ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Phosphorylation  (554)
  • Models, Molecular  (498)
  • American Association for the Advancement of Science (AAAS)  (1,029)
  • American Association of Petroleum Geologists (AAPG)
  • American Institute of Physics (AIP)
  • 2000-2004  (493)
  • 1995-1999  (536)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (1,029)
  • American Association of Petroleum Geologists (AAPG)
  • American Institute of Physics (AIP)
  • Springer  (18)
  • Wiley-Blackwell  (7)
Years
Year
  • 1
    Publication Date: 2004-11-20
    Description: An autoregulatory transcription-translation feedback loop is thought to be essential in generating circadian rhythms in any model organism. In the cyanobacterium Synechococcus elongatus, the essential clock protein KaiC is proposed to form this type of transcriptional negative feedback. Nevertheless, we demonstrate here temperature-compensated, robust circadian cycling of KaiC phosphorylation even without kaiBC messenger RNA accumulation under continuous dark conditions. This rhythm persisted in the presence of a transcription or translation inhibitor. Moreover, kinetic profiles in the ratio of KaiC autophosphorylation-dephosphorylation were also temperature compensated in vitro. Thus, the cyanobacterial clock can keep time independent of de novo transcription and translation processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomita, Jun -- Nakajima, Masato -- Kondo, Takao -- Iwasaki, Hideo -- New York, N.Y. -- Science. 2005 Jan 14;307(5707):251-4. Epub 2004 Nov 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Science, Graduate School of Science, Nagoya University, and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15550625" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/biosynthesis/*metabolism ; *Circadian Rhythm ; Circadian Rhythm Signaling Peptides and Proteins ; Darkness ; Feedback, Physiological ; Light ; Mutation ; Operon ; Phosphorylation ; Protein Biosynthesis ; RNA, Bacterial/metabolism ; RNA, Messenger/metabolism ; Recombinant Proteins/metabolism ; Synechococcus/*genetics/*metabolism ; Temperature ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-06-05
    Description: The mechanisms by which hydrophobic molecules, such as long-chain fatty acids, enter cells are poorly understood. In Gram-negative bacteria, the lipopolysaccharide layer in the outer membrane is an efficient barrier for fatty acids and aromatic hydrocarbons destined for biodegradation. We report crystal structures of the long-chain fatty acid transporter FadL from Escherichia coli at 2.6 and 2.8 angstrom resolution. FadL forms a 14-stranded beta barrel that is occluded by a central hatch domain. The structures suggest that hydrophobic compounds bind to multiple sites in FadL and use a transport mechanism that involves spontaneous conformational changes in the hatch.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van den Berg, Bert -- Black, Paul N -- Clemons, William M Jr -- Rapoport, Tom A -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1506-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA. lvandenberg@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15178802" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Outer Membrane Proteins/*chemistry/metabolism ; Binding Sites ; Biological Transport ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/metabolism ; Fatty Acid Transport Proteins ; Fatty Acids/*metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-01-06
    Description: MDM2 binds the p53 tumor suppressor protein with high affinity and negatively modulates its transcriptional activity and stability. Overexpression of MDM2, found in many human tumors, effectively impairs p53 function. Inhibition of MDM2-p53 interaction can stabilize p53 and may offer a novel strategy for cancer therapy. Here, we identify potent and selective small-molecule antagonists of MDM2 and confirm their mode of action through the crystal structures of complexes. These compounds bind MDM2 in the p53-binding pocket and activate the p53 pathway in cancer cells, leading to cell cycle arrest, apoptosis, and growth inhibition of human tumor xenografts in nude mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vassilev, Lyubomir T -- Vu, Binh T -- Graves, Bradford -- Carvajal, Daisy -- Podlaski, Frank -- Filipovic, Zoran -- Kong, Norman -- Kammlott, Ursula -- Lukacs, Christine -- Klein, Christian -- Fotouhi, Nader -- Liu, Emily A -- New York, N.Y. -- Science. 2004 Feb 6;303(5659):844-8. Epub 2004 Jan 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Discovery Oncology, Roche Research Center, Hoffmann-La Roche, Inc., Nutley, NJ 07110, USA. lyubomir.vassilev@roche.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14704432" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/*drug effects ; Binding Sites ; Cell Cycle/drug effects ; Cell Division/*drug effects ; Cell Line ; Cell Line, Tumor ; Cell Survival/drug effects ; Crystallization ; Crystallography, X-Ray ; Cyclin-Dependent Kinase Inhibitor p21 ; Cyclins/metabolism ; Dose-Response Relationship, Drug ; Gene Expression ; Genes, p53 ; Humans ; Hydrophobic and Hydrophilic Interactions ; Imidazoles/chemistry/metabolism/*pharmacology ; Mice ; Mice, Nude ; Models, Molecular ; Molecular Weight ; NIH 3T3 Cells ; Neoplasm Transplantation ; Neoplasms, Experimental/drug therapy/metabolism/*pathology ; *Nuclear Proteins ; Phosphorylation ; Piperazines/chemistry/metabolism/*pharmacology ; Protein Conformation ; Proto-Oncogene Proteins/*antagonists & inhibitors/chemistry/metabolism ; Proto-Oncogene Proteins c-mdm2 ; Stereoisomerism ; Transplantation, Heterologous ; Tumor Suppressor Protein p53/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-11-06
    Description: Phosphorylation of the human histone variant H2A.X and H2Av, its homolog in Drosophila melanogaster, occurs rapidly at sites of DNA double-strand breaks. Little is known about the function of this phosphorylation or its removal during DNA repair. Here, we demonstrate that the Drosophila Tip60 (dTip60) chromatin-remodeling complex acetylates nucleosomal phospho-H2Av and exchanges it with an unmodified H2Av. Both the histone acetyltransferase dTip60 as well as the adenosine triphosphatase Domino/p400 catalyze the exchange of phospho-H2Av. Thus, these data reveal a previously unknown mechanism for selective histone exchange that uses the concerted action of two distinct chromatin-remodeling enzymes within the same multiprotein complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kusch, Thomas -- Florens, Laurence -- Macdonald, W Hayes -- Swanson, Selene K -- Glaser, Robert L -- Yates, John R 3rd -- Abmayr, Susan M -- Washburn, Michael P -- Workman, Jerry L -- New York, N.Y. -- Science. 2004 Dec 17;306(5704):2084-7. Epub 2004 Nov 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA. tnk@stowers-institute.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15528408" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl Coenzyme A/metabolism ; Acetylation ; Acetyltransferases/genetics/*metabolism ; Adenosine Triphosphatases/metabolism ; Animals ; Cell Line ; *DNA Damage ; DNA Repair ; Dimerization ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/embryology/genetics/*metabolism ; Embryo, Nonmammalian/metabolism ; Histone Acetyltransferases ; Histones/*metabolism ; Multiprotein Complexes/*metabolism ; Nucleosomes/*metabolism ; Phosphorylation ; RNA Interference ; Recombinant Proteins/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-02-07
    Description: The 1918 influenza pandemic resulted in about 20 million deaths. This enormous impact, coupled with renewed interest in emerging infections, makes characterization of the virus involved a priority. Receptor binding, the initial event in virus infection, is a major determinant of virus transmissibility that, for influenza viruses, is mediated by the hemagglutinin (HA) membrane glycoprotein. We have determined the crystal structures of the HA from the 1918 virus and two closely related HAs in complex with receptor analogs. They explain how the 1918 HA, while retaining receptor binding site amino acids characteristic of an avian precursor HA, is able to bind human receptors and how, as a consequence, the virus was able to spread in the human population.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gamblin, S J -- Haire, L F -- Russell, R J -- Stevens, D J -- Xiao, B -- Ha, Y -- Vasisht, N -- Steinhauer, D A -- Daniels, R S -- Elliot, A -- Wiley, D C -- Skehel, J J -- AI-13654/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Mar 19;303(5665):1838-42. Epub 2004 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14764886" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Birds ; Crystallography, X-Ray ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/*metabolism ; History, 20th Century ; Humans ; Hydrogen Bonding ; Influenza A virus/*immunology/metabolism/pathogenicity ; Influenza, Human/epidemiology/history/*virology ; Membrane Glycoproteins/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Virus/*metabolism ; Sequence Alignment ; Sialic Acids/metabolism ; Species Specificity ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-09-11
    Description: The turnover of Jun proteins, like that of other transcription factors, is regulated through ubiquitin-dependent proteolysis. Usually, such processes are regulated by extracellular stimuli through phosphorylation of the target protein, which allows recognition by F box-containing E3 ubiquitin ligases. In the case of c-Jun and JunB, we found that extracellular stimuli also modulate protein turnover by regulating the activity of an E3 ligase by means of its phosphorylation. Activation of the Jun amino-terminal kinase (JNK) mitogen-activated protein kinase cascade after T cell stimulation accelerated degradation of c-Jun and JunB through phosphorylation-dependent activation of the E3 ligase Itch. This pathway modulates cytokine production by effector T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Min -- Labuda, Tord -- Xia, Ying -- Gallagher, Ewen -- Fang, Deyu -- Liu, Yun-Cai -- Karin, Michael -- AI43477/AI/NIAID NIH HHS/ -- ES04151/ES/NIEHS NIH HHS/ -- ES06376/ES/NIEHS NIH HHS/ -- R21AI48542/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Oct 8;306(5694):271-5. Epub 2004 Sep 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0723, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15358865" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD28/immunology ; CD4-Positive T-Lymphocytes/immunology/*metabolism ; Interferon-gamma/metabolism ; Interleukins/metabolism ; Lymphocyte Activation ; *MAP Kinase Kinase Kinase 1 ; MAP Kinase Kinase Kinases/genetics/metabolism ; Mice ; Mitogen-Activated Protein Kinase 8 ; Mitogen-Activated Protein Kinase 9 ; Mitogen-Activated Protein Kinases/*metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-jun/genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; Receptors, Antigen, T-Cell/immunology ; Recombinant Fusion Proteins/metabolism ; T-Lymphocytes/immunology/*metabolism ; Th2 Cells/cytology/immunology/metabolism ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-05-25
    Description: Tyrosine phosphorylation, regulated by protein tyrosine phosphatases (PTPs) and kinases (PTKs), is important in signaling pathways underlying tumorigenesis. A mutational analysis of the tyrosine phosphatase gene superfamily in human cancers identified 83 somatic mutations in six PTPs (PTPRF, PTPRG, PTPRT, PTPN3, PTPN13, PTPN14), affecting 26% of colorectal cancers and a smaller fraction of lung, breast, and gastric cancers. Fifteen mutations were nonsense, frameshift, or splice-site alterations predicted to result in truncated proteins lacking phosphatase activity. Five missense mutations in the most commonly altered PTP (PTPRT) were biochemically examined and found to reduce phosphatase activity. Expression of wild-type but not a mutant PTPRT in human cancer cells inhibited cell growth. These observations suggest that the mutated tyrosine phosphatases are tumor suppressor genes, regulating cellular pathways that may be amenable to therapeutic intervention.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Zhenghe -- Shen, Dong -- Parsons, D Williams -- Bardelli, Alberto -- Sager, Jason -- Szabo, Steve -- Ptak, Janine -- Silliman, Natalie -- Peters, Brock A -- van der Heijden, Michiel S -- Parmigiani, Giovanni -- Yan, Hai -- Wang, Tian-Li -- Riggins, Greg -- Powell, Steven M -- Willson, James K V -- Markowitz, Sanford -- Kinzler, Kenneth W -- Vogelstein, Bert -- Velculescu, Victor E -- CA 43460/CA/NCI NIH HHS/ -- CA 57345/CA/NCI NIH HHS/ -- CA 62924/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2004 May 21;304(5674):1164-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sidney Kimmel Comprehensive Cancer Center, Howard Hughes Medical Institute, Johns Hopkins University Medical Institutions, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15155950" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Cell Division ; Codon, Nonsense ; Colorectal Neoplasms/*enzymology/*genetics ; Computational Biology ; *DNA Mutational Analysis ; Exons ; Frameshift Mutation ; Genes, Tumor Suppressor ; Humans ; Kinetics ; Markov Chains ; *Mutation ; Mutation, Missense ; Nerve Tissue Proteins/chemistry/genetics/metabolism ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 13 ; Protein Tyrosine Phosphatase, Non-Receptor Type 3 ; Protein Tyrosine Phosphatases/chemistry/*genetics/metabolism ; Receptor-Like Protein Tyrosine Phosphatases, Class 5 ; Signal Transduction ; Transfection ; Tyrosine/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-11-30
    Description: When exposed to increased dissolved solute in their environment (hyperosmotic stress), all eukaryotic cells respond by rapidly activating a conserved mitogen-activated protein kinase cascade, known in budding yeast Saccharomyces cerevisiae as the high osmolarity glycerol (HOG) pathway. Intensive genetic and biochemical analysis in this organism has revealed the presumptive osmosensors, downstream signaling components, and metabolic and transcriptional changes that allow cells to cope with this stressful condition. These findings have had direct application to understanding stress sensing and control of transcription by stress-activated mitogen-activated protein kinases in mammalian cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Westfall, Patrick J -- Ballon, Daniel R -- Thorner, Jeremy -- GM-21841/GM/NIGMS NIH HHS/ -- GM-68343/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1511-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15567851" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Nucleus/metabolism ; GTPase-Activating Proteins/metabolism ; Glycerol/*metabolism ; Intracellular Signaling Peptides and Proteins ; *MAP Kinase Signaling System ; Membrane Proteins/metabolism ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Mitogen-Activated Protein Kinases/*metabolism ; Osmolar Concentration ; Phosphorylation ; Protein Kinases/metabolism ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-02-14
    Description: The structure of an RNA polymerase II-transcribing complex has been determined in the posttranslocation state, with a vacancy at the growing end of the RNA-DNA hybrid helix. At the opposite end of the hybrid helix, the RNA separates from the template DNA. This separation of nucleic acid strands is brought about by interaction with a set of proteins loops in a strand/loop network. Formation of the network must occur in the transition from abortive initiation to promoter escape.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Westover, Kenneth D -- Bushnell, David A -- Kornberg, Roger D -- GM49985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 13;303(5660):1014-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14963331" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Crystallization ; Crystallography, X-Ray ; DNA, Single-Stranded/*chemistry/metabolism ; Models, Molecular ; Nucleic Acid Conformation ; Nucleic Acid Hybridization ; Oligodeoxyribonucleotides/chemistry/metabolism ; Oligoribonucleotides/chemistry/metabolism ; Promoter Regions, Genetic ; Protein Conformation ; RNA Polymerase II/*chemistry/*metabolism ; RNA, Complementary/*chemistry/metabolism ; Saccharomyces cerevisiae/enzymology ; Templates, Genetic ; Transcription Factor TFIIB/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-11-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De Yoreo, James J -- Dove, Patricia M -- New York, N.Y. -- Science. 2004 Nov 19;306(5700):1301-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA. deyoreo1@llnl.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15550649" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/chemistry ; Calcium Carbonate/*chemistry ; Calcium Oxalate/*chemistry ; Chemistry, Physical ; Citric Acid/chemistry ; *Crystallization ; Magnesium/chemistry ; Models, Molecular ; Molecular Conformation ; Physicochemical Phenomena ; Proteins/*chemistry ; Stereoisomerism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2004-01-24
    Description: Unlike major histocompatibility proteins, which bind peptides, CD1 proteins display lipid antigens to T cells. Here, we report that CD1a presents a family of previously unknown lipopeptides from Mycobacterium tuberculosis, named didehydroxymycobactins because of their structural relation to mycobactin siderophores. T cell activation was mediated by the alphabeta T cell receptors and was specific for structure of the acyl and peptidic components of these antigens. These studies identify a means of intracellular pathogen detection and identify lipopeptides as a biochemical class of antigens for T cells, which, like conventional peptides, have a potential for marked structural diversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moody, D Branch -- Young, David C -- Cheng, Tan-Yun -- Rosat, Jean-Pierre -- Roura-Mir, Carme -- O'Connor, Peter B -- Zajonc, Dirk M -- Walz, Andrew -- Miller, Marvin J -- Levery, Steven B -- Wilson, Ian A -- Costello, Catherine E -- Brenner, Michael B -- AI30988/AI/NIAID NIH HHS/ -- AI50216/AI/NIAID NIH HHS/ -- AR48632/AR/NIAMS NIH HHS/ -- CA58896/CA/NCI NIH HHS/ -- GM25845/GM/NIGMS NIH HHS/ -- GM62116/GM/NIGMS NIH HHS/ -- P20 RR16459/RR/NCRR NIH HHS/ -- P41-RR10888/RR/NCRR NIH HHS/ -- S10-RR10493/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 23;303(5657):527-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Smith Building Room 514, 1 Jimmy Fund Way, Boston, MA 02115, USA. bmoody@rics.bwh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14739458" target="_blank"〉PubMed〈/a〉
    Keywords: *Antigen Presentation ; Antigens, Bacterial/chemistry/*immunology/metabolism ; Antigens, CD1/chemistry/immunology/metabolism ; Cell Line ; Chromatography, High Pressure Liquid ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Hydroxylation ; Lipoproteins/chemistry/*immunology/metabolism ; *Lymphocyte Activation ; Models, Molecular ; Mycobacterium tuberculosis/growth & development/*immunology ; Oxazoles/chemistry/*immunology/metabolism ; Protein Conformation ; Receptors, Antigen, T-Cell, alpha-beta/immunology ; T-Lymphocytes/*immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2004-02-21
    Description: PTEN is a tumor suppressor protein that dephosphorylates phosphatidylinositol 3,4,5 trisphosphate and antagonizes the phosphatidylinositol-3 kinase signaling pathway. We show here that PTEN can also inhibit cell migration through its C2 domain, independent of its lipid phosphatase activity. This activity depends on the protein phosphatase activity of PTEN and on dephosphorylation at a single residue, threonine(383). The ability of PTEN to control cell migration through its C2 domain is likely to be an important feature of its tumor suppressor activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raftopoulou, Myrto -- Etienne-Manneville, Sandrine -- Self, Annette -- Nicholls, Sarah -- Hall, Alan -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1179-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, Cancer Research UK Oncogene and Signal Transduction Group, University College London, Gower Street, London WC1E 6BT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976311" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COS Cells ; Catalysis ; Catalytic Domain ; Cell Line, Tumor ; Cell Movement/*physiology ; Cercopithecus aethiops ; Glioma ; Humans ; Mutation ; PTEN Phosphohydrolase ; Phosphoprotein Phosphatases/chemistry/metabolism ; Phosphoric Monoester Hydrolases/*chemistry/genetics/metabolism/*physiology ; Phosphorylation ; Phosphothreonine/metabolism ; Precipitin Tests ; Protein Structure, Tertiary ; Recombinant Proteins/pharmacology ; Sequence Deletion ; Transfection ; Tumor Suppressor Proteins/*chemistry/genetics/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-10-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muoio, Deborah M -- Newgard, Christopher B -- New York, N.Y. -- Science. 2004 Oct 15;306(5695):425-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15486283" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/metabolism ; Animals ; Cells, Cultured ; DNA-Binding Proteins/genetics/metabolism ; Endoplasmic Reticulum/*metabolism ; Endoribonucleases ; Enzyme Activation ; Homeostasis ; Humans ; Insulin/*metabolism ; Insulin Receptor Substrate Proteins ; Insulin Resistance/*physiology ; Islets of Langerhans/metabolism ; Liver/metabolism ; Membrane Proteins/metabolism ; Mice ; Mitogen-Activated Protein Kinase 8 ; Mitogen-Activated Protein Kinases/*metabolism ; Muscle, Skeletal/metabolism ; Nuclear Proteins/genetics/metabolism ; Obesity/*metabolism ; Phosphoproteins/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Signal Transduction ; Transcription Factors ; eIF-2 Kinase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-10-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hall, Alan -- New York, N.Y. -- Science. 2004 Oct 1;306(5693):65-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory for Molecular Cell Biology & Cell Biology Unit, University College, London WC1E 6BT, UK. alan.hall@ucl. ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15459376" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism/virology ; Actins/metabolism ; Catenins ; Cell Adhesion Molecules/metabolism ; Cell Membrane/metabolism/virology ; Enzyme Activation ; Kinesin/metabolism ; Membrane Fusion ; Membrane Glycoproteins/genetics/metabolism ; Microtubules/metabolism ; Mutation ; Phosphoproteins/metabolism ; Phosphorylation ; Vaccinia virus/genetics/growth & development/*metabolism ; Viral Envelope Proteins/genetics/*metabolism ; Viral Structural Proteins/*metabolism ; src-Family Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2004-10-23
    Description: Signaling by the transcription factor nuclear factor kappa B (NF-kappaB) involves its release from inhibitor kappa B (IkappaB) in the cytosol, followed by translocation into the nucleus. NF-kappaB regulation of IkappaBalpha transcription represents a delayed negative feedback loop that drives oscillations in NF-kappaB translocation. Single-cell time-lapse imaging and computational modeling of NF-kappaB (RelA) localization showed asynchronous oscillations following cell stimulation that decreased in frequency with increased IkappaBalpha transcription. Transcription of target genes depended on oscillation persistence, involving cycles of RelA phosphorylation and dephosphorylation. The functional consequences of NF-kappaB signaling may thus depend on number, period, and amplitude of oscillations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nelson, D E -- Ihekwaba, A E C -- Elliott, M -- Johnson, J R -- Gibney, C A -- Foreman, B E -- Nelson, G -- See, V -- Horton, C A -- Spiller, D G -- Edwards, S W -- McDowell, H P -- Unitt, J F -- Sullivan, E -- Grimley, R -- Benson, N -- Broomhead, D -- Kell, D B -- White, M R H -- New York, N.Y. -- Science. 2004 Oct 22;306(5696):704-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Cell Imaging, School of Biological Sciences, Bioscience Research Building, Crown Street, Liverpool, L69 7ZB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15499023" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Computer Simulation ; Cytoplasm/metabolism ; Etoposide/pharmacology ; Feedback, Physiological ; *Gene Expression Regulation ; HeLa Cells ; Humans ; I-kappa B Proteins/genetics/metabolism ; Models, Biological ; NF-kappa B/*metabolism ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transcription Factor RelA ; Transcription, Genetic ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2004-01-24
    Description: Jun N-terminal kinases (JNKs) are essential for neuronal microtubule assembly and apoptosis. Phosphorylation of the activating protein 1 (AP1) transcription factor c-Jun, at multiple sites within its transactivation domain, is required for JNK-induced neurotoxicity. We report that in neurons the stability of c-Jun is regulated by the E3 ligase SCF(Fbw7), which ubiquitinates phosphorylated c-Jun and facilitates c-Jun degradation. Fbw7 depletion resulted in accumulation of phosphorylated c-Jun, stimulation of AP1 activity, and neuronal apoptosis. SCF(Fbw7) therefore antagonizes the apoptotic c-Jun-dependent effector arm of JNK signaling, allowing neurons to tolerate potentially neurotoxic JNK activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nateri, Abdolrahman S -- Riera-Sans, Lluis -- Da Costa, Clive -- Behrens, Axel -- New York, N.Y. -- Science. 2004 Feb 27;303(5662):1374-8. Epub 2004 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mammalian Genetics Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14739463" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; Base Sequence ; Cell Cycle Proteins/genetics/*metabolism ; Cell Line ; F-Box Proteins/genetics/*metabolism ; Humans ; JNK Mitogen-Activated Protein Kinases ; MAP Kinase Signaling System ; Mice ; Mitogen-Activated Protein Kinases/*metabolism ; Molecular Sequence Data ; Neurons/*physiology ; PC12 Cells ; Phosphorylation ; Proto-Oncogene Proteins c-jun/*metabolism ; RNA, Small Interfering/metabolism ; Rats ; Transcription Factor AP-1/metabolism ; Transfection ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2004-06-26
    Description: The nuclear factor-kappa B (NF-kappaB) family of transcription factors plays a seminal role in inflammation, apoptosis, development, and cancer. Modulation of NF-kappaB-mediated gene expression in response to diverse signals is coordinated by the IkappaB kinase (IKK) complex. We identified ELKS, an essential regulatory subunit of the IKK complex. Silencing ELKS expression by RNA interference blocked induced expression of NF-kappaB target genes, including the NF-kappaB inhibitor IkappaBalpha and proinflammatory genes such as cyclo-oxygenase 2 and interleukin 8. These cells were also not protected from apoptosis in response to cytokines. ELKS likely functions by recruiting IkappaBalpha to the IKK complex and thus serves a regulatory function for IKK activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ducut Sigala, Jeanette L -- Bottero, Virginie -- Young, David B -- Shevchenko, Andrej -- Mercurio, Frank -- Verma, Inder M -- New York, N.Y. -- Science. 2004 Jun 25;304(5679):1963-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Salk Institute for Biological Sciences, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15218148" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Apoptosis ; Carrier Proteins/genetics/*metabolism ; Cell Line ; Cyclooxygenase 2 ; Gene Expression ; Genes, Reporter ; HeLa Cells ; Humans ; I-kappa B Kinase ; I-kappa B Proteins/genetics/metabolism ; Interleukin-1/pharmacology ; Interleukin-8/genetics ; Isoenzymes/genetics ; Membrane Proteins ; Mice ; Mice, Knockout ; Mitogen-Activated Protein Kinases/metabolism ; Mutation ; NF-kappa B/*metabolism ; Nerve Tissue Proteins/genetics/*metabolism ; Phosphorylation ; Precipitin Tests ; Prostaglandin-Endoperoxide Synthases/genetics ; Protein-Serine-Threonine Kinases/*metabolism ; RNA Interference ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-06-19
    Description: The Hedgehog (Hh) signaling pathway is intimately linked to cell growth and differentiation, with normal roles in embryonic pattern formation and adult tissue homeostasis and pathological roles in tumor initiation and growth. Recent advances in our understanding of Hh response have resulted from the identification of new pathway components and new mechanisms of action for old pathway components. The most striking new finding is that signal transmission from membrane to cytoplasm proceeds through recruitment, by the seven-transmembrane protein Smoothened, of an atypical kinesin, which routes pathway activation by interaction with other components of a complex that includes the latent zinc finger transcription factor, Ci.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lum, Lawrence -- Beachy, Philip A -- New York, N.Y. -- Science. 2004 Jun 18;304(5678):1755-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15205520" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; DNA-Binding Proteins/metabolism ; Drosophila/metabolism ; Drosophila Proteins/*metabolism ; Gene Expression Regulation ; Hedgehog Proteins ; Kinesin/metabolism ; Mammals/metabolism ; Membrane Proteins/metabolism ; Models, Biological ; Phosphorylation ; Protein Transport ; Receptors, Cell Surface ; Receptors, G-Protein-Coupled/metabolism ; *Signal Transduction ; Trans-Activators/metabolism ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2004-01-31
    Description: Protein tyrosine kinases and phosphatases cooperate to regulate normal immune cell function. We examined the role of PEST domain-enriched tyrosine phosphatase (PEP) in regulating T cell antigen-receptor function during thymocyte development and peripheral T cell differentiation. Although normal naive T cell functions were retained in pep-deficient mice, effector/memory T cells demonstrated enhanced activation of Lck. In turn, this resulted in increased expansion and function of the effector/memory T cell pool, which was also associated with spontaneous development of germinal centers and elevated serum antibody levels. These results revealed a central role for PEP in negatively regulating specific aspects of T cell development and function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hasegawa, Kiminori -- Martin, Flavius -- Huang, Guangming -- Tumas, Dan -- Diehl, Lauri -- Chan, Andrew C -- New York, N.Y. -- Science. 2004 Jan 30;303(5658):685-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Genentech, Inc., One DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14752163" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autoimmunity ; B-Lymphocytes/physiology ; CD4-Positive T-Lymphocytes/immunology/physiology ; CD8-Positive T-Lymphocytes/immunology/physiology ; Cell Cycle ; Gene Targeting ; Germinal Center/physiology ; Hydrogen-Ion Concentration ; Immunoglobulins/blood ; *Immunologic Memory ; Lymphocyte Activation ; Lymphocyte Count ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Transgenic ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 12 ; Protein Tyrosine Phosphatases/genetics/*metabolism ; Receptors, Antigen, T-Cell/genetics/immunology ; Signal Transduction ; T-Lymphocyte Subsets/immunology ; T-Lymphocytes/*immunology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2004-08-07
    Description: The cascade of events that leads to vaccinia-induced actin polymerization requires Src-dependent tyrosine phosphorylation of the viral membrane protein A36R. We found that a localized outside-in signaling cascade induced by the viral membrane protein B5R is required to potently activate Src and induce A36R phosphorylation at the plasma membrane. In addition, Src-mediated phosphorylation of A36R regulated the ability of virus particles to recruit and release conventional kinesin. Thus, Src activity regulates the transition between cytoplasmic microtubule transport and actin-based motility at the plasma membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Newsome, Timothy P -- Scaplehorn, Niki -- Way, Michael -- New York, N.Y. -- Science. 2004 Oct 1;306(5693):124-9. Epub 2004 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Motility Laboratory, Room 529, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297625" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Animals ; Cell Line ; Cell Membrane/metabolism/virology ; Chickens ; Consensus Sequence ; Enzyme Activation ; HeLa Cells ; Humans ; Kinesin/metabolism ; Membrane Glycoproteins/chemistry/metabolism ; Microtubules/*metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Recombinant Fusion Proteins/metabolism ; Vaccinia virus/genetics/*metabolism/physiology ; Viral Envelope Proteins/chemistry/metabolism ; Viral Structural Proteins/*metabolism ; Virion/metabolism ; src-Family Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2004-05-08
    Description: Prostaglandin E2 (PGE2) is a crucial mediator of inflammatory pain sensitization. Here, we demonstrate that inhibition of a specific glycine receptor subtype (GlyR alpha3) by PGE2-induced receptor phosphorylation underlies central inflammatory pain sensitization. We show that GlyR alpha3 is distinctly expressed in superficial layers of the spinal cord dorsal horn. Mice deficient in GlyR alpha3 not only lack the inhibition of glycinergic neurotransmission by PGE2 seen in wild-type mice but also show a reduction in pain sensitization induced by spinal PGE2 injection or peripheral inflammation. Thus, GlyR alpha3 may provide a previously unrecognized molecular target in pain therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harvey, Robert J -- Depner, Ulrike B -- Wassle, Heinz -- Ahmadi, Seifollah -- Heindl, Cornelia -- Reinold, Heiko -- Smart, Trevor G -- Harvey, Kirsten -- Schutz, Burkhard -- Abo-Salem, Osama M -- Zimmer, Andreas -- Poisbeau, Pierrick -- Welzl, Hans -- Wolfer, David P -- Betz, Heinrich -- Zeilhofer, Hanns Ulrich -- Muller, Ulrike -- New York, N.Y. -- Science. 2004 May 7;304(5672):884-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, The School of Pharmacy, London WC1N 1AX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15131310" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Dinoprostone/administration & dosage/*metabolism/pharmacology ; Female ; Freund's Adjuvant ; Glycine/metabolism ; Humans ; Inflammation/metabolism/*physiopathology ; Male ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Neurons/metabolism ; Pain/*physiopathology ; Patch-Clamp Techniques ; Phosphorylation ; Posterior Horn Cells/*metabolism ; Receptors, Glycine/chemistry/genetics/*metabolism ; Signal Transduction ; Spinal Cord/*metabolism ; Synaptic Transmission ; Transfection ; Zymosan
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2004-04-17
    Description: Mitochondrial dysfunction is a hallmark of beta-amyloid (Abeta)-induced neuronal toxicity in Alzheimer's disease (AD). Here, we demonstrate that Abeta-binding alcohol dehydrogenase (ABAD) is a direct molecular link from Abeta to mitochondrial toxicity. Abeta interacts with ABAD in the mitochondria of AD patients and transgenic mice. The crystal structure of Abeta-bound ABAD shows substantial deformation of the active site that prevents nicotinamide adenine dinucleotide (NAD) binding. An ABAD peptide specifically inhibits ABAD-Abeta interaction and suppresses Abeta-induced apoptosis and free-radical generation in neurons. Transgenic mice overexpressing ABAD in an Abeta-rich environment manifest exaggerated neuronal oxidative stress and impaired memory. These data suggest that the ABAD-Abeta interaction may be a therapeutic target in AD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lustbader, Joyce W -- Cirilli, Maurizio -- Lin, Chang -- Xu, Hong Wei -- Takuma, Kazuhiro -- Wang, Ning -- Caspersen, Casper -- Chen, Xi -- Pollak, Susan -- Chaney, Michael -- Trinchese, Fabrizio -- Liu, Shumin -- Gunn-Moore, Frank -- Lue, Lih-Fen -- Walker, Douglas G -- Kuppusamy, Periannan -- Zewier, Zay L -- Arancio, Ottavio -- Stern, David -- Yan, Shirley ShiDu -- Wu, Hao -- 1K07AG00959/AG/NIA NIH HHS/ -- AG16736/AG/NIA NIH HHS/ -- AG17490/AG/NIA NIH HHS/ -- NS42855/NS/NINDS NIH HHS/ -- P50AG08702/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2004 Apr 16;304(5669):448-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Reproductive Sciences and Department of Obstetrics and Gynecology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15087549" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Hydroxyacyl CoA Dehydrogenases/chemistry/*metabolism ; Aged ; Aged, 80 and over ; Alzheimer Disease/*metabolism ; Amino Acid Sequence ; Amyloid beta-Peptides/chemistry/genetics/*metabolism ; Animals ; Binding Sites ; Brain/*metabolism ; Brain Chemistry ; Carrier Proteins/chemistry/*metabolism ; Cells, Cultured ; Cerebral Cortex/chemistry/metabolism ; Crystallization ; DNA Fragmentation ; Hippocampus/physiology ; Humans ; Learning ; Memory ; Mice ; Mice, Transgenic ; Microscopy, Confocal ; Microscopy, Immunoelectron ; Mitochondria/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; NAD/metabolism ; Neurons/metabolism ; Protein Binding ; Protein Conformation ; Reactive Oxygen Species/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2004-10-09
    Description: Nitric oxide (NO) is extremely toxic to Clostridium botulinum, but its molecular targets are unknown. Here, we identify a heme protein sensor (SONO) that displays femtomolar affinity for NO. The crystal structure of the SONO heme domain reveals a previously undescribed fold and a strategically placed tyrosine residue that modulates heme-nitrosyl coordination. Furthermore, the domain architecture of a SONO ortholog cloned from Chlamydomonas reinhardtii indicates that NO signaling through cyclic guanosine monophosphate arose before the origin of multicellular eukaryotes. Our findings have broad implications for understanding bacterial responses to NO, as well as for the activation of mammalian NO-sensitive guanylyl cyclase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nioche, Pierre -- Berka, Vladimir -- Vipond, Julia -- Minton, Nigel -- Tsai, Ah-Lim -- Raman, C S -- AY343540/PHS HHS/ -- R01 AI054444/AI/NIAID NIH HHS/ -- R01 AI054444-05/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1550-3. Epub 2004 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Research Center and Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15472039" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Bacterial Proteins/chemistry/metabolism ; Biological Evolution ; Carrier Proteins/*chemistry/genetics/*metabolism ; Chemotaxis ; Chlamydomonas reinhardtii/chemistry/genetics/metabolism ; Cloning, Molecular ; Clostridium botulinum/*chemistry/genetics/*metabolism ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Escherichia coli/genetics/growth & development ; Guanylate Cyclase ; Heme/chemistry/metabolism ; Hemeproteins/*chemistry/genetics/*metabolism ; Humans ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Nitric Oxide/*metabolism ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protoporphyrins/analysis/metabolism ; Receptors, Cytoplasmic and Nuclear/chemistry/metabolism ; Sequence Alignment ; Signal Transduction ; Static Electricity ; Thermoanaerobacter/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2004-03-27
    Description: Images of entire cells are preceding atomic structures of the separate molecular machines that they contain. The resulting gap in knowledge can be partly bridged by protein-protein interactions, bioinformatics, and electron microscopy. Here we use interactions of known three-dimensional structure to model a large set of yeast complexes, which we also screen by electron microscopy. For 54 of 102 complexes, we obtain at least partial models of interacting subunits. For 29, including the exosome, the chaperonin containing TCP-1, a 3'-messenger RNA degradation complex, and RNA polymerase II, the process suggests atomic details not easily seen by homology, involving the combination of two or more known structures. We also consider interactions between complexes (cross-talk) and use these to construct a structure-based network of molecular machines in the cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aloy, Patrick -- Bottcher, Bettina -- Ceulemans, Hugo -- Leutwein, Christina -- Mellwig, Christian -- Fischer, Susanne -- Gavin, Anne-Claude -- Bork, Peer -- Superti-Furga, Giulio -- Serrano, Luis -- Russell, Robert B -- New York, N.Y. -- Science. 2004 Mar 26;303(5666):2026-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Structural and Computational Biology Programme, 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15044803" target="_blank"〉PubMed〈/a〉
    Keywords: Chaperonins/chemistry/metabolism ; Computational Biology ; Image Processing, Computer-Assisted ; Microscopy, Electron ; Models, Biological ; Models, Molecular ; Nuclear Proteins/chemistry/metabolism ; Protein Binding ; Protein Conformation ; *Protein Interaction Mapping ; Protein Structure, Tertiary ; RNA Polymerase II/chemistry/metabolism ; Ribonuclease P/chemistry/metabolism ; Saccharomyces cerevisiae/chemistry/*metabolism/ultrastructure ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; Transcription Factors/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉York, John D -- Hunter, Tony -- New York, N.Y. -- Science. 2004 Dec 17;306(5704):2053-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Cancer Biology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA. yorkj@duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15604398" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/metabolism ; Inositol/chemistry ; Inositol Phosphates/*metabolism ; Models, Biological ; Molecular Conformation ; Nuclear Proteins/*metabolism ; Phosphates/*metabolism ; Phosphatidylinositols/metabolism ; Phosphorylation ; Phosphotransferases (Phosphate Group Acceptor)/metabolism ; Proteins/*metabolism ; RNA-Binding Proteins/*metabolism ; Saccharomyces cerevisiae/metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; Second Messenger Systems ; Serine/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-03-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rutherford, A W -- Boussac, A -- New York, N.Y. -- Science. 2004 Mar 19;303(5665):1782-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Service of Bioenergetics, CNRS URA 2096, Departement de Biologie Joliot Curie, CEA Saclay, 91191 Gif-sur-Yvette, France. rutherford@dsvidf.cea.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15031485" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium/analysis/metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Electrons ; Free Radicals ; Histidine/chemistry/metabolism ; Hydrogen Bonding ; Ligands ; Manganese/analysis/metabolism ; Models, Chemical ; Models, Molecular ; Oxidation-Reduction ; Oxygen/analysis/metabolism ; Photolysis ; Photosynthetic Reaction Center Complex Proteins/chemistry/metabolism ; Photosystem II Protein Complex/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Quaternary ; Protons ; Tyrosine/*analogs & derivatives/chemistry/metabolism ; Water/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2004-12-18
    Description: The inositol pyrophosphates IP7 and IP8 contain highly energetic pyrophosphate bonds. Although implicated in various biologic functions, their molecular sites of action have not been clarified. Using radiolabeled IP7, we detected phosphorylation of multiple eukaryotic proteins. We also observed phosphorylation of endogenous proteins by endogenous IP7 in yeast. Phosphorylation by IP7 is nonenzymatic and may represent a novel intracellular signaling mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saiardi, Adolfo -- Bhandari, Rashna -- Resnick, Adam C -- Snowman, Adele M -- Snyder, Solomon H -- DA00074/DA/NIDA NIH HHS/ -- MH068830-02/MH/NIMH NIH HHS/ -- MH18501/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2004 Dec 17;306(5704):2101-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15604408" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Drosophila Proteins/metabolism ; Drosophila melanogaster ; Escherichia coli Proteins/metabolism ; Humans ; Inositol Phosphates/*metabolism ; Kinetics ; Magnesium/metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/chemistry/*metabolism ; Phosphates/metabolism ; Phosphorylation ; Phosphotransferases (Phosphate Group Acceptor)/metabolism ; Protein Kinases/genetics/metabolism ; Proteins/*metabolism ; RNA-Binding Proteins/chemistry/*metabolism ; Saccharomyces cerevisiae/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; Serine/metabolism ; Signal Transduction ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2004-09-14
    Description: The first structure of an ammonia channel from the Amt/MEP/Rh protein superfamily, determined to 1.35 angstrom resolution, shows it to be a channel that spans the membrane 11 times. Two structurally similar halves span the membrane with opposite polarity. Structures with and without ammonia or methyl ammonia show a vestibule that recruits NH4+/NH3, a binding site for NH4+, and a 20 angstrom-long hydrophobic channel that lowers the NH4+ pKa to below 6 and conducts NH3. Favorable interactions for NH3 are seen within the channel and use conserved histidines. Reconstitution of AmtB into vesicles shows that AmtB conducts uncharged NH3.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khademi, Shahram -- O'Connell, Joseph 3rd -- Remis, Jonathan -- Robles-Colmenares, Yaneth -- Miercke, Larry J W -- Stroud, Robert M -- GM24485/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Sep 10;305(5690):1587-94.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, S412C Genentech Hall, University of California-San Francisco, 600 16th Street, San Francisco, CA 94143-2240, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15361618" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Ammonia/*metabolism ; Binding Sites ; Biological Transport ; Cation Transport Proteins/*chemistry/genetics/metabolism ; Cell Membrane/chemistry ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/*chemistry/metabolism ; Escherichia coli Proteins/*chemistry/genetics/metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Liposomes ; Membrane Potentials ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Quaternary Ammonium Compounds/metabolism ; Rh-Hr Blood-Group System/chemistry/metabolism ; Sequence Alignment ; Water/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2004-11-20
    Description: Mobilization of fatty acids from triglyceride stores in adipose tissue requires lipolytic enzymes. Dysfunctional lipolysis affects energy homeostasis and may contribute to the pathogenesis of obesity and insulin resistance. Until now, hormone-sensitive lipase (HSL) was the only enzyme known to hydrolyze triglycerides in mammalian adipose tissue. Here, we report that a second enzyme, adipose triglyceride lipase (ATGL), catalyzes the initial step in triglyceride hydrolysis. It is interesting that ATGL contains a "patatin domain" common to plant acyl-hydrolases. ATGL is highly expressed in adipose tissue of mice and humans. It exhibits high substrate specificity for triacylglycerol and is associated with lipid droplets. Inhibition of ATGL markedly decreases total adipose acyl-hydrolase activity. Thus, ATGL and HSL coordinately catabolize stored triglycerides in adipose tissue of mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zimmermann, Robert -- Strauss, Juliane G -- Haemmerle, Guenter -- Schoiswohl, Gabriele -- Birner-Gruenberger, Ruth -- Riederer, Monika -- Lass, Achim -- Neuberger, Georg -- Eisenhaber, Frank -- Hermetter, Albin -- Zechner, Rudolf -- New York, N.Y. -- Science. 2004 Nov 19;306(5700):1383-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biosciences, University of Graz, Graz, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15550674" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3-L1 Cells ; Adipocytes/enzymology/*metabolism ; Adipose Tissue/enzymology/*metabolism ; Adipose Tissue, Brown/enzymology/metabolism ; Amino Acid Sequence ; Animals ; COS Cells ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Cytoplasm/enzymology ; DNA, Complementary ; Diglycerides/metabolism ; Fatty Acids/metabolism ; Gene Silencing ; Glycerol/metabolism ; Humans ; Isoproterenol/pharmacology ; *Lipid Mobilization ; Lipolysis ; Lipoprotein Lipase/chemistry/genetics/immunology/*metabolism ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein Structure, Tertiary ; RNA, Messenger/genetics/metabolism ; Sterol Esterase/genetics/*metabolism ; Substrate Specificity ; Transfection ; Triglycerides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2004-11-30
    Description: Signaling pathways that are activated by epidermal growth factor (EGF) or fibroblast growth factor (FGF) receptors have been identified and compared (detailed Connections Maps are available at Science's Signal Transduction Knowledge Environment). Both receptors stimulate a similar complement of intracellular signaling pathways. However, whereas activated EGF receptors (EGFRs) function as the main platform for recruitment of signaling proteins, signaling through the FGF receptors (FGFRs) is mediated primarily by assembly of a multidocking protein complex. Moreover, FGFR signaling is subject to additional intracellular and extracellular control mechanisms that do not affect EGFR signaling. The differential circuitry of the intracellular networks that are activated by EGFR and FGFR may affect signal specificity and physiological responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schlessinger, Joseph -- R01-AR051448-01/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1506-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA. joseph.schlessinger@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15567848" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Binding Sites ; Dimerization ; Epidermal Growth Factor/metabolism ; Fibroblast Growth Factors/metabolism ; Heparan Sulfate Proteoglycans/metabolism ; Humans ; Ligands ; Phosphorylation ; Receptor, Epidermal Growth Factor/chemistry/*metabolism ; Receptors, Fibroblast Growth Factor/chemistry/*metabolism ; Second Messenger Systems ; *Signal Transduction ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2004-02-07
    Description: Microtubule (MT) stabilization is regulated by the small guanosine triphosphate (GTP)-binding protein Rho and its effector, mammalian homolog of Diaphanous (mDia), in migrating cells, but factors responsible for localized stabilization at the leading edge are unknown. We report that integrin-mediated activation of focal adhesion kinase (FAK) at the leading edge is required for MT stabilization by the Rho-mDia signaling pathway in mouse fibroblasts. MT stabilization also involved FAK-regulated localization of a lipid raft marker, ganglioside GM1, to the leading edge. The integrin-FAK signaling pathway may facilitate Rho-mDia signaling through GM1, or through a specialized membrane domain containing GM1, to stabilize MTs in the leading edge of migrating cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Palazzo, Alexander F -- Eng, Christina H -- Schlaepfer, David D -- Marcantonio, Eugene E -- Gundersen, Gregg G -- CA87038/CA/NCI NIH HHS/ -- GM 44585/GM/NIGMS NIH HHS/ -- GM 62939/GM/NIGMS NIH HHS/ -- GM 68695/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 6;303(5659):836-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Cell Biology, Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14764879" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Carrier Proteins/metabolism ; Cell Adhesion ; Cell Line ; Cell Membrane/*metabolism ; Cholesterol/metabolism ; Fibronectins/metabolism/pharmacology ; Focal Adhesion Kinase 1 ; Focal Adhesion Protein-Tyrosine Kinases ; G(M1) Ganglioside/metabolism ; Glycosylphosphatidylinositols/metabolism ; Integrins/*metabolism ; Membrane Microdomains/*metabolism ; Mice ; Mice, Knockout ; Microtubules/*metabolism/ultrastructure ; NIH 3T3 Cells ; Phosphorylation ; Protein-Tyrosine Kinases/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Tubulin/metabolism ; rho GTP-Binding Proteins/*metabolism ; rhoA GTP-Binding Protein/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2004-10-23
    Description: Despite evidence that protein kinases are regulators of apoptosis, a specific role for phosphatases in regulating cell survival has not been established. Here we show that alpha4, a noncatalytic subunit of protein phosphatase 2A (PP2A), is required to repress apoptosis in murine cells. alpha4 is a nonredundant regulator of the dephosphorylation of the transcription factors c-Jun and p53. As a result of alpha4 deletion, multiple proapoptotic genes were transcribed. Either inhibition of new protein synthesis or Bcl-xL overexpression suppressed apoptosis initiated by alpha4 deletion. Thus, mammalian cell viability depends on repression of transcription-initiated apoptosis mediated by a component of PP2A.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kong, Mei -- Fox, Casey J -- Mu, James -- Solt, Laura -- Xu, Anne -- Cinalli, Ryan M -- Birnbaum, Morris J -- Lindsten, Tullia -- Thompson, Craig B -- New York, N.Y. -- Science. 2004 Oct 22;306(5696):695-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15499020" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/cytology ; Animals ; *Apoptosis ; Cell Differentiation ; Cell Line ; Cell Survival ; Cells, Cultured ; Cycloheximide/pharmacology ; Gene Deletion ; Gene Expression Profiling ; Liver/cytology/metabolism ; Mice ; Mice, Transgenic ; Oligonucleotide Array Sequence Analysis ; PPAR gamma/metabolism ; Phosphoprotein Phosphatases/*metabolism ; Phosphoproteins/*metabolism ; Phosphorylation ; Protein Phosphatase 2 ; Protein Synthesis Inhibitors/pharmacology ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Proto-Oncogene Proteins c-jun/metabolism ; Transcription, Genetic ; Tumor Suppressor Protein p53/metabolism ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2004-08-07
    Description: Vesicle fusion involves vesicle tethering, docking, and membrane merger. We show that mitofusin, an integral mitochondrial membrane protein, is required on adjacent mitochondria to mediate fusion, which indicates that mitofusin complexes act in trans (that is, between adjacent mitochondria). A heptad repeat region (HR2) mediates mitofusin oligomerization by assembling a dimeric, antiparallel coiled coil. The transmembrane segments are located at opposite ends of the 95 angstrom coiled coil and provide a mechanism for organelle tethering. Consistent with this proposal, truncated mitofusin, in an HR2-dependent manner, causes mitochondria to become apposed with a uniform gap. Our results suggest that HR2 functions as a mitochondrial tether before fusion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koshiba, Takumi -- Detmer, Scott A -- Kaiser, Jens T -- Chen, Hsiuchen -- McCaffery, J Michael -- Chan, David C -- R01 GM62967/GM/NIGMS NIH HHS/ -- S10 RR019409-01/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):858-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, 1200 East California Boulevard, MC114-96, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297672" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cell Line ; Crystallography, X-Ray ; Dimerization ; GTP Phosphohydrolases/*chemistry/*metabolism ; Humans ; Hybrid Cells ; Hydrophobic and Hydrophilic Interactions ; Intracellular Membranes/physiology/ultrastructure ; Membrane Fusion ; Mice ; Mitochondria/*metabolism/ultrastructure ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2004-10-02
    Description: Large RNA molecules, such as ribozymes, fold with well-defined tertiary structures that are important for their activity. There are many instances of ribozymes with identical function but differences in their secondary structures, suggesting alternative tertiary folds. Here, we report a crystal structure of the 161-nucleotide specificity domain of an A-type ribonuclease P that differs in secondary and tertiary structure from the specificity domain of a B-type molecule. Despite the differences, the cores of the domains have similar three-dimensional structure. Remarkably, the similar geometry of the cores is stabilized by a different set of interactions involving distinct auxiliary elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krasilnikov, Andrey S -- Xiao, Yinghua -- Pan, Tao -- Mondragon, Alfonso -- New York, N.Y. -- Science. 2004 Oct 1;306(5693):104-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15459389" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Catalytic Domain ; Conserved Sequence ; Crystallography, X-Ray ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Phylogeny ; RNA Precursors/chemistry/metabolism ; RNA, Bacterial/*chemistry/metabolism ; RNA, Transfer/chemistry/metabolism ; Ribonuclease P/*chemistry/metabolism ; Ribonucleotides/chemistry/metabolism ; Thermus thermophilus/*chemistry/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2004-07-27
    Description: Inherited channelopathies are at the origin of many neurological disorders. Here we report a form of channelopathy that is acquired in experimental temporal lobe epilepsy (TLE), the most common form of epilepsy in adults. The excitability of CA1 pyramidal neuron dendrites was increased in TLE because of decreased availability of A-type potassium ion channels due to transcriptional (loss of channels) and posttranslational (increased channel phosphorylation by extracellular signal-regulated kinase) mechanisms. Kinase inhibition partly reversed dendritic excitability to control levels. Such acquired channelopathy is likely to amplify neuronal activity and may contribute to the initiation and/or propagation of seizures in TLE.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bernard, Christophe -- Anderson, Anne -- Becker, Albert -- Poolos, Nicholas P -- Beck, Heinz -- Johnston, Daniel -- MH44754/MH/NIMH NIH HHS/ -- MH48432/MH/NIMH NIH HHS/ -- NS37444/NS/NINDS NIH HHS/ -- NS39943/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jul 23;305(5683):532-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA. cbernard@inmed.univ-mrs.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15273397" target="_blank"〉PubMed〈/a〉
    Keywords: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology ; 4-Aminopyridine/pharmacology ; Action Potentials/drug effects ; Animals ; Butadienes/pharmacology ; Dendrites/*physiology ; Enzyme Inhibitors/pharmacology ; Epilepsy, Temporal Lobe/*physiopathology ; Hippocampus/cytology/*physiopathology ; Male ; Membrane Potentials ; Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism ; Nitriles/pharmacology ; Phosphorylation ; Pilocarpine/administration & dosage ; Potassium Channel Blockers/pharmacology ; Potassium Channels/drug effects/metabolism/*physiology ; *Potassium Channels, Voltage-Gated ; Protein Kinase C/antagonists & inhibitors/metabolism ; Pyramidal Cells/*physiology ; Rats ; Rats, Sprague-Dawley ; Shal Potassium Channels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2004-01-06
    Description: The crystal structure of biotin synthase from Escherichia coli in complex with S-adenosyl-L-methionine and dethiobiotin has been determined to 3.4 angstrom resolution. This structure addresses how "AdoMet radical" or "radical SAM" enzymes use Fe4S4 clusters and S-adenosyl-L-methionine to generate organic radicals. Biotin synthase catalyzes the radical-mediated insertion of sulfur into dethiobiotin to form biotin. The structure places the substrates between the Fe4S4 cluster, essential for radical generation, and the Fe2S2 cluster, postulated to be the source of sulfur, with both clusters in unprecedented coordination environments.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456065/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456065/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berkovitch, Frederick -- Nicolet, Yvain -- Wan, Jason T -- Jarrett, Joseph T -- Drennan, Catherine L -- NSLS X25/NS/NINDS NIH HHS/ -- R01 GM059175/GM/NIGMS NIH HHS/ -- R01-GM59175/GM/NIGMS NIH HHS/ -- R01-GM65337/GM/NIGMS NIH HHS/ -- T32-GM07229/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 2;303(5654):76-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14704425" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Biotin/*analogs & derivatives/*chemistry/metabolism ; Catalysis ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Escherichia coli/*enzymology ; Escherichia coli Proteins/*chemistry/*metabolism ; Hydrogen/chemistry ; Hydrogen Bonding ; Iron/chemistry ; Ligands ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; S-Adenosylmethionine/*chemistry/metabolism ; Sulfur/chemistry ; Sulfurtransferases/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2004-01-13
    Description: Advances in transition state theory and computer simulations are providing new insights into the sources of enzyme catalysis. Both lowering of the activation free energy and changes in the generalized transmission coefficient (recrossing of the transition state, tunneling, and nonequilibrium contributions) can play a role. A framework for understanding these effects is presented, and the contributions of the different factors, as illustrated by specific enzymes, are identified and quantified by computer simulations. The resulting understanding of enzyme catalysis is used to comment on alternative proposals of how enzymes work.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia-Viloca, Mireia -- Gao, Jiali -- Karplus, Martin -- Truhlar, Donald G -- New York, N.Y. -- Science. 2004 Jan 9;303(5655):186-95.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14716003" target="_blank"〉PubMed〈/a〉
    Keywords: *Catalysis ; Computer Simulation ; Enzymes/*chemistry/*metabolism ; Kinetics ; Mathematics ; Models, Chemical ; Models, Molecular ; Protein Conformation ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2004-10-02
    Description: Microbial sensory rhodopsins are a family of membrane-embedded photoreceptors in prokaryotic and eukaryotic organisms. Structures of archaeal rhodopsins, which function as light-driven ion pumps or photosensors, have been reported. We present the structure of a eubacterial rhodopsin, which differs from those of previously characterized archaeal rhodopsins in its chromophore and cytoplasmic-side portions. Anabaena sensory rhodopsin exhibits light-induced interconversion between stable 13-cis and all-trans states of the retinylidene protein. The ratio of its cis and trans chromophore forms depends on the wavelength of illumination, thus providing a mechanism for a single protein to signal the color of light, for example, to regulate color-sensitive processes such as chromatic adaptation in photosynthesis. Its cytoplasmic half channel, highly hydrophobic in the archaeal rhodopsins, contains numerous hydrophilic residues networked by water molecules, providing a connection from the photoactive site to the cytoplasmic surface believed to interact with the receptor's soluble 14-kilodalton transducer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogeley, Lutz -- Sineshchekov, Oleg A -- Trivedi, Vishwa D -- Sasaki, Jun -- Spudich, John L -- Luecke, Hartmut -- R01-GM067808/GM/NIGMS NIH HHS/ -- R01-GM59970/GM/NIGMS NIH HHS/ -- R37-GM27750/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Nov 19;306(5700):1390-3. Epub 2004 Sep 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15459346" target="_blank"〉PubMed〈/a〉
    Keywords: Anabaena/*chemistry ; Archaeal Proteins/chemistry ; Bacterial Proteins/chemistry ; Binding Sites ; Chemistry, Physical ; Crystallography, X-Ray ; Cytoplasm/chemistry ; Hydrogen Bonding ; Light ; Lipid Bilayers/chemistry ; Models, Molecular ; Physicochemical Phenomena ; Protein Conformation ; Protein Structure, Secondary ; Sensory Rhodopsins/*chemistry ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-07-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Hippel, Peter H -- GM-15792/GM/NIGMS NIH HHS/ -- GM-29158/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jul 16;305(5682):350-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA. petevh@molbio.uoregon.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15256661" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; DNA, Bacterial/*chemistry/*metabolism ; Diffusion ; Dimerization ; Escherichia coli/chemistry/genetics/metabolism ; Escherichia coli Proteins/chemistry/metabolism ; *Gene Expression Regulation, Bacterial ; Hydrogen Bonding ; Kinetics ; Lac Operon ; Lac Repressors ; Models, Genetic ; Models, Molecular ; Nucleic Acid Conformation ; Operator Regions, Genetic ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry/*metabolism ; Static Electricity ; Thermodynamics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-03-20
    Description: An overview is given on the diverse uses of computational chemistry in drug discovery. Particular emphasis is placed on virtual screening, de novo design, evaluation of drug-likeness, and advanced methods for determining protein-ligand binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jorgensen, William L -- New York, N.Y. -- Science. 2004 Mar 19;303(5665):1813-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA. william.jorgensen@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15031495" target="_blank"〉PubMed〈/a〉
    Keywords: *Computer Simulation ; Computers ; *Drug Design ; *Drug Evaluation, Preclinical ; Ligands ; Models, Molecular ; Molecular Structure ; *Pharmaceutical Preparations ; Protein Binding ; Proteins/metabolism ; *Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2004-06-26
    Description: Arrestin regulates almost all G protein-coupled receptor (GPCR)-mediated signaling and trafficking. We report that the multidomain protein, spinophilin, antagonizes these multiple arrestin functions. Through blocking G protein receptor kinase 2 (GRK2) association with receptor-Gbetagamma complexes, spinophilin reduces arrestin-stabilized receptor phosphorylation, receptor endocytosis, and the acceleration of mitogen-activated protein kinase (MAPK) activity following endocytosis. Spinophilin knockout mice were more sensitive than wild-type mice to sedation elicited by stimulation of alpha2 adrenergic receptors, whereas arrestin 3 knockout mice were more resistant, indicating that the signal-promoting, rather than the signal-terminating, roles of arrestin are more important for certain response pathways. The reciprocal interactions of GPCRs with spinophilin and arrestin represent a regulatory mechanism for fine-tuning complex receptor-orchestrated cell signaling and responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Qin -- Zhao, Jiali -- Brady, Ashley E -- Feng, Jian -- Allen, Patrick B -- Lefkowitz, Robert J -- Greengard, Paul -- Limbird, Lee E -- DA10044/DA/NIDA NIH HHS/ -- DK43879/DK/NIDDK NIH HHS/ -- HL16037/HL/NHLBI NIH HHS/ -- HL42671/HL/NHLBI NIH HHS/ -- MH40899/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2004 Jun 25;304(5679):1940-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Center of Molecular Neuroscience, Vanderbilt University Medical Center, Nashville, TN 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15218143" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/pharmacology ; Adrenergic alpha-Agonists/pharmacology ; Animals ; Arrestin/*antagonists & inhibitors/*metabolism ; Arrestins/genetics/metabolism ; Cell Line ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Endocytosis ; Enzyme Activation ; Epinephrine/pharmacology ; G-Protein-Coupled Receptor Kinase 3 ; GTP-Binding Proteins/*metabolism ; Humans ; MAP Kinase Signaling System ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microfilament Proteins/genetics/*metabolism ; Mitogen-Activated Protein Kinases/metabolism ; Motor Activity ; Nerve Tissue Proteins/genetics/*metabolism ; Phosphorylation ; Receptors, Adrenergic, alpha-2/*metabolism ; Rotarod Performance Test ; Signal Transduction ; Transfection ; beta-Adrenergic Receptor Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-11-30
    Description: The actions of many extracellular stimuli are elicited by complexes of cell surface receptors, heterotrimeric guanine nucleotide-binding proteins (G proteins), and mitogen-activated protein (MAP) kinase complexes. Analysis of haploid yeast cells and their response to peptide mating pheromones has produced important advances in our understanding of G protein and MAP kinase signaling mechanisms. Many of the components, their interrelationships, and their regulators were first identified in yeast. Current analysis of the pheromone response pathway (see the Connections Maps at Science's Signal Transduction Knowledge Environment) will benefit from new and powerful genomic, proteomic, and computational approaches that will likely reveal additional general principles that are applicable to more complex organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yuqi -- Dohlman, Henrik G -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1508-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15567849" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle ; GTP-Binding Proteins/metabolism ; Lipoproteins/*metabolism ; *MAP Kinase Signaling System ; Mutation ; Pheromones/*metabolism ; Phosphorylation ; Protein Precursors/*metabolism ; Saccharomyces cerevisiae/genetics/*metabolism/physiology ; Saccharomyces cerevisiae Proteins/*metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2004-06-12
    Description: A tight coupling between adenosine triphosphate (ATP) hydrolysis and vectorial ion transport has to be maintained by ATP-consuming ion pumps. We report two crystal structures of Ca2+-bound sarco(endo)plasmic reticulum Ca2+-adenosine triphosphatase (SERCA) at 2.6 and 2.9 angstrom resolution in complex with (i) a nonhydrolyzable ATP analog [adenosine (beta-gamma methylene)-triphosphate] and (ii) adenosine diphosphate plus aluminum fluoride. SERCA reacts with ATP by an associative mechanism mediated by two Mg2+ ions to form an aspartyl-phosphorylated intermediate state (Ca2-E1 approximately P). The conformational changes that accompany the reaction with ATP pull the transmembrane helices 1 and 2 and close a cytosolic entrance for Ca2+, thereby preventing backflow before Ca2+ is released on the other side of the membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sorensen, Thomas Lykke-Moller -- Moller, Jesper Vuust -- Nissen, Poul -- New York, N.Y. -- Science. 2004 Jun 11;304(5677):1672-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15192230" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/*analogs & derivatives/*metabolism ; Aluminum Compounds/metabolism ; Animals ; Binding Sites ; Calcium/*metabolism ; Calcium-Transporting ATPases/*chemistry/*metabolism ; Crystallization ; Crystallography, X-Ray ; Cytosol/metabolism ; Fluorides/metabolism ; Models, Molecular ; Muscle Fibers, Fast-Twitch/*enzymology ; Phosphorylation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rabbits ; Sarcoplasmic Reticulum Calcium-Transporting ATPases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-01-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, Benjamin G -- New York, N.Y. -- Science. 2004 Jan 23;303(5657):480-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dyson Perrins Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QY, UK. ben.davis@chemistry.oxford.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14739446" target="_blank"〉PubMed〈/a〉
    Keywords: Biochemistry/*methods ; Drug Design ; Erythropoietin/chemistry/metabolism ; Glycosylation ; *Molecular Mimicry ; Molecular Structure ; Phosphorylation ; *Protein Processing, Post-Translational ; Recombinant Proteins/chemistry/metabolism ; ras Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2004-05-08
    Description: Copper active sites play a major role in enzymatic activation of dioxygen. We trapped the copper-dioxygen complex in the enzyme peptidylglycine-alphahydroxylating monooxygenase (PHM) by freezing protein crystals that had been soaked with a slow substrate and ascorbate in the presence of oxygen. The x-ray crystal structure of this precatalytic complex, determined to 1.85-angstrom resolution, shows that oxygen binds to one of the coppers in the enzyme with an end-on geometry. Given this structure, it is likely that dioxygen is directly involved in the electron transfer and hydrogen abstraction steps of the PHM reaction. These insights may apply to other copper oxygen-activating enzymes, such as dopamine beta-monooxygenase, and to the design of biomimetic complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prigge, Sean T -- Eipper, Betty A -- Mains, Richard E -- Amzel, L Mario -- DK32949/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2004 May 7;304(5672):864-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Immunology, The Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15131304" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Catalysis ; Catalytic Domain ; Copper/*metabolism ; Crystallization ; Crystallography, X-Ray ; Dipeptides/chemistry/metabolism ; Electron Transport ; Glycine/chemistry/metabolism ; Hydrogen/metabolism ; Hydrogen Bonding ; Ligands ; Mixed Function Oxygenases/*chemistry/*metabolism ; Models, Molecular ; Multienzyme Complexes/*chemistry/*metabolism ; Oxidation-Reduction ; Oxygen/*metabolism ; Peptides/metabolism ; Protein Conformation ; Rats ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2004-04-10
    Description: Ventricular arrhythmias can cause sudden cardiac death (SCD) in patients with normal hearts and in those with underlying disease such as heart failure. In animals with heart failure and in patients with inherited forms of exercise-induced SCD, depletion of the channel-stabilizing protein calstabin2 (FKBP12.6) from the ryanodine receptor-calcium release channel (RyR2) complex causes an intracellular Ca2+ leak that can trigger fatal cardiac arrhythmias. A derivative of 1,4-benzothiazepine (JTV519) increased the affinity of calstabin2 for RyR2, which stabilized the closed state of RyR2 and prevented the Ca2+ leak that triggers arrhythmias. Thus, enhancing the binding of calstabin2 to RyR2 may be a therapeutic strategy for common ventricular arrhythmias.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wehrens, Xander H T -- Lehnart, Stephan E -- Reiken, Steven R -- Deng, Shi-Xian -- Vest, John A -- Cervantes, Daniel -- Coromilas, James -- Landry, Donald W -- Marks, Andrew R -- New York, N.Y. -- Science. 2004 Apr 9;304(5668):292-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15073377" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Arrhythmia Agents/*pharmacology/therapeutic use ; Calcium/metabolism ; Calcium-Transporting ATPases/metabolism ; Cell Line ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Death, Sudden, Cardiac/prevention & control ; Electric Stimulation ; Electrocardiography ; Heart/*drug effects/physiology ; Humans ; Isoproterenol/pharmacology ; Mice ; Myocardial Contraction ; Phosphorylation ; Physical Exertion ; Protein Binding ; Ryanodine Receptor Calcium Release Channel/*metabolism ; Sarcoplasmic Reticulum/metabolism ; Sarcoplasmic Reticulum Calcium-Transporting ATPases ; Tachycardia, Ventricular/metabolism/*prevention & control ; Tacrolimus Binding Proteins/deficiency/genetics/*metabolism ; Thiazepines/*pharmacology/therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2004-07-31
    Description: Gefitinib (Iressa, Astra Zeneca Pharmaceuticals) is a tyrosine kinase inhibitor that targets the epidermal growth factor receptor (EGFR) and induces dramatic clinical responses in nonsmall cell lung cancers (NSCLCs) with activating mutations within the EGFR kinase domain. We report that these mutant EGFRs selectively activate Akt and signal transduction and activator of transcription (STAT) signaling pathways, which promote cell survival, but have no effect on extracellular signal-regulated kinase signaling, which induces proliferation. NSCLC cells expressing mutant EGFRs underwent extensive apoptosis after small interfering RNA-mediated knockdown of the mutant EGFR or treatment with pharmacological inhibitors of Akt and STAT signaling and were relatively resistant to apoptosis induced by conventional chemotherapeutic drugs. Thus, mutant EGFRs selectively transduce survival signals on which NSCLCs become dependent; inhibition of those signals by gefitinib may contribute to the drug's efficacy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sordella, Raffaella -- Bell, Daphne W -- Haber, Daniel A -- Settleman, Jeffrey -- P01 95281/PHS HHS/ -- New York, N.Y. -- Science. 2004 Aug 20;305(5687):1163-7. Epub 2004 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Therapeutics, Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15284455" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/pharmacology ; *Apoptosis ; Carcinoma, Non-Small-Cell Lung/drug therapy/*genetics/pathology ; Catalytic Domain ; Cell Line ; Cell Line, Tumor ; Cell Survival ; DNA-Binding Proteins/antagonists & inhibitors/metabolism ; Enzyme Activation ; Humans ; Lung Neoplasms/drug therapy/*genetics/pathology ; Mice ; *Milk Proteins ; Mitogen-Activated Protein Kinases/metabolism ; Mutation ; Mutation, Missense ; Phosphorylation ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Proto-Oncogene Proteins/antagonists & inhibitors/metabolism ; Proto-Oncogene Proteins c-akt ; Quinazolines/*pharmacology ; RNA, Small Interfering ; Receptor, Epidermal Growth Factor/*genetics/*metabolism ; STAT5 Transcription Factor ; Sequence Deletion ; Signal Transduction ; Trans-Activators/antagonists & inhibitors/metabolism ; Transfection ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2004-06-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Minna, John D -- Gazdar, Adi F -- Sprang, Stephen R -- Herz, Joachim -- P50CA70907/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1458-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. john.minna@utsouthwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15178790" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/genetics/metabolism ; Amino Acid Substitution ; Antineoplastic Agents/therapeutic use ; Carcinoma, Non-Small-Cell Lung/drug therapy/*genetics/metabolism ; Controlled Clinical Trials as Topic ; Enzyme Inhibitors/therapeutic use ; Epidermal Growth Factor/metabolism ; *Genes, erbB-1 ; Humans ; Japan ; Ligands ; Lung Neoplasms/*drug therapy/*genetics/metabolism ; *Mutation ; Phosphorylation ; Protein Structure, Tertiary ; Quinazolines/*therapeutic use ; Receptor, Epidermal Growth Factor/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Sequence Deletion ; Smoking ; Treatment Outcome ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2004-05-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greenamyre, J Timothy -- Hastings, Teresa G -- New York, N.Y. -- Science. 2004 May 21;304(5674):1120-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA. jgreena@emory.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15155938" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/metabolism ; Dopamine/metabolism ; Electron Transport Complex I/metabolism ; Humans ; Intracellular Signaling Peptides and Proteins ; Mitochondria/enzymology/*metabolism ; Mutation ; Nerve Tissue Proteins/genetics/metabolism ; Neurons/metabolism ; Oncogene Proteins/genetics/metabolism ; Oxidative Stress ; Parkinson Disease/*etiology/*genetics/metabolism ; Phosphorylation ; Protein Kinases/*genetics/*metabolism ; Reactive Oxygen Species/metabolism ; Synucleins ; Ubiquitin Thiolesterase/genetics/metabolism ; Ubiquitin-Protein Ligases/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2004-02-21
    Description: The Sir2 deacetylase modulates organismal life-span in various species. However, the molecular mechanisms by which Sir2 increases longevity are largely unknown. We show that in mammalian cells, the Sir2 homolog SIRT1 appears to control the cellular response to stress by regulating the FOXO family of Forkhead transcription factors, a family of proteins that function as sensors of the insulin signaling pathway and as regulators of organismal longevity. SIRT1 and the FOXO transcription factor FOXO3 formed a complex in cells in response to oxidative stress, and SIRT1 deacetylated FOXO3 in vitro and within cells. SIRT1 had a dual effect on FOXO3 function: SIRT1 increased FOXO3's ability to induce cell cycle arrest and resistance to oxidative stress but inhibited FOXO3's ability to induce cell death. Thus, one way in which members of the Sir2 family of proteins may increase organismal longevity is by tipping FOXO-dependent responses away from apoptosis and toward stress resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brunet, Anne -- Sweeney, Lora B -- Sturgill, J Fitzhugh -- Chua, Katrin F -- Greer, Paul L -- Lin, Yingxi -- Tran, Hien -- Ross, Sarah E -- Mostoslavsky, Raul -- Cohen, Haim Y -- Hu, Linda S -- Cheng, Hwei-Ling -- Jedrychowski, Mark P -- Gygi, Steven P -- Sinclair, David A -- Alt, Frederick W -- Greenberg, Michael E -- NIHP30-HD18655/HD/NICHD NIH HHS/ -- P01 NS35138-17/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2004 Mar 26;303(5666):2011-5. Epub 2004 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, and Department of Neurobiology, Center for Blood Research (CBR) Institute for Biomedical Research, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976264" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Apoptosis ; Cell Cycle ; Cell Line ; Cell Nucleus/metabolism ; Cells, Cultured ; Cerebellum/cytology ; Forkhead Transcription Factors ; Gene Expression Profiling ; Gene Expression Regulation ; Histone Deacetylases/genetics/*metabolism ; Humans ; Intracellular Signaling Peptides and Proteins ; Mice ; Mice, Knockout ; Neurons/cytology ; *Oxidative Stress ; Phosphorylation ; Proteins/genetics ; Recombinant Proteins/metabolism ; Sirtuin 1 ; Sirtuins/genetics/*metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sterner, Reinhard -- Schmid, Franz X -- New York, N.Y. -- Science. 2004 Jun 25;304(5679):1916-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universitat Regensburg, Institut fur Biophysik und Physikalische Biochemie, D-93040 Regensburg, Germany. reinhard.sterner@biologie.uni-regensburg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15218133" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Substitution ; Binding Sites ; Catalysis ; Computational Biology ; Computer Simulation ; Directed Molecular Evolution ; *Escherichia coli Proteins/chemistry/genetics/metabolism ; Glutamic Acid/chemistry ; Glyceraldehyde 3-Phosphate/metabolism ; Histidine/chemistry ; Hydrogen Bonding ; Lysine/chemistry ; Models, Molecular ; *Periplasmic Binding Proteins/chemistry/genetics/metabolism ; Protein Conformation ; *Protein Engineering ; *Triose-Phosphate Isomerase/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2004-12-18
    Description: Alfalfa mosaic virus genomic RNAs are infectious only when the viral coat protein binds to the RNA 3' termini. The crystal structure of an alfalfa mosaic virus RNA-peptide complex reveals that conserved AUGC repeats and Pro-Thr-x-Arg-Ser-x-x-Tyr coat protein amino acids cofold upon interacting. Alternating AUGC residues have opposite orientation, and they base pair in different adjacent duplexes. Localized RNA backbone reversals stabilized by arginine-guanine interactions place the adenosines and guanines in reverse order in the duplex. The results suggest that a uniform, organized 3' conformation, similar to that found on viral RNAs with transfer RNA-like ends, may be essential for replication.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1500904/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1500904/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guogas, Laura M -- Filman, David J -- Hogle, James M -- Gehrke, Lee -- AI20566/AI/NIAID NIH HHS/ -- GM42504/GM/NIGMS NIH HHS/ -- R01 AI020566/AI/NIAID NIH HHS/ -- R01 GM042504/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Dec 17;306(5704):2108-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15604410" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Alfalfa mosaic virus/*chemistry/*physiology ; Amino Acid Sequence ; Base Pairing ; Base Sequence ; Binding Sites ; Capsid Proteins/*chemistry/metabolism ; Crystallization ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA, Viral/*chemistry/metabolism ; Repetitive Sequences, Nucleic Acid ; *Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2004-02-14
    Description: The structure of the general transcription factor IIB (TFIIB) in a complex with RNA polymerase II reveals three features crucial for transcription initiation: an N-terminal zinc ribbon domain of TFIIB that contacts the "dock" domain of the polymerase, near the path of RNA exit from a transcribing enzyme; a "finger" domain of TFIIB that is inserted into the polymerase active center; and a C-terminal domain, whose interaction with both the polymerase and with a TATA box-binding protein (TBP)-promoter DNA complex orients the DNA for unwinding and transcription. TFIIB stabilizes an early initiation complex, containing an incomplete RNA-DNA hybrid region. It may interact with the template strand, which sets the location of the transcription start site, and may interfere with RNA exit, which leads to abortive initiation or promoter escape. The trajectory of promoter DNA determined by the C-terminal domain of TFIIB traverses sites of interaction with TFIIE, TFIIF, and TFIIH, serving to define their roles in the transcription initiation process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bushnell, David A -- Westover, Kenneth D -- Davis, Ralph E -- Kornberg, Roger D -- AI21144/AI/NIAID NIH HHS/ -- GM49985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 13;303(5660):983-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14963322" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Nucleic Acid Hybridization ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/chemistry/metabolism ; RNA Polymerase II/*chemistry/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; TATA Box ; TATA-Box Binding Protein/chemistry/metabolism ; Templates, Genetic ; Transcription Factor TFIIB/*chemistry/metabolism ; Transcription Factors, TFII/chemistry/metabolism ; *Transcription, Genetic ; Zinc/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2004-03-06
    Description: Self-incompatibility (SI) response in Brassica is initiated by haplotype-specific interactions between the pollen-borne ligand S locus protein 11/SCR and its stigmatic S receptor kinase, SRK. This binding induces autophosphorylation of SRK, which is then thought to trigger a signaling cascade that leads to self-pollen rejection. A recessive mutation of the modifier (m) gene eliminates the SI response in stigma. Positional cloning of M has revealed that it encodes a membrane-anchored cytoplasmic serine/threonine protein kinase, designated M locus protein kinase (MLPK). Transient expression of MLPK restores the ability of mm papilla cells to reject self-pollen, suggesting that MLPK is a positive mediator of Brassica SI signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murase, Kohji -- Shiba, Hiroshi -- Iwano, Megumi -- Che, Fang-Sik -- Watanabe, Masao -- Isogai, Akira -- Takayama, Seiji -- New York, N.Y. -- Science. 2004 Mar 5;303(5663):1516-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15001779" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Brassica rapa/enzymology/genetics/*physiology ; Cell Membrane/*enzymology ; Cloning, Molecular ; Cytoplasm/enzymology ; Flowers/enzymology/*physiology ; Genes, Plant ; Haplotypes ; Membrane Proteins/chemistry/genetics/*metabolism ; Mutation ; Open Reading Frames ; Phosphorylation ; Physical Chromosome Mapping ; Plant Proteins ; Pollen/physiology ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-01-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dobberstein, Bernhard -- Sinning, Irmgard -- New York, N.Y. -- Science. 2004 Jan 16;303(5656):320-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Zentrum fur Molekulare Biologie and I. Sinning is at the Biochemiezentrum, Universitat Heidelberg, 69120 Heidelberg, Germany. dobberstein@zmbh.uni-heidelberg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14726579" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeal Proteins/*chemistry/metabolism ; Cell Membrane/chemistry/metabolism ; Crystallography, X-Ray ; Lipid Bilayers ; Membrane Proteins/*chemistry/metabolism ; Methanococcus/*chemistry/metabolism ; Models, Molecular ; Peptides/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Subunits ; *Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-05-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aboelella, Nermeen W -- Reynolds, Anne M -- Tolman, William B -- New York, N.Y. -- Science. 2004 May 7;304(5672):836-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15131298" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Copper/*metabolism ; Crystallography, X-Ray ; Dipeptides/chemistry/metabolism ; Electron Spin Resonance Spectroscopy ; Hydroxylation ; Mixed Function Oxygenases/*chemistry/metabolism ; Models, Chemical ; Models, Molecular ; Multienzyme Complexes/*chemistry/metabolism ; Nitric Oxide/*metabolism ; Nitrite Reductases/*chemistry/metabolism ; Nitrites/metabolism ; Oxidation-Reduction ; Oxygen/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2004-11-30
    Description: In vitro studies suggest a role for c-Jun N-terminal kinases (JNKs) in proatherogenic cellular processes. We show that atherosclerosis-prone ApoE-/- mice simultaneously lacking JNK2 (ApoE-/- JNK2-/- mice), but not ApoE-/- JNK1-/- mice, developed less atherosclerosis than do ApoE-/- mice. Pharmacological inhibition of JNK activity efficiently reduced plaque formation. Macrophages lacking JNK2 displayed suppressed foam cell formation caused by defective uptake and degradation of modified lipoproteins and showed increased amounts of the modified lipoprotein-binding and -internalizing scavenger receptor A (SR-A), whose phosphorylation was markedly decreased. Macrophage-restricted deletion of JNK2 was sufficient to decrease atherogenesis. Thus, JNK2-dependent phosphorylation of SR-A promotes uptake of lipids in macrophages, thereby regulating foam cell formation, a critical step in atherogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ricci, Romeo -- Sumara, Grzegorz -- Sumara, Izabela -- Rozenberg, Izabela -- Kurrer, Michael -- Akhmedov, Alexander -- Hersberger, Martin -- Eriksson, Urs -- Eberli, Franz R -- Becher, Burkhard -- Boren, Jan -- Chen, Mian -- Cybulsky, Myron I -- Moore, Kathryn J -- Freeman, Mason W -- Wagner, Erwin F -- Matter, Christian M -- Luscher, Thomas F -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1558-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Research, Institute of Physiology, and Division of Cardiology, University Hospital Zurich, CH-8057 Zurich, Switzerland. romeo.ricci@cell.biol.ethz.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15567863" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD36/metabolism ; Aorta/chemistry/pathology ; Apolipoproteins E/genetics ; Arteriosclerosis/*metabolism/pathology ; Bone Marrow Transplantation ; Cells, Cultured ; Cholesterol/metabolism ; Cholesterol, Dietary/administration & dosage ; Diet, Atherogenic ; Endothelial Cells/physiology ; Foam Cells/*metabolism ; Lipoproteins, LDL/metabolism ; Macrophages/*metabolism ; Macrophages, Peritoneal/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitogen-Activated Protein Kinase 8/metabolism ; Mitogen-Activated Protein Kinase 9/genetics/*metabolism ; Muscle, Smooth, Vascular/cytology ; Myocytes, Smooth Muscle/physiology ; Phosphorylation ; Receptors, Immunologic/genetics/*metabolism ; Receptors, Scavenger ; Scavenger Receptors, Class A ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2004-09-18
    Description: The electron-rich, six-coordinate tris-aryloxide uranium(III) complex [((AdArO)3tacn)U(III)] [where (AdArOH)3tacn = 1,4,7-tris(3-adamantyl-5-tert-butyl-2-hydroxybenzyl)1,4,7-triazacyclononane] reacts rapidly with CO2 to yield [((AdArO)3tacn)U(IV)(CO2)], a complex in which the CO(2) ligand is linearly coordinated to the metal through its oxygen atom (eta1-OCO). The latter complex has been crystallographically and spectroscopically characterized. The inequivalent O-C-O bond lengths [1.122 angstroms (A) for the O-C bond adjacent to uranium and 1.277 A for the other], considered together with magnetization data and electronic and vibrational spectra, support the following bonding model: U(IV)=O=C*-O- 〈--〉 U(IV)-OC-O-. In these charge-separated resonance structures, the uranium center is oxidized to uranium(IV) and the CO2 ligand reduced by one electron.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Castro-Rodriguez, Ingrid -- Nakai, Hidetaka -- Zakharov, Lev N -- Rheingold, Arnold L -- Meyer, Karsten -- 3 T32 DK07233-2651/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2004 Sep 17;305(5691):1757-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15375263" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon Dioxide/*chemistry ; Crystallography ; Electrons ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Magnetics ; Models, Molecular ; Molecular Structure ; Oxidation-Reduction ; Oxygen/*chemistry ; Spectrum Analysis ; Temperature ; Uranium/*chemistry ; X-Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2004-06-05
    Description: Condensins are conserved proteins containing SMC (structural maintenance of chromosomes) moieties that organize and compact chromosomes in an unknown mechanism essential for faithful chromosome partitioning. We show that MukBEF, the condensin in Escherichia coli, cooperatively compacts a single DNA molecule into a filament with an ordered, repetitive structure in an adenosine triphosphate (ATP) binding-dependent manner. When stretched to a tension of approximately 17 piconewtons, the filament extended in a series of repetitive transitions in a broad distribution centered on 45 nanometers. A filament so extended and held at a lower force recondensed in steps of 35 nanometers or its multiples; this cycle was repeatable even in the absence of ATP and free MukBEF. Remarkably, the pattern of transitions displayed by a given filament during the initial extension was identical in every subsequent extension. Hence, after being deformed micrometers in length, each filament returned to its original compact structure without the addition of energy. Incubation with topoisomerase I increased the rate of recondensation and allowed the structure to extend and reform almost reversibly, indicating that supercoiled DNA is trapped in the condensed structure. We suggest a new model for how MukBEF organizes the bacterial chromosome in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Case, Ryan B -- Chang, Yun-Pei -- Smith, Steven B -- Gore, Jeff -- Cozzarelli, Nicholas R -- Bustamante, Carlos -- GM31655/GM/NIGMS NIH HHS/ -- GM32543/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jul 9;305(5681):222-7. Epub 2004 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15178751" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Binding Sites ; Chemistry, Physical ; Chromosomal Proteins, Non-Histone/chemistry/*metabolism ; DNA Topoisomerases, Type I/metabolism ; DNA, Bacterial/*chemistry/*metabolism ; DNA, Superhelical/chemistry/metabolism ; Dimerization ; Escherichia coli/genetics ; Escherichia coli Proteins/chemistry/*metabolism ; Lasers ; Microspheres ; Models, Chemical ; Models, Molecular ; *Nucleic Acid Conformation ; Physicochemical Phenomena ; Protein Binding ; Protein Conformation ; Protein Subunits ; Repressor Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2004-03-20
    Description: The spatial organization of the microtubule cytoskeleton is thought to be directed by steady-state activity gradients of diffusible regulatory molecules. We visualized such intracellular gradients by monitoring the interaction between tubulin and a regulator of microtubule dynamics, stathmin, using a fluorescence resonance energy transfer (FRET) biosensor. These gradients were observed both during interphase in motile membrane protrusions and during mitosis around chromosomes, which suggests that a similar mechanism may contribute to the creation of polarized microtubule structures. These interaction patterns are likely to reflect phosphorylation of stathmin in these areas.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Niethammer, Philipp -- Bastiaens, Philippe -- Karsenti, Eric -- New York, N.Y. -- Science. 2004 Mar 19;303(5665):1862-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15031504" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins ; Binding Sites ; Cell Line ; *Cell Movement ; Chromosomes/metabolism ; Cytosol/metabolism ; Fluorescence Resonance Energy Transfer ; Green Fluorescent Proteins ; Interphase ; Luminescent Proteins ; *Microtubule Proteins ; Microtubules/metabolism/ultrastructure ; *Mitosis ; Mutation ; Phosphoprotein Phosphatases/metabolism ; Phosphoproteins/genetics/*metabolism ; Phosphorylation ; Protein Binding ; Recombinant Fusion Proteins/metabolism ; Spindle Apparatus/ultrastructure ; Stathmin ; Swine ; Tetradecanoylphorbol Acetate/pharmacology ; Transfection ; Tubulin/*metabolism ; Xenopus ; Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2004-08-03
    Description: The motor protein kinesin moves along microtubules, driven by adenosine triphosphate (ATP) hydrolysis. However, it remains unclear how kinesin converts the chemical energy into mechanical movement. We report crystal structures of monomeric kinesin KIF1A with three transition-state analogs: adenylyl imidodiphosphate (AMP-PNP), adenosine diphosphate (ADP)-vanadate, and ADP-AlFx (aluminofluoride complexes). These structures, together with known structures of the ADP-bound state and the adenylyl-(beta,gamma-methylene) diphosphate (AMP-PCP)-bound state, show that kinesin uses two microtubule-binding loops in an alternating manner to change its interaction with microtubules during the ATP hydrolysis cycle; loop L11 is extended in the AMP-PNP structure, whereas loop L12 is extended in the ADP structure. ADP-vanadate displays an intermediate structure in which a conformational change in two switch regions causes both loops to be raised from the microtubule, thus actively detaching kinesin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nitta, Ryo -- Kikkawa, Masahide -- Okada, Yasushi -- Hirokawa, Nobutaka -- New York, N.Y. -- Science. 2004 Jul 30;305(5684):678-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Anatomy, University of Tokyo, Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15286375" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Adenylyl Imidodiphosphate/metabolism ; Aluminum/metabolism ; Animals ; Binding Sites ; Crystallography, X-Ray ; Fluorides/metabolism ; Hydrogen Bonding ; Kinesin/*chemistry/*metabolism ; Mice ; Microtubules/*metabolism ; Models, Molecular ; Nerve Tissue Proteins/*chemistry/*metabolism ; Phosphates/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Vanadates/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2004-06-26
    Description: Rational design of enzymes is a stringent test of our understanding of protein chemistry and has numerous potential applications. Here, we present and experimentally validate the computational design of enzyme activity in proteins of known structure. We have predicted mutations that introduce triose phosphate isomerase activity into ribose-binding protein, a receptor that normally lacks enzyme activity. The resulting designs contain 18 to 22 mutations, exhibit 10(5)- to 10(6)-fold rate enhancements over the uncatalyzed reaction, and are biologically active, in that they support the growth of Escherichia coli under gluconeogenic conditions. The inherent generality of the design method suggests that many enzymes can be designed by this approach.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dwyer, Mary A -- Looger, Loren L -- Hellinga, Homme W -- New York, N.Y. -- Science. 2004 Jun 25;304(5679):1967-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15218149" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Binding Sites ; Catalysis ; Catalytic Domain ; Computational Biology ; Computer Simulation ; Dihydroxyacetone Phosphate/metabolism ; Dimerization ; Directed Molecular Evolution ; Enzyme Stability ; Escherichia coli/genetics/growth & development/metabolism ; *Escherichia coli Proteins/chemistry/genetics/metabolism ; Glyceraldehyde 3-Phosphate/metabolism ; Glycerol/metabolism ; Hydrogen Bonding ; Kinetics ; Lactates/metabolism ; Ligands ; Models, Molecular ; Molecular Conformation ; Mutation ; *Periplasmic Binding Proteins/chemistry/genetics/metabolism ; Protein Conformation ; *Protein Engineering ; Protons ; *Triose-Phosphate Isomerase/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-11-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mackinnon, Roderick -- New York, N.Y. -- Science. 2004 Nov 19;306(5700):1304-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, NY 10021, USA. mackinn@rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15550651" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/chemistry ; Crystallography, X-Ray ; *Ion Channel Gating ; *Lipid Bilayers ; Membrane Lipids/*chemistry ; Models, Molecular ; Potassium Channels, Voltage-Gated/*chemistry/metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2004-05-08
    Description: Self-regulating systems often use robust oscillatory circuits. One such system controls the chemotactic signaling mechanism of Dictyostelium, where pulses of adenosine 3',5'-monophosphate (cAMP) are generated with a periodicity of 7 minutes. We have observed spontaneous oscillations in activation of the mitogen-activated protein (MAP) kinase ERK2 that occur in phase with peaks of cAMP, and we show that ERK2 modulates cAMP levels through the phosphodiesterase RegA. Computer modeling and simulations of the underlying circuit faithfully account for the ability of the cells to spontaneously generate periodic pulses during specific stages of development. Similar oscillatory processes may occur in cells of many different species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maeda, Mineko -- Lu, Sijie -- Shaulsky, Gad -- Miyazaki, Yuji -- Kuwayama, Hidekazu -- Tanaka, Yoshimasa -- Kuspa, Adam -- Loomis, William F -- GM52359/GM/NIGMS NIH HHS/ -- GM62350/GM/NIGMS NIH HHS/ -- R01 GM052359/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 May 7;304(5672):875-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Graduate School of Science, Osaka University, Machikaneyama-cho 1-16, Toyonaka, Osaka 560-0043, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15131307" target="_blank"〉PubMed〈/a〉
    Keywords: 3',5'-Cyclic-AMP Phosphodiesterases ; Adenylyl Cyclases/metabolism ; Animals ; Computer Simulation ; Cyclic AMP/*metabolism ; Cyclic AMP-Dependent Protein Kinases/genetics/*metabolism ; Dictyostelium/enzymology/genetics/growth & development/*metabolism ; Enzyme Activation ; Mitogen-Activated Protein Kinase 1/genetics/*metabolism ; Models, Biological ; Mutagenesis, Site-Directed ; Mutation ; Phosphorylation ; Protozoan Proteins/genetics/metabolism ; Receptors, Cyclic AMP/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2004-02-28
    Description: We determined the minimal portion of Escherichia coli RNA polymerase (RNAP) holoenzyme able to accomplish promoter melting, the crucial step in transcription initiation that provides RNAP access to the template strand. Upon duplex DNA binding, the N terminus of the beta' subunit (amino acids 1 to 314) and amino acids 94 to 507 of the sigma subunit, together comprising less than one-fifth of RNAP holoenzyme, were able to melt an extended -10 promoter in a reaction remarkably similar to that of authentic holoenzyme. Our results support the model that capture of nontemplate bases extruded from the DNA helix underlies the melting process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Young, Brian A -- Gruber, Tanja M -- Gross, Carol A -- GM 57755/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 27;303(5662):1382-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Stomatology and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14988563" target="_blank"〉PubMed〈/a〉
    Keywords: DNA, Bacterial/chemistry/genetics/*metabolism ; DNA, Superhelical/chemistry/genetics/metabolism ; DNA-Directed RNA Polymerases/chemistry/*metabolism ; Escherichia coli/*enzymology/*genetics ; Holoenzymes/chemistry/metabolism ; Models, Molecular ; Nucleic Acid Conformation ; *Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Tertiary ; Sigma Factor/chemistry/*metabolism ; Templates, Genetic ; Transcription, Genetic ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2004-11-20
    Description: The observation of the regulation of fast protein dynamics in a cellular context requires the development of reliable technologies. Here, a signal regulation cascade reliant on the stimulus-dependent acceleration of the bidirectional flow of mitogen-activated protein kinase (extracellular signal-regulated kinase) across the nuclear envelope was visualized by reversible protein highlighting. Light-induced conversion between the bright and dark states of a monomeric fluorescent protein engineered from a novel coral protein was employed. Because of its photochromic properties, the protein could be highlighted, erased, and highlighted again in a nondestructive manner, allowing direct observation of regulated fast nucleocytoplasmic shuttling of key signaling molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ando, Ryoko -- Mizuno, Hideaki -- Miyawaki, Atsushi -- New York, N.Y. -- Science. 2004 Nov 19;306(5700):1370-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15550670" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Animals ; Anthozoa ; COS Cells ; Cell Nucleus/*metabolism ; Cytoplasm/*metabolism ; Epidermal Growth Factor/pharmacology ; Fluorescence ; HeLa Cells ; Humans ; Hydrogen-Ion Concentration ; Light ; Luminescent Proteins/chemistry/*metabolism ; MAP Kinase Signaling System ; Microscopy, Confocal ; Mitogen-Activated Protein Kinase 3/*metabolism ; Molecular Sequence Data ; Nuclear Envelope/*metabolism ; Phosphorylation ; Protein Transport ; Recombinant Proteins/chemistry/metabolism ; Transfection ; beta Karyopherins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2004-05-15
    Description: Dynamic changes in chromatin structure, induced by posttranslational modification of histones, play a fundamental role in regulating eukaryotic transcription. Here we report that histone H2B is phosphorylated at evolutionarily conserved Ser33 (H2B-S33) by the carboxyl-terminal kinase domain (CTK) of the Drosophila TFIID subunit TAF1. Phosphorylation of H2B-S33 at the promoter of the cell cycle regulatory gene string and the segmentation gene giant coincides with transcriptional activation. Elimination of TAF1 CTK activity in Drosophila cells and embryos reduces transcriptional activation and phosphorylation of H2B-S33. These data reveal that H2B-S33 is a physiological substrate for the TAF1 CTK and that H2B-S33 phosphorylation is essential for transcriptional activation events that promote cell cycle progression and development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maile, Tobias -- Kwoczynski, Simona -- Katzenberger, Rebeccah J -- Wassarman, David A -- Sauer, Frank -- GM066204-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 May 14;304(5673):1010-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of California-Riverside, Riverside, CA 95121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15143281" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cell Cycle ; Cell Cycle Proteins ; DNA-Binding Proteins/genetics ; Drosophila/embryology/*genetics/metabolism ; Drosophila Proteins/chemistry/genetics/*metabolism ; Embryo, Nonmammalian/physiology ; Genes, Insect ; Histone Acetyltransferases ; Histones/chemistry/*metabolism ; Homeodomain Proteins/genetics ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Phosphoserine/metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Protein Tyrosine Phosphatases/genetics ; RNA Interference ; Recombinant Proteins/chemistry/metabolism ; Repressor Proteins/genetics ; TATA-Binding Protein Associated Factors ; Transcription Factor TFIID/chemistry/genetics/*metabolism ; Transcription Factors ; *Transcription, Genetic ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-06-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sack, Fred D -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1461-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, OH 43210, USA. sack.1@osu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15178791" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*cytology/genetics/growth & development/metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Cell Communication ; Cell Division ; Cell Membrane/metabolism ; Genes, Plant ; MAP Kinase Kinase Kinases/*metabolism ; MAP Kinase Signaling System ; Mutation ; Phosphorylation ; Plant Epidermis/*cytology/physiology ; Plant Leaves/*cytology/physiology ; Receptors, Cell Surface/metabolism ; Serine Endopeptidases/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2004-01-06
    Description: Interactions between ends from different DNA double-strand breaks (DSBs) can produce tumorigenic chromosome translocations. Two theories for the juxta-position of DSBs in translocations, the static "contact-first" and the dynamic "breakage-first" theory, differ fundamentally in their requirement for DSB mobility. To determine whether or not DSB-containing chromosome domains are mobile and can interact, we introduced linear tracks of DSBs in nuclei. We observed changes in track morphology within minutes after DSB induction, indicating movement of the domains. In a subpopulation of cells, the domains clustered. Juxtaposition of different DSB-containing chromosome domains through clustering, which was most extensive in G1 phase cells, suggests an adhesion process in which we implicate the Mre11 complex. Our results support the breakage-first theory to explain the origin of chromosomal translocations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aten, Jacob A -- Stap, Jan -- Krawczyk, Przemek M -- van Oven, Carel H -- Hoebe, Ron A -- Essers, Jeroen -- Kanaar, Roland -- New York, N.Y. -- Science. 2004 Jan 2;303(5654):92-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Microscopical Research, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14704429" target="_blank"〉PubMed〈/a〉
    Keywords: Alpha Particles ; Animals ; Ataxia Telangiectasia/genetics/metabolism ; CHO Cells ; Cell Nucleus/metabolism/radiation effects ; *Chromosome Breakage ; Chromosomes, Human/*metabolism ; Chromosomes, Mammalian/metabolism ; Cricetinae ; Cricetulus ; DNA/*metabolism/radiation effects ; *DNA Damage ; DNA Repair ; DNA-Binding Proteins/metabolism ; Fibroblasts/metabolism ; G1 Phase ; G2 Phase ; HeLa Cells ; Histones/*metabolism ; Humans ; Phosphorylation ; Rad51 Recombinase ; S Phase ; Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2004-07-13
    Description: Ribonucleotide reductase (RNR) synthesizes the deoxyribonucleotides for DNA synthesis. The R2 protein of normal class I ribonucleotide reductases contains a diiron site that produces a stable tyrosyl free radical, essential for enzymatic activity. Structural and electron paramagnetic resonance studies of R2 from Chlamydia trachomatis reveal a protein lacking a tyrosyl radical site. Instead, the protein yields an iron-coupled radical upon reconstitution. The coordinating structure of the diiron site is similar to that of diiron oxidases/monoxygenases and supports a role for this radical in the RNR mechanism. The specific ligand pattern in the C. trachomatis R2 metal site characterizes a new group of R2 proteins that so far has been found in eight organisms, three of which are human pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hogbom, Martin -- Stenmark, Pal -- Voevodskaya, Nina -- McClarty, Grant -- Graslund, Astrid -- Nordlund, Par -- New York, N.Y. -- Science. 2004 Jul 9;305(5681):245-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Stockholm University, Roslagstullsbacken 15, Albanova University Center, SE-10691 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15247479" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chlamydia trachomatis/*enzymology ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Free Radicals ; Hydrogen Bonding ; Iron/analysis ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Oxygen/metabolism ; Protein Folding ; Protein Structure, Secondary ; Ribonucleotide Reductases/*chemistry/classification/metabolism ; Tyrosine/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2004-09-14
    Description: We performed molecular dynamics simulations of the collapse of a two-domain protein, the BphC enzyme, into a globular structure to examine how water molecules mediate hydrophobic collapse of proteins. In the interdomain region, liquid water persists with a density 10 to 15% lower than in the bulk, even at small domain separations. Water depletion and hydrophobic collapse occur on a nanosecond time scale, which is two orders of magnitude slower than that found in the collapse of idealized paraffin-like plates. When the electrostatic protein-water forces are turned off, a dewetting transition occurs in the interdomain region and the collapse speeds up by more than an order of magnitude. When attractive van der Waals forces are turned off as well, the dewetting in the interdomain region is more profound, and the collapse is even faster.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Ruhong -- Huang, Xuhui -- Margulis, Claudio J -- Berne, Bruce J -- GM4330/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Sep 10;305(5690):1605-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Computational Biology Center, IBM Thomas J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA. ruhongz@us.ibm.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15361621" target="_blank"〉PubMed〈/a〉
    Keywords: Computer Simulation ; *Dioxygenases ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Models, Molecular ; Oxygenases/*chemistry ; Protein Conformation ; *Protein Folding ; *Protein Structure, Tertiary ; Static Electricity ; Surface Properties ; Water/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2004-12-25
    Description: The ablation of the protein kinase Raf-1 renders cells hypersensitive to apoptosis despite normal regulation of extracellular signal-regulated kinases, which suggests that apoptosis protection is mediated by a distinct pathway. We used proteomic analysis of Raf-1 signaling complexes to show that Raf-1 counteracts apoptosis by suppressing the activation of mammalian sterile 20-like kinase (MST2). Raf-1 prevents dimerization and phosphorylation of the activation loop of MST2 independently of its protein kinase activity. Depletion of MST2 from Raf-1-/- mouse or human cells abrogated sensitivity to apoptosis, whereas overexpression of MST2 induced apoptosis. Conversely, depletion of Raf-1 from Raf-1+/+ mouse or human cells led to MST2 activation and apoptosis. The concomitant depletion of both Raf-1 and MST2 prevented apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Neill, Eric -- Rushworth, Linda -- Baccarini, Manuela -- Kolch, Walter -- New York, N.Y. -- Science. 2004 Dec 24;306(5705):2267-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15618521" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/metabolism ; *Apoptosis ; COS Cells ; Cell Line, Tumor ; Dimerization ; Humans ; Mice ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Proteomics ; Proto-Oncogene Proteins c-raf/genetics/*metabolism ; RNA, Small Interfering ; Signal Transduction ; Staurosporine/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2004-05-08
    Description: A copper-nitrosyl intermediate forms during the catalytic cycle of nitrite reductase, the enzyme that mediates the committed step in bacterial denitrification. The crystal structure of a type 2 copper-nitrosyl complex of nitrite reductase reveals an unprecedented side-on binding mode in which the nitrogen and oxygen atoms are nearly equidistant from the copper cofactor. Comparison of this structure with a refined nitrite-bound crystal structure explains how coordination can change between copper-oxygen and copper-nitrogen during catalysis. The side-on copper-nitrosyl in nitrite reductase expands the possibilities for nitric oxide interactions in copper proteins such as superoxide dismutase and prions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tocheva, Elitza I -- Rosell, Federico I -- Mauk, A Grant -- Murphy, Michael E P -- New York, N.Y. -- Science. 2004 May 7;304(5672):867-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15131305" target="_blank"〉PubMed〈/a〉
    Keywords: Alcaligenes faecalis/enzymology ; Ascorbic Acid/metabolism ; Binding Sites ; Catalysis ; Copper/*metabolism ; Crystallization ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Hydrogen Bonding ; Models, Chemical ; Models, Molecular ; Nitric Oxide/*metabolism ; Nitrite Reductases/*chemistry/*metabolism ; Nitrites/*metabolism ; Oxidation-Reduction ; Oxygen/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2004-02-21
    Description: Mycobacteria have low-permeability outer membranes that render them resistant to most antibiotics. Hydrophilic nutrients can enter by way of transmembrane-channel proteins called porins. An x-ray analysis of the main porin from Mycobacterium smegmatis, MspA, revealed a homooctameric goblet-like conformation with a single central channel. This is the first structure of a mycobacterial outer-membrane protein. No structure-related protein was found in the Protein Data Bank. MspA contains two consecutive beta barrels with nonpolar outer surfaces that form a ribbon around the porin, which is too narrow to fit the thickness of the mycobacterial outer membrane in contemporary models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Faller, Michael -- Niederweis, Michael -- Schulz, Georg E -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1189-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Organische Chemie und Biochemie, Albert-Ludwigs-Universitat, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976314" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/chemistry ; Cell Membrane Permeability ; Cloning, Molecular ; Crystallization ; Crystallography, X-Ray ; Electric Conductivity ; Escherichia coli/genetics ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Mycobacterium smegmatis/*chemistry/metabolism ; Porins/*chemistry/genetics/metabolism ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2004-10-16
    Description: Obesity contributes to the development of type 2 diabetes, but the underlying mechanisms are poorly understood. Using cell culture and mouse models, we show that obesity causes endoplasmic reticulum (ER) stress. This stress in turn leads to suppression of insulin receptor signaling through hyperactivation of c-Jun N-terminal kinase (JNK) and subsequent serine phosphorylation of insulin receptor substrate-1 (IRS-1). Mice deficient in X-box-binding protein-1 (XBP-1), a transcription factor that modulates the ER stress response, develop insulin resistance. These findings demonstrate that ER stress is a central feature of peripheral insulin resistance and type 2 diabetes at the molecular, cellular, and organismal levels. Pharmacologic manipulation of this pathway may offer novel opportunities for treating these common diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ozcan, Umut -- Cao, Qiong -- Yilmaz, Erkan -- Lee, Ann-Hwee -- Iwakoshi, Neal N -- Ozdelen, Esra -- Tuncman, Gurol -- Gorgun, Cem -- Glimcher, Laurie H -- Hotamisligil, Gokhan S -- AI32412/AI/NIAID NIH HHS/ -- DK52539/DK/NIDDK NIH HHS/ -- P05-CA100707/CA/NCI NIH HHS/ -- T32-DK07703/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2004 Oct 15;306(5695):457-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Complex Diseases, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15486293" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/metabolism ; Animals ; Cells, Cultured ; DNA-Binding Proteins/genetics/metabolism ; Diabetes Mellitus, Type 2/*metabolism ; Endoplasmic Reticulum/*metabolism ; Glucose/metabolism ; Homeostasis ; Insulin/*metabolism ; Insulin Receptor Substrate Proteins ; *Insulin Resistance ; Liver/metabolism ; Membrane Proteins/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Obese ; Mitogen-Activated Protein Kinase 8 ; Mitogen-Activated Protein Kinases/metabolism ; Muscle, Skeletal/metabolism ; Mutation ; Nuclear Proteins/genetics/metabolism ; Obesity/*metabolism ; Phosphoproteins/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Rats ; Receptor, Insulin/metabolism ; Signal Transduction ; Transcription Factors ; Tunicamycin/pharmacology ; eIF-2 Kinase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2004-05-01
    Description: Receptor tyrosine kinase genes were sequenced in non-small cell lung cancer (NSCLC) and matched normal tissue. Somatic mutations of the epidermal growth factor receptor gene EGFR were found in 15of 58 unselected tumors from Japan and 1 of 61 from the United States. Treatment with the EGFR kinase inhibitor gefitinib (Iressa) causes tumor regression in some patients with NSCLC, more frequently in Japan. EGFR mutations were found in additional lung cancer samples from U.S. patients who responded to gefitinib therapy and in a lung adenocarcinoma cell line that was hypersensitive to growth inhibition by gefitinib, but not in gefitinib-insensitive tumors or cell lines. These results suggest that EGFR mutations may predict sensitivity to gefitinib.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paez, J Guillermo -- Janne, Pasi A -- Lee, Jeffrey C -- Tracy, Sean -- Greulich, Heidi -- Gabriel, Stacey -- Herman, Paula -- Kaye, Frederic J -- Lindeman, Neal -- Boggon, Titus J -- Naoki, Katsuhiko -- Sasaki, Hidefumi -- Fujii, Yoshitaka -- Eck, Michael J -- Sellers, William R -- Johnson, Bruce E -- Meyerson, Matthew -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1497-500. Epub 2004 Apr 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Medical Oncology and Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15118125" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/genetics/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Antineoplastic Agents/pharmacology/therapeutic use ; Carcinoma, Non-Small-Cell Lung/drug therapy/*genetics/metabolism ; Cell Line, Tumor ; Controlled Clinical Trials as Topic ; Enzyme Inhibitors/pharmacology/therapeutic use ; Female ; *Genes, erbB-1 ; Humans ; Japan ; Lung Neoplasms/drug therapy/*genetics/metabolism ; Male ; Molecular Sequence Data ; *Mutation ; Mutation, Missense ; Phosphorylation ; Protein Conformation ; Protein Structure, Tertiary ; Quinazolines/pharmacology/*therapeutic use ; Receptor, Epidermal Growth Factor/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Sequence Deletion ; Treatment Outcome ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-09-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knepper, Mark A -- Agre, Peter -- Z01 HL001285-21/Intramural NIH HHS/ -- Z99 HL999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2004 Sep 10;305(5690):1573-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Kidney and Electrolyte Metabolism, National Institutes of Health, Bethesda, MD 20892, USA. pagre@jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15361612" target="_blank"〉PubMed〈/a〉
    Keywords: Ammonia/*metabolism ; Biological Transport ; Carrier Proteins/metabolism ; Cation Transport Proteins/*chemistry/genetics/metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Escherichia coli/*chemistry/genetics/metabolism ; Escherichia coli Proteins/*chemistry/genetics/metabolism ; Glycoproteins/metabolism ; Humans ; Hydrogen-Ion Concentration ; Kidney Tubules, Collecting/metabolism ; Lipid Bilayers/metabolism ; Liver/metabolism ; Membrane Glycoproteins/metabolism ; *Membrane Transport Proteins ; Models, Molecular ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Quaternary Ammonium Compounds/metabolism ; Rh-Hr Blood-Group System/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2004-01-17
    Description: Two structurally homologous guanosine triphosphatase (GTPase) domains interact directly during signal recognition particle (SRP)-mediated cotranslational targeting of proteins to the membrane. The 2.05 angstrom structure of a complex of the NG GTPase domains of Ffh and FtsY reveals a remarkably symmetric heterodimer sequestering a composite active site that contains two bound nucleotides. The structure explains the coordinate activation of the two GTPases. Conformational changes coupled to formation of their extensive interface may function allosterically to signal formation of the targeting complex to the signal-sequence binding site and the translocon. We propose that the complex represents a molecular "latch" and that its disengagement is regulated by completion of assembly of the GTPase active site.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546161/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546161/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Focia, Pamela J -- Shepotinovskaya, Irina V -- Seidler, James A -- Freymann, Douglas M -- GM58500/GM/NIGMS NIH HHS/ -- R01 GM058500/GM/NIGMS NIH HHS/ -- RR07707/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 16;303(5656):373-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14726591" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Dimerization ; Guanosine Triphosphate/*analogs & derivatives/metabolism ; Heterotrimeric GTP-Binding Proteins/*chemistry/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; Receptors, Cytoplasmic and Nuclear/*chemistry/metabolism ; Signal Recognition Particle/*chemistry/metabolism ; Thermus/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2004-10-30
    Description: Thiamine diphosphate (ThDP) is used as a cofactor in many key metabolic enzymes. We present evidence that the ThDPs in the two active sites of the E1 (EC 1.2.4.1) component of the pyruvate dehydrogenase complex communicate over a distance of 20 angstroms by reversibly shuttling a proton through an acidic tunnel in the protein. This "proton wire" permits the co-factors to serve reciprocally as general acid/base in catalysis and to switch the conformation of crucial active-site peptide loops. This synchronizes the progression of chemical events and can account for the oligomeric organization, conformational asymmetry, and "ping-pong" kinetic properties of E1 and other thiamine-dependent enzymes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frank, Rene A W -- Titman, Christopher M -- Pratap, J Venkatesh -- Luisi, Ben F -- Perham, Richard N -- New York, N.Y. -- Science. 2004 Oct 29;306(5697):872-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15514159" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Dihydrolipoyllysine-Residue Acetyltransferase ; Geobacillus stearothermophilus/*enzymology ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Models, Molecular ; Mutation ; Phosphorylation ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Protons ; Pyruvate Dehydrogenase (Lipoamide)/*chemistry/genetics/*metabolism ; Pyruvate Dehydrogenase Complex/*chemistry/*metabolism ; Pyruvic Acid/metabolism ; Thiamine Pyrophosphate/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2004-06-05
    Description: Stomata are epidermal structures that modulate gas exchange between a plant and its environment. During development, stomata are specified and positioned nonrandomly by the integration of asymmetric cell divisions and intercellular signaling. The Arabidopsis mitogen-activated protein kinase kinase kinase gene, YODA, acts as part of a molecular switch controlling cell identities in the epidermis. Null mutations in YODA lead to excess stomata, whereas constitutive activation of YODA eliminated stomata. Transcriptome analysis of seedlings with altered YODA activity was used to identify potential stomatal regulatory genes. A putative transcription factor from this set was shown to regulate the developmental behavior of stomatal precursors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bergmann, Dominique C -- Lukowitz, Wolfgang -- Somerville, Chris R -- 5 F32GM064273-03/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1494-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Carnegie Institution, Department of Plant Biology, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15178800" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*cytology/genetics/growth & development/metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Cell Differentiation ; Cell Division ; Cell Lineage ; DNA, Bacterial ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant ; MAP Kinase Kinase Kinases/genetics/*metabolism ; MAP Kinase Signaling System ; Mutation ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Phosphorylation ; Plant Epidermis/*cytology/growth & development/physiology ; Plant Leaves/*cytology/growth & development/physiology ; Plants, Genetically Modified ; Receptors, Cell Surface/metabolism ; Serine Endopeptidases/metabolism ; Transcription Factors/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-11-30
    Description: Natural killer (NK) cells are lymphocytes of the innate immune system that are involved in the early defenses against foreign cells, as well as autologous cells undergoing various forms of stress, such as microbial infection or tumor transformation. NK cell activation is controlled by a dynamic balance between complementary and antagonistic pathways that are initiated upon interaction with potential target cells. NK cells express an array of activating cell surface receptors that can trigger cytolytic programs, as well as cytokine or chemokine secretion. Some of these activating cell surface receptors initiate protein tyrosine kinase (PTK)-dependent pathways through noncovalent associations with transmembrane signaling adaptors that harbor intracytoplasmic ITAMs (immunoreceptor tyrosine-based activation motifs). Additional cell surface receptors that are not directly coupled to ITAMs also participate in NK cell activation. These include NKG2D, which is noncovalently associated to the DAP10 transmembrane signaling adaptor, as well as integrins and cytokine receptors. NK cells also express cell surface inhibitory receptors that antagonize activating pathways through protein tyrosine phosphatases (PTPs). These inhibitory cell surface receptors are characterized by intracytoplasmic ITIMs (immunoreceptor tyrosine-based inhibition motifs). The tyrosine-phosphorylation status of several signaling components that are substrates for both PTKs and PTPs is thus key to the propagation of the NK cell effector pathways. Understanding the integration of these multiple signals is central to the understanding and manipulation of NK cell effector signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vivier, Eric -- Nunes, Jacques A -- Vely, Frederic -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1517-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie de Marseille-Luminy, INSERM-CNRS-Univ. Mediterranee, Campus de Luminy, Case 906, 13288 Marseille cedex 09, France. vivier@ciml.univ-mrs.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15567854" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Amino Acid Motifs ; Animals ; Antibody-Dependent Cell Cytotoxicity ; Cytokines/metabolism ; Humans ; Killer Cells, Natural/immunology/*physiology ; Lymphocyte Activation ; Membrane Proteins/metabolism ; Mice ; Models, Immunological ; NK Cell Lectin-Like Receptor Subfamily K ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Tyrosine Phosphatases/metabolism ; Protein-Tyrosine Kinases/metabolism ; Receptors, Immunologic/chemistry/metabolism/physiology ; Receptors, Natural Killer Cell ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2004-05-29
    Description: Inherited defects in signaling pathways downstream of the insulin receptor have long been suggested to contribute to human type 2 diabetes mellitus. Here we describe a mutation in the gene encoding the protein kinase AKT2/PKBbeta in a family that shows autosomal dominant inheritance of severe insulin resistance and diabetes mellitus. Expression of the mutant kinase in cultured cells disrupted insulin signaling to metabolic end points and inhibited the function of coexpressed, wild-type AKT. These findings demonstrate the central importance of AKT signaling to insulin sensitivity in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2258004/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2258004/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉George, Stella -- Rochford, Justin J -- Wolfrum, Christian -- Gray, Sarah L -- Schinner, Sven -- Wilson, Jenny C -- Soos, Maria A -- Murgatroyd, Peter R -- Williams, Rachel M -- Acerini, Carlo L -- Dunger, David B -- Barford, David -- Umpleby, A Margot -- Wareham, Nicholas J -- Davies, Huw Alban -- Schafer, Alan J -- Stoffel, Markus -- O'Rahilly, Stephen -- Barroso, Ines -- 078986/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2004 May 28;304(5675):1325-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15166380" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Adipocytes/cytology/metabolism ; Adult ; Aged ; Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Catalytic Domain ; Cell Differentiation ; Cell Line ; Cell Nucleus/metabolism ; Cytosol/metabolism ; DNA-Binding Proteins/metabolism ; Diabetes Mellitus/*genetics/metabolism ; Female ; Genes, Dominant ; Hepatocyte Nuclear Factor 3-beta ; Humans ; Hyperinsulinism/genetics/metabolism ; Insulin/metabolism ; Insulin Resistance/*genetics ; Lipid Metabolism ; Male ; Middle Aged ; Molecular Sequence Data ; *Mutation, Missense ; Nuclear Proteins/metabolism ; Pedigree ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/*genetics/metabolism ; Proto-Oncogene Proteins/chemistry/*genetics/metabolism ; Proto-Oncogene Proteins c-akt ; Signal Transduction ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2004-05-01
    Description: A general caging method for proteins that are regulated by phosphorylation was used to study the in vivo biochemical action of cofilin and the subsequent cellular response. By acute and local activation of a chemically engineered, light-sensitive phosphocofilin mimic, we demonstrate that cofilin polymerizes actin, generates protrusions, and determines the direction of cell migration. We propose a role for cofilin that is distinct from its role as an actin-depolymerizing factor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghosh, Mousumi -- Song, Xiaoyan -- Mouneimne, Ghassan -- Sidani, Mazen -- Lawrence, David S -- Condeelis, John S -- GM38511/GM/NIGMS NIH HHS/ -- GM61034/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Apr 30;304(5671):743-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15118165" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Depolymerizing Factors ; Actins/*metabolism ; Animals ; Biopolymers ; Cell Line, Tumor ; *Cell Movement ; Light ; Lim Kinases ; Microfilament Proteins/genetics/*physiology ; Microinjections ; Mutation ; Phenylacetates/chemistry ; Phosphorylation ; Protein Binding ; Protein Kinases/metabolism ; Pseudopodia/physiology/ultrastructure ; RNA, Small Interfering ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2004-04-06
    Description: The complex containing the Mre11, Rad50, and Nbs1 proteins (MRN) is essential for the cellular response to DNA double-strand breaks, integrating DNA repair with the activation of checkpoint signaling through the protein kinase ATM (ataxia telangiectasia mutated). We demonstrate that MRN stimulates the kinase activity of ATM in vitro toward its substrates p53, Chk2, and histone H2AX. MRN makes multiple contacts with ATM and appears to stimulate ATM activity by facilitating the stable binding of substrates. Phosphorylation of Nbs1 is critical for MRN stimulation of ATM activity toward Chk2, but not p53. Kinase-deficient ATM inhibits wild-type ATM phosphorylation of Chk2, consistent with the dominant-negative effect of kinase-deficient ATM in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Ji-Hoon -- Paull, Tanya T -- CA94008/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2004 Apr 2;304(5667):93-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, Institute of Cellular and Molecular Biology, University of Texas at Austin, 1 University Station, A4800, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15064416" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia/genetics ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/genetics/*metabolism ; Checkpoint Kinase 2 ; DNA/metabolism ; *DNA Repair Enzymes ; DNA-Binding Proteins/*metabolism ; Enzyme Activation ; Histones/metabolism ; Humans ; Mutation ; Mutation, Missense ; Nuclear Proteins/genetics/*metabolism ; Phosphorylation ; Protein Binding ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Recombinant Proteins/metabolism ; Tumor Suppressor Protein p53/metabolism ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2004-10-16
    Description: We have analyzed the local structure and dynamics of the prokaryotic voltage-dependent K+ channel (KvAP) at 0 millivolts, using site-directed spin labeling and electron paramagnetic resonance spectroscopy. We show that the S4 segment is located at the protein/lipid interface, with most of its charges protected from the lipid environment. Structurally, S4 is highly dynamic and is separated into two short helices by a flexible linker. Accessibility and dynamics data indicate that the S1 segment is surrounded by other parts of the protein. We propose that S1 is at the contact interface between the voltage-sensing and pore domains. These results establish the general principles of voltage-dependent channel structure in a biological membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cuello, Luis G -- Cortes, D Marien -- Perozo, Eduardo -- New York, N.Y. -- Science. 2004 Oct 15;306(5695):491-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22906, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15486302" target="_blank"〉PubMed〈/a〉
    Keywords: Electron Spin Resonance Spectroscopy ; Hydrophobic and Hydrophilic Interactions ; *Lipid Bilayers ; Models, Molecular ; Oxygen ; Potassium Channels, Voltage-Gated/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2004-07-31
    Description: Argonaute proteins and small interfering RNAs (siRNAs) are the known signature components of the RNA interference effector complex RNA-induced silencing complex (RISC). However, the identity of "Slicer," the enzyme that cleaves the messenger RNA (mRNA) as directed by the siRNA, has not been resolved. Here, we report the crystal structure of the Argonaute protein from Pyrococcus furiosus at 2.25 angstrom resolution. The structure reveals a crescent-shaped base made up of the amino-terminal, middle, and PIWI domains. The Piwi Argonaute Zwille (PAZ) domain is held above the base by a "stalk"-like region. The PIWI domain (named for the protein piwi) is similar to ribonuclease H, with a conserved active site aspartate-aspartate-glutamate motif, strongly implicating Argonaute as "Slicer." The architecture of the molecule and the placement of the PAZ and PIWI domains define a groove for substrate binding and suggest a mechanism for siRNA-guided mRNA cleavage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Ji-Joon -- Smith, Stephanie K -- Hannon, Gregory J -- Joshua-Tor, Leemor -- New York, N.Y. -- Science. 2004 Sep 3;305(5689):1434-7. Epub 2004 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15284453" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaeal Proteins/*chemistry/metabolism ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyrococcus furiosus/*chemistry ; *RNA Interference ; RNA, Messenger/*metabolism ; RNA, Small Interfering/*metabolism ; RNA-Induced Silencing Complex/*metabolism ; Ribonuclease H/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-03-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goring, Daphne R -- Walker, John C -- New York, N.Y. -- Science. 2004 Mar 5;303(5663):1474-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany, University of Toronto, Toronto, M5S 3B2, Canada. goring@botany.utoronto.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15001763" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/enzymology/genetics/physiology ; Brassica rapa/enzymology/genetics/*physiology ; Carrier Proteins/metabolism ; Cell Membrane/*enzymology ; Flowers/enzymology/*physiology ; Genes, Plant ; Phosphorylation ; Plant Proteins/metabolism ; Pollen/physiology ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; *Signal Transduction ; *Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2004-08-21
    Description: Cartilaginous fish are the phylogenetically oldest living organisms known to possess components of the vertebrate adaptive immune system. Key to their immune response are heavy-chain, homodimeric immunoglobulins called new antigen receptors (IgNARs), in which the variable (V) domains recognize antigens with only a single immunoglobulin domain, akin to camelid heavy-chain V domains. The 1.45 angstrom resolution crystal structure of the type I IgNAR V domain in complex with hen egg-white lysozyme (HEL) reveals a minimal antigen-binding domain that contains only two of the three conventional complementarity-determining regions but still binds HEL with nanomolar affinity by means of a binding interface comparable in size to conventional antibodies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stanfield, Robyn L -- Dooley, Helen -- Flajnik, Martin F -- Wilson, Ian A -- GM38273/GM/NIGMS NIH HHS/ -- RR06603/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2004 Sep 17;305(5691):1770-3. Epub 2004 Aug 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15319492" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Complementarity Determining Regions/chemistry ; Crystallography, X-Ray ; Dimerization ; Drug Combinations ; Evolution, Molecular ; Genes, Immunoglobulin ; Immunoglobulin Heavy Chains/*chemistry/genetics/metabolism ; Immunoglobulin Variable Region/*chemistry/genetics/immunology/metabolism ; Immunoglobulins/*chemistry/genetics/immunology/metabolism ; Meglumine ; Models, Molecular ; Muramidase/*chemistry/immunology/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Receptors, Antigen/*chemistry/genetics/immunology/metabolism ; Sharks/*immunology ; Tetrahydropapaveroline/*analogs & derivatives
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-02-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉deHaseth, Pieter L -- Nilsen, Timothy W -- New York, N.Y. -- Science. 2004 Feb 27;303(5662):1307-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RNA Center and Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA. pld2@po.cwru.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14988541" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Conserved Sequence ; DNA, Bacterial/chemistry/genetics/*metabolism ; DNA, Superhelical/chemistry/metabolism ; DNA-Directed RNA Polymerases/chemistry/*metabolism ; Escherichia coli/*enzymology/*genetics ; Models, Molecular ; Nucleic Acid Conformation ; *Promoter Regions, Genetic ; Protein Conformation ; Sigma Factor/chemistry/*metabolism ; Templates, Genetic ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-11-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mohd-Sarip, Adone -- Verrijzer, C Peter -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1484-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Erasmus Medical Center, Rotterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15567842" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromatin/*chemistry/metabolism/ultrastructure ; DNA/chemistry/*metabolism ; *Gene Expression Regulation ; *Gene Silencing ; Histones/*chemistry/metabolism ; Humans ; Microscopy, Electron ; Models, Biological ; Models, Molecular ; Multiprotein Complexes/chemistry/metabolism ; Nucleosomes/*chemistry/metabolism ; Polycomb-Group Proteins ; Protein Folding ; Protein Structure, Tertiary ; Repressor Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2004-07-17
    Description: Interaction of regulatory DNA binding proteins with their target sites is usually preceded by binding to nonspecific DNA. This speeds up the search for the target site by several orders of magnitude. We report the solution structure and dynamics of the complex of a dimeric lac repressor DNA binding domain with nonspecific DNA. The same set of residues can switch roles from a purely electrostatic interaction with the DNA backbone in the nonspecific complex to a highly specific binding mode with the base pairs of the cognate operator sequence. The protein-DNA interface of the nonspecific complex is flexible on biologically relevant time scales that may assist in the rapid and efficient finding of the target site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kalodimos, Charalampos G -- Biris, Nikolaos -- Bonvin, Alexandre M J J -- Levandoski, Marc M -- Guennuegues, Marc -- Boelens, Rolf -- Kaptein, Robert -- GM 23467/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jul 16;305(5682):386-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15256668" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; Base Pairing ; Binding Sites ; DNA, Bacterial/*chemistry/*metabolism ; Diffusion ; Dimerization ; Escherichia coli/chemistry/genetics/metabolism ; Escherichia coli Proteins/chemistry/metabolism ; Hydrogen Bonding ; Lac Repressors ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Nucleic Acid Conformation ; Operator Regions, Genetic ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry/*metabolism ; Static Electricity ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2004-10-23
    Description: Calmodulin (CaM) is a major effector for the intracellular actions of Ca2+ in nearly all cell types. We identified a CaM-binding protein, designated regulator of calmodulin signaling (RCS). G protein-coupled receptor (GPCR)-dependent activation of protein kinase A (PKA) led to phosphorylation of RCS at Ser55 and increased its binding to CaM. Phospho-RCS acted as a competitive inhibitor of CaM-dependent enzymes, including protein phosphatase 2B (PP2B, also called calcineurin). Increasing RCS phosphorylation blocked GPCR- and PP2B-mediated suppression of L-type Ca2+ currents in striatal neurons. Conversely, genetic deletion of RCS significantly increased this modulation. Through a molecular mechanism that amplifies GPCR- and PKA-mediated signaling and attenuates GPCR- and PP2B-mediated signaling, RCS synergistically increases the phosphorylation of key proteins whose phosphorylation is regulated by PKA and PP2B.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rakhilin, S V -- Olson, P A -- Nishi, A -- Starkova, N N -- Fienberg, A A -- Nairn, A C -- Surmeier, D J -- Greengard, P -- DA10044/DA/NIDA NIH HHS/ -- DA12958/DA/NIDA NIH HHS/ -- MH40899/MH/NIMH NIH HHS/ -- NS34696/NS/NINDS NIH HHS/ -- P01 DA010044/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2004 Oct 22;306(5696):698-701.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15499021" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/metabolism ; Calcineurin Inhibitors ; Calcium/*metabolism ; Calcium Channels, L-Type/metabolism ; Calcium Signaling ; Calmodulin/*metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Dopamine and cAMP-Regulated Phosphoprotein 32 ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neostriatum/cytology/metabolism ; Nerve Tissue Proteins/metabolism ; Neurons/metabolism ; Phosphoproteins/*metabolism ; Phosphorylation ; Receptor, Muscarinic M1/metabolism ; Receptors, Dopamine D1/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2004-10-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaplinsky, Nicholas J -- Barton, M Kathryn -- New York, N.Y. -- Science. 2004 Oct 29;306(5697):822-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15514147" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/genetics/growth & development/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Biological Transport ; Cell Membrane/metabolism ; Flowers/growth & development ; Indoleacetic Acids/*metabolism ; Membrane Transport Proteins/genetics/*metabolism ; Models, Biological ; Mutation ; Phosphorylation ; Plant Roots/metabolism ; Plant Shoots/metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2004-07-17
    Description: Cytochromes P450 (P450s) metabolize a wide range of endogenous compounds and xenobiotics, such as pollutants, environmental compounds, and drug molecules. The microsomal, membrane-associated, P450 isoforms CYP3A4, CYP2D6, CYP2C9, CYP2C19, CYP2E1, and CYP1A2 are responsible for the oxidative metabolism of more than 90% of marketed drugs. Cytochrome P450 3A4 (CYP3A4) metabolizes more drug molecules than all other isoforms combined. Here we report three crystal structures of CYP3A4: unliganded, bound to the inhibitor metyrapone, and bound to the substrate progesterone. The structures revealed a surprisingly small active site, with little conformational change associated with the binding of either compound. An unexpected peripheral binding site is identified, located above a phenylalanine cluster, which may be involved in the initial recognition of substrates or allosteric effectors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, Pamela A -- Cosme, Jose -- Vinkovic, Dijana Matak -- Ward, Alison -- Angove, Hayley C -- Day, Philip J -- Vonrhein, Clemens -- Tickle, Ian J -- Jhoti, Harren -- New York, N.Y. -- Science. 2004 Jul 30;305(5684):683-6. Epub 2004 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astex Technology, 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15256616" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; Crystallography, X-Ray ; Cytochrome P-450 CYP3A ; Cytochrome P-450 Enzyme System/*chemistry/*metabolism ; Heme/chemistry ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Metyrapone/*metabolism ; Models, Molecular ; Phenylalanine/chemistry/metabolism ; Progesterone/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-07-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diao, Aipo -- Lowe, Martin -- New York, N.Y. -- Science. 2004 Jul 2;305(5680):48-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK. martin.lowe@man.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15232093" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brefeldin A/pharmacology ; Carrier Proteins/*metabolism ; Cell Division ; Golgi Apparatus/*physiology/ultrastructure ; Intracellular Membranes/physiology/ultrastructure ; Membrane Proteins/metabolism ; *Mitosis ; Models, Biological ; Phosphorylation ; Rats ; *Transcription Factors ; Transport Vesicles/physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2004-08-28
    Description: Lipid phosphates can act as signaling molecules to influence cell division, apoptosis, and migration. wunen and wunen2 encode Drosophila lipid phosphate phosphohydrolases, integral membrane enzymes that dephosphorylate extracellular lipid phosphates. wun and wun2 act redundantly in somatic tissues to repel migrating germ cells, although the mechanism by which germ cells respond is unclear. Here, we report that wun2 also functions in germ cells, enabling them to perceive the wun/wun2-related signal from the soma. Upon Wun2 expression, cultured insect cells dephosphorylate and internalize exogenously supplied lipid phosphate. We propose that Drosophila germ cell migration and survival are controlled by competition for hydrolysis of a lipid phosphate between germ cells and soma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Renault, A D -- Sigal, Y J -- Morris, A J -- Lehmann, R -- GM54388/GM/NIGMS NIH HHS/ -- HD421900 RO1/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2004 Sep 24;305(5692):1963-6. Epub 2004 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Developmental Genetics Program, Skirball Institute and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15331773" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Movement/physiology ; Cell Survival/physiology ; Drosophila/*cytology ; Drosophila Proteins/genetics/*physiology ; Female ; Germ Cells/*physiology ; Humans ; Hydrolysis ; Lipid Metabolism ; Membrane Proteins/genetics/*physiology ; Phosphates/metabolism ; Phosphatidate Phosphatase/genetics/*physiology ; Phospholipids/*metabolism ; Phosphorylation ; Recombinant Proteins ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2004-11-30
    Description: Chromatin folding determines the accessibility of DNA constituting eukaryotic genomes and consequently is profoundly important in the mechanisms of nuclear processes such as gene regulation. Nucleosome arrays compact to form a 30-nanometer chromatin fiber of hitherto disputed structure. Two competing classes of models have been proposed in which nucleosomes are either arranged linearly in a one-start higher order helix or zigzag back and forth in a two-start helix. We analyzed compacted nucleosome arrays stabilized by introduction of disulfide cross-links and show that the chromatin fiber comprises two stacks of nucleosomes in accord with the two-start model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dorigo, Benedetta -- Schalch, Thomas -- Kulangara, Alexandra -- Duda, Sylwia -- Schroeder, Rasmus R -- Richmond, Timothy J -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1571-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eidgenossische Technische Hochschule (ETH) Zurich, Institute for Molecular Biology and Biophysics, ETH-Honggerberg, CH-8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15567867" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromatin/*chemistry/ultrastructure ; DNA/chemistry/metabolism ; Electrophoresis, Polyacrylamide Gel ; Histones/chemistry/genetics/metabolism ; Microscopy, Electron ; Models, Biological ; Models, Molecular ; Multiprotein Complexes/chemistry ; Mutation ; Nucleosomes/*chemistry/ultrastructure ; Protein Folding ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2004-08-07
    Description: The structure of epothilone A, bound to alpha,beta-tubulin in zinc-stabilized sheets, was determined by a combination of electron crystallography at 2.89 angstrom resolution and nuclear magnetic resonance-based conformational analysis. The complex explains both the broad-based epothilone structure-activity relationship and the known mutational resistance profile. Comparison with Taxol shows that the longstanding expectation of a common pharmacophore is not met, because each ligand exploits the tubulin-binding pocket in a unique and independent manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nettles, James H -- Li, Huilin -- Cornett, Ben -- Krahn, Joseph M -- Snyder, James P -- Downing, Kenneth H -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):866-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Systems Pharmacology, Emory University, Atlanta, GA 30322, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297674" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography ; Crystallography, X-Ray ; Epothilones/chemistry/*metabolism/pharmacology ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Models, Molecular ; Molecular Conformation ; Molecular Structure ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Paclitaxel/metabolism ; Protein Conformation ; Stereoisomerism ; Structure-Activity Relationship ; Tubulin/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2004-03-20
    Description: Protein kinases are targets for treatment of a number of diseases. This review focuses on kinase inhibitors that are in the clinic or in clinical trials and for which structural information is available. Structures have informed drug design and have illuminated the mechanism of inhibition. We review progress with the receptor tyrosine kinases (growth factor receptors EGFR, VEGFR, and FGFR) and nonreceptor tyrosine kinases (Bcr-Abl), where advances have been made with cancer therapeutic agents such as Herceptin and Gleevec. Among the serine-threonine kinases, p38, Rho-kinase, cyclin-dependent kinases, and Chk1 have been targeted with productive results for inflammation and cancer. Structures have provided insights into targeting the inactive or active form of the kinase, for targeting the global constellation of residues at the ATP site or less conserved additional pockets or single residues, and into targeting noncatalytic domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Noble, Martin E M -- Endicott, Jane A -- Johnson, Louise N -- New York, N.Y. -- Science. 2004 Mar 19;303(5665):1800-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biophysics, Department of Biochemistry, Rex Richards Building, University of Oxford, Oxford 3X2 3QU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15031492" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Antineoplastic Agents/chemistry/pharmacology/therapeutic use ; Binding Sites ; Catalytic Domain ; Clinical Trials as Topic ; *Drug Design ; Enzyme Inhibitors/*chemistry/metabolism/pharmacology/therapeutic use ; Humans ; Models, Molecular ; Molecular Structure ; Protein Conformation ; *Protein Kinase Inhibitors ; Protein Kinases/*chemistry/metabolism ; Protein Structure, Tertiary ; Signal Transduction/drug effects ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2004-12-25
    Description: Binding of Sonic Hedgehog (Shh) to Patched (Ptc) relieves the latter's tonic inhibition of Smoothened (Smo), a receptor that spans the cell membrane seven times. This initiates signaling which, by unknown mechanisms, regulates vertebrate developmental processes. We find that two molecules interact with mammalian Smo in an activation-dependent manner: G protein-coupled receptor kinase 2 (GRK2) leads to phosphorylation of Smo, and beta-arrestin 2 fused to green fluorescent protein interacts with Smo. These two processes promote endocytosis of Smo in clathrin-coated pits. Ptc inhibits association of beta-arrestin 2 with Smo, and this inhibition is relieved in cells treated with Shh. A Smo agonist stimulated and a Smo antagonist (cyclopamine) inhibited both phosphorylation of Smo by GRK2 and interaction of beta-arrestin 2 with Smo. beta-Arrestin 2 and GRK2 are thus potential mediators of signaling by activated Smo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Wei -- Ren, Xiu-Rong -- Nelson, Christopher D -- Barak, Larry S -- Chen, James K -- Beachy, Philip A -- de Sauvage, Frederic -- Lefkowitz, Robert J -- New York, N.Y. -- Science. 2004 Dec 24;306(5705):2257-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA. w.chen@duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15618519" target="_blank"〉PubMed〈/a〉
    Keywords: Arrestins/*metabolism ; Cell Line ; Cell Membrane/*metabolism ; Clathrin/metabolism ; Coated Pits, Cell-Membrane/metabolism ; Cyclic AMP-Dependent Protein Kinases/*metabolism ; Cyclohexylamines/pharmacology ; Cytosol/metabolism ; Dynamins/metabolism ; Endocytosis ; Hedgehog Proteins ; Humans ; Membrane Proteins/metabolism ; Phosphorylation ; Receptors, Cell Surface ; Receptors, G-Protein-Coupled/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Thiophenes/pharmacology ; Trans-Activators/metabolism ; Transfection ; Veratrum Alkaloids/pharmacology ; beta-Adrenergic Receptor Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...