ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acid Sequence  (1,133)
  • American Association for the Advancement of Science (AAAS)  (1,133)
  • Annual Reviews
  • Nature Publishing Group
  • Springer Nature
  • 1990-1994  (771)
  • 1985-1989  (343)
  • 1975-1979  (19)
  • 1940-1944
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (1,133)
  • Annual Reviews
  • Nature Publishing Group
  • Springer Nature
Years
Year
  • 1
    Publication Date: 1988-07-15
    Description: Odorant-binding protein (OBP) is found in nasal epithelium, and it selectively binds odorants. Three complementary DNAs encoding rat odorant-binding protein have now been cloned and sequenced. One clone contains an open reading frame predicted to encode an 18,091-dalton protein. RNA blot analysis confirms the localization of OBP messenger RNA in the nasal epithelium. This OBP has 33 percent amino acid identity to alpha 2-microglobulin, a secreted plasma protein. Other members of an alpha 2-microglobulin superfamily bind and transport hydrophobic ligands. Thus, OBP probably binds and carries odorants within the nasal epithelium to putative olfactory receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pevsner, J -- Reed, R R -- Feinstein, P G -- Snyder, S H -- DA-00074/DA/NIDA NIH HHS/ -- GM-07626/GM/NIGMS NIH HHS/ -- P01 CA16519-13/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1988 Jul 15;241(4863):336-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3388043" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/*genetics ; Cloning, Molecular ; Ligands ; Membrane Proteins/*genetics ; Molecular Sequence Data ; Nasal Mucosa/*physiology ; Rats ; *Receptors, Odorant ; Smell/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-06-17
    Description: The alpha helix, first proposed by Pauling and co-workers, is a hallmark of protein structure, and much effort has been directed toward understanding which sequences can form helices. The helix hypothesis, introduced here, provides a tentative answer to this question. The hypothesis states that a necessary condition for helix formation is the presence of residues flanking the helix termini whose side chains can form hydrogen bonds with the initial four-helix greater than N-H groups and final four-helix greater than C-O groups; these eight groups would otherwise lack intrahelical partners. This simple hypothesis implies the existence of a stereochemical code in which certain sequences have the hydrogen-bonding capacity to function as helix boundaries and thereby enable the helix to form autonomously. The three-dimensional structure of a protein is a consequence of the genetic code, but the rules relating sequence to structure are still unknown. The ensuing analysis supports the idea that a stereochemical code for the alpha helix resides in its boundary residues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Presta, L G -- Rose, G D -- AG 06084/AG/NIA NIH HHS/ -- GM 29458/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Jun 17;240(4859):1632-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Hershey Medical Center, Pennsylvania State University, Hershey 17033.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2837824" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carboxypeptidases ; Carboxypeptidases A ; Cytochrome c Group ; Flavodoxin ; Humans ; Hydrogen Bonding ; Models, Chemical ; Molecular Sequence Data ; Muramidase ; Myoglobin ; Pancreatic Polypeptide ; Parvalbumins ; Plastocyanin ; *Protein Conformation ; Ribonucleases ; Scorpion Venoms ; Tetrahydrofolate Dehydrogenase ; Triose-Phosphate Isomerase ; Trypsin Inhibitors ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-08-19
    Description: The question of how the primary amino acid sequence of a protein determines its three-dimensional structure is still unanswered. One approach to this problem involves the de novo design of model peptides and proteins that should adopt desired three-dimensional structures. A systematic approach was aimed at the design of a four-helix bundle protein. The gene encoding the designed protein was synthesized and the protein was expressed in Escherichia coli and purified to homogeneity. The protein was shown to be monomeric, highly helical, and very stable to denaturation by guanidine hydrochloride (GuHCl). Thus a globular protein has been designed that is capable of adopting a stable, folded structure in aqueous solution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Regan, L -- DeGrado, W F -- New York, N.Y. -- Science. 1988 Aug 19;241(4868):976-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉E. I. du Pont de Nemours & Company, Central Research & Development Department, Wilmington, DE 19898.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3043666" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chemical Phenomena ; Chemistry ; Chromatography, Gel ; Escherichia coli/genetics ; Molecular Sequence Data ; Plasmids ; *Protein Conformation ; *Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-06-17
    Description: A definition based on alpha-carbon positions and a sample of 215 alpha helices from 45 different globular protein structures were used to tabulate amino acid preferences for 16 individual positions relative to the helix ends. The interface residue, which is half in and half out of the helix, is called the N-cap or C-cap, whichever is appropriate. The results confirm earlier observations, such as asymmetrical charge distributions in the first and last helical turn, but several new, sharp preferences are found as well. The most striking of these are a 3.5:1 preference for Asn at the N-cap position, and a preference of 2.6:1 for Pro at N-cap + 1. The C-cap position is overwhelmingly dominated by Gly, which ends 34 percent of the helices. Hydrophobic residues peak at positions N-cap + 4 and C-cap - 4.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Richardson, J S -- Richardson, D C -- GM-15000/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Jun 17;240(4859):1648-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Duke University, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3381086" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Amino Acids ; Asparagine ; Hydrogen Bonding ; Proline ; *Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1988-07-01
    Description: A method of combinatorial cassette mutagenesis was designed to readily determine the informational content of individual residues in protein sequences. The technique consists of simultaneously randomizing two or three positions by oligonucleotide cassette mutagenesis, selecting for functional protein, and then sequencing to determine the spectrum of allowable substitutions at each position. Repeated application of this method to the dimer interface of the DNA-binding domain of lambda repressor reveals that the number and type of substitutions allowed at each position are extremely variable. At some positions only one or two residues are functionally acceptable; at other positions a wide range of residues and residue types are tolerated. The number of substitutions allowed at each position roughly correlates with the solvent accessibility of the wild-type side chain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reidhaar-Olson, J F -- Sauer, R T -- AI-15706/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1988 Jul 1;241(4861):53-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3388019" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Codon ; DNA/genetics/metabolism ; *DNA-Binding Proteins ; Macromolecular Substances ; Molecular Sequence Data ; Mutation ; Plasmids ; Protein Conformation ; Repressor Proteins/*genetics ; Structure-Activity Relationship ; Transcription Factors/*genetics ; Viral Proteins ; Viral Regulatory and Accessory Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1988-08-05
    Description: The human pS2 gene is specifically expressed under estrogen transcriptional control in a subclass of estrogen receptor-containing human breast cancer cells. The pS2 gene encodes an 84-amino acid protein that is secreted after signal peptide cleavage. The distribution of pS2 protein in normal human tissues was studied with antibodies to pS2; pS2 was specifically expressed and secreted by mucosa cells of the normal stomach antrum and body of both female and male individuals. Moreover, no estrogen receptor could be detected in these cells, indicating that pS2 gene expression is estrogen-independent in the stomach. The function of the pS2 protein in the gastrointestinal tract is unknown. However, the pS2 protein is similar in sequence to a porcine pancreatic protein that has been shown to inhibit gastrointestinal motility and gastric secretion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rio, M C -- Bellocq, J P -- Daniel, J Y -- Tomasetto, C -- Lathe, R -- Chenard, M P -- Batzenschlager, A -- Chambon, P -- New York, N.Y. -- Science. 1988 Aug 5;241(4866):705-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS et U. 184 de l'INSERM, Institut de Chimie Biologique, Faculte de Medecine, Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3041593" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal ; Breast Neoplasms/*metabolism ; Estrogens/pharmacology ; Exons ; Female ; Gastric Mucosa/*metabolism ; *Gene Expression Regulation ; Histocytochemistry ; Humans ; Immunoenzyme Techniques ; Male ; Molecular Sequence Data ; Neoplasm Proteins/*biosynthesis/genetics/secretion ; *Proteins ; RNA, Messenger/metabolism ; Receptors, Estrogen/metabolism ; Sequence Homology, Nucleic Acid ; Tissue Distribution ; Tumor Cells, Cultured ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-11-18
    Description: A rat kidney messenger RNA that induces a slowly activating, voltage-dependent potassium current on its expression in Xenopus oocytes was identified by combining molecular cloning with an electrophysiological assay. The cloned complementary DNA encodes a novel membrane protein that consists of 130 amino acids with a single putative transmembrane domain. This protein differs from the known ion channel proteins but is involved in the induction of selective permeation of potassium ions by membrane depolarization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takumi, T -- Ohkubo, H -- Nakanishi, S -- New York, N.Y. -- Science. 1988 Nov 18;242(4881):1042-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Immunology, Kyoto University Faculty of Medicine, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3194754" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Blotting, Northern ; Cloning, Molecular ; DNA/genetics ; Electric Conductivity ; Membrane Potentials ; Membrane Proteins/*genetics ; Molecular Sequence Data ; Molecular Weight ; Potassium Channels/*physiology ; Rats ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1988-05-20
    Description: Class II major histocompatibility (MHC) molecules have an immunoregulatory role. These cell-surface glycoproteins present fragments of protein antigens (or peptides) to thymus-derived lymphocytes (T cells). Nucleotide sequence polymorphism in the genes that encode the class II MHC products determines the specificity of the immune response and is correlated with the development of autoimmune diseases. This study identifies certain class II polymorphic amino acid residues that are strongly associated with susceptibility to insulin-dependent diabetes mellitus, rheumatoid arthritis, and pemphigus vulgaris. These findings implicate particular class II MHC isotypes in susceptibility to each disease and suggest new prophylactic and therapeutic strategies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Todd, J A -- Acha-Orbea, H -- Bell, J I -- Chao, N -- Fronek, Z -- Jacob, C O -- McDermott, M -- Sinha, A A -- Timmerman, L -- Steinman, L -- New York, N.Y. -- Science. 1988 May 20;240(4855):1003-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Microbiology, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3368786" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arthritis, Rheumatoid/immunology ; Autoantibodies/*genetics ; Autoimmune Diseases/*genetics ; Diabetes Mellitus, Type 1/immunology ; HLA-D Antigens/*genetics ; Humans ; Major Histocompatibility Complex ; Molecular Sequence Data ; Pemphigus/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1988-09-23
    Description: Antibodies directed against a conserved intracellular segment of the sodium channel alpha subunit slow the inactivation of sodium channels in rat muscle cells. Of four site-directed antibodies tested, only antibodies against the short intracellular segment between homologous transmembrane domains III and IV slowed inactivation, and their effects were blocked by the corresponding peptide antigen. No effects on the voltage dependence of sodium channel activation or of steady-state inactivation were observed, but the rate of onset of the antibody effect and the extent of slowing of inactivation were voltage-dependent. Antibody binding was more rapid at negative potentials, at which sodium channels are not inactivated; antibody-induced slowing of inactivation was greater during depolarizations to more positive membrane potentials. The peptide segment recognized by this antibody appears to participate directly in rapid sodium channel inactivation during large depolarizations and to undergo a conformational change that reduces its accessibility to antibodies as the channel inactivates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vassilev, P M -- Scheuer, T -- Catterall, W A -- NS 15751/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1988 Sep 23;241(4873):1658-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, School of Medicine, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2458625" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies ; Cytoplasm/analysis ; In Vitro Techniques ; Ion Channels/*metabolism ; Membrane Potentials ; Molecular Sequence Data ; Peptides/*metabolism ; Rats ; Sodium/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1988-12-23
    Description: The ras p21 GTPase-activating protein (GAP) was purified from human placental tissue. Internal amino acid sequence was obtained from this 120,000-dalton protein and, by means of this sequence, two types of complementary DNA clones were isolated and characterized. One type encoded GAP with a predicted molecular mass of 116,000 daltons and 96% identity with bovine GAP. The messenger RNA of this GAP was detected in human lung, brain, liver, leukocytes, and placenta. The second type appeared to be generated by a differential splicing mechanism and encoded a novel form of GAP with a predicted molecular mass of 100,400 daltons. This protein lacks the hydrophobic amino terminus characteristic of the larger species, but retains GAP activity. The messenger RNA of this type was abundantly expressed in placenta and in several human cell lines, but not in adult tissues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trahey, M -- Wong, G -- Halenbeck, R -- Rubinfeld, B -- Martin, G A -- Ladner, M -- Long, C M -- Crosier, W J -- Watt, K -- Koths, K -- New York, N.Y. -- Science. 1988 Dec 23;242(4886):1697-700.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Cetus Corp., Emeryville, CA 94608.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3201259" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Brain Chemistry ; *Cloning, Molecular ; DNA/*genetics/isolation & purification ; Female ; GTPase-Activating Proteins ; Gene Expression Regulation ; Humans ; Leukocytes/analysis ; Liver/analysis ; Lung/analysis ; Molecular Sequence Data ; Molecular Weight ; Nucleic Acid Hybridization ; Oligonucleotide Probes ; Placenta/*analysis ; Pregnancy ; Proteins/*genetics/isolation & purification ; RNA, Messenger/analysis/genetics ; Sequence Homology, Nucleic Acid ; ras GTPase-Activating Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1988-04-15
    Description: A new type of agonist-binding subunit of rat neuronal nicotinic acetylcholine receptors (nAChRs) was identified. Rat genomic DNA and complementary DNA encoding this subunit (alpha 2) were cloned and analyzed. Complementary DNA expression studies in Xenopus oocytes revealed that the injection of messenger RNAs (mRNAs) for alpha 2 and beta 2 (a neuronal nAChR subunit) led to the generation of a functional nAChR. In contrast to the other known neuronal nAChRs, the receptor produced by the injection of alpha 2 and beta 2 mRNAs was resistant to the alpha-neurotoxin Bgt3.1. In situ hybridization histochemistry showed that alpha 2 mRNA was expressed in a small number of regions, in contrast to the wide distribution of the other known agonist-binding subunits (alpha 3 and alpha 4) mRNAs. These results demonstrate that the alpha 2 subunit differs from other known agonist-binding alpha-subunits of nAChRs in its distribution in the brain and in its pharmacology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wada, K -- Ballivet, M -- Boulter, J -- Connolly, J -- Wada, E -- Deneris, E S -- Swanson, L W -- Heinemann, S -- Patrick, J -- New York, N.Y. -- Science. 1988 Apr 15;240(4850):330-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Salk Institute for Biological Studies, San Diego, CA 92138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2832952" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Brain/*metabolism ; DNA Restriction Enzymes ; Female ; *Genes ; Molecular Sequence Data ; Neurons/metabolism ; Nucleotide Mapping ; Oocytes/metabolism ; Rats ; Receptors, Nicotinic/*genetics/metabolism ; Transcription, Genetic ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1988-04-29
    Description: Zeins, the storage proteins of maize, are totally lacking in the essential amino acids lysine and tryptophan. Lysine codons and lysine- and tryptophan-encoding oligonucleotides were introduced at several positions into a 19-kilodalton zein complementary DNA by oligonucleotide-mediated mutagenesis. A 450-base pair open reading frame from a simian virus 40 (SV40) coat protein was also engineered into the zein coding region. Messenger RNAs for the modified zeins were synthesized in vitro with an SP6 RNA polymerase system and injected into Xenopus laevis oocytes. The modifications did not affect the translation, signal peptide cleavage, or stability of the zeins. The ability of the modified zeins to assemble into structures similar to maize protein bodies was assayed by two criteria: assembly into membrane-bound vesicles resistant to exogenously added protease, and ability to self-aggregate into dense structures. All of the modified zeins were membrane-bound; only the one containing a 17-kilodalton SV40 protein fragment was unable to aggregate. These findings suggest that it may be possible to create high-lysine corn by genetic engineering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wallace, J C -- Galili, G -- Kawata, E E -- Cuellar, R E -- Shotwell, M A -- Larkins, B A -- New York, N.Y. -- Science. 1988 Apr 29;240(4852):662-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2834822" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Membrane/metabolism ; DNA/genetics ; DNA, Recombinant ; Female ; Genetic Engineering ; *Lysine/genetics ; Macromolecular Substances ; Molecular Sequence Data ; Mutation ; Oocytes/*metabolism ; Peptide Hydrolases/metabolism ; RNA, Messenger/genetics ; Simian virus 40/genetics ; Xenopus laevis ; Zea mays ; Zein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-08-05
    Description: Although the proteinase inhibitor alpha-2-antiplasmin (alpha 2AP) is known to control the activity of plasmin through rapid formation of stable complexes, it also efficiently inactivates chymotrypsin. These interactions are shown to occur at adjacent, overlapping sites so that plasmin attacks the inhibitor at an Arg364-Met365 peptide bond, while chymotrypsin interacts at a Met365-Ser366 sequence one residue downstream. Thus, a naturally occurring plasma serine proteinase inhibitor can have multiple specificities through interactions at adjacent sites. It also illustrates the potential flexibility of the reactive site loop in this class of inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Potempa, J -- Shieh, B H -- Travis, J -- New York, N.Y. -- Science. 1988 Aug 5;241(4866):699-700.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, Jagiellonian University, Cracow, Poland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2456616" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Carboxypeptidase B ; Carboxypeptidases/metabolism ; Carboxypeptidases A ; Chromatography, Gel ; Chromatography, High Pressure Liquid ; Chymotrypsin/antagonists & inhibitors/metabolism ; Electrophoresis, Polyacrylamide Gel ; Humans ; Molecular Sequence Data ; Peptide Fragments/metabolism ; Protease Inhibitors ; alpha-2-Antiplasmin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-01-20
    Description: Human and murine mononuclear phagocytes express a high-affinity receptor for immunoglobulin G that plays a central role in macrophage antibody-dependent cellular cytotoxicity and clearance of immune complexes. The receptor (FcRI) may also be involved in CD4-independent infection of human macrophages by human immunodeficiency virus. This report describes the isolation of cDNA clones encoding the human FcRI by a ligand-mediated selection technique. Expression of the cDNAs in COS cells gave rise to immunoglobulin G binding of the expected affinity and subtype specificity. RNA blot analysis revealed expression of a 1.7-kilobase transcript in macrophages and in cells of the promonocytic cell line U937 induced with interferon-gamma. The extracellular region of FcRI consists of three immunoglobulin-like domains, two of which share homology with low-affinity receptor domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allen, J M -- Seed, B -- New York, N.Y. -- Science. 1989 Jan 20;243(4889):378-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston 02114.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2911749" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Blotting, Northern ; Cercopithecus aethiops ; Cloning, Molecular ; DNA/genetics ; Gene Expression Regulation ; Humans ; Molecular Sequence Data ; Molecular Weight ; Polymorphism, Genetic ; Receptors, Fc/*genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-10-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1989 Oct 6;246(4926):32-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2781301" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/analysis ; Mass Spectrometry/*instrumentation ; Molecular Weight ; Proteins/*analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1989-12-22
    Description: Certain inflammatory stimuli render cultured human vascular endothelial cells hyperadhesive for neutrophils. This state is transient and reversible, in part because activated endothelial cells secrete a leukocyte adhesion inhibitor (LAI). LAI was identified as endothelial interleukin-8 (IL-8), the predominant species of which is an extended amino-terminal IL-8 variant. At nanomolar concentrations, purified endothelial IL-8 and recombinant human IL-8 inhibit neutrophil adhesion to cytokine-activated endothelial monolayers and protect these monolayers from neutrophil-mediated damage. These findings suggest that endothelial-derived IL-8 may function to attenuate inflammatory events at the interface between vessel wall and blood.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gimbrone, M A Jr -- Obin, M S -- Brock, A F -- Luis, E A -- Hass, P E -- Hebert, C A -- Yip, Y K -- Leung, D W -- Lowe, D G -- Kohr, W J -- P01-HL-36028/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Dec 22;246(4937):1601-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2688092" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biological Factors/pharmacology ; Cell Adhesion/drug effects ; Cells, Cultured ; Chemotactic Factors/*isolation & purification/pharmacology ; Culture Media/analysis ; Cytokines ; Endothelium, Vascular/cytology/drug effects/*physiology ; Humans ; Interleukin-1/*pharmacology ; Interleukin-8 ; Interleukins/*isolation & purification/pharmacology ; Molecular Sequence Data ; Neutrophils/cytology/drug effects/*physiology ; Recombinant Proteins/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1989-12-08
    Description: A novel bacteriophage lambda vector system was used to express in Escherichia coli a combinatorial library of Fab fragments of the mouse antibody repertoire. The system allows rapid and easy identification of monoclonal Fab fragments in a form suitable for genetic manipulation. It was possible to generate, in 2 weeks, large numbers of monoclonal Fab fragments against a transition state analog hapten. The methods described may supersede present-day hybridoma technology and facilitate the production of catalytic and other antibodies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huse, W D -- Sastry, L -- Iverson, S A -- Kang, A S -- Alting-Mees, M -- Burton, D R -- Benkovic, S J -- Lerner, R A -- New York, N.Y. -- Science. 1989 Dec 8;246(4935):1275-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2531466" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/*biosynthesis/genetics ; Antibody Specificity ; Antigen-Antibody Reactions ; Bacteriophage lambda/*genetics ; Base Sequence ; Cloning, Molecular/methods ; Escherichia coli/genetics ; Gene Amplification ; Gene Library ; *Genetic Vectors ; Hemocyanin/analogs & derivatives/immunology ; Immunoglobulin Fab Fragments/biosynthesis ; Immunoglobulin Fragments/*biosynthesis/genetics ; Mice ; Molecular Sequence Data ; Organophosphorus Compounds/immunology ; Recombinant Proteins/biosynthesis/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-03
    Description: Monoclonal antibodies have been induced that are capable of catalyzing specific hydrolysis of the Gly-Phe bond of peptide substrates at neutral pH with a metal complex cofactor. The antibodies were produced by immunizing with a Co(III) triethylenetetramine (trien)-peptide hapten. These antibodies as a group are capable of binding trien complexes of not only Co(III) but also of numerous other metals. Six peptides were examined as possible substrates with the antibodies and various metal complexes. Two of these peptides were cleaved by several of the antibodies. One antibody was studied in detail, and cleavage was observed for the substrates with the trien complexes of Zn(II), Ga(III), Fe(III), In(III), Cu(II), Ni(II), Lu(III), Mg(II), or Mn(II) as cofactors. A turnover number of 6 x 10(-4) per second was observed for these substrates. These results demonstrate the feasibility of the use of cofactor-assisted catalysis in an antibody binding site to accomplish difficult chemical transformations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iverson, B L -- Lerner, R A -- New York, N.Y. -- Science. 1989 Mar 3;243(4895):1184-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2922606" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Antibodies, Monoclonal ; Antigens/immunology ; Binding Sites, Antibody ; Catalysis ; Chemical Phenomena ; Chemistry ; Cobalt/immunology/metabolism ; Glycine/metabolism ; Haptens/immunology ; Hydrogen-Ion Concentration ; Hydrolysis ; Immunization ; Metals/metabolism ; Mice ; Molecular Sequence Data ; Molecular Structure ; Oligopeptides/*metabolism ; Phenylalanine/metabolism ; Trientine/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-05-19
    Description: Biochemical and electrophysiological studies suggest that odorants induce responses in olfactory sensory neurons via an adenylate cyclase cascade mediated by a G protein. An olfactory-specific guanosine triphosphate (GTP)-binding protein alpha subunit has now been characterized and evidence is presented suggesting that this G protein, termed Golf, mediates olfaction. Messenger RNA that encodes Golf alpha is expressed in olfactory neuroephithelium but not in six other tissues tested. Moreover, within the olfactory epithelium, Golf alpha appears to be expressed only by the sensory neurons. Specific antisera were used to localize Golf alpha protein to the sensory apparatus of the receptor neurons. Golf alpha shares extensive amino acid identity (88 percent) with the stimulatory G protein, Gs alpha. The expression of Golf alpha in S49 cyc- kin- cells, a line deficient in endogenous stimulatory G proteins, demonstrates its capacity to stimulate adenylate cyclase in a heterologous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, D T -- Reed, R R -- New York, N.Y. -- Science. 1989 May 19;244(4906):790-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biology and Genetic Johns Hopkins School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2499043" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/metabolism ; Amino Acid Sequence ; Animals ; Base Sequence ; Cloning, Molecular ; GTP-Binding Proteins/analysis/genetics/*physiology ; Gene Expression Regulation ; Immunoblotting ; Immunohistochemistry ; Molecular Sequence Data ; Neurons, Afferent/analysis/*physiology ; *Odors ; Olfactory Bulb/physiology ; Olfactory Mucosa/analysis/*innervation ; RNA, Messenger/analysis/genetics ; Rats ; Sequence Homology, Nucleic Acid ; *Signal Transduction ; Tissue Distribution ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1989-01-13
    Description: The chemical synthesis of biologically active peptides and polypeptides can be achieved by using a convergent strategy of condensing protected peptide segments to form the desired molecule. An oxime support increases the ease with which intermediate protected peptides can be synthesized and makes this approach useful for the synthesis of peptides in which secondary structural elements have been redesigned. The extension of these methods to large peptides and proteins, for which folding of secondary structures into functional tertiary structures is critical, is discussed. Models of apolipoproteins, the homeo domain from the developmental protein encoded by the Antennapedia gene of Drosophila, a part of the Cro repressor, and the enzyme ribonuclease T1 and a structural analog have been synthesized with this method.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, E T -- Mihara, H -- Laforet, G A -- Kelly, J W -- Walters, L -- Findeis, M A -- Sasaki, T -- DK07825/DK/NIDDK NIH HHS/ -- GM12054/GM/NIGMS NIH HHS/ -- HL-186577/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Jan 13;243(4888):187-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Bioorganic Chemistry and Biochemistry, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2492114" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Apolipoprotein A-I ; Apolipoproteins A/chemical synthesis ; Humans ; Indicators and Reagents ; Lipoproteins, HDL/chemical synthesis ; Peptides/*chemical synthesis ; Protein Conformation ; Proteins/*chemical synthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1989-12-08
    Description: Vascular permeability factor (VPF) is a 40-kilodalton disulfide-linked dimeric glycoprotein that is active in increasing blood vessel permeability, endothelial cell growth, and angiogenesis. These properties suggest that the expression of VPF by tumor cells could contribute to the increased neovascularization and vessel permeability that are associated with tumor vasculature. The cDNA sequence of VPF from human U937 cells was shown to code for a 189-amino acid polypeptide that is similar in structure to the B chain of platelet-derived growth factor (PDGF-B) and other PDGF-B-related proteins. The overall identity with PDGF-B is 18%. However, all eight of the cysteines in PDGF-B were found to be conserved in human VPF, an indication that the folding of the two proteins is probably similar. Clusters of basic amino acids in the COOH-terminal halves of human VPF and PDGF-B are also prevalent. Thus, VPF appears to be related to the PDGF/v-sis family of proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keck, P J -- Hauser, S D -- Krivi, G -- Sanzo, K -- Warren, T -- Feder, J -- Connolly, D T -- New York, N.Y. -- Science. 1989 Dec 8;246(4935):1309-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Culture and Biochemistry, Monsanto Company, St. Louis, MO 63167.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2479987" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Capillary Permeability/physiology ; Cell Division/physiology ; Cloning, Molecular ; Endothelium, Vascular/*cytology ; *Growth Substances ; Guinea Pigs ; Humans ; Lymphokines/*physiology ; Molecular Sequence Data ; Neovascularization, Pathologic/physiopathology ; Oncogene Proteins v-sis ; Platelet-Derived Growth Factor/physiology ; Retroviridae Proteins, Oncogenic/physiology ; Sequence Homology, Nucleic Acid ; Transforming Growth Factors ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1989-01-27
    Description: During sporulation in Bacillus subtilis, expression of developmental genes spoIVCB and cotD is induced in the mother cell compartment of the sporangium at morphological stages IV and V, respectively. A 27-kilodalton RNA polymerase sigma factor called sigma K (or sigma 27) has been found that causes weak transcription of spoIVCB and strong transcription of cotD. A 14-kD protein was also discovered that changes the specificity of sigma K-containing RNA polymerase, greatly stimulating spoIVCB transcription and markedly repressing cotD transcription. Both sigma K and the 14-kD protein are products of genes known to be required for expression of specific genes in the mother cell. Thus, sigma K directs gene expression in the mother cell and it is proposed that inactivation or sequestering of the 14-kD protein switches the temporal pattern of gene expression during the transition from stages IV to V of development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kroos, L -- Kunkel, B -- Losick, R -- GM18568/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Jan 27;243(4890):526-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2492118" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacillus subtilis/*genetics/physiology ; Cloning, Molecular ; DNA-Directed RNA Polymerases/*genetics/isolation & purification ; Electrophoresis, Polyacrylamide Gel ; Gene Expression Regulation ; Molecular Sequence Data ; Promoter Regions, Genetic ; Sigma Factor/*genetics/isolation & purification ; Spores, Bacterial/genetics ; Transcription Factors/*genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1989-04-07
    Description: Protein engineering and x-ray crystallography have been used to study the role of a surface loop that is present in pancreatic phospholipases but is absent in snake venom phospholipases. Removal of residues 62 to 66 from porcine pancreatic phospholipase A2 does not change the binding constant for micelles significantly, but it improves catalytic activity up to 16 times on micellar (zwitterionic) lecithin substrates. In contrast, the decrease in activity on negatively charged substrates is greater than fourfold. A crystallographic study of the mutant enzyme shows that the region of the deletion has a well-defined structure that differs from the structure of the wild-type enzyme. No structural changes in the active site of the enzyme were detected.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuipers, O P -- Thunnissen, M M -- de Geus, P -- Dijkstra, B W -- Drenth, J -- Verheij, H M -- de Haas, G H -- New York, N.Y. -- Science. 1989 Apr 7;244(4900):82-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2704992" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Crystallography ; Enzyme Activation ; Kinetics ; Molecular Sequence Data ; Mutation ; Pancreas/enzymology ; Phospholipases/*metabolism ; Phospholipases A/genetics/*metabolism/physiology ; Phospholipases A2 ; *Protein Conformation ; Snake Venoms/analysis ; Structure-Activity Relationship ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1989-06-30
    Description: Complementary DNA's that encode an adenylyl cyclase were isolated from a bovine brain library. Most of the deduced amino acid sequence of 1134 residues is divisible into two alternating sets of hydrophobic and hydrophilic domains. Each of the two large hydrophobic domains appears to contain six transmembrane spans. Each of the two large hydrophilic domains contains a sequence that is homologous to a single cytoplasmic domain of several guanylyl cyclases; these sequences may represent nucleotide binding sites. An unexpected topographical resemblance between adenylyl cyclase and various plasma membrane channels and transporters was observed. This structural complexity suggests possible, unappreciated functions for this important enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krupinski, J -- Coussen, F -- Bakalyar, H A -- Tang, W J -- Feinstein, P G -- Orth, K -- Slaughter, C -- Reed, R R -- Gilman, A G -- CA16519/CA/NCI NIH HHS/ -- GM12230/GM/NIGMS NIH HHS/ -- GM34497/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1989 Jun 30;244(4912):1558-64.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2472670" target="_blank"〉PubMed〈/a〉
    Keywords: *Adenylyl Cyclases/genetics/isolation & purification ; Amino Acid Sequence ; Animals ; Base Sequence ; Brain/enzymology ; *Carrier Proteins ; Cattle ; Cell Line ; Cloning, Molecular ; DNA/genetics ; Electrophoresis, Polyacrylamide Gel ; *Ion Channels ; Membrane Proteins ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Protein Conformation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 1989-08-18
    Description: CD4 is a cell surface glycoprotein that is thought to interact with nonpolymorphic determinants of class II major histocompatibility (MHC) molecules. CD4 is also the receptor for the human immunodeficiency virus (HIV), binding with high affinity to the HIV-1 envelope glycoprotein, gp120. Homolog-scanning mutagenesis was used to identify CD4 regions that are important in class II MHC binding and to determine whether the gp120 and class II MHC binding sites of CD4 are related. Class II MHC binding was abolished by mutations in each of the first three immunoglobulin-like domains of CD4. The gp120 binding could be abolished without affecting class II MHC binding and vice versa, although at least one mutation examined reduced both functions significantly. These findings indicate that, while there may be overlap between the gp120 and class II MHC binding sites of CD4, these sites are distinct and can be separated. Thus it should be possible to design CD4 analogs that can block HIV infectivity but intrinsically lack the ability to affect the normal immune response by binding to class II MHC molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamarre, D -- Ashkenazi, A -- Fleury, S -- Smith, D H -- Sekaly, R P -- Capon, D J -- New York, N.Y. -- Science. 1989 Aug 18;245(4919):743-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire d'Immunologie, Institut de Recherches Cliniques de Montreal, Quebec, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2549633" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, Surface ; Binding Sites ; DNA, Recombinant ; HIV/*metabolism ; HIV Envelope Protein gp120 ; HLA-DP Antigens/immunology ; Histocompatibility Antigens Class II/*immunology ; Humans ; Hybridomas ; Mice ; Molecular Sequence Data ; Mutation ; Receptors, HIV ; Receptors, Virus/genetics/immunology/*metabolism ; Retroviridae Proteins/immunology/*metabolism ; Rosette Formation ; Structure-Activity Relationship ; T-Lymphocytes/immunology/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1989-02-24
    Description: Branched RNA-linked multicopy single-stranded DNA (msDNA) originally detected in myxobacteria has now been found in a clinical isolate of Escherichia coli. Although lacking homology in the primary structure, the E. coli msDNA is similar in secondary structure to the myxobacterial msDNA's, including the 2',5'-phosphodiester linkage between RNA and DNA. A chromosomal DNA fragment responsible for the production of msDNA was cloned in an E. coli K12 strain; its DNA sequence revealed an open reading frame (ORF) of 586 amino acid residues. The ORF shows sequence similarity with retroviral reverse transcriptases and ribonuclease H. Disruption of the ORF blocked msDNA production, indicating that this gene is essential for msDNA synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lampson, B C -- Sun, J -- Hsu, M Y -- Vallejo-Ramirez, J -- Inouye, S -- Inouye, M -- F32 GM11970-01A1/GM/NIGMS NIH HHS/ -- GM26843/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Feb 24;243(4894 Pt 1):1033-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2466332" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cloning, Molecular ; DNA Probes ; DNA Restriction Enzymes ; DNA, Bacterial/genetics ; DNA, Single-Stranded/analysis/biosynthesis/*genetics ; Endoribonucleases/genetics ; Escherichia coli/enzymology/*genetics ; Genes, Bacterial ; HIV/enzymology/genetics ; Human T-lymphotropic virus 1/enzymology/genetics ; Molecular Sequence Data ; Myxococcales/genetics ; Nucleic Acid Hybridization ; RNA, Bacterial/analysis/biosynthesis/*genetics ; RNA-Directed DNA Polymerase/*genetics ; Retroviridae/*enzymology/genetics ; Ribonuclease H ; Sequence Homology, Nucleic Acid ; Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-31
    Description: C/EBP is a rat liver nuclear protein capable of sequence-specific interaction with DNA. The DNA sequences to which C/EBP binds in vitro have been implicated in the control of messenger RNA synthesis. It has therefore been predicted that C/EBP will play a role in regulating gene expression in mammalian cells. The region of the C/EBP polypeptide required for direct interaction with DNA has been identified and shown to bear amino acid sequence relatedness with the product of the myc, fos, and jun proto-oncogenes. The arrangement of these related amino acid sequences led to the prediction of a new structural motif, termed the "leucine zipper," that plays a role in facilitating sequence-specific interaction between protein and DNA. Experimental tests now provide support for the leucine zipper hypothesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Landschulz, W H -- Johnson, P F -- McKnight, S L -- New York, N.Y. -- Science. 1989 Mar 31;243(4899):1681-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2494700" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; CCAAT-Enhancer-Binding Proteins ; Cross-Linking Reagents ; DNA/*metabolism ; Glutaral ; Leucine ; Liver/*analysis ; Macromolecular Substances ; Molecular Weight ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Protein Conformation ; Rats ; Repetitive Sequences, Nucleic Acid ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1989-12-01
    Description: Human immunodeficiency virus (HIV) isolates with reduced sensitivity to zidovudine (3'-azido-3'-deoxythymidine, AZT) from individuals with acquired immunodeficiency syndrome (AIDS) or AIDS-related complex were studied to determine the genetic basis of their resistance. Most were sequential isolates obtained at the initiation of and during therapy. Comparative nucleotide sequence analysis of the reverse transcriptase (RT) coding region from five pairs of sensitive and resistant isolates identified three predicted amino acid substitutions common to all the resistant strains (Asp67----Asn, Lys70----Arg, Thr215----Phe or Tyr) plus a fourth in three isolates (Lys219----Gln). Partially resistant isolates had combinations of these four changes. An infectious molecular clone constructed with these four mutations in RT yielded highly resistant HIV after transfection of T cells. The reproducible nature of these mutations should make it possible to develop rapid assays to predict zidovudine resistance by performing polymerase chain reaction amplification of nucleic acid from peripheral blood lymphocytes, thereby circumventing current lengthy HIV isolation and sensitivity testing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larder, B A -- Kemp, S D -- New York, N.Y. -- Science. 1989 Dec 1;246(4934):1155-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Sciences Department, Wellcome Research Laboratories, Beckenham, Kent, United Kingdom.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2479983" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS-Related Complex/drug therapy/microbiology ; Acquired Immunodeficiency Syndrome/drug therapy/*microbiology ; Amino Acid Sequence ; Cloning, Molecular ; Drug Resistance/genetics ; Genes, Viral ; HIV-1/drug effects/*enzymology/genetics ; Humans ; Molecular Sequence Data ; *Mutation ; RNA-Directed DNA Polymerase/*genetics ; Zidovudine/pharmacology/*therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1989-05-26
    Description: Spondyloepiphyseal dysplasias (SED) are a heterogeneous group of inherited disorders characterized by disproportionate short stature and pleiotropic involvement of the skeletal and ocular systems. Evidence has suggested that SED may result from structural defects in type II collagen. To confirm the validity of this hypothesis, the structure of the "candidate" type II collagen gene (COL2A1) has been directly examined in a relatively large SED family. Coarse scanning of the gene by Southern blot hybridization identified an abnormal restriction pattern in one of the affected members of the kindred. Analysis of selected genomic fragments, amplified by the polymerase chain reaction, precisely localized the molecular defect and demonstrated that all affected family members carried the same heterozygous single-exon deletion. As a consequence of the mutation, nearly 90 percent of the assembled type II collagen homotrimers are expected to contain one or more procollagen subunits harboring an interstitial deletion of 36 amino acids in the triple helical domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, B -- Vissing, H -- Ramirez, F -- Rogers, D -- Rimoin, D -- AR-38648/AR/NIAMS NIH HHS/ -- HD-22657/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1989 May 26;244(4907):978-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, State University of New York Health Science Center, Brooklyn 11203.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2543071" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Child, Preschool ; Chromosome Deletion ; Collagen/*genetics ; DNA Restriction Enzymes ; DNA-Directed DNA Polymerase ; Exons ; Female ; Gene Amplification ; Humans ; Macromolecular Substances ; Male ; Molecular Sequence Data ; Mutation ; Nucleic Acid Hybridization ; Osteochondrodysplasias/*genetics ; Pedigree ; Procollagen/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1989-07-07
    Description: Basic fibroblast growth factor (bFGF) participates in many processes including early developmental events, angiogenesis, wound healing, and maintenance of neuronal cell viability. A 130-kilodalton protein was isolated on the basis of its ability to specifically bind to bFGF. A complementary DNA clone was isolated with an oligonucleotide probe corresponding to determined amino acid sequences of tryptic peptide fragments of the purified protein. The putative bFGF receptor encoded by this complementary DNA is a transmembrane protein that contains three extracellular immunoglobulin-like domains, an unusual acidic region, and an intracellular tyrosine kinase domain. These domains are arranged in a pattern that is different from that of any growth factor receptor described.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, P L -- Johnson, D E -- Cousens, L S -- Fried, V A -- Williams, L T -- CA 21765/CA/NCI NIH HHS/ -- R01 HL32898/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Jul 7;245(4913):57-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Medicine, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2544996" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cells, Cultured ; Chick Embryo ; *Cloning, Molecular ; DNA/*genetics ; Fibroblast Growth Factors/*genetics ; Kinetics ; Mice ; Molecular Sequence Data ; Peptide Fragments/analysis ; Receptors, Cell Surface/*genetics/metabolism ; Receptors, Fibroblast Growth Factor ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1989-08-11
    Description: The three-dimensional solution structure of a zinc finger nucleic acid binding motif has been determined by nuclear magnetic resonance (NMR) spectroscopy. Spectra of a synthetic peptide corresponding to a single zinc finger from the Xenopus protein Xfin yielded distance and dihedral angle constraints that were used to generate structures from distance geometry and restrained molecular dynamics calculations. The zinc finger is an independently folded domain with a compact globular structure in which the zinc atom is bound by two cysteine and two histidine ligands. The polypeptide backbone fold consists of a well-defined helix, starting as alpha and ending as 3(10) helix, packed against two beta strands that are arranged in a hairpin structure. A high density of basic and polar amino acid side chains on the exposed face of the helix are probably involved in DNA binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, M S -- Gippert, G P -- Soman, K V -- Case, D A -- Wright, P E -- GM 36643/GM/NIGMS NIH HHS/ -- GM38794/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 11;245(4918):635-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2503871" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cysteine/metabolism ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; Histidine/metabolism ; Hydrogen Bonding ; Magnetic Resonance Spectroscopy ; Metalloproteins/*metabolism ; Molecular Sequence Data ; Molecular Structure ; Protein Conformation ; Solutions ; Thermodynamics ; Xenopus ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1989-12-08
    Description: Vascular endothelial growth factor (VEGF) was purified from media conditioned by bovine pituitary folliculostellate cells (FC). VEGF is a heparin-binding growth factor specific for vascular endothelial cells that is able to induce angiogenesis in vivo. Complementary DNA clones for bovine and human VEGF were isolated from cDNA libraries prepared from FC and HL60 leukemia cells, respectively. These cDNAs encode hydrophilic proteins with sequences related to those of the A and B chains of platelet-derived growth factor. DNA sequencing suggests the existence of several molecular species of VEGF. VEGFs are secreted proteins, in contrast to other endothelial cell mitogens such as acidic or basic fibroblast growth factors and platelet-derived endothelial cell growth factor. Human 293 cells transfected with an expression vector containing a bovine or human VEGF cDNA insert secrete an endothelial cell mitogen that behaves like native VEGF.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leung, D W -- Cachianes, G -- Kuang, W J -- Goeddel, D V -- Ferrara, N -- New York, N.Y. -- Science. 1989 Dec 8;246(4935):1306-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Genetech, South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2479986" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Blotting, Northern ; Cattle ; Cell Division ; Cloning, Molecular ; Endothelium, Vascular/*cytology ; Gene Library ; Humans ; Lymphokines/genetics/*physiology/secretion ; Molecular Sequence Data ; Neovascularization, Pathologic/*physiopathology ; Sequence Homology, Nucleic Acid ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1989-05-05
    Description: An approach based on the polymerase chain reaction has been devised to clone new members of the family of genes encoding guanosine triphosphate-binding protein (G protein)-coupled receptors. Degenerate primers corresponding to consensus sequences of the third and sixth transmembrane segments of available receptors were used to selectively amplify and clone members of this gene family from thyroid complementary DNA. Clones encoding three known receptors and four new putative receptors were obtained. Sequence comparisons established that the new genes belong to the G protein-coupled receptor family. Close structural similarity was observed between one of the putative receptors and the 5HT1a receptor. Two other molecules displayed common sequence characteristics, suggesting that they are members of a new subfamily of receptors with a very short nonglycosylated (extracellular) amino-terminal extension.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Libert, F -- Parmentier, M -- Lefort, A -- Dinsart, C -- Van Sande, J -- Maenhaut, C -- Simons, M J -- Dumont, J E -- Vassart, G -- New York, N.Y. -- Science. 1989 May 5;244(4904):569-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Recherche Interdisciplinaire, Faculte de Medecine, Universite Libre de Bruxelles, Campus Erasme, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2541503" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; *Cloning, Molecular ; DNA/genetics ; DNA-Directed DNA Polymerase ; GTP-Binding Proteins/*metabolism ; *Gene Amplification ; Humans ; Molecular Sequence Data ; Receptors, Adrenergic, alpha/genetics ; Receptors, Adrenergic, beta/genetics ; Receptors, Muscarinic/genetics ; Receptors, Neurokinin-2 ; Receptors, Neurotransmitter/*genetics ; Receptors, Serotonin/genetics ; Sequence Homology, Nucleic Acid ; Thyroid Gland/analysis ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1989-11-24
    Description: Ciliary neurotrophic factor (CNTF) is one of a small number of proteins with neurotrophic activities distinct from nerve growth factor (NGF). CNTF has now been purified and cloned and the primary structure of CNTF from rabbit sciatic nerve has been determined. Biologically active CNTF has been transiently expressed from a rabbit complementary DNA clone. CNTF is a neural effector without significant sequence homologies to any previously reported protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, L F -- Mismer, D -- Lile, J D -- Armes, L G -- Butler, E T 3rd -- Vannice, J L -- Collins, F -- New York, N.Y. -- Science. 1989 Nov 24;246(4933):1023-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Protein Chemistry Group, Synergen, Inc., Boulder, CO 80301.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2587985" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Ciliary Neurotrophic Factor ; Cloning, Molecular ; DNA/genetics ; Molecular Sequence Data ; Nerve Growth Factors/*genetics ; Nerve Tissue Proteins/biosynthesis/*genetics/isolation & purification ; Rabbits ; Recombinant Proteins/biosynthesis ; Sciatic Nerve/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1989-01-13
    Description: In the polymerase chain reaction (PCR), two specific oligonucleotide primers are used to amplify the sequences between them. However, this technique is not suitable for amplifying genes that encode molecules where the 5' portion of the sequences of interest is not known, such as the T cell receptor (TCR) or immunoglobulins. Because of this limitation, a novel technique, anchored polymerase chain reaction (A-PCR), was devised that requires sequence specificity only on the 3' end of the target fragment. It was used to analyze TCR delta chain mRNA's from human peripheral blood gamma delta T cells. Most of these cells had a V delta gene segment not previously described (V delta 3), and the delta chain junctional sequences formed a discrete subpopulation compared with those previously reported.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loh, E Y -- Elliott, J F -- Cwirla, S -- Lanier, L L -- Davis, M M -- New York, N.Y. -- Science. 1989 Jan 13;243(4888):217-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Medicine and Microbiology and Immunology, Stanford University School of Medicine, CA 94305-5402.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2463672" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Line ; Gene Amplification ; *Genes ; Humans ; Macromolecular Substances ; Molecular Sequence Data ; Oligonucleotide Probes ; RNA, Messenger/genetics ; RNA-Directed DNA Polymerase ; Receptors, Antigen, T-Cell/*genetics ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1989-07-28
    Description: A 47-kilodalton neutrophil cytosol factor (NCF-47k), required for activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase superoxide (O2-.) production, is absent in most patients with autosomal recessive chronic granulomatous disease (AR-CGD). NCF-47k cDNAs were cloned from an expression library. The largest clone predicted a 41.9-kD protein that contained an arginine and serine-rich COOH-terminal domain with potential protein kinase C phosphorylation sites. A 33-amino acid segment of NCF-47k shared 49% identity with ras p21 guanosine triphosphatase activating protein. Recombinant NCF-47k restored O2-. -producing activity to AR-CGD neutrophil cytosol in a cell-free assay. Production of active recombinant NCF-47k will enable functional regions of this molecule to be mapped.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lomax, K J -- Leto, T L -- Nunoi, H -- Gallin, J I -- Malech, H L -- New York, N.Y. -- Science. 1989 Jul 28;245(4916):409-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bacterial Diseases Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2547247" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Blotting, Northern ; Cloning, Molecular ; DNA/*genetics ; Granulomatous Disease, Chronic/enzymology/*genetics ; Humans ; Immunoblotting ; Molecular Sequence Data ; NADH, NADPH Oxidoreductases/*metabolism ; NADPH Oxidase ; Neutrophils/*metabolism ; Phosphoproteins/*genetics/metabolism ; Phosphorylation ; Recombinant Proteins/genetics/metabolism ; Superoxides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-11-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lomax, K J -- Leto, T L -- Nunoi, H -- Gallin, J I -- Malech, H L -- New York, N.Y. -- Science. 1989 Nov 24;246(4933):987.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2587992" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cytosol/enzymology ; DNA/genetics ; Molecular Sequence Data ; Oxidoreductases/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1989-01-13
    Description: An important question in protein folding is whether the natural amino and carboxyl termini and the given order of secondary structure segments are critical to the stability and to the folding pathway of proteins. Here it is shown that two circularly permuted versions of the gene of a single-domain beta alpha barrel enzyme can be expressed in Escherichia coli. The variants are enzymically active and are practically indistinguishable from the original enzyme by several structural and spectroscopic criteria, despite the creation of new termini and the cleavage of a surface loop. This novel genetic approach should be useful for protein folding studies both in vitro and in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luger, K -- Hommel, U -- Herold, M -- Hofsteenge, J -- Kirschner, K -- New York, N.Y. -- Science. 1989 Jan 13;243(4888):206-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abteilung Biophysikalische Chemie, Universitat Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2643160" target="_blank"〉PubMed〈/a〉
    Keywords: *Aldose-Ketose Isomerases ; Amino Acid Sequence ; Base Sequence ; Carbohydrate Epimerases/*genetics/metabolism ; Circular Dichroism ; *Cloning, Molecular ; Enzyme Stability ; Escherichia coli/*enzymology/genetics ; *Genes ; Genetic Variation ; Kinetics ; Molecular Sequence Data ; *Protein Conformation ; Spectrometry, Fluorescence ; Spectrophotometry, Ultraviolet
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1994-02-25
    Description: Activation of the serine-threonine kinase p34cdc2 at an inappropriate time during the cell cycle leads to cell death that resembles apoptosis. Premature activation of p34cdc2 was shown to be required for apoptosis induced by a lymphocyte granule protease. The kinase was rapidly activated and tyrosine dephosphorylated at the initiation of apoptosis. DNA fragmentation and nuclear collapse could be prevented by blocking p34cdc2 activity with excess peptide substrate, or by inactivating p34cdc2 in a temperature-sensitive mutant. Premature p34cdc2 activation may be a general mechanism by which cells induced to undergo apoptosis initiate the disruption of the nucleus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, L -- Nishioka, W K -- Th'ng, J -- Bradbury, E M -- Litchfield, D W -- Greenberg, A H -- New York, N.Y. -- Science. 1994 Feb 25;263(5150):1143-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8108732" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; CDC2 Protein Kinase/*metabolism ; DNA Damage ; Deoxyribonucleases/pharmacology ; Enzyme Activation ; Enzyme Induction ; Membrane Glycoproteins/pharmacology ; Mice ; Mitosis ; Molecular Sequence Data ; Perforin ; Phosphorylation ; Pore Forming Cytotoxic Proteins ; Serine Endopeptidases/pharmacology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 1989-08-04
    Description: Complementary DNA clones, encoding the LH-hCG (luteinizing hormone-human choriogonadotropic hormone) receptor were isolated by screening a lambda gt11 library with monoclonal antibodies. The primary structure of the protein was deduced from the DNA sequence analysis; the protein contains 696 amino acids with a putative signal peptide of 27 amino acids. Hydropathy analysis suggests the existence of seven transmembrane domains that show homology with the corresponding regions of other G protein-coupled receptors. Three other types of clones corresponding to shorter proteins were observed, in which the putative transmembrane domain was absent. These probably arose through alternative splicing. RNA blot analysis showed similar patterns in testis and ovary with a major RNA of 4700 nucleotides and several minor species. The messenger RNA was expressed in COS-7 cells, yielding a protein that bound hCG with the same affinity as the testicular receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loosfelt, H -- Misrahi, M -- Atger, M -- Salesse, R -- Vu Hai-Luu Thi, M T -- Jolivet, A -- Guiochon-Mantel, A -- Sar, S -- Jallal, B -- Garnier, J -- New York, N.Y. -- Science. 1989 Aug 4;245(4917):525-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut National de la Sante et de la Recherche Medicale Unite 135, Hopital de Bicetre, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2502844" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Membrane/*metabolism ; *Cloning, Molecular ; DNA/*genetics ; Female ; GTP-Binding Proteins/metabolism ; Male ; Molecular Sequence Data ; Mutation ; Nucleic Acid Hybridization ; Ovary/analysis ; Protein Sorting Signals/genetics ; RNA, Messenger/analysis/genetics ; Receptors, LH/*genetics/metabolism ; Sequence Homology, Nucleic Acid ; Swine ; Testis/analysis ; Tissue Distribution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1989-08-18
    Description: Keratinocyte growth factor (KGF) is a human mitogen that is specific for epithelial cells. The complementary DNA sequence of KGF demonstrates that it is a member of the fibroblast growth factor family. The KGF transcript was present in stromal cells derived from epithelial tissues. By comparison with the expression of other epithelial cell mitogens, only KGF, among known human growth factors, has the properties of a stromal mediator of epithelial cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finch, P W -- Rubin, J S -- Miki, T -- Ron, D -- Aaronson, S A -- New York, N.Y. -- Science. 1989 Aug 18;245(4919):752-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2475908" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Division ; Codon ; DNA/genetics/isolation & purification ; Epithelial Cells ; Epithelium/analysis/metabolism ; Fibroblast Growth Factor 10 ; Fibroblast Growth Factor 7 ; *Fibroblast Growth Factors/genetics ; Fibroblasts/metabolism ; Gene Expression Regulation ; Growth Substances/*genetics/physiology ; Humans ; Mesoderm/metabolism ; Mice ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Oligonucleotide Probes ; RNA/analysis ; Sequence Homology, Nucleic Acid ; Skin/analysis ; Tissue Distribution ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1989-07-07
    Description: Insulin receptor complementary DNA has been cloned from an insulin-resistant individual whose receptors have impaired tyrosine protein kinase activity. One of this individual's alleles has a mutation in which valine is substituted for Gly996, the third glycine in the conserved Gly-X-Gly-X-X-Gly motif in the putative binding site fo adenosine triphosphate. Expression of the mutant receptor by transfection into Chinese hamster ovary cells confirmed that the mutation impairs tyrosine kinase activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Odawara, M -- Kadowaki, T -- Yamamoto, R -- Shibasaki, Y -- Tobe, K -- Accili, D -- Bevins, C -- Mikami, Y -- Matsuura, N -- Akanuma, Y -- New York, N.Y. -- Science. 1989 Jul 7;245(4913):66-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2544998" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Base Sequence ; Diabetes Mellitus, Type 2/*genetics ; *Genes ; Humans ; Insulin Resistance ; Molecular Sequence Data ; *Mutation ; Protein-Tyrosine Kinases/*genetics ; Receptor, Insulin/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 1989-08-11
    Description: The products of the nuclear oncogenes fos and jun are known to form heterodimers that bind to DNA and modulate transcription. Both proteins contain a leucine zipper that is important for heterodimer formation. Peptides corresponding to these leucine zippers were synthesized. When mixed, these peptides preferentially form heterodimers over homodimers by at least 1000-fold. Both homodimers and the heterodimer are parallel alpha helices. The leucine zipper regions from Fos and Jun therefore correspond to autonomous helical dimerization sites that are likely to be short coiled coils, and these regions are sufficient to determine the specificity of interaction between Fos and Jun. The Fos leucine zipper forms a relatively unstable homodimer. Instability of homodimers provides a thermodynamic driving force for preferential heterodimer formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Shea, E K -- Rutkowski, R -- Stafford, W F 3rd -- Kim, P S -- RR05711/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 11;245(4918):646-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2503872" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Circular Dichroism ; *DNA-Binding Proteins ; Disulfides ; *Leucine ; Macromolecular Substances ; Molecular Sequence Data ; Peptide Fragments/chemical synthesis ; Protein Conformation ; *Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-fos ; Proto-Oncogene Proteins c-jun ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-07-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J L -- New York, N.Y. -- Science. 1989 Jul 14;245(4914):126.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2749249" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; *Computer Communication Networks ; *Computer Systems ; *Information Systems ; *Molecular Biology ; National Institutes of Health (U.S.) ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1989-03-31
    Description: The tpa-1 gene mediates the action of tumor-promoting phorbol esters in the nematode Caenorhabditis elegans. A genomic fragment that constitutes a portion of the tpa-1 gene was cloned by Tc1 transposon tagging and was used as a probe to screen a nematode complementary DNA library. One of the isolated complementary DNA clones had a nucleotide sequence that predicts a polypeptide of 526 amino acids. The predicted amino acid sequence revealed that the predicted tpa-1 protein sequence is highly similar to protein kinase C molecules from various animals, including man.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tabuse, Y -- Nishiwaki, K -- Miwa, J -- New York, N.Y. -- Science. 1989 Mar 31;243(4899):1713-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fundamental Research Laboratories, NEC Corporation, Kawasaki, Kanagawa, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2538925" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Caenorhabditis/*drug effects/genetics ; Cloning, Molecular ; Codon ; DNA/genetics ; DNA Restriction Enzymes ; Drug Resistance/genetics ; Genetic Markers ; Molecular Sequence Data ; Mutation ; Nucleic Acid Hybridization ; Phenotype ; Phorbol Esters/*pharmacology ; Protein Kinase C/*genetics ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1989-09-01
    Description: The structure and function of transcription factors of higher plants was studied by isolating cDNA clones encoding a wheat sequence-specific DNA binding protein. A hexameric nucleotide motif, ACGTCA, is located upstream from the TATA box of several plant histone genes. It has been suggested that this motif is essential for efficient transcription of the wheat histone H3 gene. A wheat nuclear protein, HBP-1 (histone DNA binding protein-1), which specifically binds to the hexameric motif, has previously been identified as a putative transcription factor. A cDNA clone encoding HBP-1 has been isolated on the basis of specific binding of HBP-1 to the hexameric motif. The deduced amino acid sequence indicates that HBP-1 contains the leucine zipper motif, which represents a characteristic property of several eukaryotic transcription factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tabata, T -- Takase, H -- Takayama, S -- Mikami, K -- Nakatsuka, A -- Kawata, T -- Nakayama, T -- Iwabuchi, M -- New York, N.Y. -- Science. 1989 Sep 1;245(4921):965-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany, Faculty of Science, Kyoto University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2772648" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cloning, Molecular ; DNA/genetics ; DNA-Binding Proteins/*genetics ; *Genes ; Genes, Regulator ; Histones/*genetics ; Information Systems ; *Leucine ; Methylation ; Molecular Sequence Data ; Nuclear Proteins/*genetics ; Nucleic Acid Hybridization ; Plants/*genetics ; *Transcription, Genetic ; Triticum/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 1989-10-06
    Description: For the IIIB isolate of human immunodeficiency virus type-1 (HIV-1), the immunodominant determinant of the envelope protein gp160 for cytotoxic T lymphocytes (CTLs) of H-2d mice is in a region of high sequence variability among HIV-1 isolates. The general requirements for CTL recognition of peptide antigens and the relation of recognition requirements to the natural variation in sequence of the HIV were investigated. For this purpose, a CTL line specific for the homologous segment of the envelope from the MN isolate of HIV-1 and restricted by the same class I major histocompatibility (MHC) molecule (Dd) as the IIIB-specific CTLs was raised from mice immunized with MN-env-recombinant vaccinia virus. The IIIB-specific and MN-specific CTLs were completely non-cross-reactive. Reciprocal exchange of a single amino acid between the two peptide sequences, which differed in 6 of 15 residues, led to a complete reversal of the specificity of the peptides in sensitizing targets, such that the IIIB-specific CTLs lysed targets exposed to the singly substituted MN peptide and vice versa. These data indicate the importance of single residues in defining peptide epitopic specificity and have implications for both the effect of immune pressure on selection of viral mutants and the design of effective vaccines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takahashi, H -- Merli, S -- Putney, S D -- Houghten, R -- Moss, B -- Germain, R N -- Berzofsky, J A -- New York, N.Y. -- Science. 1989 Oct 6;246(4926):118-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Metabolism Branch, National Cancer Institute, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2789433" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Genes, MHC Class I ; HIV Envelope Protein gp160 ; HIV-1/*immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Molecular Sequence Data ; Retroviridae Proteins/*immunology ; T-Lymphocytes, Cytotoxic/*immunology ; Viral Envelope Proteins/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 1989-03-03
    Description: Isolation of a clone encoding the mouse lymph node homing receptor reveals a deduced protein with an unusual protein mosaic architecture, containing a separate carbohydrate-binding (lectin) domain, an epidermal growth factor-like (EGF) domain, and an extracellular precisely duplicated repeat unit, which preserves the motif seen in the homologous repeat structure of complement regulatory proteins and other proteins. The receptor molecule is potentially highly glycosylated, and contains an apparent transmembrane region. Analysis of messenger RNA transcripts reveals a predominantly lymphoid distribution in direct relation to the cell surface expression of the MEL-14 determinant, and the cDNA clone is shown to confer the MEL-14 epitope in heterologous cells. The many novel features, including ubiquitination, embodied in this single receptor molecule form the basis for numerous approaches to the study of cell-cell interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Siegelman, M H -- van de Rijn, M -- Weissman, I L -- AI09022/AI/NIAID NIH HHS/ -- OIG43551/PHS HHS/ -- New York, N.Y. -- Science. 1989 Mar 3;243(4895):1165-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2646713" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal ; Base Sequence ; Binding Sites ; Carbohydrate Metabolism ; Cell Membrane/metabolism ; DNA/*genetics ; Epidermal Growth Factor ; Glycosylation ; Lymph Nodes/*metabolism ; Membrane Glycoproteins/*genetics ; Mice ; Molecular Sequence Data ; Oligonucleotide Probes ; RNA, Messenger/genetics ; Receptors, Lymphocyte Homing ; Repetitive Sequences, Nucleic Acid ; Sequence Homology, Nucleic Acid ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1990-08-17
    Description: The transcription factor C/EBP uses a bipartite structural motif to bind DNA. Two protein chains dimerize through a set of amphipathic alpha helices termed the leucine zipper. Highly basic polypeptide regions emerge from the zipper to form a linked set of DNA contact surfaces. In the recently proposed a "scissors grip" model, the paired set of basic regions begin DNA contact at a central point and track in opposite directions along the major groove, forming a molecular clamp around DNA. This model predicts that C/EBP must undertake significant changes in protein conformation as it binds and releases DNA. The basic region of ligand-free C/EBP is highly sensitive to protease digestion. Pronounced resistance to proteolysis occurred when C/EBP associated with its specific DNA substrate. Sequencing of discrete proteolytic fragments showed that prominent sites for proteolysis occur at two junction points predicted by the "scissors grip" model. One junction corresponds to the cleft where the basic regions emerge from the leucine zipper. The other corresponds to a localized nonhelical segment that has been hypothesized to contain an N-cap and facilitate the sharp angulation necessary for the basic region to track continuously in the major groove of DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shuman, J D -- Vinson, C R -- McKnight, S L -- New York, N.Y. -- Science. 1990 Aug 17;249(4970):771-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Research Laboratories, Department of Embryology, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2202050" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; CCAAT-Enhancer-Binding Proteins ; Chromatography, High Pressure Liquid ; DNA/*metabolism ; DNA-Binding Proteins/metabolism ; Kinetics ; Leucine ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/*metabolism ; Peptide Fragments/metabolism ; Peptide Hydrolases/*metabolism ; Protein Conformation ; Transcription Factors/*metabolism ; Trypsin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 1990-10-12
    Description: The mechanism by which phytohormones, like abscisic acid (ABA), regulate gene expression is unknown. An activity in nuclear extracts that interacts with the ABA response element (ABRE) from the 5' regulatory region of the wheat Em gene was identified. A complementary DNA clone was isolated whose product is a DNA binding protein (EmBP-1) that interacts specifically with an 8-base pair (bp) sequence (CACGTGGC) in the ABRE. A 2-bp mutation in this sequence prevented binding of EmBP-1. The same mutation reduced the ability of the ABRE to confer ABA responsiveness on a viral promoter in a transient assay. The 8-bp EmBP-1 target sequence was found to be conserved in several other ABA-responsive promoters and in promoters from plants that respond to signals other than ABA. Similar sequences are found in promoters from mammals, yeast, and in the major late promoter of adenovirus. The deduced amino acid sequence of EmBP-1 contains conserved basic and leucine zipper domains found in transcription factors in plants, yeast, and mammals. EmBP-1 may be a member of a highly conserved family of proteins that recognize a core sequence found in the regulatory regions of various genes that are integrated into a number of different response pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guiltinan, M J -- Marcotte, W R Jr -- Quatrano, R S -- New York, N.Y. -- Science. 1990 Oct 12;250(4978):267-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of North Carolina, Chapel Hill 27599-3280.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2145628" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*metabolism ; Amino Acid Sequence ; Base Sequence ; Cell Nucleus/metabolism ; DNA/*genetics ; DNA-Binding Proteins/genetics/metabolism ; *Gene Expression Regulation ; *Leucine Zippers/genetics ; Molecular Sequence Data ; Oligonucleotide Probes ; Plants/*genetics ; Sequence Homology, Nucleic Acid ; Triticum/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 1990-11-02
    Description: Voltage-gated sodium channels are transmembrane proteins of approximately 2000 amino acids and consist of four homologous domains (I through IV). In current topographical models, domains III and IV are linked by a highly conserved cytoplasmic sequence of amino acids. Disruptions of the III-IV linker by cleavage or antibody binding slow inactivation, the depolarization-induced closed state characteristic of sodium channels. This linker might be the positively charged "ball" that is thought to cause inactivation by occluding the open channel. Therefore, groups of two or three contiguous lysines were neutralized or a glutamate was substituted for an arginine in the III-IV linker of type III rat brain sodium channels. In all cases, inactivation occurred more rapidly rather than more slowly, contrary to predictions. Furthermore, activation was delayed in the arginine to glutamate mutation. Hence, the III-IV linker does not simply act as a charged blocker of the channel but instead influences all aspects of sodium channel gating.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moorman, J R -- Kirsch, G E -- Brown, A M -- Joho, R H -- HL-36930/HL/NHLBI NIH HHS/ -- KL-01858/PHS HHS/ -- NS-23877/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 2;250(4981):688-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Texas Medical Branch, Galveston 77550.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2173138" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cytoplasm/physiology ; Molecular Sequence Data ; *Mutation ; RNA, Messenger/analysis ; Sodium Channels/chemistry/genetics/*physiology ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1990-01-05
    Description: A nonlysosomal pathway exists for the degradation of newly synthesized proteins retained within the endoplasmic reticulum (ER). This pathway is extremely selective: whereas some proteins are rapidly degraded, others survive for long periods in the ER. The question of whether this selectivity is due to the presence within the sensitive proteins of definable peptide sequences that are sufficient to target them for degradation has been addressed. Deletion of a carboxyl-terminal sequence, comprising the transmembrane domain and short cytoplasmic tail of the alpha chain of the T cell antigen receptor (TCR-alpha), prevented the rapid degradation of this polypeptide. Fusion of this carboxyl-terminal sequence to the extracellular domain of the Tac antigen, a protein that is normally transported to the cell surface where it survives long-term, resulted in the retention and rapid degradation of the chimeric protein in the ER. Additional mutagenesis revealed that the transmembrane domain of TCR-alpha alone was sufficient to cause degradation within the ER. This degradation was not a direct consequence of retention in the ER, as blocking transport of newly synthesized proteins out of the ER with brefeldin A did not lead to degradation of the normal Tac antigen. It is proposed that a 23-amino acid sequence, comprising the transmembrane domain of TCR-alpha, contains information that determines targeting for degradation within the ER system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonifacino, J S -- Suzuki, C K -- Klausner, R D -- New York, N.Y. -- Science. 1990 Jan 5;247(4938):79-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2294595" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Endoplasmic Reticulum/*metabolism ; Humans ; Molecular Sequence Data ; Peptide Fragments/*metabolism ; Proteins/*metabolism ; Receptors, Antigen, T-Cell/metabolism ; Receptors, Interleukin-2/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1990-01-12
    Description: The murine white spotting locus (W) is allelic with the proto-oncogene c-kit, which encodes a transmembrane tyrosine protein kinase receptor for an unknown ligand. Mutations at the W locus affect various aspects of hematopoiesis and the proliferation and migration of primordial germ cells and melanoblasts during development to varying degrees of severity. The W42 mutation has a particularly severe effect in both the homozygous and the heterozygous states. The molecular basis of the W42 mutation was determined. The c-kit protein products in homozygous mutant mast cells were expressed normally but displayed a defective tyrosine kinase activity in vitro. Nucleotide sequence analysis of mutant complementary DNAs revealed a missense mutation that replaces aspartic acid with asparagine at position 790 in the c-kit protein product. Aspartic acid-790 is a conserved residue in all protein kinases. These results provide an explanation for the dominant nature of the W42 mutation and provide insight into the mechanism of c-kit-mediated signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tan, J C -- Nocka, K -- Ray, P -- Traktman, P -- Besmer, P -- P01-CA-16599/CA/NCI NIH HHS/ -- R01-CA-32926/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Jan 12;247(4939):209-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Program, Sloan Kettering Institute, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1688471" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cells, Cultured ; DNA/genetics ; Gene Expression ; Homozygote ; Liver/analysis/cytology/embryology ; Mast Cells/metabolism ; Mice ; Molecular Sequence Data ; *Mutation ; *Phenotype ; Polymerase Chain Reaction ; Protein-Tyrosine Kinases/*genetics ; Proto-Oncogene Proteins/*genetics ; Proto-Oncogene Proteins c-kit ; RNA/analysis ; Receptors, Cell Surface/genetics ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 1990-07-27
    Description: There is currently a need for vaccine development to improve the immunogenicity of protective epitopes, which themselves are often poorly immunogenic. Although the immunogenicity of these epitopes can be enhanced by linking them to highly immunogenic carriers, such carriers derived from current vaccines have not proven to be generally effective. One reason may be related to epitope-specific suppression, in which prior vaccination with a protein can inhibit the antibody response to new epitopes linked to the protein. To circumvent such inhibition, a peptide from tetanus toxoid was identified that, when linked to a B cell epitope and injected into tetanus toxoid-primed recipients, retained sequences for carrier but not suppressor function. The antibody response to the B cell epitope was enhanced. This may be a general method for taking advantage of previous vaccinations in the development of new vaccines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Etlinger, H M -- Gillessen, D -- Lahm, H W -- Matile, H -- Schonfeld, H J -- Trzeciak, A -- New York, N.Y. -- Science. 1990 Jul 27;249(4967):423-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Central Research Unit F. Hoffmann-La Roche, Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1696030" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, Protozoan/*immunology ; B-Lymphocytes/immunology ; Epitopes/*immunology ; Humans ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Peptide Fragments/immunology ; Plasmodium falciparum/*immunology ; T-Lymphocytes/immunology ; T-Lymphocytes, Helper-Inducer/immunology ; T-Lymphocytes, Regulatory/immunology ; Tetanus Toxoid/*immunology ; *Vaccination ; Vaccines/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1990-06-01
    Description: The amyloid beta peptide (A beta P) is a small fragment of the much larger, broadly distributed amyloid precursor protein (APP). Abundant A beta P deposition in the brains of patients with Alzheimer's disease suggests that altered APP processing may represent a key pathogenic event. Direct protein structural analyses showed that constitutive processing in human embryonic kidney 293 cells cleaves APP in the interior of the A beta P, thus preventing A beta P deposition. A deficiency of this processing event may ultimately prove to be the etiological event in Alzheimer's disease that gives rise to senile plaque formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Esch, F S -- Keim, P S -- Beattie, E C -- Blacher, R W -- Culwell, A R -- Oltersdorf, T -- McClure, D -- Ward, P J -- New York, N.Y. -- Science. 1990 Jun 1;248(4959):1122-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Athena Neurosciences, Incorporated, South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2111583" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amyloid/isolation & purification/*metabolism ; Amyloid beta-Protein Precursor ; Humans ; Molecular Sequence Data ; Peptide Fragments/isolation & purification ; Protein Precursors/isolation & purification/*metabolism ; Protein Processing, Post-Translational/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 1990-06-29
    Description: The human immunodeficiency virus (HIV) tat protein (Tat) is a positive regulator of virus gene expression and replication. Biotinylated Tat was used as a probe to screen a lambda gt11 fusion protein library, and a complementary DNA encoding a protein that interacts with Tat was cloned. Expression of this protein, designated TBP-1 (for Tat binding protein-1), was observed in a variety of cell lines, with expression being highest in human cells. TBP-1 was localized predominantly in the nucleus, which is consistent with the nuclear localization of Tat. In cotransfection experiments, expression of TBP-1 was able to specifically suppress Tat-mediated transactivation. The strategy described may be useful for direct identification and cloning of genes encoding proteins that associate with other proteins to modulate their activity in a positive or negative fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nelbock, P -- Dillon, P J -- Perkins, A -- Rosen, C A -- New York, N.Y. -- Science. 1990 Jun 29;248(4963):1650-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology and Virology, Roche Institute of Molecular Biology, Hoffmann-La Roche Inc., Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2194290" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cloning, Molecular ; DNA, Neoplasm/genetics ; DNA-Binding Proteins/*genetics/metabolism ; Escherichia coli/genetics ; Gene Expression ; Gene Library ; Gene Products, tat/*metabolism ; HIV/genetics ; Humans ; Molecular Sequence Data ; Plasmids ; Polymerase Chain Reaction ; *Proteasome Endopeptidase Complex ; Recombinant Fusion Proteins/metabolism ; Trans-Activators/*metabolism ; Transcriptional Activation ; Transfection ; tat Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1990-03-09
    Description: An antibody to a platelet integral membrane glycoprotein was found to cross-react with the previously identified CD31 myelomonocytic differentiation antigen and with hec7, an endothelial cell protein that is enriched at intercellular junctions. This antibody identified a complementary DNA clone from an endothelial cell library. The 130-kilodalton translated sequence contained six extracellular immunoglobulin (Ig)-like domains and was most similar to the cell adhesion molecule (CAM) subgroup of the Ig superfamily. This is the only known member of the CAM family on platelets. Its cell surface distribution suggests participation in cellular recognition events.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Newman, P J -- Berndt, M C -- Gorski, J -- White, G C 2nd -- Lyman, S -- Paddock, C -- Muller, W A -- HL-40926/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 9;247(4947):1219-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Blood Center of Southeastern Wisconsin, Milwaukee 53233.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1690453" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal ; Antigens, CD31 ; Antigens, Differentiation, Myelomonocytic/*genetics ; Cell Adhesion Molecules/*genetics ; *Cloning, Molecular ; DNA/analysis ; Endothelium, Vascular/analysis/immunology ; Epitopes/immunology ; *Genes, Immunoglobulin ; Humans ; Immunoblotting ; Immunoglobulins ; Immunosorbent Techniques ; Molecular Sequence Data ; Platelet Membrane Glycoproteins/immunology ; Protein Conformation ; Repetitive Sequences, Nucleic Acid ; Sequence Homology, Nucleic Acid ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1990-07-13
    Description: The heterotrimeric guanine nucleotide-binding regulatory proteins act at the inner surface of the plasma membrane to relay information from cell surface receptors to effectors inside the cell. These G proteins are not integral membrane proteins, yet are membrane associated. The processing and function of the gamma subunit of the yeast G protein involved in mating-pheromone signal transduction was found to be affected by the same mutations that block ras processing. The nature of these mutations implied that the gamma subunit was polyisoprenylated and that this modification was necessary for membrane association and biological activity. A microbial screen was developed for pharmacological agents that inhibit polyisoprenylation and that have potential application in cancer therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finegold, A A -- Schafer, W R -- Rine, J -- Whiteway, M -- Tamanoi, F -- CA 41996/CA/NCI NIH HHS/ -- GM 07183/GM/NIGMS NIH HHS/ -- GM 35827/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 13;249(4965):165-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1695391" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Membrane/metabolism ; Cloning, Molecular ; Epitopes/genetics ; GTP-Binding Proteins/genetics/*metabolism ; Hemagglutinins, Viral/immunology ; Lovastatin/pharmacology ; Mevalonic Acid/pharmacology ; Molecular Sequence Data ; Mutation ; Oncogene Protein p21(ras)/genetics/*metabolism ; Orthomyxoviridae/immunology ; Protein Processing, Post-Translational ; Saccharomyces cerevisiae/*genetics/metabolism ; Signal Transduction ; Suppression, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1990-07-27
    Description: The major autophosphorylation sites of the rat beta II isozyme of protein kinase C were identified. The modified threonine and serine residues were found in the amino-terminal peptide, the carboxyl-terminal tail, and the hinge region between the regulatory lipid-binding domain and the catalytic kinase domain. Because this autophosphorylation follows an intrapeptide mechanism, extraordinary flexibility of the protein is necessary to phosphorylate the three regions. Comparison of the sequences surrounding the modified residues showed no obvious recognition motif nor any similarity to substrate phosphorylation sites, suggesting that proximity to the active site may be the primary criterion for their phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flint, A J -- Paladini, R D -- Koshland, D E Jr -- DK09765/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 27;249(4967):408-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2377895" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Brain/enzymology ; Cloning, Molecular ; Isoenzymes/genetics/*metabolism ; Molecular Sequence Data ; Peptide Fragments/isolation & purification/metabolism ; Phosphorylation ; Protein Conformation ; Protein Kinase C/genetics/*metabolism ; Rats ; Recombinant Proteins/metabolism ; Signal Transduction ; Trypsin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1990-11-09
    Description: High sequence selectivity in DNA-protein interactions was analyzed by measuring discrimination by Eco RI endonuclease between the recognition site GAATTC and systematically altered DNA sites. Base analogue substitutions that preserve the sequence-dependent conformational motif of the GAATTC site permit deletion of single sites of protein-base contact at a cost of +1 to +2 kcal/mol. However, the introduction of any one incorrect natural base pair costs +6 to +13 kcal/mol in transition state interaction energy, the resultant of the following interdependent factors: deletion of one or two hydrogen bonds between the protein and a purine base; unfavourable steric apposition between a group on the protein and an incorrectly placed functional group on a base; disruption of a pyrimidine contact with the protein; loss of some crucial interactions between protein and DNA phosphates; and an increased energetic cost of attaining the required DNA conformation in the transition state complex. Eco RI endonuclease thus achieves stringent discrimination by both "direct readout" (protein-base contracts) and "indirect readout" (protein-phosphate contacts and DNA conformation) of the DNA sequence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lesser, D R -- Kurpiewski, M R -- Jen-Jacobson, L -- GM-29207/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 9;250(4982):776-86.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, University of Pittsburgh, PA 15260.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2237428" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; DNA/chemistry/genetics/*metabolism ; Deoxyribonuclease EcoRI/chemistry/*metabolism ; Energy Transfer ; Molecular Sequence Data ; Nucleic Acid Conformation ; Phosphates/metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1990-05-11
    Description: Chronic granulomatous diseases (CGDs) are characterized by recurrent infections resulting from impaired superoxide production by a phagocytic cell, nicotinamide adenine dinucleotide phosphate (reduced) (NADPH) oxidase. Complementary DNAs were cloned that encode the 67-kilodalton (kD) cytosolic oxidase factor (p67), which is deficient in 5% of CGD patients. Recombinant p67 (r-p67) partially restored NADPH oxidase activity to p67-deficient neutrophil cytosol from these patients. The p67 cDNA encodes a 526-amino acid protein with acidic middle and carboxyl-terminal domains that are similar to a sequence motif found in the noncatalytic domain of src-related tyrosine kinases. This motif was recently noted in phospholipase C-gamma, nonerythroid alpha-spectrin (fodrin), p21ras-guanosine triphophatase-activating protein (GAP), myosin-1 isoforms, yeast proteins cdc-25 and fus-1, and the 47-kD phagocyte oxidase factor (p47), which suggests the possibility of common regulatory features.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leto, T L -- Lomax, K J -- Volpp, B D -- Nunoi, H -- Sechler, J M -- Nauseef, W M -- Clark, R A -- Gallin, J I -- Malech, H L -- I01 BX000513/BX/BLRD VA/ -- New York, N.Y. -- Science. 1990 May 11;248(4956):727-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1692159" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cloning, Molecular ; Granulomatous Disease, Chronic/blood/enzymology/genetics ; Humans ; Molecular Sequence Data ; NADH, NADPH Oxidoreductases/blood/*genetics ; NADPH Oxidase ; Neutrophils/*enzymology ; Protein-Tyrosine Kinases/genetics ; Proto-Oncogene Proteins/*genetics ; Proto-Oncogene Proteins pp60(c-src) ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1990-11-30
    Description: Conducting gramicidin channels form predominantly by the transmembrane association of monomers, one from each side of a lipid bilayer. In single-channel experiments in planar bilayers the two gramicidin analogs, [Val1]gramicidin A (gA) and [4,4,4-F3-Val1]gramicidin A (F3gA), form dimeric channels that are structurally equivalent and have characteristically different conductances. When these gramicidins were added asymmetrically, one to each side of a preformed bilayer, the predominant channel type was the hybrid channel, formed between two chemically dissimilar monomers. These channels formed by the association of monomers residing in each half of the membrane. These results also indicate that the hydrophobic gramicidins are surprisingly membrane impermeant, a conclusion that was confirmed in experiments in which gA was added asymmetrically and symmetrically to preformed bilayers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Connell, A M -- Koeppe, R E 2nd -- Andersen, O S -- GM21342/GM/NIGMS NIH HHS/ -- GM34968/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 30;250(4985):1256-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, Cornell University Medical College, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1700867" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Membrane Permeability ; Chemistry, Physical ; Electric Conductivity ; Gramicidin/*chemistry/metabolism ; Ion Channels/*chemistry/physiology ; Kinetics ; Lipid Bilayers/*chemistry ; Macromolecular Substances ; Molecular Sequence Data ; Physicochemical Phenomena ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1990-06-22
    Description: The vast repertoire of immunoglobulins and T cell receptors is generated, in part, by V(D)J recombination, a series of genomic rearrangements that occur specifically in developing lymphocytes. The recombination activating gene, RAG-1, which is a gene expressed exclusively in maturing lymphoid cells, was previously isolated. RAG-1 inefficiently induced V(D)J recombinase activity when transfected into fibroblasts, but cotransfection with an adjacent gene, RAG-2, has resulted in at least a 1000-fold increase in the frequency of recombination. The 2.1-kilobase RAG-2 complementary DNA encodes a putative protein of 527 amino acids whose sequence is unrelated to that of RAG-1. Like RAG-1, RAG-2 is conserved between species that carry out V(D)J recombination, and its expression pattern correlates precisely with that of V(D)J recombinase activity. In addition to being located just 8 kilobases apart, these convergently transcribed genes are unusual in that most, if not all, of their coding and 3' untranslated sequences are contained in single exons. RAG-1 and RAG-2 might activate the expression of the V(D)J recombinase but, more likely, they directly participate in the recombination reaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oettinger, M A -- Schatz, D G -- Gorka, C -- Baltimore, D -- GM39458/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jun 22;248(4962):1517-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2360047" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Biological Evolution ; Cattle ; Cell Line ; Chickens ; Cricetinae ; DNA/*genetics ; DNA Nucleotidyltransferases/*genetics ; *DNA-Binding Proteins ; Dogs ; Female ; *Gene Rearrangement, B-Lymphocyte ; *Gene Rearrangement, T-Lymphocyte ; *Homeodomain Proteins ; Humans ; Male ; Mice ; Molecular Sequence Data ; *Multigene Family ; Nuclear Proteins ; Nucleic Acid Hybridization ; Opossums ; Proteins/*genetics ; Rabbits ; Recombination, Genetic/*genetics ; Restriction Mapping ; Transfection ; Turtles ; VDJ Recombinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 1990-08-10
    Description: The interaction of the T cell receptor for antigen (TCR) with its antigen-major histocompatibility complex ligand is difficult to study because both are cell surface multimers. The TCR consists of two chains (alpha and beta) that are complexed to the five or more nonpolymorphic CD3 polypeptides. A soluble form of the TCR was engineered by replacing the carboxyl termini of alpha and beta with signal sequences from lipid-linked proteins, making them susceptible to enzymatic cleavage. In this manner, TCR heterodimers can be expressed independently of the CD3 polypeptides and in significant quantities (0.5 milligram per week). This technique seems generalizable to biochemical and structural studies of many other cell surface molecules as well.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, A Y -- Devaux, B -- Green, A -- Sagerstrom, C -- Elliott, J F -- Davis, M M -- New York, N.Y. -- Science. 1990 Aug 10;249(4969):677-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University School of Medicine, CA 94305-5402.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1696397" target="_blank"〉PubMed〈/a〉
    Keywords: Alkaline Phosphatase/genetics ; Amino Acid Sequence ; Animals ; Antigens, CD3 ; Antigens, CD55 ; Antigens, Differentiation, T-Lymphocyte/genetics ; Cell Line ; Complement Inactivator Proteins/genetics ; Female ; Humans ; Macromolecular Substances ; Membrane Proteins/genetics ; Molecular Sequence Data ; Placenta/enzymology ; Pregnancy ; Protein Sorting Signals/genetics ; Receptors, Antigen, T-Cell/*genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-08-17
    Description: A class of transcriptional regulator proteins bind to DNA at dyad-symmetric sites through a motif consisting of (i) a "leucine zipper" sequence that associates into noncovalent, parallel, alpha-helical dimers and (ii) a covalently connected basic region necessary for binding DNA. The basic regions are predicted to be disordered in the absence of DNA and to form alpha helices when bound to DNA. These helices bind in the major groove forming multiple hydrogen-bonded and van der Waals contacts with the nucleotide bases. To test this model, two peptides were designed that were identical to natural leucine zipper proteins only at positions hypothesized to be critical for dimerization and DNA recognition. The peptides form dimers that bind specifically to DNA with their basic regions in alpha-helical conformations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Neil, K T -- Hoess, R H -- DeGrado, W F -- New York, N.Y. -- Science. 1990 Aug 17;249(4970):774-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Central Research and Development Department, E.I. du Pont de Nemours & Co., Wilmington, DE 19880-0328.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2389143" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Chemistry, Physical ; Circular Dichroism ; Computer Simulation ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; Hydrogen Bonding ; *Leucine ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Physicochemical Phenomena ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-12-07
    Description: Insertion of bacteriophage coat proteins into the membrane of infected bacterial cells can be studied as a model system of protein translocation across membranes. The coat protein of the filamentous bacteriophage Pf3--which infects Pseudomonas aeruginosa--is 44 amino acids in length and has the same basic structure as the coat protein of bacteriophage M13, which infects Escherichia coli. However, unlike the Pf3 coat protein, the M13 coat protein is synthesized as a precursor (procoat) with a typical leader (signal) sequence, which is cleaved after membrane insertion. Nevertheless, when the gene encoding the Pf3 coat protein is expressed in E. coli, the protein is translocated across the membrane. Hybrid M13 and Pf3 coat proteins were constructed in an attempt to understand how the Pf3 coat protein is translocated without a leader sequence. These studies demonstrated that the extracellular regions of the proteins determined their cellular location. When three charged residues in this region were neutralized, the leader-free M13 coat protein was also inserted into the membrane. Differences in the water shell surrounding these residues may account for efficient membrane insertion of the protein without a leader sequence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rohrer, J -- Kuhn, A -- New York, N.Y. -- Science. 1990 Dec 7;250(4986):1418-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Microbiology Department, University of Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2124001" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriophages/*genetics/metabolism ; Capsid/*genetics/metabolism ; Cell Membrane/metabolism/physiology ; Coliphages/genetics/metabolism ; Escherichia coli/genetics/metabolism/physiology ; Genes, Viral ; Membrane Potentials ; Molecular Sequence Data ; Plasmids ; Protein Sorting Signals/*metabolism ; Pseudomonas aeruginosa/*genetics/metabolism ; Recombinant Proteins/metabolism ; Viral Structural Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 1990-06-22
    Description: Homologous or agonist-specific desensitization of beta-adrenergic receptors is thought to be mediated by a specific kinase, the beta-adrenergic receptor kinase (beta ARK). However, recent data suggest that a cofactor is required for this kinase to inhibit receptor function. The complementary DNA for such a cofactor was cloned and found to encode a 418-amino acid protein homologous to the retinal protein arrestin. The protein, termed beta-arrestin, was expressed and partially purified. It inhibited the signaling function of beta ARK-phosphorylated beta-adrenergic receptors by more than 75 percent, but not that of rhodopsin. It is proposed that beta-arrestin in concert with beta ARK effects homologous desensitization of beta-adrenergic receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lohse, M J -- Benovic, J L -- Codina, J -- Caron, M G -- Lefkowitz, R J -- DK19318/DK/NIDDK NIH HHS/ -- HL16037/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Jun 22;248(4962):1547-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Medicine, Biochemistry and Cell Biology, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2163110" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens/*genetics/isolation & purification/pharmacology ; Arrestin ; Blotting, Northern ; Chromatography, Ion Exchange ; Cloning, Molecular ; *Cyclic AMP-Dependent Protein Kinases ; DNA/genetics ; Eye Proteins/*genetics/isolation & purification/pharmacology ; Gene Expression Regulation ; Molecular Sequence Data ; Phosphodiesterase Inhibitors/*pharmacology ; Phosphorylation ; Protein Kinases/*pharmacology ; RNA, Messenger/analysis ; Receptors, Adrenergic, beta/*drug effects/physiology ; Transfection ; beta-Adrenergic Receptor Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 1990-09-14
    Description: Fusion of the DNA-binding domain of yeast GAL4 protein to the amino terminus of bacteriophage T7 RNA polymerase yields a chimera that retains the characteristics of its components. The presence of the GAL4 peptide allows the chimeric enzyme to anchor itself on the DNA template, and this anchoring in turn drives the formation of a supercoiled DNA loop, in linear or circular templates, when RNA synthesis at the polymerase site forces a translocation of the DNA relative to the site. Nonspecific interaction between the chimeric enzyme and DNA appears to be sufficient to effect supercoiling during transcription. Transcription by the chimeric polymerase is strictly dependent on the presence of a T7 promoter; thus it provides a tool in vitro and in vivo for specifically supercoiling DNA segments containing T7 promoter sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ostrander, E A -- Benedetti, P -- Wang, J C -- GM24544/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 14;249(4974):1261-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2399463" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; DNA, Superhelical/*metabolism ; DNA-Binding Proteins/*physiology ; DNA-Directed RNA Polymerases/*physiology ; Fungal Proteins/*metabolism ; Macromolecular Substances ; Molecular Sequence Data ; Promoter Regions, Genetic/physiology ; Recombinant Fusion Proteins/metabolism ; *Saccharomyces cerevisiae Proteins ; T-Phages/*enzymology ; Transcription Factors/physiology ; Transcription, Genetic/*physiology ; Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 1990-12-07
    Description: A genetic system was developed in Escherichia coli to study leucine zippers with the amino-terminal domain of bacteriophage lambda repressor as a reporter for dimerization. This system was used to analyze the importance of the amino acid side chains at eight positions that form the hydrophobic interface of the leucine zipper dimer from the yeast transcriptional activator, GCN4. When single amino acid substitutions were analyzed, most functional variants contained hydrophobic residues at the dimer interface, while most nonfunctional sequence variants contained strongly polar or helix-breaking residues. In multiple randomization experiments, however, many combinations of hydrophobic residues were found to be nonfunctional, and leucines in the heptad repeat were shown to have a special function in leucine zipper dimerization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, J C -- O'Shea, E K -- Kim, P S -- Sauer, R T -- AI15706/AI/NIAID NIH HHS/ -- GM11117/GM/NIGMS NIH HHS/ -- GM44162/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 7;250(4986):1400-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2147779" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriophage lambda/*genetics ; DNA-Binding Proteins/*genetics ; Escherichia coli/*genetics ; Fungal Proteins/*genetics ; Genetic Variation ; Leucine Zippers/*genetics ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Phenotype ; Protein Conformation ; *Protein Kinases ; Random Allocation ; Recombinant Fusion Proteins/metabolism ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-05-04
    Description: The amino acid sequences of three fragments of cyanogen bromide-digested human placental inositol 1,2-cyclic phosphate 2-phosphohydrolase, an enzyme of the phosphatidylinositol signaling pathway, are identical to sequences within lipocortin III, a member of a family of homologous calcium- and phospholipid-binding proteins that do not have defined physiological functions. Lipocortin III has also been previously identified as placental anticoagulant protein III (PAP III) and calcimedin 35 alpha. Antibodies to PAP III detected PAP III and inositol 1,2-cyclic phosphate 2-phosphohydrolase with identical reactivity on immunoblotting. In addition, inositol 1,2-cyclic phosphate 2-phosphohydrolase was stimulated by the same acidic phospholipids that bind lipocortins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ross, T S -- Tait, J F -- Majerus, P W -- HLBI 14147/HL/NHLBI NIH HHS/ -- HLBI 16634/HL/NHLBI NIH HHS/ -- HLBI 40801/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 May 4;248(4955):605-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2159184" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Annexin A3 ; Annexins ; Calcium-Binding Proteins/*genetics ; Female ; Humans ; Immunoblotting ; Kinetics ; Molecular Sequence Data ; Phosphoric Diester Hydrolases/*genetics/isolation & purification/metabolism ; Placenta/*enzymology ; Pregnancy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1990-08-10
    Description: Somatic mutations in a subset of growth hormone (GH)-secreting pituitary tumors convert the gene for the alpha polypeptide chain (alpha s) of Gs into a putative oncogene, termed gsp. These mutations, which activate alpha s by inhibiting its guanosine triphosphatase (GTPase) activity, are found in codons for either of two amino acids, each of which is completely conserved in all known G protein alpha chains. The likelihood that similar mutations would activate other G proteins prompted a survey of human tumors for mutations that replace either of these two amino acids in other G protein alpha chain genes. The first gene so far tested, which encodes the alpha chain of Gi2, showed mutations that replaced arginine-179 with either cysteine or histidine in 3 of 11 tumors of the adrenal cortex and 3 of 10 endocrine tumors of the ovary. The mutant alpha i2 gene is a putative oncogene, referred to as gip2. In addition, gsp mutations were found in 18 of 42 GH-secreting pituitary tumors and in an autonomously functioning thyroid adenoma. These findings suggest that human tumors may harbor oncogenic mutations in various G protein alpha chain genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lyons, J -- Landis, C A -- Harsh, G -- Vallar, L -- Grunewald, K -- Feichtinger, H -- Duh, Q Y -- Clark, O H -- Kawasaki, E -- Bourne, H R -- New York, N.Y. -- Science. 1990 Aug 10;249(4969):655-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, Cetus Corporation, Emeryville CA 94608.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2116665" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; DNA, Neoplasm/genetics ; Endocrine System Diseases/*genetics ; Female ; GTP Phosphohydrolases/genetics/metabolism ; GTP-Binding Proteins/*genetics/metabolism ; Humans ; Male ; Molecular Sequence Data ; *Mutation ; Neoplasms/*genetics ; Oligonucleotide Probes ; *Oncogenes ; Pituitary Neoplasms/*genetics ; Polymerase Chain Reaction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 1990-07-20
    Description: Minor histocompatibility (H) antigens can be peptides derived from cellular proteins that are presented on the cell surface by major histocompatibility complex (MHC) class I molecules. This is similar to viral antigens, because in both cases cytotoxic T lymphocytes (CTLs) recognize artificially produced peptides loaded on target cells. Naturally processed minor H peptides were found to be similar to those artificial CTL-epitopes, as far as size and hydrophobicity is concerned. The peptides studied were isolated from a transfectant that expressed a model CTL-defined antigen, beta-galactosidase, from male cells that express H-Y, which has been known operationally since 1955, and from cells that express H-4, known since 1961.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rotzschke, O -- Falk, K -- Wallny, H J -- Faath, S -- Rammensee, H G -- New York, N.Y. -- Science. 1990 Jul 20;249(4966):283-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biologie, Abteilung Immungenetik, Tubingen, Federal Republic of Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1695760" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Epitopes/isolation & purification ; Female ; H-Y Antigen/*analysis/immunology ; Male ; Mice ; Mice, Inbred Strains ; Minor Histocompatibility Antigens/*analysis/immunology ; Molecular Sequence Data ; Peptides/chemical synthesis ; Species Specificity ; Spleen/immunology ; T-Lymphocytes, Cytotoxic/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1990-07-27
    Description: The enzymatic degradation of cellulose is an important process, both ecologically and commercially. The three-dimensional structure of a cellulase, the enzymatic core of CBHII from the fungus Trichoderma reesei reveals an alpha-beta protein with a fold similar to but different from the widely occurring barrel topology first observed in triose phosphate isomerase. The active site of CBHII is located at the carboxyl-terminal end of a parallel beta barrel, in an enclosed tunnel through which the cellulose threads. Two aspartic acid residues, located in the center of the tunnel are the probable catalytic residues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rouvinen, J -- Bergfors, T -- Teeri, T -- Knowles, J K -- Jones, T A -- New York, N.Y. -- Science. 1990 Jul 27;249(4967):380-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, BMC, Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2377893" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cellulose/metabolism ; Cellulose 1,4-beta-Cellobiosidase ; Chemistry, Physical ; Crystallization ; Crystallography ; *Glycoside Hydrolases/metabolism ; Glycosylation ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Mitosporic Fungi/*enzymology ; Molecular Sequence Data ; Molecular Structure ; Physicochemical Phenomena ; Protein Conformation ; Trichoderma/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-09-28
    Description: To understand why proteins adopt particular three-dimensional structures, it is important to elucidate the hierarchy of interactions that stabilize the native state. Proteins in partly folded states can be used to dissect protein organizational hierarchies. A partly folded apomyoglobin intermediate has now been characterized structurally by trapping slowly exchanging peptide NH protons and analyzing them by two-dimensional 1H-NMR (nuclear magnetic resonance). Protons in the A, G, and H helix regions are protected from exchange, while protons in the B and E helix regions exchange freely. On the basis of these results and the three-dimensional structure of native myoglobin, a structural model is presented for the partly folded intermediate in which a compact subdomain retains structure while the remainder of the protein is essentially unfolded.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughson, F M -- Wright, P E -- Baldwin, R L -- DK34909/DK/NIDDK NIH HHS/ -- GM19988/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 28;249(4976):1544-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Beckman Center, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2218495" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Apoproteins/chemistry/*metabolism ; Hydrogen-Ion Concentration ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Myoglobin/chemistry/*metabolism ; Protein Conformation ; Spectrophotometry, Ultraviolet
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 1990-08-31
    Description: The isocitrate dehydrogenase of Escherichia coli is an example of a ubiquitous class of enzymes that are regulated by covalent modification. In the three-dimensional structure of the enzyme-substrate complex, isocitrate forms a hydrogen bond with Ser113, the site of regulatory phosphorylation. The structures of Asp113 and Glu113 mutants, which mimic the inactivation of the enzyme by phosphorylation, show minimal conformational changes from wild type, as in the phosphorylated enzyme. Calculations based on observed structures suggest that the change in electrostatic potential when a negative charge is introduced either by phosporylation or site-directed mutagenesis is sufficient to inactivate the enzyme. Thus, direct interaction at a ligand binding site is an alternative mechanism to induced conformational changes from an allosteric site in the regulation of protein activity by phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hurley, J H -- Dean, A M -- Sohl, J L -- Koshland, D E Jr -- Stroud, R M -- GM 24485/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 31;249(4972):1012-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2204109" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Escherichia coli/*enzymology/genetics ; Homeostasis ; Isocitrate Dehydrogenase/genetics/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 1990-08-03
    Description: Comparison of the 2.4 angstrom resolution crystal structures of dimeric clam hemoglobin in the deoxygenated and carbon-monoxide liganded states shows how radically different the structural basis for cooperative oxygen binding is from that operative in mammalian hemoglobins. Heme groups are in direct communication across a novel subunit interface formed by the E and F helices. The conformational changes at this interface that accompany ligand binding are more dramatic at a tertiary level but more subtle at a quaternary level than those in mammalian hemoglobins. These findings suggest a cooperative mechanism that links ligation at one subunit with potentiation of affinity at the second subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Royer, W E Jr -- Hendrickson, W A -- Chiancone, E -- New York, N.Y. -- Science. 1990 Aug 3;249(4968):518-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2382132" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carboxyhemoglobin/metabolism ; Hemoglobins/*metabolism ; Ligands ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Mollusca ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1990-09-28
    Description: Heparin-binding growth factor-1 (HBGF-1) is an angiogenic polypeptide mitogen for mesoderm- and neuroectoderm-derived cells in vitro and remains biologically active after truncation of the amino-terminal domain (HBGF-1 alpha) of the HBGF-1 beta precursor. Polymerase chain reaction mutagenesis and prokaryotic expression systems were used to prepare a mutant of HBGF-1 alpha lacking a putative nuclear translocation sequence (amino acid residues 21 to 27; HBGF-1U). Although HBGF-1U retains its ability to bind to heparin, HBGF-1U fails to induce DNA synthesis and cell proliferation at concentrations sufficient to induce intracellular receptor-mediated tyrosine phosphorylation and c-fos expression. Attachment of the nuclear translocation sequence from yeast histone 2B at the amino terminus of HBGF-1U yields a chimeric polypeptide (HBGF-1U2) with mitogenic activity in vitro and indicates that nuclear translocation is important for this biological response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Imamura, T -- Engleka, K -- Zhan, X -- Tokita, Y -- Forough, R -- Roeder, D -- Jackson, A -- Maier, J A -- Hla, T -- Maciag, T -- HL 32348/HL/NHLBI NIH HHS/ -- HL 35627/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 28;249(4976):1567-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, Jerome H. Holland Laboratory for the Biomedical Sciences, American Red Cross, Rockville, MD 20855.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1699274" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding, Competitive ; Cattle ; Cell Division/drug effects ; Cell Line ; Cell Nucleus/metabolism ; Cells, Cultured ; DNA Replication/drug effects ; Endothelium, Vascular/drug effects/metabolism ; Fibroblast Growth Factor 1/*genetics/metabolism/pharmacology ; Kinetics ; Mice ; Mitogens/pharmacology ; Molecular Sequence Data ; *Mutation ; Oligonucleotide Probes ; Receptors, Mitogen/metabolism ; Receptors, Vascular Endothelial Growth Factor ; Recombinant Proteins/metabolism/pharmacology ; Transcription, Genetic/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 1990-03-09
    Description: Comparison of a lambda repressor-operator complex and a 434 repressor-operator complex reveals that three conserved residues in the helix-turn-helix (HTH) region make similar contacts in each of the crystallographically determined structures. These conserved residues and their interactions with phosphodiester oxygens help establish a frame of reference within which other HTH residues make contacts that are critical for site-specific recognition. Such "positioning contacts" may be important conserved features within families of HTH proteins. In contrast, the structural comparisons appear to rule out any simple "recognition code" at the level of detailed side chain-base pair interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pabo, C O -- Aggarwal, A K -- Jordan, S R -- Beamer, L J -- Obeysekare, U R -- Harrison, S C -- GM 29109/GM/NIGMS NIH HHS/ -- GM 31471/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 9;247(4947):1210-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2315694" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Asparagine ; Base Composition ; Base Sequence ; Binding Sites ; *DNA-Binding Proteins ; Glutamine ; Hydrogen Bonding ; Molecular Sequence Data ; Molecular Structure ; *Operator Regions, Genetic ; Protein Conformation ; Repressor Proteins/*metabolism ; Transcription Factors/*metabolism ; Viral Proteins ; Viral Regulatory and Accessory Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1990-01-19
    Description: Interleukin-3 (IL-3) binds to its receptor with high and low affinities, induces tyrosine phosphorylation, and promotes the proliferation and differentiation of hematopoietic cells. A binding component of the IL-3 receptor was cloned. Fibroblasts transfected with the complementary DNA bound IL-3 with a low affinity [dissociation constant (Kd) of 17.9 +/- 3.6 nM]. No consensus sequence for a tyrosine kinase was present in the cytoplasmic domain. Thus, additional components are required for a functional high affinity IL-3 receptor. A sequence comparison of the IL-3 receptor with other cytokine receptors (erythropoietin, IL-4, IL-6, and the beta chain IL-2 receptor) revealed a common motif of a distinct receptor gene family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Itoh, N -- Yonehara, S -- Schreurs, J -- Gorman, D M -- Maruyama, K -- Ishii, A -- Yahara, I -- Arai, K -- Miyajima, A -- New York, N.Y. -- Science. 1990 Jan 19;247(4940):324-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA 94304.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2404337" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Cloning, Molecular ; DNA/genetics ; DNA Probes ; Escherichia coli/genetics ; Fibroblasts/metabolism ; Interleukin-3/metabolism ; Mice ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Plasmids ; Protein-Tyrosine Kinases/metabolism ; Receptors, Immunologic/*genetics/metabolism ; Receptors, Interleukin-3 ; Sequence Homology, Nucleic Acid ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1990-04-06
    Description: A complementary DNA (cDNA) clone that encodes inositol 1,4,5-trisphosphate 3-kinase was isolated from a rat brain cDNA expression library with the use of monoclonal antibodies. This clone had an open reading frame that would direct the synthesis of a protein consisting of 449 amino acids and with a molecular mass of 49,853 daltons. The putative protein revealed a potential calmodulin-binding site and six regions with amino acid compositions (PEST regions) common to proteins that are susceptible to calpain. Expression of the cDNA in COS cells resulted in an approximately 150-fold increase in inositol 1,4,5-trisphosphate 3-kinase activity of these cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, K Y -- Kim, H K -- Lee, S Y -- Moon, K H -- Sim, S S -- Kim, J W -- Chung, H K -- Rhee, S G -- New York, N.Y. -- Science. 1990 Apr 6;248(4951):64-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2157285" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Brain/enzymology ; Calcium/metabolism ; Calmodulin/metabolism ; Calpain/antagonists & inhibitors/pharmacology ; Cell Line ; *Cloning, Molecular ; Codon ; DNA/*genetics ; *Gene Expression ; Molecular Sequence Data ; Molecular Weight ; Phosphotransferases/*genetics/metabolism ; *Phosphotransferases (Alcohol Group Acceptor) ; Plasmids ; Rats ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1990-11-30
    Description: The gene designated gamma 134.5 maps in the inverted repeats flanking the long unique sequence of herpes simplex virus-1 (HSV-1) DNA, and therefore it is present in two copies per genome. This gene is not essential for viral growth in cell culture. Four recombinant viruses were genetically engineered to test the function of this gene. These were (i) a virus from which both copies of the gene were deleted, (ii) a virus containing a stop codon in both copies of the gene, (iii) a virus containing after the first codon an insert encoding a 16-amino acid epitope known to react with a specific monoclonal antibody, and (iv) a virus in which the deleted sequences were restored. The viruses from which the gene was deleted or which carried stop codons were avirulent on intracerebral inoculation of mice. The virus with the gene tagged by the sequence encoding the epitope was moderately virulent, whereas the restored virus reacquired the phenotype of the parent virus. Significant amounts of virus were recovered only from brains of animals inoculated with virulent viruses. Inasmuch as the product of the gamma 134.5 gene extended the host range of the virus by enabling it to replicate and destroy brain cells, it is a viral neurovirulence factor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chou, J -- Kern, E R -- Whitley, R J -- Roizman, B -- AI 1588-11/AI/NIAID NIH HHS/ -- AI 24009/AI/NIAID NIH HHS/ -- CA 47451/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1990 Nov 30;250(4985):1262-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, IL 60637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2173860" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal ; Antigens, Viral/genetics/immunology ; Base Sequence ; Chromosome Deletion ; *Chromosome Mapping ; Codon ; DNA, Viral/genetics ; Encephalitis/*microbiology ; *Genes, Viral ; Herpes Simplex/*microbiology ; Humans ; *Immediate-Early Proteins ; Molecular Sequence Data ; Rabbits ; Repetitive Sequences, Nucleic Acid ; Simplexvirus/*genetics/growth & development/pathogenicity ; Thymidine Kinase/genetics ; Transfection ; Viral Proteins/*genetics ; Viral Regulatory and Accessory Proteins/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 1990-07-20
    Description: The crystallographic structure of a recombinant hirudin-thrombin complex has been solved at 2.3 angstrom (A) resolution. Hirudin consists of an NH2-terminal globular domain and a long (39 A) COOH-terminal extended domain. Residues Ile1 to Tyr3 of hirudin form a parallel beta-strand with Ser214 to Glu217 of thrombin with the nitrogen atom of Ile1 making a hydrogen bond with Ser195 O gamma atom of the catalytic site, but the specificity pocket of thrombin is not involved in the interaction. The COOH-terminal segment makes numerous electrostatic interactions with an anion-binding exosite of thrombin, whereas the last five residues are in a helical loop that forms many hydrophobic contacts. In all, 27 of the 65 residues of hirudin have contacts less than 4.0 A with thrombin (10 ion pairs and 23 hydrogen bonds). Such abundant interactions may account for the high affinity and specificity of hirudin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rydel, T J -- Ravichandran, K G -- Tulinsky, A -- Bode, W -- Huber, R -- Roitsch, C -- Fenton, J W 2nd -- HL13160/HL/NHLBI NIH HHS/ -- HL43229/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 20;249(4966):277-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Michigan State University, East Lansing 48824.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2374926" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Hirudins/*metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Recombinant Proteins/metabolism ; Thrombin/*metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-08-10
    Description: A metalloantibody has been constructed with a coordination site for metals in the antigen binding pocket. The Zn(II) binding site from carbonic anhydrase B was used as a model. Three histidine residues have been placed in the light chain complementarity determining regions of a single chain antibody molecule. In contrast to the native protein, the mutant displayed metal-dependent fluorescence-quenching behavior. This response was interpreted as evidence for metal binding in the three-histidine site with relative affinities in the order Cu(II) greater than Zn(II) greater than Cd(II). The presence of metal cofactors in immunoglobulins should facilitate antibody catalysis of redox and hydrolytic reactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iverson, B L -- Iverson, S A -- Roberts, V A -- Getzoff, E D -- Tainer, J A -- Benkovic, S J -- Lerner, R A -- F32GM-1204702/GM/NIGMS NIH HHS/ -- IGM 37684/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 10;249(4969):659-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2116666" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Binding Sites, Antibody ; Cadmium ; Carbonic Anhydrases/*immunology ; Copper ; Fluoresceins ; Immunoglobulin Heavy Chains ; Immunoglobulin Light Chains ; Ligands ; *Metals ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Spectrometry, Fluorescence ; Zinc
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-10-12
    Description: Voltage-dependent ion channels are responsible for electrical signaling in neurons and other cells. The main classes of voltage-dependent channels (sodium-, calcium-, and potassium-selective channels) have closely related molecular structures. For one member of this superfamily, the transiently voltage-activated Shaker H4 potassium channel, specific amino acid residues have now been identified that affect channel blockade by the small ion tetraethylammonium, as well as the conduction of ions through the pore. Furthermore, variation at one of these amino acid positions among naturally occurring potassium channels may account for most of their differences in sensitivity to tetraethylammonium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacKinnon, R -- Yellen, G -- GM 43949/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Oct 12;250(4978):276-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Physiology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2218530" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Electric Conductivity ; Kinetics ; Membrane Potentials/drug effects ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligonucleotide Probes ; Potassium Channels/drug effects/genetics/*physiology ; Tetraethylammonium ; Tetraethylammonium Compounds/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 1990-03-02
    Description: Cold-sensitive mutations in the SPB genes (spb1-spb7) of Saccharomyces cerevisiae suppress the inhibition of translation initiation resulting from deletion of the poly(A)-binding protein gene (PAB1). The SPB4 protein belongs to a family of adenosine triphosphate (ATP)-dependent RNA helicases. The aberrant production of 25S ribosomal RNA (rRNA) occurring in spb4-1 mutants or the deletion of SPB2 (RPL46) permits the deletion of PAB1. These data suggest that mutations affecting different steps of 60S subunit formation can allow PAB-independent translation, and they indicate that further characterization of the spb mutations could lend insight into the biogenesis of the ribosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sachs, A B -- Davis, R W -- R37 GM 21891/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 2;247(4946):1077-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Stanford Medical Center, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2408148" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Carrier Proteins/genetics/metabolism ; DEAD-box RNA Helicases ; Molecular Sequence Data ; Mutation ; Poly(A)-Binding Proteins ; *Protein Biosynthesis ; RNA Nucleotidyltransferases/genetics/*metabolism ; RNA Processing, Post-Transcriptional ; RNA, Fungal/genetics/metabolism ; RNA, Ribosomal/genetics/*metabolism ; Ribosomal Proteins/genetics/*metabolism ; Ribosomes/*metabolism ; Saccharomyces cerevisiae/enzymology/*genetics ; *Saccharomyces cerevisiae Proteins ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 1990-05-25
    Description: An active site, cofactor-containing peptide has been obtained in high yield from bovine serum amine oxidase. Sequencing of this pentapeptide indicates: Leu-Asn-X-Asp-Tyr. Analysis of the peptide by mass spectrometry, ultraviolet-visible spectroscopy, and proton nuclear magnetic resonance leads to the identification of X as 6-hydroxydopa. This result indicates that, contrary to previous proposals, pyrroloquinoline quinone is not the active site cofactor in mammalian copper amine oxidases. Although 6-hydroxydopa has been implicated in neurotoxicity, the data presented suggest that this compound has a functional role at an enzyme active site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janes, S M -- Mu, D -- Wemmer, D -- Smith, A J -- Kaur, S -- Maltby, D -- Burlingame, A L -- Klinman, J P -- GM 39296/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 May 25;248(4958):981-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2111581" target="_blank"〉PubMed〈/a〉
    Keywords: *Amine Oxidase (Copper-Containing) ; Amino Acid Sequence ; Animals ; Binding Sites ; Cattle ; Copper ; Dihydroxyphenylalanine/*analogs & derivatives/metabolism ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Molecular Sequence Data ; Oxidoreductases/metabolism ; Oxidoreductases Acting on CH-NH Group Donors/blood/*metabolism ; Peptide Fragments/analysis/chemical synthesis ; Quinones/metabolism ; Spectrophotometry, Ultraviolet
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 1990-12-14
    Description: The principal neutralizing determinant (PND) of human immunodeficiency virus (HIV)-1 resides within the V3 loop of the envelope protein. Antibodies elicited by peptides of this region were able to neutralize diverse isolates. Serum from one of three animals immunized with the human T cell lymphoma virus (HTLV)-IIIMN PND peptide, RP142, neutralized MN and the sequence-divergent HTLV-IIIB isolate. Serum from one of three animals immunized with a 13-amino acid IIIB PND peptide (RP337) also neutralized both of these isolates. Characterization of these sera revealed that the cross-neutralizing antibodies bound the amino acid sequence GlyProGlyArgAlaPhe (GPGRAF) that is present in both isolates. This sequence is frequently found in the PNDs analyzed in randomly selected HIV-1 isolates. Sera from two rabbits immunized with a peptide containing only the GPGRAF residues neutralized divergent isolates, including IIIB and MN.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Javaherian, K -- Langlois, A J -- LaRosa, G J -- Profy, A T -- Bolognesi, D P -- Herlihy, W C -- Putney, S D -- Matthews, T J -- New York, N.Y. -- Science. 1990 Dec 14;250(4987):1590-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, Duke University Medical School, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1703322" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/microbiology ; Amino Acid Sequence ; Animals ; Enzyme-Linked Immunosorbent Assay ; Epitopes/*immunology ; Guinea Pigs ; HIV Antibodies/*immunology ; HIV Antigens/*immunology ; HIV-1/*immunology ; Humans ; Immune Sera/immunology ; Immunization ; Molecular Sequence Data ; Neutralization Tests ; Rabbits ; Viral Envelope Proteins/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1990-04-27
    Description: Affinity-purified, polyclonal antibodies to the gamma subunit of the dihydropyridine (DHP)-sensitive, voltage-dependent calcium channel have been used to isolate complementary DNAs to the rabbit skeletal muscle protein from an expression library. The deduced primary structure indicates that the gamma subunit is a 25,058-dalton protein that contains four transmembrane domains and two N-linked glycosylation sites, consistent with biochemical analyses showing that the gamma subunit is a glycosylated hydrophobic protein. Nucleic acid hybridization studies indicate that there is a 1200-nucleotide transcript in skeletal muscle but not in brain or heart. The gamma subunit may play a role in assembly, modulation, or the structure of the skeletal muscle calcium channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jay, S D -- Ellis, S B -- McCue, A F -- Williams, M E -- Vedvick, T S -- Harpold, M M -- Campbell, K P -- HL-14388/HL/NHLBI NIH HHS/ -- HL-37187/HL/NHLBI NIH HHS/ -- HL-39265/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Apr 27;248(4954):490-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Iowa College of Medicine, Iowa City 52242.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2158672" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Calcium Channels/drug effects/physiology ; DNA/isolation & purification ; Dihydropyridines/*pharmacology ; Disulfides ; Electrophoresis, Polyacrylamide Gel ; Immunoassay ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Weight ; Muscles/*analysis ; Nucleic Acid Hybridization ; Protein Conformation ; RNA, Messenger/analysis ; Rabbits ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-12-07
    Description: The mammalian olfactory system may transduce odorant information via a G protein-mediated adenosine 3',5'-monophosphate (cAMP) cascade. A newly discovered adenylyl cyclase, termed type III, has been cloned, and its expression was localized to olfactory neurons. The type III protein resides in the sensory neuronal cilia, which project into the nasal lumen and are accessible to airborne odorants. The enzymatic activity of the type III adenylyl cyclase appears to differ from nonsensory cyclases. The large difference seen between basal and stimulated activity for the type III enzyme could allow considerable modulation of the intracellular cAMP concentration. This property may represent one mechanism of achieving sensitivity in odorant perception.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bakalyar, H A -- Reed, R R -- 5T32CA09339/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 7;250(4986):1403-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2255909" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/genetics/*physiology ; Amino Acid Sequence ; Animals ; Brain/enzymology/physiology ; Cell Line ; Clone Cells ; Cloning, Molecular ; Gene Library ; Glycosylation ; Isoenzymes/genetics/*physiology ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Weight ; Neurons, Afferent/enzymology/physiology ; Nose/enzymology/physiology ; *Odors ; Protein Conformation ; Rats ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 1990-06-15
    Description: Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen responsible for considerable morbidity in the general population. The results presented herein establish the basic fibroblast growth factor (FGF) receptor as a means of entry of HSV-1 into vertebrate cells. Inhibitors of basic FGF binding to its receptor and competitive polypeptide antagonists of basic FGF prevented HSV-1 uptake. Chinese hamster ovary (CHO) cells that do not express FGF receptors are resistant to HSV-1 entry; however, HSV-1 uptake is dramatically increased in CHO cells transfected with a complementary DNA encoding a basic FGF receptor. The distribution of this integral membrane protein in vivo may explain the tissue and cell tropism of HSV-1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaner, R J -- Baird, A -- Mansukhani, A -- Basilico, C -- Summers, B D -- Florkiewicz, R Z -- Hajjar, D P -- P01 DK 18811/DK/NIDDK NIH HHS/ -- P01 HD 96601/HD/NICHD NIH HHS/ -- P50 HL 18828/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1990 Jun 15;248(4961):1410-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2162560" target="_blank"〉PubMed〈/a〉
    Keywords: Adsorption ; Amino Acid Sequence ; Animals ; Binding, Competitive ; Cell Line ; Cell Membrane/microbiology ; Cricetinae ; DNA/genetics ; Fibroblast Growth Factors/antagonists & inhibitors/metabolism/pharmacology ; Heparitin Sulfate/metabolism ; Molecular Sequence Data ; Peptide Fragments/pharmacology ; Receptors, Cell Surface/genetics/*physiology ; Receptors, Fibroblast Growth Factor ; Simplexvirus/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 1990-06-01
    Description: Transmembrane proteins serve important biological functions, yet precise information on their secondary and tertiary structure is very limited. The boundaries and structures of membrane-embedded domains in integral membrane proteins can be determined by a method based on a combination of site-specific mutagenesis and nitroxide spin labeling. The application to one polypeptide segment in bacteriorhodopsin, a transmembrane chromoprotein that functions as a light-driven proton pump is described. Single cysteine residues were introduced at 18 consecutive positions (residues 125 to 142). Each mutant was reacted with a specific spin label and reconstituted into vesicles that were shown to be functional. The relative collision frequency of each spin label with freely diffusing oxygen and membrane-impermeant chromium oxalate was estimated with power saturation EPR (electron paramagnetic resonance) spectroscopy. The results indicate that residues 129 to 131 form a short water-exposed loop, while residues 132 to 142 are membrane-embedded. The oxygen accessibility for positions 131 to 138 varies with a periodicity of 3.6 residues, thereby providing a striking demonstration of an alpha helix. The orientation of this helical segment with respect to the remainder of the protein was determined.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Altenbach, C -- Marti, T -- Khorana, H G -- Hubbell, W L -- AI 11479/AI/NIAID NIH HHS/ -- EY05216/EY/NEI NIH HHS/ -- GM28289/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jun 1;248(4959):1088-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jules Stein Eye Institute, University of California, Los Angeles 90024-7008.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2160734" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Bacteriorhodopsins/genetics ; Cysteine/genetics ; Electron Spin Resonance Spectroscopy ; *Membrane Proteins/genetics ; Molecular Sequence Data ; Mutation ; Oxalates ; Oxalic Acid ; Oxygen ; Protein Conformation ; Spin Labels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-09-21
    Description: During the development of a vertebrate embryo, cell fate is determined by inductive signals passing between neighboring tissues. Such determinative interactions have been difficult to characterize fully without knowledge of the molecular mechanisms involved. Mutations of Drosophila and the nematode Caenorhabditis elegans have been isolated that define a family of related gene products involved in similar types of cellular inductions. One of these genes, the Notch gene from Drosophila, is involved with cell fate choices in the neurogenic region of the blastoderm, in the developing nervous system, and in the eye-antennal imaginal disc. Complementary DNA clones were isolated from Xenopus embryos with Notch DNA in order to investigate whether cell-cell interactions in vertebrate embryos also depend on Notch-like molecules. This approach identified a Xenopus molecule, Xotch, which is remarkably similar to Drosophila Notch in both structure and developmental expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coffman, C -- Harris, W -- Kintner, C -- New York, N.Y. -- Science. 1990 Sep 21;249(4975):1438-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California, La Jolla 92093.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2402639" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Drosophila/*genetics ; Embryo, Nonmammalian/physiology ; *Genes ; Molecular Sequence Data ; Nervous System/embryology ; Sequence Homology, Nucleic Acid ; Xenopus/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1990-03-16
    Description: Many proteins are initially synthesized as part of a large precursor. The role of the pro-region in the biosynthesis of transforming growth factor--beta 1 (TGF-beta 1) and activin A, two structurally related disulfide-linked homodimers synthesized as large precursors, was studied. Vectors that expressed either the pro-region or the mature regions of these molecules were used in complementation experiments, only when the pro-region was coexpressed with the mature region did intracellular dimerization and secretion of biologically active homodimers occur. The pro-regions of activin A and TGF-beta 1, therefore, aid the folding, disulfide bond formation, and export of their respective homodimers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gray, A M -- Mason, A J -- New York, N.Y. -- Science. 1990 Mar 16;247(4948):1328-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2315700" target="_blank"〉PubMed〈/a〉
    Keywords: Activins ; Amino Acid Sequence ; Cells, Cultured ; Genetic Complementation Test ; Humans ; Inhibins/*biosynthesis/ultrastructure ; Macromolecular Substances ; Molecular Sequence Data ; Protein Processing, Post-Translational ; Protein Sorting Signals/physiology ; Transfection ; Transforming Growth Factors/*biosynthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 1991-11-08
    Description: Voltage-gated sodium channels are responsible for generation of action potentials in excitable cells. Activation of protein kinase C slows inactivation of sodium channels and reduces peak sodium currents. Phosphorylation of a single residue, serine 1506, that is located in the conserved intracellular loop between domains III and IV and is involved in inactivation of the sodium channel, is required for both modulatory effects. Mutant sodium channels lacking this phosphorylation site have normal functional properties in unstimulated cells but do not respond to activation of protein kinase C. Phosphorylation of this conserved site in sodium channel alpha subunits may regulate electrical activity in a wide range of excitable cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉West, J W -- Numann, R -- Murphy, B J -- Scheuer, T -- Catterall, W A -- GM07270/GM/NIGMS NIH HHS/ -- NS15751/NS/NINDS NIH HHS/ -- NS25704/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 8;254(5033):866-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1658937" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Membrane/physiology ; Cells, Cultured ; Membrane Potentials ; Models, Structural ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation ; Protein Kinase C/*metabolism ; Sodium Channels/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 1991-12-06
    Description: The protein kinase C (PKC) family of serine-threonine kinases has been implicated in the regulation of a variety of signaling cascades. One member of this family, eye-PKC, is expressed exclusively in the Drosophila visual system. The inaC (inactivation-no-afterpotential C) locus was shown to be the structural gene for eye-PKC. Analysis of the light response from inaC mutants showed that this kinase is required for the deactivation and rapid desensitization of the visual cascade. Light adaptation was also defective in inaC mutant flies. In flies carrying the retinal degeneration mutation rdgB, absence of eye-PKC suppressed photoreceptor cell degeneration. These results indicate that eye-PKC functions in the light-dependent regulation of the phototransduction cascade in Drosophila.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, D P -- Ranganathan, R -- Hardy, R W -- Marx, J -- Tsuchida, T -- Zuker, C S -- New York, N.Y. -- Science. 1991 Dec 6;254(5037):1478-84.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, San Diego, La Jolla.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1962207" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/physiology ; Amino Acid Sequence ; Animals ; Calcium/physiology ; DNA Mutational Analysis ; Drosophila melanogaster/*genetics ; Eye/enzymology ; Genes ; Molecular Sequence Data ; Photoreceptor Cells/*physiology ; Protein Kinase C/chemistry/*physiology ; Restriction Mapping ; Retinal Degeneration/pathology/*physiopathology ; Signal Transduction ; *Vision, Ocular
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-25
    Description: The action of dopamine and other monoamine neurotransmitters at synapses is terminated predominantly by high-affinity reuptake into presynaptic terminals by specific sodium-dependent neurotransmitter transport proteins. A complementary DNA encoding a rat dopamine transporter has been isolated that exhibits high sequence similarity with the previously cloned norepinephrine and gamma-aminobutyric acid transporters. Transient expression of the complementary DNA in HeLa cells confirms the cocaine sensitivity of this transporter.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kilty, J E -- Lorang, D -- Amara, S G -- New York, N.Y. -- Science. 1991 Oct 25;254(5031):578-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Yale University, New Haven, CT 06510.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1948035" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Carrier Proteins/drug effects/*genetics/metabolism ; Cloning, Molecular ; Cocaine/*pharmacology ; Dopamine/*metabolism ; Dopamine Plasma Membrane Transport Proteins ; Gene Expression ; HeLa Cells ; Humans ; Kinetics ; *Membrane Glycoproteins ; *Membrane Transport Proteins ; Molecular Sequence Data ; *Nerve Tissue Proteins ; Oligodeoxyribonucleotides ; Polymerase Chain Reaction/methods ; Rats ; Sequence Homology, Nucleic Acid ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-01-25
    Description: The Bicoid homeodomain protein controls anterior development in the Drosophila embryo by binding to DNA and regulating gene expression. With the use of genetic assays in yeast, the interaction between the Bicoid homeodomain and a series of mutated DNA sites was studied. These experiments defined important features of homeodomain binding sites, identified specific amino acid-base pair contacts, and suggested a model for interaction of the recognition alpha-helices of Bicoid and Antennapedia-class homeodomain proteins with DNA. The model is in general agreement with results of crystallographic and magnetic resonance studies, but differs in important details. It is likely that genetic studies of protein-DNA interaction will continue to complement conventional structural approaches.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hanes, S D -- Brent, R -- New York, N.Y. -- Science. 1991 Jan 25;251(4992):426-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston 02114.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1671176" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; DNA/*metabolism ; DNA-Binding Proteins/*genetics/metabolism ; Drosophila ; Gene Expression Regulation ; Genes, Homeobox/*genetics ; *Homeodomain Proteins ; Insect Hormones/*genetics/metabolism ; *Models, Genetic ; Molecular Sequence Data ; *Trans-Activators ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-08-23
    Description: RAP30/74 is a heteromeric general transcription initiation factor that binds to mammalian RNA polymerase II. The RAP30 subunit contains a region that is similar in amino acid sequence to the RNA polymerase-binding domain of the Escherichia coli transcription initiation factor sigma 70 (sigma 70). Mammalian RNA polymerase II specifically protected a serine residue in the sigma 70-related region of RAP30 from phosphorylation in vitro. In addition, human RAP30/74 bound to Escherichia coli RNA polymerase and was displaced by sigma 70. These results suggest that RAP30 and sigma 70 have functionally related RNA polymerase-binding regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McCracken, S -- Greenblatt, J -- New York, N.Y. -- Science. 1991 Aug 23;253(5022):900-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1652156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Centrifugation, Density Gradient ; Cyanogen Bromide ; Cyclic AMP/pharmacology ; Escherichia coli/*analysis/enzymology ; Humans ; Molecular Sequence Data ; Peptide Fragments/chemistry/metabolism ; Phosphorylation ; Protein Kinases/metabolism ; RNA Polymerase II/*metabolism ; Sigma Factor/chemistry/*metabolism ; Transcription Factors/chemistry/*metabolism ; *Transcription Factors, TFII ; Trypsin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1991-02-22
    Description: The structure of the ion conduction pathway or pore of voltage-gated ion channels is unknown, although the linker between the membrane spanning segments S5 and S6 has been suggested to form part of the pore in potassium channels. To test whether this region controls potassium channel conduction, a 21-amino acid segment of the S5-S6 linker was transplanted from the voltage-activated potassium channel NGK2 to another potassium channel DRK1, which has very different pore properties. In the resulting chimeric channel, the single channel conductance and blockade by external and internal tetraethylammonium (TEA) ion were characteristic of the donor NGK2 channel. Thus, this 21-amino acid segment controls the essential biophysical properties of the pore and may form the conduction pathway of these potassium channels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hartmann, H A -- Kirsch, G E -- Drewe, J A -- Taglialatela, M -- Joho, R H -- Brown, A M -- NS08805/NS/NINDS NIH HHS/ -- NS23877/NS/NINDS NIH HHS/ -- NS28407/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Feb 22;251(4996):942-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2000495" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Brain/physiology ; Chimera ; Cloning, Molecular ; Female ; Ion Channel Gating ; Membrane Potentials ; Molecular Sequence Data ; Oligonucleotide Probes ; Oocytes/physiology ; Polymerase Chain Reaction ; Potassium Channels/drug effects/genetics/*physiology ; Rats ; Restriction Mapping ; Sequence Homology, Nucleic Acid ; Tetraethylammonium ; Tetraethylammonium Compounds/pharmacology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stevens, P W -- New York, N.Y. -- Science. 1991 Oct 18;254(5030):357-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1925586" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Molecular Sequence Data ; *Oligopeptides
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...