ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph non-lending collection
    Monograph non-lending collection
    Oxford : Clarendon Press
    Call number: H O 557 ; H 4014
    Type of Medium: Monograph non-lending collection
    Pages: XI, 356 S. : graph. Darst.
    Series Statement: Clarendon Press Series
    Location: Pendulum room
    Location: Pendulum room
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-07-20
    Description: The mammalian protein MBD4 contains a methyl-CpG binding domain and can enzymatically remove thymine (T) or uracil (U) from a mismatched CpG site in vitro. These properties suggest that MBD4 might function in vivo to minimize the mutability of 5-methylcytosine by removing its deamination product from DNA. We tested this hypothesis by analyzing Mbd4-/- mice and found that the frequency of of C --〉 T transitions at CpG sites was increased by a factor of three. On a cancer-susceptible Apc(Min/+) background, Mbd4-/- mice showed accelerated tumor formation with CpG --〉 TpG mutations in the Apc gene. Thus MBD4 suppresses CpG mutability and tumorigenesis in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Millar, Catherine B -- Guy, Jacky -- Sansom, Owen J -- Selfridge, Jim -- MacDougall, Eilidh -- Hendrich, Brian -- Keightley, Peter D -- Bishop, Stefan M -- Clarke, Alan R -- Bird, Adrian -- New York, N.Y. -- Science. 2002 Jul 19;297(5580):403-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Centre for Cell Biology, The King's Buildings, Edinburgh University, Edinburgh EH9 3JR, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12130785" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine ; Alleles ; Amino Acid Sequence ; Animals ; Base Pair Mismatch ; Cytosine/*analogs & derivatives/metabolism ; DNA Methylation ; DNA Repair ; Deamination ; Dinucleoside Phosphates/*genetics ; Endodeoxyribonucleases/*genetics/*physiology ; Female ; Gene Targeting ; Genes, APC ; Genetic Predisposition to Disease ; Intestinal Neoplasms/etiology/*genetics ; Intestine, Large ; Loss of Heterozygosity ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; *Point Mutation ; Suppression, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-03-19
    Description: Prion propagation involves the conversion of cellular prion protein (PrPC) into a disease-specific isomer, PrPSc, shifting from a predominantly alpha-helical to beta-sheet structure. Here, conditions were established in which recombinant human PrP could switch between the native alpha conformation, characteristic of PrPC, and a compact, highly soluble, monomeric form rich in beta structure. The soluble beta form (beta-PrP) exhibited partial resistance to proteinase K digestion, characteristic of PrPSc, and was a direct precursor of fibrillar structures closely similar to those isolated from diseased brains. The conversion of PrPC to beta-PrP in suitable cellular compartments, and its subsequent stabilization by intermolecular association, provide a molecular mechanism for prion propagation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jackson, G S -- Hosszu, L L -- Power, A -- Hill, A F -- Kenney, J -- Saibil, H -- Craven, C J -- Waltho, J P -- Clarke, A R -- Collinge, J -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1999 Mar 19;283(5409):1935-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Prion Disease Group, Department of Neurogenetics, Imperial College School of Medicine at St. Mary's, London W2 1NY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10082469" target="_blank"〉PubMed〈/a〉
    Keywords: Circular Dichroism ; Endopeptidase K/metabolism ; Humans ; Hydrogen-Ion Concentration ; Molecular Weight ; Nuclear Magnetic Resonance, Biomolecular ; Oxidation-Reduction ; PrPC Proteins/chemistry ; PrPSc Proteins/chemistry ; Prions/*chemistry ; *Protein Conformation ; Protein Folding ; Protein Isoforms/chemistry ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry ; Solubility ; Spectrum Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-12-19
    Description: Intestinal cancer is initiated by Wnt-pathway-activating mutations in genes such as adenomatous polyposis coli (APC). As in most cancers, the cell of origin has remained elusive. In a previously established Lgr5 (leucine-rich-repeat containing G-protein-coupled receptor 5) knockin mouse model, a tamoxifen-inducible Cre recombinase is expressed in long-lived intestinal stem cells. Here we show that deletion of Apc in these stem cells leads to their transformation within days. Transformed stem cells remain located at crypt bottoms, while fuelling a growing microadenoma. These microadenomas show unimpeded growth and develop into macroscopic adenomas within 3-5weeks. The distribution of Lgr5(+) cells within stem-cell-derived adenomas indicates that a stem cell/progenitor cell hierarchy is maintained in early neoplastic lesions. When Apc is deleted in short-lived transit-amplifying cells using a different cre mouse, the growth of the induced microadenomas rapidly stalls. Even after 30weeks, large adenomas are very rare in these mice. We conclude that stem-cell-specific loss of Apc results in progressively growing neoplasia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barker, Nick -- Ridgway, Rachel A -- van Es, Johan H -- van de Wetering, Marc -- Begthel, Harry -- van den Born, Maaike -- Danenberg, Esther -- Clarke, Alan R -- Sansom, Owen J -- Clevers, Hans -- G0301154/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2009 Jan 29;457(7229):608-11. doi: 10.1038/nature07602. Epub 2008 Dec 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht & University Medical Centre Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19092804" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoma/genetics/metabolism/pathology ; Adenomatous Polyposis Coli Protein/*deficiency/*genetics ; Animals ; *Cell Lineage ; Cell Proliferation ; *Cell Transformation, Neoplastic/genetics/pathology ; Colonic Neoplasms/genetics/metabolism/pathology ; Genes, APC ; Intestinal Neoplasms/*genetics/metabolism/*pathology ; Mice ; Neoplastic Stem Cells/metabolism/*pathology ; Receptors, G-Protein-Coupled/analysis/genetics/metabolism ; beta Catenin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-11-10
    Description: Prions are lethal mammalian pathogens composed of aggregated conformational isomers of a host-encoded glycoprotein and which appear to lack nucleic acids. Their unique biology, allied with the public-health risks posed by prion zoonoses such as bovine spongiform encephalopathy, has focused much attention on the molecular basis of prion propagation and the "species barrier" that controls cross-species transmission. Both are intimately linked to understanding how multiple prion "strains" are encoded by a protein-only agent. The underlying mechanisms are clearly of much wider importance, and analogous protein-based inheritance mechanisms are recognized in yeast and fungi. Recent advances suggest that prions themselves are not directly neurotoxic, but rather their propagation involves production of toxic species, which may be uncoupled from infectivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collinge, John -- Clarke, Anthony R -- MC_U123160656/Medical Research Council/United Kingdom -- MC_U123192748/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Nov 9;318(5852):930-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK. j.collinge@prion.ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17991853" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Chemistry ; Humans ; Models, Biological ; PrPC Proteins/chemistry/isolation & purification/metabolism ; PrPSc Proteins/*chemistry/isolation & purification/metabolism/*pathogenicity ; Prion Diseases/*metabolism/*transmission ; Prions/*chemistry/isolation & purification/*pathogenicity ; Protein Conformation ; Protein Folding ; Recombinant Proteins/chemistry ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-02-26
    Description: Mammalian prions cause fatal neurodegenerative conditions including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals. Prion infections are typically associated with remarkably prolonged but highly consistent incubation periods followed by a rapid clinical phase. The relationship between prion propagation, generation of neurotoxic species and clinical onset has remained obscure. Prion incubation periods in experimental animals are known to vary inversely with expression level of cellular prion protein. Here we demonstrate that prion propagation in brain proceeds via two distinct phases: a clinically silent exponential phase not rate-limited by prion protein concentration which rapidly reaches a maximal prion titre, followed by a distinct switch to a plateau phase. The latter determines time to clinical onset in a manner inversely proportional to prion protein concentration. These findings demonstrate an uncoupling of infectivity and toxicity. We suggest that prions themselves are not neurotoxic but catalyse the formation of such species from PrP(C). Production of neurotoxic species is triggered when prion propagation saturates, leading to a switch from autocatalytic production of infectivity (phase 1) to a toxic (phase 2) pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sandberg, Malin K -- Al-Doujaily, Huda -- Sharps, Bernadette -- Clarke, Anthony R -- Collinge, John -- MC_U123160656/Medical Research Council/United Kingdom -- MC_U123192748/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2011 Feb 24;470(7335):540-2. doi: 10.1038/nature09768.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21350487" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biocatalysis ; Biological Assay ; Disease Models, Animal ; Gene Expression ; Kinetics ; Mice ; Mice, Transgenic ; Models, Biological ; PrPC Proteins/analysis/biosynthesis/genetics/metabolism ; PrPSc Proteins/biosynthesis/*metabolism/*pathogenicity/toxicity ; Prion Diseases/*metabolism/*pathology/physiopathology/transmission ; Survival Rate ; Time Factors ; Toxicity Tests
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1988-12-16
    Description: Three variations to the structure of the nicotinamide adenine dinucleotide (NAD)-dependent L-lactate dehydrogenase from Bacillus stearothermophilus were made to try to change the substrate specificity from lactate to malate: Asp197----Asn, Thr246----Gly, and Gln102----Arg). Each modification shifts the specificity from lactate to malate, although only the last (Gln102----Arg) provides an effective and highly specific catalyst for the new substrate. This synthetic enzyme has a ratio of catalytic rate (kcat) to Michaelis constant (Km) for oxaloacetate of 4.2 x 10(6)M-1 s-1, equal to that of native lactate dehydrogenase for its natural substrate, pyruvate, and a maximum velocity (250 s-1), which is double that reported for a natural malate dehydrogenase from B. stearothermophilus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilks, H M -- Hart, K W -- Feeney, R -- Dunn, C R -- Muirhead, H -- Chia, W N -- Barstow, D A -- Atkinson, T -- Clarke, A R -- Holbrook, J J -- New York, N.Y. -- Science. 1988 Dec 16;242(4885):1541-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Bristol, United Kingdom.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3201242" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Geobacillus stearothermophilus/*enzymology/genetics ; Kinetics ; L-Lactate Dehydrogenase/*genetics/metabolism ; Malate Dehydrogenase/*metabolism ; Models, Molecular ; Protein Conformation ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 672 (1992), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 672 (1992), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 230 (1971), S. 170-172 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Our method depends on the fact that the geomagnetic threshold rigidity R and therefore the velocity of cosmic rays arriving from the east is lower for negatively charged primaries than for positive primaries. This difference is greatest in the equatorial zone. The detector (Fig. 1) consists of a ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...