ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-12-19
    Description: Intestinal cancer is initiated by Wnt-pathway-activating mutations in genes such as adenomatous polyposis coli (APC). As in most cancers, the cell of origin has remained elusive. In a previously established Lgr5 (leucine-rich-repeat containing G-protein-coupled receptor 5) knockin mouse model, a tamoxifen-inducible Cre recombinase is expressed in long-lived intestinal stem cells. Here we show that deletion of Apc in these stem cells leads to their transformation within days. Transformed stem cells remain located at crypt bottoms, while fuelling a growing microadenoma. These microadenomas show unimpeded growth and develop into macroscopic adenomas within 3-5weeks. The distribution of Lgr5(+) cells within stem-cell-derived adenomas indicates that a stem cell/progenitor cell hierarchy is maintained in early neoplastic lesions. When Apc is deleted in short-lived transit-amplifying cells using a different cre mouse, the growth of the induced microadenomas rapidly stalls. Even after 30weeks, large adenomas are very rare in these mice. We conclude that stem-cell-specific loss of Apc results in progressively growing neoplasia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barker, Nick -- Ridgway, Rachel A -- van Es, Johan H -- van de Wetering, Marc -- Begthel, Harry -- van den Born, Maaike -- Danenberg, Esther -- Clarke, Alan R -- Sansom, Owen J -- Clevers, Hans -- G0301154/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2009 Jan 29;457(7229):608-11. doi: 10.1038/nature07602. Epub 2008 Dec 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht & University Medical Centre Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19092804" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoma/genetics/metabolism/pathology ; Adenomatous Polyposis Coli Protein/*deficiency/*genetics ; Animals ; *Cell Lineage ; Cell Proliferation ; *Cell Transformation, Neoplastic/genetics/pathology ; Colonic Neoplasms/genetics/metabolism/pathology ; Genes, APC ; Intestinal Neoplasms/*genetics/metabolism/*pathology ; Mice ; Neoplastic Stem Cells/metabolism/*pathology ; Receptors, G-Protein-Coupled/analysis/genetics/metabolism ; beta Catenin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-30
    Description: Crypt stem cells represent the cells of origin for intestinal neoplasia. Both mouse and human intestinal stem cells can be cultured in medium containing the stem-cell-niche factors WNT, R-spondin, epidermal growth factor (EGF) and noggin over long time periods as epithelial organoids that remain genetically and phenotypically stable. Here we utilize CRISPR/Cas9 technology for targeted gene modification of four of the most commonly mutated colorectal cancer genes (APC, P53 (also known as TP53), KRAS and SMAD4) in cultured human intestinal stem cells. Mutant organoids can be selected by removing individual growth factors from the culture medium. Quadruple mutants grow independently of all stem-cell-niche factors and tolerate the presence of the P53 stabilizer nutlin-3. Upon xenotransplantation into mice, quadruple mutants grow as tumours with features of invasive carcinoma. Finally, combined loss of APC and P53 is sufficient for the appearance of extensive aneuploidy, a hallmark of tumour progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drost, Jarno -- van Jaarsveld, Richard H -- Ponsioen, Bas -- Zimberlin, Cheryl -- van Boxtel, Ruben -- Buijs, Arjan -- Sachs, Norman -- Overmeer, Rene M -- Offerhaus, G Johan -- Begthel, Harry -- Korving, Jeroen -- van de Wetering, Marc -- Schwank, Gerald -- Logtenberg, Meike -- Cuppen, Edwin -- Snippert, Hugo J -- Medema, Jan Paul -- Kops, Geert J P L -- Clevers, Hans -- England -- Nature. 2015 May 7;521(7550):43-7. doi: 10.1038/nature14415. Epub 2015 Apr 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584CT Utrecht, The Netherlands [2] Cancer Genomics Netherlands, UMC Utrecht, 3584CG Utrecht, The Netherlands. ; 1] Cancer Genomics Netherlands, UMC Utrecht, 3584CG Utrecht, The Netherlands [2] Molecular Cancer Research, Centre for Molecular Medicine, UMC Utrecht, 3584CG, Utrecht, The Netherlands. ; 1] Cancer Genomics Netherlands, UMC Utrecht, 3584CG Utrecht, The Netherlands [2] Laboratory of Experimental Oncology and Radiobiology, Centre for Experimental Molecular Medicine, AMC, 1105AZ Amsterdam, The Netherlands. ; Department of Medical Genetics, UMC Utrecht, 3508AB Utrecht, The Netherlands. ; Department of Pathology, UMC Utrecht, 3584CX Utrecht, The Netherlands. ; 1] Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584CT Utrecht, The Netherlands [2] Cancer Genomics Netherlands, UMC Utrecht, 3584CG Utrecht, The Netherlands [3] Foundation Hubrecht Organoid Technology (HUB), 3584CT Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25924068" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-03-16
    Description: Little is known about the signaling mechanisms that determine the highly regular patterning of the intestinal epithelium into crypts and villi. With the use of mouse models, we show that bone morphogenetic protein (BMP)-4 expression occurs exclusively in the intravillus mesenchyme. Villus epithelial cells respond to the BMP signal. Inhibition of BMP signaling by transgenic expression of noggin results in the formation of numerous ectopic crypt units perpendicular to the crypt-villus axis. These changes phenocopy the intestinal histopathology of patients with the cancer predisposition syndrome juvenile polyposis (JP), including the frequent occurrence of intraepithelial neoplasia. Many JP cases are known to harbor mutations in BMP pathway genes. These data indicate that intestinal BMP signaling represses de novo crypt formation and polyp growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haramis, Anna-Pavlina G -- Begthel, Harry -- van den Born, Maaike -- van Es, Johan -- Jonkheer, Suzanne -- Offerhaus, G Johan A -- Clevers, Hans -- New York, N.Y. -- Science. 2004 Mar 12;303(5664):1684-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15017003" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoma/pathology ; Animals ; Bone Morphogenetic Protein 4 ; Bone Morphogenetic Proteins/antagonists & inhibitors/genetics/*metabolism ; Carrier Proteins ; Cell Differentiation ; Cytoskeletal Proteins/metabolism ; Intestinal Mucosa/embryology/*growth & development/metabolism ; Intestinal Neoplasms/pathology ; Intestinal Polyposis/metabolism/*pathology ; Intestine, Small/embryology/*growth & development/metabolism ; Mesoderm/metabolism ; Mice ; Mice, Transgenic ; Proteins/genetics/metabolism ; *Signal Transduction ; Trans-Activators/metabolism ; Xenopus ; Xenopus Proteins ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-03-13
    Description: Mammalian epidermis consists of three self-renewing compartments: the hair follicle, the sebaceous gland, and the interfollicular epidermis. We generated knock-in alleles of murine Lgr6, a close relative of the Lgr5 stem cell gene. Lgr6 was expressed in the earliest embryonic hair placodes. In adult hair follicles, Lgr6+ cells resided in a previously uncharacterized region directly above the follicle bulge. They expressed none of the known bulge stem cell markers. Prenatal Lgr6+ cells established the hair follicle, sebaceous gland, and interfollicular epidermis. Postnatally, Lgr6+ cells generated sebaceous gland and interfollicular epidermis, whereas contribution to hair lineages gradually diminished with age. Adult Lgr6+ cells executed long-term wound repair, including the formation of new hair follicles. We conclude that Lgr6 marks the most primitive epidermal stem cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Snippert, Hugo J -- Haegebarth, Andrea -- Kasper, Maria -- Jaks, Viljar -- van Es, Johan H -- Barker, Nick -- van de Wetering, Marc -- van den Born, Maaike -- Begthel, Harry -- Vries, Robert G -- Stange, Daniel E -- Toftgard, Rune -- Clevers, Hans -- New York, N.Y. -- Science. 2010 Mar 12;327(5971):1385-9. doi: 10.1126/science.1184733.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20223988" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Lineage ; Epidermis/cytology ; Gene Expression Profiling ; Gene Knock-In Techniques ; Hair/cytology/embryology/growth & development ; Hair Follicle/*cytology/embryology/growth & development ; Mice ; Mice, Nude ; Receptors, G-Protein-Coupled/*genetics/*metabolism ; Sebaceous Glands/cytology ; Signal Transduction ; Skin/*cytology ; Stem Cell Transplantation ; Stem Cells/*cytology/metabolism ; Wound Healing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-09-14
    Description: Leucine-rich repeat-containing G-protein coupled receptor 5-positive (Lgr5+) stem cells reside at crypt bottoms of the small and large intestine. Small intestinal Paneth cells supply Wnt3, EGF, and Notch signals to neighboring Lgr5+ stem cells. Whereas the colon lacks Paneth cells, deep crypt secretory (DCS) cells are intermingled with Lgr5+ stem...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-10-07
    Description: Microvillus inclusion disease (MVID) is a rare intestinal enteropathy with an onset within a few days to months after birth, resulting in persistent watery diarrhea. Mutations in the myosin Vb gene (MYO5B) have been identified in the majority of MVID patients. However, the exact pathophysiology of MVID still remains unclear....
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-10-19
    Description: Current mouse models for colorectal cancer often differ significantly from human colon cancer, being largely restricted to the small intestine. Here, we aim to develop a colon-specific inducible mouse model that can faithfully recapitulate human colon cancer initiation and progression. Carbonic anhydrase I (Car1) is a gene expressed uniquely in...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...