Viral Regulatory and Accessory Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 1988-04-15
    Description: The solution conformation of plastocyanin from the green alga Scenedesmus obliquus has been determined from distance and dihedral angle constraints derived by nuclear magnetic resonance (NMR) spectroscopy. Structures were generated with distance geometry and restrained molecular dynamics calculations. A novel molecular replacement method was also used with the same NMR constraints to generate solution structures of S. obliquus plastocyanin from the x-ray structure of the homologous poplar protein. Scenedesmus obliquus plastocyanin in solution adopts a beta-barrel structure. The backbone conformation is well defined and is similar overall to that of poplar plastocyanin in the crystalline state. The distinctive acidic region of the higher plant plastocyanins, which functions as a binding site for electron transfer proteins and inorganic complexes, differs in both shape and charge in S. obliquus plastocyanin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, J M -- Case, D A -- Chazin, W J -- Gippert, G P -- Havel, T F -- Powls, R -- Wright, P E -- GM36643/GM/NIGMS NIH HHS/ -- GM38221/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Apr 15;240(4850):314-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3353725" target="_blank"〉PubMed〈/a〉
    Keywords: Calorimetry ; Chlorophyta/*metabolism ; Magnetic Resonance Spectroscopy/methods ; Models, Molecular ; *Plant Proteins ; *Plastocyanin ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1988-12-16
    Description: The fidelity of protein biosynthesis in any cell rests on the accuracy of aminoacylation of tRNA. The exquisite specificity of this reaction is critically dependent on the correct recognition of tRNA by aminoacyl-tRNA synthetases. It is shown here that the relative concentrations of a tRNA and its cognate aminoacyl-tRNA synthetase are normally well balanced and crucial for maintenance of accurate aminoacylation. When Escherichia coli Gln-tRNA synthetase is overproduced in vivo, it incorrectly acylates the supF amber suppressor tRNA(Tyr) with Gln. This effect is abolished when the intracellular concentration of the cognate tRNA(Gln2) is also elevate. These data indicate that the presence of aminoacyl-tRNA synthetase and the cognate tRNAs in complexed form, which requires the proper balance of the two macromolecules, is critical in maintaining the fidelity of protein biosynthesis. Thus, limits exist on the relative levels of tRNAs and aminoacyl-tRNA synthetases within a cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Swanson, R -- Hoben, P -- Sumner-Smith, M -- Uemura, H -- Watson, L -- Soll, D -- New York, N.Y. -- Science. 1988 Dec 16;242(4885):1548-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3144042" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acyl-tRNA Synthetases/genetics/*metabolism ; Escherichia coli/enzymology/*genetics ; Kinetics ; Plasmids ; RNA, Transfer, Amino Acid-Specific/*metabolism ; RNA, Transfer, Gln/*metabolism ; beta-Galactosidase/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 1988-12-09
    Description: Potassium channels in neurons are linked by guanine nucleotide binding (G) proteins to numerous neurotransmitter receptors. The ability of Go, the predominant G protein in the brain, to stimulate potassium channels was tested in cell-free membrane patches of hippocampal pyramidal neurons. Four distinct types of potassium channels, which were otherwise quiescent, were activated by both isolated brain G0 and recombinant Go alpha. Hence brain Go can couple diverse brain potassium channels to neurotransmitter receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉VanDongen, A M -- Codina, J -- Olate, J -- Mattera, R -- Joho, R -- Birnbaumer, L -- Brown, A M -- DK-19318/DK/NIDDK NIH HHS/ -- HL-31154/HL/NHLBI NIH HHS/ -- HL-37044/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1988 Dec 9;242(4884):1433-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3144040" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Imidodiphosphate/pharmacology ; Animals ; Cattle ; Electric Conductivity ; GTP-Binding Proteins/*pharmacology ; Hippocampus/*physiology ; In Vitro Techniques ; Kinetics ; Macromolecular Substances ; Membrane Potentials/drug effects ; Potassium Channels/drug effects/*physiology ; Pyramidal Tracts/physiology ; Rats ; Recombinant Proteins/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1988-12-02
    Description: D-galactose-binding (or chemoreceptor) protein of Escherichia coli serves as an initial component for both chemotaxis towards galactose and glucose and high-affinity active transport of the two sugars. Well-refined x-ray structures of the liganded forms of the wild-type and a mutant protein isolated from a strain defective in chemotaxis but fully competent in transport have provided a molecular view of the sugar-binding site and of a site for interacting with the Trg transmembrane signal transducer. The geometry of the sugar-binding site, located in the cleft between the two lobes of the bilobate protein, is novel in that it is designed for tight binding and sequestering of either the alpha or beta anomer of the D-stereoisomer of the 4-epimers galactose and glucose. Binding specificity and affinity are conferred primarily by polar planar side-chain residues that form intricate networks of cooperative and bidentate hydrogen bonds with the sugar substrates, and secondarily by aromatic residues that sandwich the pyranose ring. Each of the pairs of anomeric hydroxyls and epimeric hydroxyls is recognized by a distinct Asp residue. The site for interaction with the transducer is about 18 A from the sugar-binding site. Mutation of Gly74 to Asp at this site, concomitant with considerable changes in the local ordered water structures, contributes to the lack of productive interaction with the transmembrane signal transducer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vyas, N K -- Vyas, M N -- Quiocho, F A -- New York, N.Y. -- Science. 1988 Dec 2;242(4883):1290-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3057628" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*ultrastructure ; Binding Sites ; *Calcium-Binding Proteins ; Carrier Proteins/*ultrastructure ; *Chemotaxis ; Computer Simulation ; DNA Mutational Analysis ; Escherichia coli ; Galactose/metabolism ; Glucose/metabolism ; Hydrogen Bonding ; Models, Molecular ; *Monosaccharide Transport Proteins ; *Periplasmic Binding Proteins ; Protein Conformation ; Structure-Activity Relationship ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1988-06-10
    Description: Proteins undergo a series of nonenzymatic reactions with glucose over time to form advanced glycosylation end products (AGEs). Macrophages have a receptor that recognizes the AGE moiety and mediates the uptake and degradation of AGE proteins. This removal process is associated with the production and secretion of cachectin (tumor necrosis factor) and interleukin-1, two cytokines with diverse and seemingly paradoxical biological activities. The localized release and action of these cytokines could account for the coordinated removal and replacement of senescent extracellular matrix components in normal tissue homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vlassara, H -- Brownlee, M -- Manogue, K R -- Dinarello, C A -- Pasagian, A -- R01-AI15674/AI/NIAID NIH HHS/ -- R01-AM19655/AM/NIADDK NIH HHS/ -- R01-AM33861/AM/NIADDK NIH HHS/ -- New York, N.Y. -- Science. 1988 Jun 10;240(4858):1546-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Medical Biochemistry, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3259727" target="_blank"〉PubMed〈/a〉
    Keywords: Glycosylation ; Humans ; Interleukin-1/*biosynthesis/genetics ; Kinetics ; Membrane Glycoproteins/*physiology ; Monocytes/*metabolism ; Protein Biosynthesis ; RNA, Messenger/genetics ; Tumor Necrosis Factor-alpha/*biosynthesis/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-06-17
    Description: Biochemical and electrophysiological studies suggest that adenosine 3',5'-monophosphate (cAMP)-dependent phosphorylation of the nicotinic acetylcholine receptor channel is functionally significant because it modifies the receptor's rate of desensitization to acetylcholine. In studies that support this conclusion researchers have used forskolin to stimulate cAMP-dependent phosphorylation in intact muscle. It is now shown that although forskolin facilitated desensitization in voltage-clamped rat muscle, this effect was not correlated with the abilities of forskolin and forskolin analogs to activate adenylate cyclase or phosphorylate the receptor. Furthermore, elevation of intracellular cAMP or addition of the catalytic subunit of A-kinase failed to alter desensitization. Therefore, in intact skeletal muscle, cAMP-dependent phosphorylation does not modulate desensitization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wagoner, P K -- Pallotta, B S -- GM32211/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Jun 17;240(4859):1655-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology, Glaxo Research Laboratories, Chapel Hill, NC 27599.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2454507" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Methyl-3-isobutylxanthine/pharmacology ; Acetylcholine/pharmacology ; Adenylyl Cyclases/metabolism ; Animals ; Bucladesine/pharmacology ; Colforsin/*pharmacology ; Cyclic AMP/analogs & derivatives/*pharmacology ; Electric Conductivity ; Enzyme Activation/drug effects ; Kinetics ; Muscles/*metabolism ; Phosphorylation ; Rats ; Receptors, Cholinergic/drug effects/*physiology ; Torpedo/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-07-08
    Description: Gramicidin, a linear polypeptide composed of hydrophobic amino acids with alternating L- and D- configurations, forms transmembrane ion channels. The crystal structure of a gramicidin-cesium complex has been determined at 2.0 angstrom resolution. In this structure, gramicidin forms a 26 angstrom long tube comprised of two polypeptide chains arranged as antiparallel beta strands that are wrapped into a left-handed helical coil with 6.4 residues per turn. The polypeptide backbone forms the interior of the hydrophilic, solvent-filled pore and the side chains form a hydrophobic and relatively regular surface on the outside of the pore. This example of a crystal structure of a solvent-filled ion pore provides a basis for understanding the physical nature of ion translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wallace, B A -- Ravikumar, K -- New York, N.Y. -- Science. 1988 Jul 8;241(4862):182-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Center for Biophysics, Rensselaer Polytechnic Institute, Troy, NY 12180.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2455344" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cesium ; Computer Simulation ; Crystallography ; *Gramicidin ; *Ion Channels ; Ligands ; Macromolecular Substances ; *Membrane Proteins ; Models, Molecular ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-10-07
    Description: The enzymes adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase (protein kinase A) and protein kinase C regulate the activity of a diverse group of cellular proteins including membrane ion channel proteins. When protein kinase A was stimulated in cardiac ventricular myocytes with the membrane-soluble cAMP analog 8-chlorphenylthio cAMP (8-CPT cAMP), the amplitude of the delayed-rectifier potassium current (IK) doubled when recorded at 32 degrees C but was not affected at 22 degrees C. In contrast, modulation of the calcium current (ICa) by 8-CPT cAMP was independent of temperature with similar increases in ICa occurring at both temperatures. Stimulation of protein kinase C by phorbol 12,13-dibutyrate also enhanced IK in a temperature-dependent manner but failed to increase ICa at either temperature. Thus, cardiac delayed-rectifier potassium but not calcium channels are regulated by two distinct protein kinases in a similar temperature-dependent fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walsh, K B -- Kass, R S -- New York, N.Y. -- Science. 1988 Oct 7;242(4875):67-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Rochester, School of Medicine and Dentistry, NY 14642.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2845575" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cyclic AMP/*analogs & derivatives/pharmacology ; Guinea Pigs ; Heart/*physiology ; Homeostasis ; In Vitro Techniques ; Kinetics ; Membrane Potentials ; Potassium Channels/*physiology ; Protein Kinase C/*metabolism ; Protein Kinases/*metabolism ; Thermodynamics ; Thionucleotides/*pharmacology ; Ventricular Function
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-09-02
    Description: Study of proteins that recognize specific DNA sequences has yielded much information, but the field is still in its infancy. Already two major structural motifs have been discovered, the helix-turn-helix and zinc finger, and numerous examples of DNA-binding proteins containing either of them are known. The restriction enzyme Eco RI uses yet a different motif. Additional motifs are likely to be found as well. There is a growing understanding of some of the physical chemistry involved in protein-DNA binding, but much remains to be learned before it becomes possible to engineer a protein that binds to a specific DNA sequence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schleif, R -- New York, N.Y. -- Science. 1988 Sep 2;241(4870):1182-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Department of Biochemistry, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2842864" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/metabolism ; Binding Sites ; Chemical Phenomena ; Chemistry ; DNA/metabolism ; DNA Restriction Enzymes/metabolism ; DNA-Binding Proteins/*metabolism ; Deoxyribonuclease EcoRI ; Electrochemistry ; Nucleic Acids/metabolism ; Protein Conformation ; Zinc
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-12-16
    Description: The expression of a laboratory strain of HIV-1 (HTLV-IIIB) has been studied in mitogen-stimulated peripheral blood lymphocytes (PBLs) and in two lymphoid cell lines (CEM cells and C8166 cells). HIV-expressing cells contained from 300,000 to 2,500,000 copies of viral RNA per cell. Near-synchronous expression of an active infection could be achieved in C8166 cells. In these cells, the high copy numbers of viral RNA used as much as 40% of total protein synthesis for the production of viral gag protein, with high levels of viral RNA and protein synthesis preceding cell death by 2 to 4 days.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Somasundaran, M -- Robinson, H L -- AI 24474/AI/NIAID NIH HHS/ -- N01-HB-6-7022/HB/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1988 Dec 16;242(4885):1554-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Massachusetts Medical Center, Worcester 01655.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3201245" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; *Cell Transformation, Viral ; HIV-1/*genetics/growth & development/metabolism ; Humans ; Kinetics ; Lymphocytes/*microbiology ; RNA, Viral/*biosynthesis ; Viral Proteins/*biosynthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 1988-03-18
    Description: The effects of lithium on inositol phosphate metabolism may account for the therapeutic actions of lithium in affective disorder. Muscarinic stimulation of the phosphoinositide system blocks synaptic inhibitory actions of adenosine in the hippocampal slice. At therapeutic concentrations, lithium diminished this muscarinic response, whereas rubidium, which does not affect phosphoinositide metabolism, had no effect. A dampening of phosphoinositide-mediated neurotransmission may explain the normalizing effects of lithium in treating both mania and depression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worley, P F -- Heller, W A -- Snyder, S H -- Baraban, J M -- DA-00266/DA/NIDA NIH HHS/ -- MH-18501/MH/NIMH NIH HHS/ -- MH-42323/MH/NIMH NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1988 Mar 18;239(4846):1428-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2831626" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/pharmacology ; Carbachol/pharmacology ; Enzyme Activation/drug effects ; Hippocampus/drug effects/*physiology ; Inositol Phosphates/metabolism ; Kinetics ; Lithium/*pharmacology ; Oxotremorine/analogs & derivatives/pharmacology ; Phorbol Esters/pharmacology ; Phosphatidylinositols/*metabolism ; Protein Kinase C/metabolism ; Receptors, Muscarinic/drug effects/*physiology ; Synapses/physiology ; Synaptic Transmission/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-06-24
    Description: A specific, reversible binding site for a free amino acid is detectable on the intron of the Tetrahymena self-splicing ribosomal precursor RNA. The site selects arginine among the natural amino acids, and prefers the L- to the D-amino acid. The dissociation constant is in the millimolar range, and amino acid binding is at or in the catalytic rG splicing substrate site. Occupation of the G site by L-arginine therefore inhibits splicing by inhibiting the binding of rG, without inhibition of later reactions in the splicing reaction sequence. Arginine binding specificity seems to be directed at the side chain and the guanidino radical, and the alpha-amino and carboxyl groups are dispensable for binding. The arginine site can be placed within the G site by structural homology, with consequent implications for RNA-amino acid interaction, for the origin of the genetic code, for control of RNA activities, and for further catalytic capabilities for RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yarus, M -- R37 GM30881/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Jun 24;240(4860):1751-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3381099" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arginine/*metabolism ; Binding Sites ; Catalysis ; Genetic Code ; Guanosine Triphosphate/metabolism ; Kinetics ; Magnesium/metabolism ; Models, Molecular ; *RNA Splicing ; RNA, Ribosomal/*physiology ; Structure-Activity Relationship ; Tetrahymena
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-02-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zeeberg, B R -- Gibson, R E -- Reba, R C -- MH42821-01/MH/NIMH NIH HHS/ -- NS-15080/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1988 Feb 12;239(4841 Pt 1):789-91.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2963379" target="_blank"〉PubMed〈/a〉
    Keywords: Brain/*metabolism ; Haloperidol/therapeutic use ; Humans ; Kinetics ; Receptors, Dopamine/drug effects/*metabolism ; Receptors, Dopamine D2 ; Schizophrenia/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-11-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J L -- New York, N.Y. -- Science. 1988 Nov 11;242(4880):863-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2460921" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/prevention & control ; Amino Acid Sequence ; Antigens/*immunology ; Epitopes/immunology ; Major Histocompatibility Complex ; Protein Conformation ; T-Lymphocytes/*immunology ; Viral Vaccines
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-02-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J L -- New York, N.Y. -- Science. 1988 Feb 19;239(4842):863.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3124269" target="_blank"〉PubMed〈/a〉
    Keywords: GTP-Binding Proteins/metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Neoplasms/genetics ; Protein Conformation ; *Proto-Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Proteins p21(ras)
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 1988-02-05
    Description: The turnover of phosphatidylinositol 4,5-bisphosphate (PIP2) is believed to constitute a crucial step in the signaling pathways for stimulation of cells by a variety of bioactive substances, including mitogens, but decisive evidence for the idea has not been obtained. In the present study, a monoclonal antibody to PIP2 was microinjected into the cytoplasm of NIH 3T3 cells before or after exposure to mitogens. The antibody completely abolished nuclear labeling with [3H]thymidine induced by platelet-derived growth factor and bombesin, but not by fibroblast growth factor, epidermal growth factor, insulin, or serum. The findings strongly suggest that PIP2 breakdown is crucial in the elicitation and sustaining of cell proliferation induced by some types of mitogens such as platelet-derived growth factor and bombesin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matuoka, K -- Fukami, K -- Nakanishi, O -- Kawai, S -- Takenawa, T -- New York, N.Y. -- Science. 1988 Feb 5;239(4840):640-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Tokyo Metropolitan Institute of Gerontology, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2829356" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibodies, Monoclonal ; Antigen-Antibody Complex ; Bombesin/*pharmacology ; Cell Division/*drug effects ; Cells, Cultured ; Insulin/pharmacology ; Kinetics ; Mice ; Mice, Inbred Strains ; Phosphatidylinositol 4,5-Diphosphate ; Phosphatidylinositols/immunology/*physiology ; Platelet-Derived Growth Factor/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 1988-02-26
    Description: Leader peptides that function to direct export of proteins through membranes have some common features but exhibit a remarkable sequence diversity. Thus there is some question whether leader peptides exert their function through conventional stereospecific protein-protein interaction. Here it is shown that the leader peptides retarded the folding of precursor maltose-binding protein and ribose-binding protein from Escherichia coli. This kinetic effect may be crucial in allowing precursors to enter the export pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, S -- Liu, G -- Topping, T B -- Cover, W H -- Randall, L L -- GM29798/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Feb 26;239(4843):1033-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry/Biophysics Program, Washington State University, Pullman 99164.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3278378" target="_blank"〉PubMed〈/a〉
    Keywords: *ATP-Binding Cassette Transporters ; Bacterial Proteins/*metabolism ; Biological Transport ; Carrier Proteins/metabolism ; Endopeptidase K ; Escherichia coli/*metabolism ; *Escherichia coli Proteins ; Guanidine ; Guanidines/pharmacology ; Kinetics ; Maltose-Binding Proteins ; *Monosaccharide Transport Proteins ; Peptide Hydrolases ; *Periplasmic Binding Proteins ; *Protein Conformation/drug effects ; Protein Denaturation ; Protein Precursors/*metabolism ; Protein Sorting Signals/pharmacology/*physiology ; Serine Endopeptidases/pharmacology ; Spectrometry, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1988-10-14
    Description: Suspensions of thymocytes from young rats were incubated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which resulted in a sustained increase in cytosolic free Ca2+ concentration followed by DNA fragmentation and loss of cell viability. Both the Ca2+ increase and DNA fragmentation were prevented in cells treated with the inhibitor of protein synthesis, cycloheximide, and DNA fragmentation and cell killing were not detected when cells were incubated in a "Ca2+-free" medium or pretreated with high concentrations of the calcium probe, quin-2 tetraacetoxymethyl ester. These results indicate that TCDD can kill immature thymocytes by initiating a suicide process similar to that previously described for glucocorticoid hormones.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McConkey, D J -- Hartzell, P -- Duddy, S K -- Hakansson, H -- Orrenius, S -- New York, N.Y. -- Science. 1988 Oct 14;242(4876):256-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Toxicology, Karolinska Institutet, Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3262923" target="_blank"〉PubMed〈/a〉
    Keywords: Aminoquinolines ; Animals ; Calcium/metabolism/*pharmacology ; Cell Survival/drug effects ; Cycloheximide/pharmacology ; Cytosol/metabolism ; DNA/metabolism ; Deoxyribonuclease I/*metabolism ; Dioxins/*pharmacology ; Enzyme Activation/drug effects ; Fluorescent Dyes ; Glucocorticoids/pharmacology ; Kinetics ; Rats ; T-Lymphocytes/drug effects ; Tetrachlorodibenzodioxin/*pharmacology ; Thymus Gland/*drug effects/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-04-29
    Description: The kinetics of calcium release by inositol 1,4,5-trisphosphate (IP3) in permeabilized rat basophilic leukemia cells were studied to obtain insight into the molecular mechanism of action of this intracellular messenger of the phosphoinositide cascade. Calcium release from intracellular storage sites was monitored with fura-2, a fluorescent indicator. The dependence of the rate of calcium release on the concentration of added IP3 in the 4 to 40 nM range showed that channel opening requires the binding of at least three molecules of IP3. Channel opening occurred in the absence of added adenosine triphosphate, indicating that IP3 acts directly on the channel or on a protein that gates it. The channels were opened by IP3 in less than 4 seconds. The highly cooperative opening of calcium channels by nanomolar concentrations of IP3 enables cells to detect and amplify very small changes in the concentration of this messenger in response to hormonal, sensory, and growth control stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer, T -- Holowka, D -- Stryer, L -- AI22449/AI/NIAID NIH HHS/ -- GM24032/GM/NIGMS NIH HHS/ -- GM30387/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Apr 29;240(4852):653-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Sherman Fairchild Center, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2452482" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basophils ; Benzofurans ; Calcimycin/pharmacology ; Calcium/*metabolism ; Cell Membrane Permeability ; Cytoplasm/metabolism ; Fluorescent Dyes ; Fura-2 ; Inositol 1,4,5-Trisphosphate ; Inositol Phosphates/metabolism/*pharmacology ; Ion Channels/drug effects/*metabolism ; Kinetics ; Leukemia, Experimental/metabolism ; Rats ; Spectrometry, Fluorescence ; Sugar Phosphates/*pharmacology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-11-11
    Description: A peptide 60 residues in length that corresponds to the homeo domain of Antennapedia (Antp), a protein governing development in Drosophila, was synthesized by segment condensation with protected peptide segments prepared on an oxime resin. A footprinting assay showed that the homeo domain binds specifically to a TAA repeat DNA sequence in the Antp gene. Thus the Antp homeo domain has a sequence-specific DNA binding property. The circular dichroism spectra of the homeo domain peptide showed the presence of a significant amount of alpha-helical structure in aqueous solution and in 50 percent trifluoroethanol. The alpha helicity measured in water appears to depend on the peptide concentration, which suggests that the peptide aggregates. These results support the hypothesis that the homeo domain binds to DNA through a helix-turn-helix motif.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mihara, H -- Kaiser, E T -- RR 862/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1988 Nov 11;242(4880):925-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Bioorganic Chemistry and Biochemistry, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2903553" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Chromatography, High Pressure Liquid ; Circular Dichroism ; DNA/*metabolism ; Drosophila/*growth & development ; Electrophoresis, Polyacrylamide Gel ; *Genes, Homeobox ; Insect Hormones/*chemical synthesis/genetics/metabolism ; Molecular Sequence Data ; Peptide Fragments/*chemical synthesis/genetics ; Protein Conformation ; Repetitive Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 1988-06-17
    Description: The specificity of complex formation between cytochrome b5 (cyt b5) and cytochrome c (cyt c) is believed to involve the formation of salt linkages between specific carboxylic acid residues of cyt b5 with lysine residues on cyt c. Site-directed mutagenesis was used to alter the specified acidic residues of cyt b5 to the corresponding amide analogues, which resulted in a lower affinity for complex formation with cyt c. The dissociation of the complex under high pressure resulted in specific volume changes, the magnitude of which reflected the degree of solvation of the acidic residues in the proposed protein-protein interface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodgers, K K -- Pochapsky, T C -- Sligar, S G -- GM 31756/GM/NIGMS NIH HHS/ -- GM 33775/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Jun 17;240(4859):1657-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Illinois, Urbana 61801.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2837825" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytochrome b Group/genetics/*metabolism ; Cytochrome c Group/*metabolism ; Cytochromes b5 ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Hydrostatic Pressure ; Macromolecular Substances ; Mutation ; Protein Conformation ; Rats ; Solubility ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 1988-10-21
    Description: Studies of the biology and pathogenesis of Kaposi's sarcoma (KS) have been hampered by the inability to maintain long-term cultures of KS cells in vitro. In this study AIDS-KS-derived cells with characteristic spindle-like morphology were cultured with a growth factor (or factors) released by CD4+ T lymphocytes infected with human T-lymphotropic virus type I or II (HTLV-I or HTLV-II) or with human immunodeficiency virus type 1 or 2 (HIV-1 or HIV-2). Medium conditioned by HTLV-II-infected, transformed lines of T cells (HTLV-II CM) contained large amounts of this growth activity and also supported the temporary growth of normal vascular endothelial cells, but not fibroblasts. Interleukin-1 and tumor necrosis factor-alpha stimulated the growth of the KS-derived cells, but the growth was only transient and these could be distinguished from that in HTLV-II CM. Other known endothelial cell growth promoting factors, such as acidic and basic fibroblast growth factors and epidermal growth factor, did not support the long-term growth of the AIDS-KS cells. The factor released by CD4+ T cells infected with human retroviruses should prove useful in studies of the pathogenesis of KS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakamura, S -- Salahuddin, S Z -- Biberfeld, P -- Ensoli, B -- Markham, P D -- Wong-Staal, F -- Gallo, R C -- New York, N.Y. -- Science. 1988 Oct 21;242(4877):426-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Tumor Cell Biology, National Cancer Institute, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3262925" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/immunology/*pathology ; Antigens, Differentiation, T-Lymphocyte/analysis ; Cell Division ; *Cell Transformation, Viral ; Growth Substances/*isolation & purification/physiology ; Human T-lymphotropic virus 1/*genetics ; Human T-lymphotropic virus 2/*genetics ; Humans ; Kinetics ; Sarcoma, Kaposi/*pathology ; T-Lymphocytes/*immunology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 1988-11-11
    Description: Despite its potential toxicity, H2O2 is used as an extracellular oxidant by Stronglylocentrotus purpuratus eggs to cross-link their fertilization envelopes. These eggs contain 5 mM 1-methyl-N alpha,N alpha-dimethyl-4-mercaptohistidine (ovothiol C), which reacts with H2O2. In consuming H2O2 and being reduced by glutathione, ovothiol acts as a glutathione peroxidase and replaces the function of the enzyme in eggs. The ovothiol system is more effective than egg catalase in destroying H2O2 at concentrations produced during fertilization and constitutes a principal mechanism for preventing oxidative damage at fertilization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Turner, E -- Hager, L J -- Shapiro, B M -- GM23910/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Nov 11;242(4880):939-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3187533" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids, Sulfur/*metabolism ; Animals ; Catalase/metabolism ; Disulfides/metabolism ; Female ; Fertilization ; Glutathione/metabolism ; Glutathione Peroxidase/*metabolism ; Kinetics ; *Methylhistidines ; NADP/metabolism ; Ovum/*metabolism ; Oxidation-Reduction ; Sea Urchins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1988-12-16
    Description: Three variations to the structure of the nicotinamide adenine dinucleotide (NAD)-dependent L-lactate dehydrogenase from Bacillus stearothermophilus were made to try to change the substrate specificity from lactate to malate: Asp197----Asn, Thr246----Gly, and Gln102----Arg). Each modification shifts the specificity from lactate to malate, although only the last (Gln102----Arg) provides an effective and highly specific catalyst for the new substrate. This synthetic enzyme has a ratio of catalytic rate (kcat) to Michaelis constant (Km) for oxaloacetate of 4.2 x 10(6)M-1 s-1, equal to that of native lactate dehydrogenase for its natural substrate, pyruvate, and a maximum velocity (250 s-1), which is double that reported for a natural malate dehydrogenase from B. stearothermophilus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilks, H M -- Hart, K W -- Feeney, R -- Dunn, C R -- Muirhead, H -- Chia, W N -- Barstow, D A -- Atkinson, T -- Clarke, A R -- Holbrook, J J -- New York, N.Y. -- Science. 1988 Dec 16;242(4885):1541-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Bristol, United Kingdom.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3201242" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Geobacillus stearothermophilus/*enzymology/genetics ; Kinetics ; L-Lactate Dehydrogenase/*genetics/metabolism ; Malate Dehydrogenase/*metabolism ; Models, Molecular ; Protein Conformation ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-10-07
    Description: In vitro autoradiography with 125I-labeled melatonin was used to examine melatonin binding sites in human hypothalamus. Specific 125I-labeled melatonin binding was localized to the suprachiasmatic nuclei, the site of a putative biological clock, and was not apparent in other hypothalamic regions. Specific 125I-labeled melatonin binding was consistently found in the suprachiasmatic nuclei of hypothalami from adults and fetuses. Densitometric analysis of competition experiments with varying concentrations of melatonin showed monophasic competition curves, with comparable half-maximal inhibition values for the suprachiasmatic nuclei of adults (150 picomolar) and fetuses (110 picomolar). Micromolar concentrations of the melatonin agonist 6-chloromelatonin completely inhibited specific 125I-labeled melatonin binding, whereas the same concentrations of serotonin and norepinephrine caused only a partial reduction in specific binding. The results suggest that putative melatonin receptors are located in a human biological clock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reppert, S M -- Weaver, D R -- Rivkees, S A -- Stopa, E G -- HD06976/HD/NICHD NIH HHS/ -- HD14427/HD/NICHD NIH HHS/ -- U10-HD22297/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1988 Oct 7;242(4875):78-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Developmental Chronobiology, Boston.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2845576" target="_blank"〉PubMed〈/a〉
    Keywords: Autoradiography ; Binding, Competitive ; *Biological Clocks ; Humans ; Hypothalamus/*metabolism ; Iodine Radioisotopes ; Kinetics ; Melatonin/*metabolism ; Optic Chiasm/metabolism ; Receptors, Melatonin ; Receptors, Neurotransmitter/*physiology ; Suprachiasmatic Nucleus/metabolism ; Supraoptic Nucleus/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...