ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union  (111)
  • Wiley  (37)
  • 2020-2023  (148)
  • 1955-1959
  • 2020  (148)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Wiley
    In:  In: Bergey's Manual of Systematics of Archaea and Bacteria. Wiley, Chichester, p. 1.
    Publication Date: 2022-01-14
    Description: Rho.do.mi.cro' bi.um. Gr. neut. n. rhodon the rose; Gr. masc. adj. micros small; Gr. masc. n. bios life; N.L. neut. n. Rhodomicrobium red microbe. Proteobacteria / Alphaproteobacteria / Rhizobiales / Hyphomicrobiaceae / Rhodomicrobium Most characteristic for Rhodomicrobium species is the polar cell growth and the characteristic vegetative growth cycle which includes the formation of peritrichously flagellated swarmer cells and nonmotile “mother cells,” which form prosthecae from one to several times the length of the mother cell. Daughter cells originate as spherical buds at the end of the prosthecae and may undergo differentiation in various ways. They are Gram-negative ovoid to elongate-ovoid bacteria belonging to the Alphaproteobacteria. Internal photosynthetic membranes are of the lamellar type. Photosynthetic pigments are bacteriochlorophyll a and carotenoids of the spirilloxanthin series. The predominant cellular fatty acid is C18:1, which comprises more than 80% of the membrane-bound fatty acids. Ubiquinone and rhodoquinone with 10 isoprene units are present, and the lipopolysaccharides are characterized by a glucosamine-containing, phosphate-free lipid A with amide-bound C16:0 3 OH. DNA G + C content (mol%): 61.8–63.8. Type species: Rhodomicrobium vannielii Duchow and Douglas 1949.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Wiley
    In:  In: Bergey's Manual of Systematics of Archaea and Bacteria. Wiley, Chichester, p. 1.
    Publication Date: 2022-01-17
    Description: Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Blas.to.chlo'ris. Gr. masc. n. blastos bud shoot; Gr. masc. adj. chloros green; N.L. fem. n. Blastochloris green bud shoot. Proteobacteria / Alphaproteobacteria / Rhizobiales / Hyphomicrobiaceae / Blastochloris Blastochloris species are anoxygenic phototrophic Alphaproteobacteria that have bacteriochlorophyll b in their photosynthetic reaction centers. Crystals of the photosynthetic reaction centers of Blastochloris viridis were the first that have been studied in high-resolution structure analysis at 3 Å resolution. Internal photosynthetic membranes are present as lamellae underlying and parallel to the cytoplasmic membrane. Cells are rod shaped to ovoid and exhibit polar growth, budding, and asymmetric cell division and form rosette-like cell aggregates. They are motile by means of subpolar flagella and stain Gram-negative. Straight-chain monounsaturated C18:1 is the predominant component of cellular fatty acids. Ubiquinones and menaquinones are present, and the lipopolysaccharides are characterized by a 2,3-diamino-2,3-deoxy-d-glucose (DAG)-containing, phosphate-free lipid A with amide-bound C14:0 3OH. DNA G + C content (mol%): 63.8–68.3. Type species: Blastochloris viridis (Drews and Giesbrecht 1966) Hiraishi 1997 (Rhodopseudomonas viridis Drews and Giesbrecht 1966).
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Wiley
    In:  In: Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB). , ed. by Brenner, D. J., Krieg, N. R. and Staley, J. T. Wiley, New York, USA, pp. 506-507. ISBN 978-1-118-96060-8
    Publication Date: 2022-01-17
    Description: Rho.do.mi.cro' bi.um. Gr. neut. n. rhodon the rose; Gr. masc. adj. micros small; Gr. masc. n. bios life; N.L. neut. n. Rhodomicrobium red microbe. Proteobacteria / Alphaproteobacteria / Rhizobiales / Hyphomicrobiaceae / Rhodomicrobium Most characteristic for Rhodomicrobium species is the polar cell growth and the characteristic vegetative growth cycle which includes the formation of peritrichously flagellated swarmer cells and nonmotile “mother cells,” which form prosthecae from one to several times the length of the mother cell. Daughter cells originate as spherical buds at the end of the prosthecae and may undergo differentiation in various ways. They are Gram‐negative ovoid to elongate‐ovoid bacteria belonging to the Alphaproteobacteria. Internal photosynthetic membranes are of the lamellar type. Photosynthetic pigments are bacteriochlorophyll a and carotenoids of the spirilloxanthin series. The predominant cellular fatty acid is C18:1, which comprises more than 80% of the membrane‐bound fatty acids. Ubiquinone and rhodoquinone with 10 isoprene units are present, and the lipopolysaccharides are characterized by a glucosamine‐containing, phosphate‐free lipid A with amide‐bound C16:0 3 OH. DNA G + C content (mol%): 61.8–63.8. Type species: Rhodomicrobium vannielii Duchow and Douglas 1949.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-07-24
    Description: The availability of dissolved iron (dFe) exerts an important control on primary production. Recent ocean observation programs have provided information on dFe in many parts of the ocean, but knowledge is still limited concerning the rates of processes that control the concentrations and cycling of dFe in the ocean and hence the role of dFe as a determinant of global primary production. We constructed a three-dimensional gridded dataset of oceanic dFe concentrations by using both observations and a simple model of the iron cycle, and estimated the difference of processes among the ocean basins in controlling the dFe distributions. A Green's function approach was used to integrate the observations and the model. The reproduced three-dimensional dFe distribution indicated that iron influx from aeolian dust and from shelf sediment were 7.6 Gmol yr and 4.4 Gmol yr in the Atlantic Ocean and 0.4 Gmol yr and 4.1 Gmol yr in the Pacific Ocean. The residence times were estimated to be 12.2 years in the Atlantic and 80.4 years in the Pacific. These estimates imply large differences in the cycling of dFe between the two ocean basins that would need to be taken into consideration when projecting future iron biogeochemical cycling under different climate change scenarios. Although there is some uncertainty in our estimates, global estimates of iron cycle characteristics based on this approach can be expected to enhance our understanding of the material cycle and hence of the current and future rates of marine primary production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-11
    Description: As the Arctic coast erodes, it drains thermokarst lakes, transforming them into lagoons and, eventually, integrates them into subsea permafrost. Lagoons represent the first stage of a thermokarst lake transition to a marine setting and possibly more saline and colder upper boundary conditions. In this research, borehole data, electrical resistivity surveying, and modelling of heat and salt diffusion were carried out at Polar Fox Lagoon on the Bykovsky Peninsula, Siberia. Polar Fox Lagoon is a seasonally isolated water body connected to Tiksi Bay through a channel, leading to hypersaline waters under the ice cover. The boreholes in the centre of the lagoon revealed floating ice and a saline cryotic bed underlain by a saline cryotic talik, a thin ice‐bearing permafrost layer, and unfrozen ground. The bathymetry showed that most of the lagoon was ice‐grounded in spring. In bedfast ice areas, the electrical resistivity profiles suggest that an unfrozen saline layer was underlain by a thick layer of refrozen talik. The modelling suggests thermokarst lake taliks refreeze when submerged in saltwater with mean annual bottom water temperatures below or slightly above 0 °C. This occurs, because the top‐down chemical degradation of newly formed ice‐bearing permafrost is slower than the cooling of the talik. Hence, lagoons may pre‐condition taliks with a layer of ice‐bearing permafrost before encroachment by the sea and this frozen layer may act as a cap on gas migration out of the underlying talik.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Romagnoni, G., Kvile, K. o., Dagestad, K., Eikeset, A. M., Kristiansen, T., Stenseth, N. C., & Langangen, O. Influence of larval transport and temperature on recruitment dynamics of North Sea cod (Gadus morhua) across spatial scales of observation. Fisheries Oceanography, (2020): 1-16, doi:10.1111/fog.12474.
    Description: The survival of fish eggs and larvae, and therefore recruitment success, can be critically affected by transport in ocean currents. Combining a model of early‐life stage dispersal with statistical stock–recruitment models, we investigated the role of larval transport for recruitment variability across spatial scales for the population complex of North Sea cod (Gadus morhua ). By using a coupled physical–biological model, we estimated the egg and larval transport over a 44‐year period. The oceanographic component of the model, capable of capturing the interannual variability of temperature and ocean current patterns, was coupled to the biological component, an individual‐based model (IBM) that simulated the cod eggs and larvae development and mortality. This study proposes a novel method to account for larval transport and success in stock–recruitment models: weighting the spawning stock biomass by retention rate and, in the case of multiple populations, their connectivity. Our method provides an estimate of the stock biomass contributing to recruitment and the effect of larval transport on recruitment variability. Our results indicate an effect, albeit small, in some populations at the local level. Including transport anomaly as an environmental covariate in traditional stock–recruitment models in turn captures recruitment variability at larger scales. Our study aims to quantify the role of larval transport for recruitment across spatial scales, and disentangle the roles of temperature and larval transport on effective connectivity between populations, thus informing about the potential impacts of climate change on the cod population structure in the North Sea.
    Description: G.R. was supported by the Norden Top‐level Research Initiative sub‐programme “Effect Studies and Adaptation to Climate Change” through the Nordic Centre for Research on Marine Ecosystems and Resources under Climate Change (NorMER). K.Ø.K. was supported by the WHOI John H. Steele Post‐doctoral Scholar award and VISTA – a basic research program in collaboration between The Norwegian Academy of Science and Letters, and Equinor. We thank an anonymous referee for valuable comments that substantially improved the article.
    Keywords: Atlantic cod ; biophysical model ; larval transport ; North Sea ; populations ; stock–recruitment ; temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 125(6), (2020): e2019JB019239, doi:10.1029/2019JB019239.
    Description: P‐to‐S‐converted waves observed in controlled‐source multicomponent ocean bottom seismometer (OBS) records were used to derive the Vp/Vs structure of Cascadia Basin sediments. We used P‐to‐S waves converted at the basement to derive an empirical function describing the average Vp/Vs of Cascadia sediments as a function of sediment thickness. We derived one‐dimensional interval Vp/Vs functions from semblance velocity analysis of S‐converted intrasediment and basement reflections, which we used to define an empirical Vp/Vs versus burial depth compaction trend. We find that seaward from the Cascadia deformation front, Vp/Vs structure offshore northern Oregon and Washington shows little variability along strike, while the structure of incoming sediments offshore central Oregon is more heterogeneous and includes intermediate‐to‐deep sediment layers of anomalously elevated Vp/Vs. These zones with elevated Vp/Vs are likely due to elevated pore fluid pressures, although layers of high sand content intercalated within a more clayey sedimentary sequence, and/or a higher content of coarser‐grained clay minerals relative to finer‐grained smectite could be contributing factors. We find that the proto‐décollement offshore central Oregon develops within the incoming sediments at a low‐permeability boundary that traps fluids in a stratigraphic level where fluid overpressure exceeds 50% of the differential pressure between the hydrostatic pressure and the lithostatic pressure. Incoming sediments with the highest estimated fluid overpressures occur offshore central Oregon where deformation of the accretionary prism is seaward vergent. Conversely, landward vergence offshore northern Oregon and Washington correlates with more moderate pore pressures and laterally homogeneous Vp/Vs functions of Cascadia Basin sediments.
    Description: This research was funded by National Science Foundation (NSF) Grant OCE‐1657237 to J. P. C, OCE‐1657839 to A. F. A. and S. H., and OCE‐1657737 to S. M. C. Data used in this study were acquired with funding from NSF Grants OCE‐1029305 and OCE‐1249353. Data used in this research were provided by instruments from the Ocean Bottom Seismic Instrument Center (http://obsic.whoi.edu, formerly OBSIP), which is funded by the NSF. OBSIC/OBSIP data are archived at the IRIS Data Management Center (http://www.iris.edu) under network code X6 (https://doi.org/10.7914/SN/X6_2012). Data processing was conducted with Emerson‐Paradigm Software package Echos licensed to Woods Hole Oceanographic Institution under Paradigm Academic Software Program and MATLAB package SeismicLab of the University of Alberta, Canada (http://seismic-lab.physics.ualberta.ca), under GNU General Public License (MATLAB® is a registered trademark of MathWorks).
    Description: 2020-11-28
    Keywords: Vp/Vs ; sediments ; ocean bottom seismometer ; Juan de Fuca plate ; Cascadia
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016068, doi:10.1029/2020JC016068.
    Description: Labrador Sea Water (LSW) is a major component of the deep limb of the Atlantic Meridional Overturning Circulation, yet LSW transport pathways and their variability lack a complete description. A portion of the LSW exported from the subpolar gyre is advected eastward along the North Atlantic Current and must contend with the Mid‐Atlantic Ridge before reaching the eastern basins of the North Atlantic. Here, we analyze observations from a mooring array and satellite altimetry, together with outputs from a hindcast ocean model simulation, to estimate the mean transport of LSW across the Charlie‐Gibbs Fracture Zone (CGFZ), a primary gateway for the eastward transport of the water mass. The LSW transport estimated from the 25‐year altimetry record is 5.3 ± 2.9 Sv, where the error represents the combination of observational variability and the uncertainty in the projection of the surface velocities to the LSW layer. Current velocities modulate the interannual to higher‐frequency variability of the LSW transport at the CGFZ, while the LSW thickness becomes important on longer time scales. The modeled mean LSW transport for 1993–2012 is higher than the estimate from altimetry, at 8.2 ± 4.1 Sv. The modeled LSW thickness decreases substantially at the CGFZ between 1996 and 2009, consistent with an observed decline in LSW volume in the Labrador Sea after 1994. We suggest that satellite altimetry and continuous hydrographic measurements in the central Labrador Sea, supplemented by profiles from Argo floats, could be sufficient to quantify the LSW transport at the CGFZ.
    Description: A. G. N. appreciates conversations with Kathy Donohue, Tom Rossby and Lisa Beal, which helped to interpret the results. J. B. P. acknowledges support from NSF through Grant OCE‐1947829. The authors thank all colleagues and ship crew involved in the R/V Meteor cruise M‐82/2 and Maria S. Merian cruise MSM‐21/2. The mooring data presented in this paper were funded by NSF through Grant OCE‐0926656.
    Description: 2021-01-03
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(3), (2020): e2019GL086703, doi:10.1029/2019GL086703.
    Description: Salt marsh assessments focus on vertical metrics such as accretion or lateral metrics such as open‐water conversion, without exploration of how the dimensions are related. We exploited a novel geospatial data set to explore how elevation is related to the unvegetated‐vegetated marsh ratio (UVVR), a lateral metric, across individual marsh “units” within four estuarine‐marsh systems. We find that elevation scales consistently with the UVVR across systems, with lower elevation units demonstrating more open‐water conversion and higher UVVRs. A normalized elevation‐UVVR relationship converges across systems near the system‐mean elevation and a UVVR of 0.1, a critical threshold identified by prior studies. This indicates that open‐water conversion becomes a dominant lateral instability process at a relatively conservative elevation threshold. We then integrate the UVVR and elevation to yield lifespan estimates, which demonstrate that higher elevation marshes are more resilient to internal deterioration, with an order‐of‐magnitude longer lifespan than predicted for lower elevation marshes.
    Description: This study was supported by the USGS through the Coastal Marine Hazards/Resources Program, the National Park Service through the Natural Resource Preservation Program, and the U.S. Fish and Wildlife Service through the Science Support Partnership. Erika Lentz, Elizabeth Pendleton, Meagan Gonneea, Joel Carr, and two anonymous reviewers provided constructive advice on the study. S.F. was partly supported by US National Science Foundation award 1637630 (PIE LTER), 1832221 (VCR LTER). The geospatial data used in this study are published in the Coastal Wetlands Synthesis Products catalog on ScienceBase (https://www.sciencebase.gov/catalog/item/5b73325ee4b0f5d5787c5ff3).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research- Biogeosciences 125(4), (2020): e2019JG005158, doi:10.1029/2019JG005158.
    Description: Long‐term soil warming can decrease soil organic matter (SOM), resulting in self‐reinforcing feedback to the global climate system. We investigated additional consequences of SOM reduction for soil water holding capacity (WHC) and soil thermal and hydrological buffering. At a long‐term soil warming experiment in a temperate forest in the northeastern United States, we suspended the warming treatment for 104 days during the summer of 2017. The formerly heated plot remained warmer (+0.39 °C) and drier (−0.024 cm3 H2O cm−3 soil) than the control plot throughout the suspension. We measured decreased SOM content (−0.184 g SOM g−1 for O horizon soil, −0.010 g SOM g−1 for A horizon soil) and WHC (−0.82 g H2O g−1 for O horizon soil, −0.18 g H2O g−1 for A horizon soil) in the formerly heated plot relative to the control plot. Reduced SOM content accounted for 62% of the WHC reduction in the O horizon and 22% in the A horizon. We investigated differences in SOM composition as a possible explanation for the remaining reductions with Fourier transform infrared (FTIR) spectra. We found FTIR spectra that correlated more strongly with WHC than SOM, but those particular spectra did not differ between the heated and control plots, suggesting that SOM composition affects WHC but does not explain treatment differences in this study. We conclude that SOM reductions due to soil warming can reduce WHC and hydrological and thermal buffering, further warming soil and decreasing SOM. This feedback may operate in parallel, and perhaps synergistically, with carbon cycle feedbacks to climate change.
    Description: We would like to acknowledge Jeffery Blanchard, Priya Chowdhury, Kristen DeAngelis, Luiz Dominguez‐Horta, Kevin Geyer, Rachelle Lacroix, Xaiojun Liu, William Rodriguez, and Alexander Truchonand and for assistance with field sampling. We would like to acknowledge Michael Bernard for assistance with field sampling and lab work. We would like to acknowledge Aaron Ellison for statistical consultation. This research was financially supported by the U.S. National Science Foundation's Long Term Ecological Research Program (NSF‐DEB‐0620443 and NSF‐DEB‐1237491), the Long Term Research in Environmental Biology Program (NSF DEB‐1456528) , and the U.S. Department of Energy (DOE‐DE‐SC0005421 and DOE‐DE‐SC0010740). Data used in this study are available from the Harvard Forest Data Archive (Datasets HF018‐03, HF018‐04, and HF018‐13), accessible at https://harvardforest.fas.harvard.edu/harvard‐forest‐data‐archive.
    Description: 2020-10-04
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016445, doi:10.1029/2020JC016445.
    Description: The Mid‐Atlantic Bight (MAB) Cold Pool is a bottom‐trapped, cold (temperature below 10°C) and fresh (practical salinity below 34) water mass that is isolated from the surface by the seasonal thermocline and is located over the midshelf and outer shelf of the MAB. The interannual variability of the Cold Pool with regard to its persistence time, volume, temperature, and seasonal along‐shelf propagation is investigated based on a long‐term (1958–2007) high‐resolution regional model of the northwest Atlantic Ocean. A Cold Pool Index is defined and computed in order to quantify the strength of the Cold Pool on the interannual timescale. Anomalous strong, weak, and normal years are categorized and compared based on the Cold Pool Index. A detailed quantitative study of the volume‐averaged heat budget of the Cold Pool region (CPR) has been examined on the interannual timescale. Results suggest that the initial temperature and abnormal warming/cooling due to advection are the primary drivers in the interannual variability of the near‐bottom CPR temperature anomaly during stratified seasons. The long persistence of temperature anomalies from winter to summer in the CPR also suggests a potential for seasonal predictability.
    Description: This work was funded by the National Oceanic and Atmospheric Administration through Awards NOAA‐NA‐15OAR4310133 and NOAA‐NA‐13OAR4830233 and the National Science Foundation Awards OCE‐1049088, OCE‐1419584, and OCE‐0961545.
    Description: 2021-02-03
    Keywords: Mid‐Atlantic Bight ; Cold Pool ; continental shelf ; temperature balance ; interannual variability ; near‐bottom temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016197, doi:10.1029/2020JC016197.
    Description: Synoptic shipboard measurements, together with historical hydrographic data and satellite data, are used to elucidate the detailed structure of the Atlantic Water (AW) boundary current system in the southern Canada Basin and its connection to the upstream source of AW in the Chukchi Borderland. Nine high‐resolution occupations of a transect extending from the Beaufort shelf to the deep basin near 152°W, taken between 2003 and 2018, reveal that there are two branches of the AW boundary current that flow beneath and counter to the Beaufort Gyre. Each branch corresponds to a warm temperature core and transports comparable amounts of Fram Strait Branch Water between roughly 200–700 m depth, although they are characterized by a different temperature/salinity (T/S) structure. The mean volume flux of the combined branches is 0.87 ± 0.13 Sv. Using the historical hydrographic data, the two branches are tracked upstream by their temperature cores and T/S signatures. This sheds new light on how the AW negotiates the Chukchi Borderland and why two branches emerge from this region. Lastly, the propagation of warm temperature anomalies through the region is quantified and shown to be consistent with the deduced circulation scheme.
    Description: This work was funded by the following sources: National Science Foundation Grants PLR‐1504333, OPP‐1733564, and OPP‐1504394; National Oceanic and Atmospheric Administration Grant NA14OAR4320158; and National Aeronautics and Space Administration Grant NNX10AF42G.
    Description: 2021-01-27
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 125(2), (2020): e2019JC015400, doi:10.1029/2019JC015400.
    Description: One of the foci of the Forum for Artic Modeling and Observational Synthesis (FAMOS) project is improving Arctic regional ice‐ocean models and understanding of physical processes regulating variability of Arctic environmental conditions based on synthesis of observations and model results. The Beaufort Gyre, centered in the Canada Basin of the Arctic Ocean, is an ideal phenomenon and natural laboratory for application of FAMOS modeling capabilities to resolve numerous scientific questions related to the origin and variability of this climatologic freshwater reservoir and flywheel of the Arctic Ocean. The unprecedented volume of data collected in this region is nearly optimal to describe the state and changes in the Beaufort Gyre environmental system at synoptic, seasonal, and interannual time scales. The in situ and remote sensing data characterizing ocean hydrography, sea surface heights, ice drift, concentration and thickness, ocean circulation, and biogeochemistry have been used for model calibration and validation or assimilated for historic reconstructions and establishing initial conditions for numerical predictions. This special collection of studies contributes time series of the Beaufort Gyre data; new methodologies in observing, modeling, and analysis; interpretation of measurements and model output; and discussions and findings that shed light on the mechanisms regulating Beaufort Gyre dynamics as it transitions to a new state under different climate forcing.
    Description: We would like to thank all FAMOS participants (https://web.whoi.edu/famos/ and https://famosarctic.com/) and collaborators of the Beaufort Gyre Exploration project (https://www.whoi.edu/beaufortgyre) for their continued enthusiasm, creativity, and support during all stages of both projects. This research is supported by the National Science Foundation Office of Polar Programs (projects 1845877, 1719280, and 1604085). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Arctic dynamic topography/geostrophic currents data were provided by the Centre for Polar Observation and Modelling, University College London (www.cpom.ucl.ac.uk/dynamic_topography; Armitage et al. (2016, 2017). The other data used in this paper are available at the NCAR/NCEP (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html), NSIDC (https://nsidc.org/), NSF's Arctic data center (https://arcticdata.io/; Keywords for data search are “Beaufort Gyre”, “Krishfield” or “Proshutinsky”), and WHOI Beaufort Gyre exploration website (www.whoi.edu/beaufortgyre).
    Keywords: Beaufort Gyre ; Circulation ; Freshwater content ; Sea ice ; Ecosystems ; Hydrography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 125(4), (2020): e2019JC016006, doi:10.1029/2019JC016006.
    Description: Equatorward flow of Middle Atlantic Bight (MAB) shelf waters meets poleward flowing South Atlantic Bight shelf waters over the continental shelf near Cape Hatteras, NC, leading to net export of shelf waters into the deep ocean. This export occurs in close proximity to the Gulf Stream, which separates from the continental margin near Cape Hatteras. Observations from sustained underwater glider surveys of the outer continental shelf and slope north of Cape Hatteras from spring 2017 to spring 2019 are used to examine the mean and variability of MAB shelf water export in the region. The 0.3 Sv (1 Sv = 106 m3 s−1) time‐mean export of MAB shelf water south of 37°N was dominated by discrete export events; 50% of export occurred during the 17% of the time during which transport was more than 1 standard deviation above the mean. These events typically occurred in late spring and summer of both years when equatorward flow into the region peaked. Export of MAB shelf water was correlated with equatorward flow into the region, which was itself correlated with the density gradient across the continental shelf break. Observations during specific time periods that capture extrema in MAB shelf water export are examined to highlight the variability in shelf‐deep ocean exchange scenarios in the Hatteras region. These include near‐surface export driven by hurricanes, subsurface export below the northern edge of the Gulf Stream, and a multi‐month near‐cessation of export.
    Description: Patrick Deane at WHOI and the Instrument Development Group at the Scripps Institution of Oceanography were key to the success of the Spray glider operations. Mike Muglia, Trip Taylor, and Nick DeSimone at the East Carolina University Coastal Studies Institute (CSI) provided support for glider deployments and recoveries. WHOI Summer Student Fellow Devon Gaynes assisted with analysis related to 2017 hurricanes. Spray glider observations used here are available from http://spraydata.ucsd.edu and should be cited using the following DOIs: 10.21238/S8SPRAY2675 (Todd & Owens, 2016) and 10.21238/S8SPRAY0880 (Todd, 2020). Buoy winds are available from the National Data Buoy Center (https://www.ndbc.noaa.gov). SST imagery was obtained from the Mid‐Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) THREDDS server (http://tds.maracoos.org/thredds/ARCHIVE-SST.html). Automated Tropical Cyclone Forecast System data are available online (https://ftp.nhc.noaa.gov/atcf/). PEACH was funded by the National Science Foundation (OCE‐1558521). Colormaps are from Thyng et al. (2016).
    Description: 2020-09-17
    Keywords: Cape Hatteras ; Shelf-deep ocean exchange ; Underwater glider
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2020JC016123, doi:10.1029/2020JC016123.
    Description: The processes underlying the strong Kuroshio encountering a cape at the southernmost tip of Taiwan are examined with satellite‐derived chlorophyll and temperature maps, a drifter trajectory, and realistic model simulations. The interaction spurs the formation of submesoscale cyclonic eddies that trap cold and high‐chlorophyll water and the formation of frontal waves between the free stream and the wake flow. An observed train of eddies, which have relative vorticity about one to four times the planetary vorticity (f), is shed from the recirculation that occurs in the immediate lee of the cape as a result of flow separation. These propagate downstream at a speed of 0.5–0.6 m s−1. Farther downstream, the corotation and merging of two or three adjacent eddies are common owing to the topography‐induced slowdown of eddy propagation farther downstream. It is found that the relative vorticity of a corotating system (1.2f) is 70% weaker than that of a single eddy due to the increase of eddy diameter from ~16 to ~33 km, in agreement with Kelvin's circulation theorem. The shedding period of the submesoscale eddies is strongly modulated by either diurnal or semidiurnal tidal flows, which typically reach 0.2–0.5 m s−1, whereas its intrinsic shedding period is insignificant. The frontal waves predominate in the horizontal free shear layer emitted from the cape, as well as a density front. Energetics analysis suggests that the wavy features result primarily from the growth of barotropic instability in the free shear layer, which may play a secondary process in the headland wake.
    Description: Yu‐Hsin Cheng was supported by the CWB of Taiwan through Grant 1062076C. Ming‐Huei Chang was supported by the Ministry of Science and Technology of Taiwan (MOST) under Grants 103‐2611‐M‐002‐018, 105‐2611‐M‐002‐012, and 107‐2611‐M‐002‐015. Sen Jan was supported with MOST Grants 101‐2611‐M‐002‐018‐MY3, 103‐2611‐M‐002‐011, and 105‐2119‐M‐002‐042. Magdalena Andres was supported by the U.S. Office of Naval Research Grant N000141613069.
    Description: 2020-10-23
    Keywords: Kuroshio ; Submesoscale eddy ; Headland ; Recirculation ; Eddy corotation ; Barotropic instability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 21(6), (2020): e2020GC008957, doi:10.1029/2020GC008957.
    Description: At the Galapagos triple junction in the equatorial Pacific Ocean, the Cocos‐Nazca spreading center does not meet the East Pacific Rise (EPR) but, instead, rifts into 0.4 Myr‐old lithosphere on the EPR flank. Westward propagation of Cocos‐Nazca spreading forms the V‐shaped Galapagos gore. Since ~1.4 Ma, opening at the active gore tip has been within the Cocos‐Galapagos microplate spreading regime. In this paper, bathymetry, magnetic, and gravity data collected over the first 400 km east of the gore tip are used to examine rifting of young lithosphere and transition to magmatic spreading segments. From inception, the axis shows structural segmentation consisting of rifted basins whose bounding faults eventually mark the gore edges. Rifting progresses to magmatic spreading over the first three segments (s1–s3), which open between Cocos‐Galapagos microplate at the presently slow rates of ~19–29 mm/year. Segments s4–s9 originated in the faster‐spreading (~48 mm/year) Cocos‐Nazca regime, and well‐defined magnetic anomalies and abyssal hill fabric close to the gore edges show the transition to full magmatic spreading was more rapid than at present time. Magnetic lineations show a 20% increase in the Cocos‐Nazca spreading rate after 1.1 Ma. The near‐axis Mantle Bouguer gravity anomaly decreases eastward and becomes more circular, suggesting mantle upwelling, increasing temperatures, and perhaps progression to a developed melt supply beneath segments. Westward propagation of individual Cocos‐Nazca segments is common with rates ranging between 12 and 54 mm/year. Segment lengths and lateral offsets between segments increase, in general, with distance from the tip of the gore.
    Description: E. M. and H. S. are grateful to the National Science Foundation for funding this work and to InterRidge and the University of Leeds for providing support for a number of the international students and scholars who were able to participate on the cruise. We are also grateful for the extraordinary work of the Captain and crew of R/V Sally Ride , whose efficiency and good cheer made the cruise such a success. We thank M. Ligi and two anonymous reviewers for their comments which greatly improved the manuscript. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
    Description: 2020-11-11
    Keywords: Galapagos triple junction ; Mid‐ocean ridges ; Seafloor spreading ; Galapagos microplate ; Plate boundaries
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(15), (2020): e2020GL087266, doi:10.1029/2020GL087266.
    Description: Using a recently compiled global marine data set of dissolved helium isotopes and helium and neon concentrations, we make an estimate of the inventory of hydrothermal 3He in the Southern Ocean to be 4.9 ± 0.6 × 104 moles. Under the assumption that the bulk of the hydrothermally sourced 3He is upwelled there, we use recent estimates of the global hydrothermal 3He flux to determine an e‐folding residence time of 99 ± 18 years, depending on assumptions of water mass and upwelling boundaries. Our estimate is within the broad range of values obtained from recent Southern Ocean circulation models.
    Description: This work was funded under the auspices of the U.S. National Science Foundation's Grant OCE‐1756138.
    Description: 2021-02-04
    Keywords: Hydrothermal budgets ; Meridional overturning circulation ; Marine productivity ; Micronutrients ; Dissolved iron ; Southern Ocean upwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(1), (2020): e2019GL085455, doi:10.1029/2019GL085455.
    Description: The meridional coherence, connectivity, and regional inhomogeneity in long‐term sea surface temperature (SST) variability over the Northwest Atlantic continental shelf and slope from 1982–2018 are investigated using observational data sets. A meridionally concurrent large SST warming trend is identified as the dominant signal over the length of the continental shelf and slope between Cape Hatteras in North Carolina and Cape Chidley, Newfoundland and Labrador, Canada. The linear trends are 0.37 ± 0.06 and 0.39 ± 0.06 °C/decade for the shelf and slope regions, respectively. These meridionally averaged SST time series over the shelf and slope are consistent with each other and across multiple longer observational data sets with records dating back to 1900. The coherence between the long‐term meridionally averaged time series over the shelf and slope and basin‐wide averaged SST in the North Atlantic implies approximately two thirds of the warming trend during 1982–2018 may be attributed to natural climate variability and the rest to externally forced change including anthropogenic warming.
    Description: We are grateful to the Editor Dr. Kathleen Donohue and two anonymous reviewers. This work was supported by NOAA's Climate Program Office's Modeling, Analysis, Predictions, and Projections (MAPP) program (NA19OAR4320074). We acknowledge our participation in MAPP's Marine Prediction Task Force. The data of NOAA OISST used in this study are available at NOAA Earth System Research Laboratory (https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html). The HadISST data set is available at Met Office, Hadley Centre (https://www.metoffice.gov.uk/hadobs/hadisst/). The COBE SST and NOAA ERSST data sets are available at NOAA Earth System Research Laboratory's Physical Sciences Division (https://www.esrl.noaa.gov/psd/data/gridded/data.cobe.html; https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v5.html). The near‐surface air temperature is available at Global Historical Climatology Network‐Monthly Database (https://www.ncdc.noaa.gov/data‐access/land‐based‐station‐data/land‐based‐datasets/global‐historical‐climatology‐network‐monthly‐version‐4). The data of SSH are available at Copernicus Marine Environment Monitoring Service (http://marine.copernicus.eu/services‐portfolio/access‐to‐products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_ L4_REP_OBSERVATIONS_008_047).
    Description: 2020-07-06
    Keywords: Sea surface temperature ; Continental shelf ; Continental slope ; Long-term change ; Northwest Atlantic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proshutinsky, A., Krishfield, R., Toole, J. M., Timmermans, M-L., Williams, W. J., Zimmermann, S., Yamamoto-Kawai, M., Armitage, T. W. K., Dukhovskoy, D., Golubeva, E., Manucharyan, G. E., Platov, G., Watanabe, E., Kikuchi, T., Nishino, S., Itoh, M., Kang, S-H., Cho, K-H., Tateyama, K., & Zhao, J. Analysis of the Beaufort Gyre freshwater content in 2003-2018. Journal of Geophysical Research-Oceans, 124(12), (2019): 9658-9689, doi:10.1029/2019JC015281.
    Description: Hydrographic data collected from research cruises, bottom‐anchored moorings, drifting Ice‐Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km3 of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing (1997–2018) accompanied by sea ice melt, a wind‐forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice‐Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year‐to‐year variability, or the more subtle interannual variations.
    Description: National Science Foundation. Grant Numbers: PLR‐1302884,OPP‐1719280, and OPP‐1845877, PLR‐1303644 and OPP‐1756100, OPP‐1756100, PLR‐1303644, OPP‐1845877, OPP‐1719280, PLR‐1302884 Key Program of National Natural Science Foundation of China. Grant Number: 41330960 Global Change Research Program of China. Grant Number: 2015CB953900 Ministry of Education, Korea Japan Aerospace Exploration Agency (JAXA) /Earth Observation Research Center (EORC) Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) Stanback Postdoctoral Fellowship Russian Foundation for Basic Research. Grant Number: 17‐05‐00382 Presidium of Russian Academy of Sciences HYCOM NOPP. Grant Number: N00014‐15‐1‐2594 DOE. Grant Number: DE‐SC0014378 National Aeronautics and Space Administration Tokyo University of Marine Science and Technology Department of Fisheries and Oceans Canada Woods Hole Oceanographic Institution
    Keywords: Beaufort Gyre ; Arctic Ocean ; Freshwater balance ; Circulation ; Modeling ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(16), (2019): 9851-9860, doi:10.1029/2019GL083726.
    Description: Coral reef calcification is expected to decline due to climate change stressors such as ocean acidification and warming. Projections of future coral reef health are based on our understanding of the environmental drivers that affect calcification and dissolution. One such driver that may impact coral reef health is heterotrophy of oceanic‐sourced particulate organic matter, but its link to calcification has not been directly investigated in the field. In this study, we estimated net ecosystem calcification and oceanic particulate organic carbon (POCoc) uptake across the Kāne'ohe Bay barrier reef in Hawai'i. We show that higher rates of POCoc uptake correspond to greater net ecosystem calcification rates, even under low aragonite saturation states (Ωar). Hence, reductions in offshore productivity may negatively impact coral reefs by decreasing the food supply required to sustain calcification. Alternatively, coral reefs that receive ample inputs of POCoc may maintain higher calcification rates, despite a global decline in Ωar.
    Description: Data needed for calculations are available in the supporting information. Additional data can be provided upon request directly from the corresponding author or accessed by links provided in the supporting information. The authors declare no competing financial interests. We thank Texas Sea Grant for providing partial funding for this project to A. Kealoha through the Grants‐In‐Aid of Graduate Research Program. We also thank the NOAA Nancy Foster Scholarship for PhD program funding to A. Kealoha and Texas A&M University for funds awarded to Shamberger that supported this work. This research was also supported by funding from National Science Foundation Grant OCE‐1538628 to Rappé. The Hawaii Institute of Marine Biology (particularly the Rappé Lab and Jason Jones), NOAA's Coral Reef Ecosystem Program, Connie Previti, Serena Smith, and Chris Maupin were instrumental in sample collection and data analysis.
    Description: 2020-02-22
    Keywords: Coral reefs ; Ocean acidification ; Climate change ; Heterotrophy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Atmospheres 124 (17-18), (2019): 9773-9795, doi: 10.1029/2018JD029933.
    Description: National Aeronautics and Space Administration's Orbiting Carbon Observatory‐2 (OCO‐2) satellite provides observations of total column‐averaged CO2 mole fractions (XCO2 ) at high spatial resolution that may enable novel constraints on surface‐atmosphere carbon fluxes. Atmospheric inverse modeling provides an approach to optimize surface fluxes at regional scales, but the accuracy of the fluxes from inversion frameworks depends on key inputs, including spatially and temporally dense CO2 observations and reliable representations of atmospheric transport. Since XCO2 observations are sensitive to both synoptic and mesoscale variations within the free troposphere, horizontal atmospheric transport imparts substantial variations in these data and must be either resolved explicitly by the atmospheric transport model or accounted for within the error covariance budget provided to inverse frameworks. Here, we used geostatistical techniques to quantify the imprint of atmospheric transport in along‐track OCO‐2 soundings. We compare high‐pass‐filtered (〈250 km, spatial scales that primarily isolate mesoscale or finer‐scale variations) along‐track spatial variability in XCO2 and XH2O from OCO‐2 tracks to temporal synoptic and mesoscale variability from ground‐based XCO2 and XH2O observed by nearby Total Carbon Column Observing Network sites. Mesoscale atmospheric transport is found to be the primary driver of along‐track, high‐frequency variability for OCO‐2 XH2O. For XCO2 , both mesoscale transport variability and spatially coherent bias associated with other elements of the OCO‐2 retrieval state vector are important drivers of the along‐track variance budget.
    Description: The authors thank the leadership and participants of the NASA OCO‐2 mission and acknowledge financial support from NASA Award NNX15AH13G. A.D. Torres also acknowledges support from the NASA Earth and Space Science Fellowship Award 80NSSC17K0382. We thank TCCON for providing observations. We thank A. Jacobson and the National Oceanographic and Atmospheric Administration Earth System Research Laboratory in Boulder, CO, for providing CarbonTracker CT2017 data, available online (http://carbontracker.noaa.gov). We thank S. Wofsy for providing HIPPO data, funded by the National Science Foundation and NOAA and available online (https://www.eol.ucar.edu/field_projects/hippo). The TCCON Principal Investigators acknowledge funding from their national funding organizations. TCCON data were obtained from the archive at the https://tccondata.org Web site. NARR data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site (https://www.esrl.noaa.gov/psd/).
    Keywords: Atmospheric transport ; Greenhouse gases ; CO2 ; Mesoscale ; OCO‐2 ; TCCON
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Planets 124, (2019): 3095-3118, doi: 10.1029/2019JE005937.
    Description: We applied localized gravity/topography admittance and correlation analysis, as well as the Markov chain Monte Carlo method, to invert for loading and flexural parameters of 21 subregions on Mars with five distinct tectonic types. The loading styles of the five tectonic types are distinct: The surface and subsurface loading in the polar and plain regions can be assumed to be largely uncorrelated, in contrast to the correlated loading associated with the volcanic montes and Valles Marineris. For the impact basins, we consider the initial topographic depression and mantle plug before postimpact surface loading. Our analyses yield four main results: (1) The inverted effective lithospheric thickness (Te) is highly dependent on assumptions of loading type. (2) There is a trend of increasing Te from the Noachian southern highlands (20–60 km) to the Hesperian northern lowlands (〉90 km) and from the Hesperian Elysium Mons (〈55 km) to the Hesperian/Amazonian Olympus Mons (〉105 km). These Te estimates are consistent with the thermal states at the time of loading, corresponding to a global secular cooling history with decreasing heat flux. (3) Our analyses suggest high‐density basaltic surface loading at the volcanic montes and Isidis basin, in contrast to the low‐density sedimentary surface loading at the Utopia and Argyre basins. (4) We find some degree of correlation between the surface and subsurface loading for the northern polar cap and the northern plains, likely due to earlier, larger polar deposits and ancient buried features, respectively.
    Description: The gravity model JGMRO120d and topography model MarsTopo719 used in this paper were retrieved from the Geosciences Node of NASA's Planetary Data System (http://pds‐geosciences.wustl.edu/mro/mro‐m‐rss‐5‐sdp‐v1/mrors_1xxx/data/shadr/) and from the SHTOOLS package (http://sourceforge.net/projects/shtools/), respectively. The MATLAB codes to reproduce the data analysis, parameter estimation, and key figures are available in a github repository (https://github.com/MinaDing/marslithosphere/tree/v1.0.0, DOI: 10.5281/zenodo.3530057). We are grateful to Mark Wieczorek and Frederik Simons for sharing relevant software online. We thank Ken Tanaka for providing a digital map of Mars chronographic ages. We thank Brandon Johnson for consultation on the loading processes of impact basins. We also thank Editor Laurent Montesi and Steven A. Hauck, as well as Patrick McGovern and anonymous reviewers for their invaluable feedbacks. This work was supported by National Natural Science Foundation of China (41806067, 41890813, 91628301 and U1606401), Key Laboratory of Ocean and Marginal Sea Geology, Chinese Academy of Sciences (OMG18‐02), Chinese Academy of Sciences (Y4SL021001, QYZDY‐SSW‐DQC005 and 133244KYSB20180029), Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0205), Radio Science Gravity investigation of the NASA Mars Reconnaissance Orbiter mission (M.T.Z.), and National Science Foundation (EAR 1220280) and Henry Bigelow Chair for Excellence in Oceanography (J.L.).
    Description: 2020-05-20
    Keywords: Mars ; Lithospheric flexure ; Tectonic loading styles ; Lithospheric strength ; Markov chain Monte Carlo method ; Inverse spectral method
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Spain, E. A., Johnson, S. C., Hutton, B., Whittaker, J. M., Lucieer, V., Watson, S. J., Fox, J. M., Lupton, J., Arculus, R., Bradney, A., & Coffin, M. F. Shallow seafloor gas emissions near Heard and McDonald Islands on the Kerguelen Plateau, Southern Indian Ocean. Earth and Space Science, 7(3), (2020): e2019EA000695, doi:10.1029/2019EA000695.
    Description: Bubble emission mechanisms from submerged large igneous provinces remains enigmatic. The Kerguelen Plateau, a large igneous province in the southern Indian Ocean, has a long sustained history of active volcanism and glacial/interglacial cycles of sedimentation, both of which may cause seafloor bubble production. We present the results of hydroacoustic flare observations around the underexplored volcanically active Heard Island and McDonald Islands on the Central Kerguelen Plateau. Flares were observed with a split‐beam echosounder and characterized using multifrequency decibel differencing. Deep‐tow camera footage, water properties, water column δ3He, subbottom profile, and sediment δ13C and δ34S data were analyzed to consider flare mechanisms. Excess δ3He near McDonald Islands seeps, indicating mantle‐derived input, suggests proximal hydrothermal activity; McDonald Islands flares may thus indicate CO2, methane, and other minor gas bubbles associated with shallow diffuse hydrothermal venting. The Heard Island seep environment, with subbottom acoustic blanking in thick sediment, muted 3He signal, and δ13C and δ34S fractionation factors, suggest that Heard Island seeps may either be methane gas (possibly both shallow biogenic methane and deeper‐sourced thermogenic methane related to geothermal heat from onshore volcanism) or a combination of methane and CO2, such as seen in sediment‐hosted geothermal systems. These data provide the first evidence of submarine gas escape on the Central Kerguelen Plateau and expand our understanding of seafloor processes and carbon cycling in the data‐poor southern Indian Ocean. Extensive sedimentation of the Kerguelen Plateau and additional zones of submarine volcanic activity mean additional seeps or vents may lie outside the small survey area proximal to the islands.
    Description: We thank the Australian Marine National Facility (MNF) for its support in the form of sea time on RV Investigator , support personnel, scientific equipment, and data management. We also thank the captain, crew, and fellow scientists of RV Investigator voyage IN2016_V01. We also thank specifically the following: T. Martin, F. Cooke, S. L. Sow, N. Bax, J. Ford, and F. Althaus, CSIRO (Commonwealth Scientific and Industrial Research Organisation); Echoview Software Pty. Ltd. (Hobart, Australia); C. Dietz and C. Cook, Central Science Laboratory, University of Tasmania; C. Wilkinson and T. Baumberger, National Oceanic and Atmospheric Administration; R. Carey, University of Tasmania; T. Holmes, Institute for Marine and Antarctic Studies, University of Tasmania; N. Polmear; and A. Post, Geoscience Australia. The overall science of the project is supported by Australian Antarctic Science Program (AASP) grant 4338. E.S.' PhD research is supported by the Australian Research Council's Special Research Initiative Antarctic Gateway Partnership (Project ID SR140300001) and by an Australian Government Research Training Program Scholarship. S.C.J. is supported by iCRAG under SFI, European Regional Development Fund, and industry partners, as well as ANZIC‐IODP. J.M.W. is supported by ARC grant DE140100376 and DP180102280. This is PMEL publication number 4910. All IN2016_V01 data and samples acquired on IN2016_V01 are made publicly available in accordance with MNF policy.
    Keywords: Large Igneous Province ; Hydroacoustic flares ; Cold methane seep ; Shallow hydrothermal ; Geothermal ; Gas bubbles
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ryan, S., Hellmer, H. H., Janout, M., Darelius, E., Vignes, L., & Schroeder, M. Exceptionally warm and prolonged flow of warm deep water toward the Filchner-Ronne Ice Shelf in 2017. Geophysical Research Letters, 47(13),(2020): e2020GL088119, doi:10.1029/2020GL088119.
    Description: The Filchner‐Ronne Ice Shelf, fringing the southern Weddell Sea, is Antarctica's second largest ice shelf. At present, basal melt rates are low due to active dense water formation; however, model projections suggest a drastic increase in the future due to enhanced inflow of open‐ocean warm water. Mooring observations from 2014 to 2016 along the eastern flank of the Filchner Trough (76°S) revealed a distinct seasonal cycle with inflow if Warm Deep Water during summer and autumn. Here we present extended time series showing an exceptionally warm and long inflow in 2017, with maximum temperatures exceeding 0.5°C. Warm temperatures persisted throughout winter, associated with a fresh anomaly, which lead to a change in stratification over the shelf, favoring an earlier inflow in the following summer. We suggest that the fresh anomaly developed upstream after anomalous summer sea ice melting and contributed to a shoaling of the shelf break thermocline.
    Description: The authors would like to express their gratitude to the officers and crews of RV Polarstern (cruises PS92 [Grant AWI_PS82_02], PS96 [Grant AWI_PS96_01], and PS111 [Grant AWI_PS111_01]), RRS Ernest Shackleton (Cruise ES060), and RSS James Clark Ross (Cruise JR16004) for their efficient assistance. E. D. received funding from the project TOBACO (267660), POLARPROG, Norges Forskningsrd.
    Keywords: Ocean-ice shelf interaction ; Weddell Sea ; Warm inflow ; Antarctic Slope Front ; Filchner-Ronne Ice Shelf
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wang, J., Ma, Q., Wang, F., Lu, Y., & Pratt, L. J. Seasonal variation of the deep limb of the Pacific Meridional Overturning circulation at Yap-Mariana junction. Journal of Geophysical Research: Oceans, 125(7), (2020): e2019JC016017, doi:10.1029/2019JC016017.
    Description: This study reveals the seasonal variability of the lower and upper deep branches of the Pacific Meridional Overturning Circulation (L‐PMOC and U‐PMOC) in the Yap‐Mariana Junction (YMJ) channel, a major gateway for deep flow into the western Pacific. On the western side of the YMJ channel, mooring observations in 2017 and in 1997 show the seasonal phase of the L‐PMOC at depths of 3,800–4,400 m: strong northward flow with speed exceeding 20 cm s−1 and lasting from December to next May and weak flow during the following 6 months. On the eastern side of the channel, mooring observations during 2014–2017 show two southward deep flows with broadly seasonal phases, one being the return flow of L‐PMOC below ~4,000 m and with the same phase of L‐PMOC but reduced magnitude. The second, shallower, southward deep flow corresponds to the U‐PMOC observed within 3,000–3,800 m and with opposite phase of L‐PMOC, that is, strong (weak) southward flow appearing during June–November (December–May). Seasonal variations of the L‐PMOC and U‐PMOC are accompanied by the seasonal intrusions of the Lower and Upper Circumpolar Waters (LCPW and UCPW) in lower and upper deep layers, which change the isopycnal structure and the deep currents in a way consistent with geostrophic balance.
    Description: This study is supported by the National Natural Science Foundation of China (grants 91958204 and 41776022), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDA22000000), the Key Research Program of Frontier Sciences, CAS (grant QYZDB‐SSW‐SYS034). F. Wang thanks the support from the Scientific and Technological Innovation Project by Qingdao National Laboratory for Marine Science and Technology (grant 2016ASKJ12), the National Program on Global Change and Air‐Sea Interaction (grant GASI‐IPOVAI‐01‐01), and the National Natural Science Foundation of China (grants 41730534 and 41421005). L. Pratt gratefully acknowledges the support by NSF (grant OCE‐1657870). Jianing Wang and Qiang Ma contributed equally to this work.
    Keywords: Seasonal variability ; Deep currents ; PMOC ; Mooring observation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Black, E. E., Kienast, S. S., Lemaitre, N., Lam, P. J., Anderson, R. F., Planquette, H., Planchon, F., & Buesseler, K. O. Ironing out Fe residence time in the dynamic upper ocean. Global Biogeochemical Cycles, 34(9), (2020): e2020GB006592, doi:10.1029/2020GB006592.
    Description: Although iron availability has been shown to limit ocean productivity and influence marine carbon cycling, the rates of processes driving iron's removal and retention in the upper ocean are poorly constrained. Using 234Th‐ and sediment‐trap data, most of which were collected through international GEOTRACES efforts, we perform an unprecedented observation‐based assessment of iron export from and residence time in the upper ocean. The majority of these new residence time estimates for total iron in the surface ocean (0–250 m) fall between 10 and 100 days. The upper ocean residence time of dissolved iron, on the other hand, varies and cycles on sub‐annual to annual timescales. Collectively, these residence times are shorter than previously thought, and the rates and timescales presented here will contribute to ongoing efforts to integrate iron into global biogeochemical models predicting climate and carbon dioxide sequestration in the ocean in the 21st century and beyond.
    Description: We would like to thank S. Albani for providing the dust model results (Community Atmosphere Model, C4fn) and the three anonymous reviewers for their constructive comments. The U.S. GEOTRACES work was supported by the National Science Foundation (OCE‐1232669 and OCE‐1518110) and E. Black was also funded by a NASA Earth and Space Science Graduate Fellowship (NNX13AP31H) and the Ocean Frontier Institute. The GEOVIDE work was funded by the Flanders Research Foundation (G071512N), the Vrije Universiteit Brussel (SRP‐2), the French ANR Blanc GEOVIDE (ANR‐13‐BS06‐0014), ANR RPDOC BITMAP (ANR‐12‐PDOC‐0025‐01), IFREMER, CNRS‐INSU (programme LEFE), INSU OPTIMISP, and Labex‐Mer (ANR‐10‐LABX‐19).
    Keywords: Thorium‐234 ; Iron ; Export ; GEOTRACES ; Residence time
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Planets 125(9), (2020): e2019JE006209, doi:10.1029/2019JE006209
    Description: Saturn's moon Enceladus has a global subsurface ocean and a porous rocky core in which water‐rock reactions likely occur; it is thus regarded as a potentially habitable environment. For icy moons like Enceladus, tidal heating is considered to be the main heating mechanism, which has generally been modeled using viscoelastic solid rheologies in existing studies. Here we provide a new framework for calculating tidal heating based on a poroviscoelastic model in which the porous solid and interstitial fluid deformation are coupled. We show that the total heating rate predicted for a poroviscoelastic core is significantly larger than that predicted using a classical viscoelastic model for intermediate to large (〉1014 Pa·s) rock viscosities. The periodic deformation of the porous rock matrix is accompanied by interstitial pore fluid flow, and the combined effects through viscous dissipation result in high heat fluxes particularly at the poles. The heat generated in the rock matrix is also enhanced due to the high compressibility of the porous matrix structure. For a sufficiently compressible core and high permeability, the total heat production can exceed 10 GW—a large fraction of the moon's total heat budget—without requiring unrealistically low solid viscosities. The partitioning of heating between rock and fluid constituents depends most sensitively on the viscosity of the rock matrix. As the core of Enceladus warms and weakens over time, pore fluid motion likely shifts from pressure‐driven local oscillations to buoyancy‐driven global hydrothermal convection, and the core transitions from fluid‐dominated to rock‐dominated heating.
    Description: 2021-01-28
    Keywords: Ocean worlds ; Enceladus ; Tidal heating
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Forsyth, J., Andres, M., & Gawarkiewicz, G. . Shelfreak jet structure and variability off New Jersey using ship of opportunity data from the CMV Oleander. Journal of Geophysical Research: Oceans, 125(9), (2020): e2020JC016455. doi:10.1029/2020JC016455.
    Description: Repeat measurements of velocity and temperature profiles from the Container Motor Vessel (CMV) Oleander provide an unprecedented look into the variability on the New Jersey Shelf and upper continental slope. Here 1362 acoustic Doppler current profiler (ADCP) velocity sections collected between 1994 and 2018 are analyzed in both Eulerian and stream coordinate reference frames to characterize the mean structure of the Shelfbreak Jet, as well as its seasonal to decadal variability. The Eulerian mean Shelfbreak Jet has a maximum jet velocity of 0.12 m s−1. The maximum jet velocity peaks in April and May and reaches its minimum in July and August. In a stream coordinate framework, the jet is only identified in 61% of transects, and the mean stream coordinate Shelfbreak Jet has a maximum jet velocity of 0.32 m s−1. Evidence is found that Warm Core Rings, originating from the Gulf Stream arriving in the Slope Sea adjacent to the New Jersey Shelf, shift the Shelfbreak Jet onshore of its mean position or entirely shutdown the Shelfbreak Jet's flow. At interannual timescales, variability in the Shelfbreak Jet velocity is correlated with the temperature on the New Jersey Shelf 2 months later. When considered in a stream coordinate framework, Shelfbreak Jet have decreased over the time period considered in the study.
    Description: J. F. and M. A. were supported by NSF OCE‐1634094 and OCE‐1924041. G. G was supported by NSF OCE‐1851261.
    Keywords: Shelfbreak Jet ; Middle Atlantic Bight ; Ship of opportunity ; Continental shelf processes ; Western Boundary Currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(7), (2020): e2020GL087405, doi:10.1029/2020GL087405.
    Description: The origin and distribution of the gabbroic bodies provide crucial information to understand the formation and evolution processes of the oceanic core complexes (OCCs). Nevertheless, images of the shape of the gabbroic bodies across the domes and gabbroic intrusion into the mantle have remained elusive. High‐resolution acoustic early‐arrival full waveform inversion tomography models obtained along and across the Kane OCC characterize the detailed lateral variability in structure and composition of the upper ~2 km of this well‐developed OCC. Reverse time migration images show the gabbroic plutons embedded in mantle rocks are seismically transparent, while more reflective sections correspond to the layered magmatic crust. Lithological interpretation shows heterogeneous distribution of gabbroic bodies within the Kane OCC, indicating strong spatial and temporal variability in magmatism during fault exhumation. Our results will also be of high value for future scientific ocean drilling efforts in the area.
    Description: Seismic data acquisition was funded by NSF Grant OCE99‐87004. Data files can be obtained from Interdisciplinary Earth Data Alliance (IEDA) (https://doi.org/10.1594/IEDA/314508) (Tucholke & Collins, 2014). The velocity models and migrated seismic sections shown in the paper are freely available for download from 4TU. Centre for Research Data (doi:10.4121/uuid:3ef55160-4a5a-4d1a-b734-fe2b8d2871ae). Full waveform inversion was performed with the software TomoPlus (GeoTomo LLC) licensed to SCSIO. This research was supported by the National Natural Science Foundation of China (41676044 and 91858207) and Special Foundation for National Science and Technology Basic Research Program of China (2018FY100505). M. X. acknowledges supports from Guangdong NSF research team project (2017A030312002), K. C. Wong Education Foundation (GJTD‐2018‐13), Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (GML2019ZD0205), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA13010105). J. P. C. acknowledges support from the Independent Research and Development Program at WHOI. J. P. Wang and X. R. Mu from China University of Petroleum are thanked for helping with the RTM setup.
    Description: 2020-09-28
    Keywords: Oceanic core complex ; Detachment faulting ; Seismic structure ; Full waveform inversion ; Reverse time migration ; Lithology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 125(9), (2020): e2020JB019743, doi:10.1029/2020JB019743.
    Description: A multiscale magnetic survey of the northern basin of Yellowstone Lake was undertaken in 2016 as part of the Hydrothermal Dynamics of Yellowstone Lake Project (HD‐YLAKE)—a broad research effort to characterize the cause‐and‐effect relationships between geologic and environmental processes and hydrothermal activity on the lake floor. The magnetic survey includes lake surface, regional aeromagnetic, and near‐bottom autonomous underwater vehicle (AUV) data. The study reveals a strong contrast between the northeastern lake basin, characterized by a regional magnetic low punctuated by stronger local magnetic lows, many of which host hydrothermal vent activity, and the northwestern lake basin with higher‐amplitude magnetic anomalies and no obvious hydrothermal activity or punctuated magnetic lows. The boundary between these two regions is marked by a steep gradient in heat flow and magnetic values, likely reflecting a significant structure within the currently active ~20‐km‐long Eagle Bay‐Lake Hotel fault zone that may be related to the ~2.08‐Ma Huckleberry Ridge caldera rim. Modeling suggests that the broad northeastern magnetic low reflects both a shallower Curie isotherm and widespread hydrothermal activity that has demagnetized the rock. Along the western lake shoreline are sinuous‐shaped, high‐amplitude magnetic anomaly highs, interpreted as lava flow fronts of upper units of the West Thumb rhyolite. The AUV magnetic survey shows decreased magnetization at the periphery of the active Deep Hole hydrothermal vent. We postulate that lower magnetization in the outer zone results from enhanced hydrothermal alteration of rhyolite by hydrothermal condensates while the vapor‐dominated center of the vent is less altered.
    Description: The lake surface and AUV magnetic data were acquired under National Park Service research permit YELL‐2016‐SCI‐7018 and the 2016 aeromagnetic data under research permit YELL‐2016‐SCI‐7056. We thank Sarah Haas, Stacey Gunther, Erik Oberg, Annie Carlson, and Patricia Bigelow at the Yellowstone Center for Resources for assistance with permitting and logistics, Ranger Jackie Sene for assistance with logistics and safety at Bridge Bay, Bob Gresswell for providing us with the U.S. Geological Survey (USGS) boat Alamar, the boat pilot Nick Heredia, and Robert Harris and Shaul Hurwitz for fruitful discussions. We are very thankful to Ocean Floor Geophysics (Brian Claus and Steve Bloomer) who provided the magnetometer for the AUV survey and preprocessed the data, and to the REMUS 600 team (Greg Packard and Greg Kurras) for operating and optimizing the AUV during lake operations. Data from the Newport and Boulder observatories were used to process the survey data. We thank the USGS Geomagnetism Program for supporting their operation and INTERMAGNET for promoting high standards of magnetic observatory practice (www.intermagnet.org). This research was funded by the National Science Foundation's Integrated Earth Systems program EAR‐1516361 (HD‐YLAKE project), USGS Mineral Resource and Volcano Hazard Programs, and benefited from major in‐kind support from the USGS Yellowstone Volcano Observatory. Maurice Tivey was supported under National Science Foundation Grant OCE‐1557455. During the course of this study, Claire Bouligand was a visiting scientist at the USGS in Menlo Park, California, USA, benefited from a delegation to Centre National de la Recherche Scientifique (CNRS), and received funding from CNRS‐INSU program SYSTER. ISTerre is part of Labex OSUG@2020 (ANR10 LABX56). Any use of trade, firm, or product names is for descriptive purposes and does not imply endorsement by the U.S. Government.
    Description: 2021-01-27
    Keywords: Hydrothermal ; Magnetic anomalies ; Yellowstone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 125(10), (2020): e2020JG005664, doi:10.1029/2020JG005664.
    Description: Shallow ponds are expanding in many salt marshes with potential impacts on ecosystem functioning. Determining how pond characteristics change over time and scale with physical dimensions and other spatial predictors could facilitate incorporation of ponds into projections of ecosystem change. We evaluated scaling relationships across six differently sized ponds in three regions of the high marshes within the Plum Island Ecosystems‐Long Term Ecological Research site (MA, USA). We further characterized diel fluctuations in surface water chemistry in two ponds to understand short‐term processes that affect emergent properties (e.g., habitat suitability). Primary producers drove oxygen levels to supersaturation during the day, while nighttime respiration resulted in hypoxic to anoxic conditions. Diel swings in oxygen were mirrored by pH and resulted in successive shifts in redox‐sensitive metabolisms, as indicated by nitrate consumption at dusk followed by peaks in ammonium and then sulfide overnight. Abundances of macroalgae and Ruppia maritima correlated with whole‐pond oxygen metabolism rates, but not with surface area (SA), volume (V), or SA:V. Moreover, there were no clear patterns in primary producer abundances, surface water chemistry, or pond metabolism rates across marsh regions supplied by different tidal creeks or that differed in distance to upland borders or creekbanks. Comparisons with data from 2 years prior demonstrate that plant communities and biogeochemical processes are not in steady state. Factors contributing to variability between ponds and years are unclear but likely include infrequent tidal exchange. Temporal and spatial variability and the absence of scaling relationships complicate the integration of high marsh ponds into ecosystem biogeochemical models.
    Description: Thanks to S. McNichol, S. Jayne, E. Neel, and PIE‐LTER (NSF‐OCE1238212) for field assistance; I. Forbrich for meteorological data (Giblin & Forbrich, 2018); J. Jennings for dissolved nutrient analyses; J. Seewald for ion chromatograph access; and G. Mariotti for elevation data. C. Wilson and an anonymous reviewer provided comments that greatly improved our manuscript. A. C. S. was supported by NSF (OCE1233678), NOAA (NA14NOS4190145), and Sea Grant (NA14OAR4170104) awards, and A. D. by the MIT Undergraduate Research Opportunities Program.
    Description: 2021-03-15
    Keywords: Salt marsh ; Global change ; Biogeochemistry ; Metabolism ; Scaling ; Ecosystem function
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 125(2), (2020): e2019JB018203, doi:10.1029/2019JB018203.
    Description: Cold, low‐density diapirs arising from hydrated mantle and/or subducted sediments on the top of subducting slabs have been invoked to transport key chemical signatures to the source region of arc magmas. However, to date there have been few quantitative models to constrain melting in such diapirs. Here we use a two‐phase Darcy‐Stokes‐energy model to investigate thermal evolution, melting, and depletion in a buoyant sediment diapir ascending through the mantle wedge. Using a simplified 2‐D circular geometry, we investigate diapir evolution in three scenarios with increasing complexity. In the first two scenarios we consider instantaneous heating of a diapir by thermal diffusion with and without the effect of the latent heat of melting. Then, these simplified calculations are compared to numerical simulations that include melting, melt segregation, and the influence of depletion on the sediment solidus along pressure‐temperature‐time (P ‐T ‐t ) paths appropriate for ascent through the mantle wedge. The high boundary temperature induces a rim of high porosity, into which new melts are focused and then migrate upward. The rim thus acts like an annulus melt channel, while the effect of depletion buffers additional melt production. Solid matrix flow combined with recrystallization of melt pooled near the top of the diapir can result in large gradients in depletion across the diapir. These large depletion gradients can either be preserved if the diapir leaks melt during ascent, or rehomogenized in a sealed diapir. Overall our numerical simulations predict less melt production than the simplified thermal diffusion calculations. Specifically, we show that diapirs whose ascent paths favor melting beneath the volcanic arc will undergo no more than ~40–50% total melting.
    Description: We thank careful reviews by Juliane Dannberg, Harro Schmeling, and Bernhard steinberger. This work is supported by NSF‐1316333 (MB & NZ), NSF‐1551023 (MB), NSF‐1316310 (CK), and by China's Thousand Talents Plan (2015) and NSFC‐41674098 funding to NZ. The public data repository of Deal.ii (www.dealii.org) is thanked for distributing the software and examples that are used in this study. Computational work was conducted in High‐performance Computing Platform of Peking University, Kenny cluster of WHOI, and Pawsey Supercomputing Centre of Western Australia. We thank Timo Heister and Juliane Dannberg for deal.II technical assistance. The data of mantle wedge thermal structure and diapir trajectories, and the source code to compute the model results are available in the Mendeley data (http://dx.doi.org/10.17632/73n8zkc68s.1).
    Description: 2020-07-31
    Keywords: Sedimentary diapirs ; Subduction wedge ; Melt migration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 125(1), (2020): e2019JG005414, doi:10.1029/2019JG005414.
    Description: A survey of 25 coastal‐draining rivers across the Canadian Arctic Archipelago (CAA) shows that these systems are distinct from the largest Arctic rivers that drain watersheds extending far south of the Arctic circle. Observations collected from 2014 to 2016 illustrate the influences of seasonal hydrology, bedrock geology, and landscape physiography on each river's inorganic geochemical characteristics. Summertime data show the impact of coincident gradients in lake cover and surficial geology on river geochemical signatures. In the north and central CAA, drainage basins are generally smaller, underlain by sedimentary bedrock, and their hydrology is driven by seasonal precipitation pulses that undergo little modification before they enter the coastal ocean. In the southern CAA, a high density of lakes stores water longer within the terrestrial system, permitting more modification of water isotope and geochemical characteristics. Annual time‐series observations from two CAA rivers reveal that their concentration‐discharge relationships differ compared with those of the largest Arctic rivers, suggesting that future projections of dissolved ion fluxes from CAA rivers to the Arctic Ocean may not be reliably made based on compositions of the largest Arctic rivers alone, and that rivers draining the CAA region will likely follow different trajectories of change under a warming climate. Understanding how these small, coastal‐draining river systems will respond to climate change is essential to fully evaluate the impact of changing freshwater inputs to the Arctic marine system.
    Description: This work was only possible through a network of enthusiastic and devoted collaborators. Partners included Polar Knowledge Canada and the Canadian High Arctic Research Station, the Arctic Research Foundation, the Kugluktuk Angoniatit Association, and the Canadian Arctic GEOTRACES Program. We acknowledge support from the Department of Fisheries and Oceans Canada, the Woods Hole Oceanographic Institution Coastal Ocean Institute, The G. Unger Vetlesen Foundation, Jane and James Orr, and the Woods Hole Research Center. Many thanks go to Austin Maniyogena, Angulalik Pedersen, Adrian Schimnowski, JS Moore, Les Harris, Oksana Schimnowski, as well as Barbara Adjun, Amanda Dumond, and Johnny Nivingalok, and the captains and crew of the research vessels CCGS Amundsen and R/V Martin Bergmann, all of whom supported our research and helped with sample collection. Special thanks also go to Valier Galy, Zhaohui “Aleck” Wang, Marty Davelaar, Michiyo Yamamoto‐Kawai, Hugh McLean, Mike Dempsey, Baba Pedersen, Maureen Soon, Katherine Hoering, Sean Sylva, Ekaterina Bulygina, and Anya Suslova for their invaluable contributions during field program planning, preparations, and laboratory analyses. Robert Max Holmes is thanked for many fruitful discussions. We also thank several anonymous reviewers for their helpful comments on the paper's content and structure. All of the data presented in this paper can be found at https://doi.org/10.1594/PANGAEA.908497.
    Keywords: Arctic Rivers ; Geochemistry ; Major ion chemistry ; Stable isotopes ; Northern hydrology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Earth Surface Processes and Landforms, Wiley, ISSN: 0197-9337
    Publication Date: 2022-10-21
    Description: Thaw slumps in ice‐rich permafrost can retreat tens of metres per summer, driven by the melt of subaerially exposed ground ice. However, some slumps retain an ice‐veneering debris cover as they retreat. A quantitative understanding of the thermal regime and geomorphic evolution of debris‐covered slumps in a warming climate is largely lacking. To characterize the thermal regime, we instrumented four debris‐covered slumps in the Canadian Low Arctic and developed a numerical conduction‐based model. The observed surface temperatures 20°C and steep thermal gradients indicate that debris insulates the ice by shifting the energy balance towards radiative and turbulent losses. After the model was calibrated and validated with field observations, it predicted sub‐debris ice melt to decrease four‐fold from 1.9 to 0.5 m as the thickness of the fine‐grained debris quadruples from 0.1 to 0.4 m. With warming temperatures, melt is predicted to increase most rapidly, in relative terms, for thick (~0.5‐1.0 m) debris covers. The morphology and evolution of the debris‐covered slumps were characterized using field and remote sensing observations, which revealed differences in association with morphology and debris composition. Two low‐angle slumps retreated continually despite their persistent fine‐grained debris covers. The observed elevation losses decreased from ~1.0 m/yr where debris thickness ~.2 m to 0.1 m/yr where thickness ~1.0 m. Conversely, a steep slump with a coarse‐grained debris veneer underwent short‐lived bursts of retreat, hinting at a complex interplay of positive and negative feedback processes. The insulative protection and behaviour of debris vary significantly with factors such as thickness, grain size and climate: debris thus exerts a fundamental, spatially variable influence on slump trajectories in a warming climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-10-21
    Description: This paper investigates different methods for quantifying thaw subsidence using terrestrial laser scanning (TLS) point clouds. Thaw subsidence is a slow (millimetre to centimetre per year) vertical displacement of the ground surface common in ice‐rich permafrost‐underlain landscapes. It is difficult to quantify thaw subsidence in tundra areas as they often lack stable reference frames. Also, there is no solid ground surface to serve as a basis for elevation measurements, due to a continuous moss–lichen cover. We investigate how an expert‐driven method improves the accuracy of benchmark measurements at discrete locations within two sites using multitemporal TLS data of a 1‐year period. Our method aggregates multiple experts’ determination of the ground surface in 3D point clouds, collected in a web‐based tool. We then compare this to the performance of a fully automated ground surface determination method. Lastly, we quantify ground surface displacement by directly computing multitemporal point cloud distances, thereby extending thaw subsidence observation to an area‐based assessment. Using the expert‐driven quantification as reference, we validate the other methods, including in‐situ benchmark measurements from a conventional field survey. This study demonstrates that quantifying the ground surface using 3D point clouds is more accurate than the field survey method. The expert‐driven method achieves an accuracy of 0.1 ± 0.1 cm. Compared to this, in‐situ benchmark measurements by single surveyors yield an accuracy of 0.4 ± 1.5 cm. This difference between the two methods is important, considering an observed displacement of 1.4 cm at the sites. Thaw subsidence quantification with the fully automatic benchmark‐based method achieves an accuracy of 0.2 ± 0.5 cm and direct point cloud distance computation an accuracy of 0.2 ± 0.9 cm. The range in accuracy is largely influenced by properties of vegetation structure at locations within the sites. The developed methods enable a link of automated quantification and expert judgement for transparent long‐term monitoring of permafrost subsidence.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-10-21
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Planets 125(10),(2020): e2020JE006394, doi:10.1029/2020JE006394.
    Description: Compositional heterogeneities within Europa's ice shell likely impact the dynamics and habitability of the ice and subsurface ocean, but the total inventory and distribution of impurities within the shell are unknown. In sea ice on Earth, the thermochemical environment at the ice‐ocean interface governs impurity entrainment into the ice. Here, we simulate Europa's ice‐ocean interface and bound the impurity load (1.053–14.72 g/kg [parts per thousand weight percent, or ppt] bulk ice shell salinity) and bulk salinity profile of the ice shell. We derive constitutive equations that predict ice composition as a function of the ice shell thermal gradient and ocean composition. We show that evolving solidification rates of the ocean and hydrologic features within the shell produce compositional variations (ice bulk salinities of 5–50% of the ocean salinity) that can affect the material properties of the ice. As the shell thickens, less salt is entrained at the ice‐ocean interface, which implies Europa's ice shell is compositionally homogeneous below ~1 km. Conversely, the solidification of water filled fractures or lenses introduces substantial compositional variations within the ice shell, creating gradients in mechanical and thermal properties within the ice shell that could help initiate and sustain geological activity. Our results suggest that ocean materials entrained within Europa's ice shell affect the formation of geologic terrain and that these structures could be confirmed by planned spacecraft observations.
    Description: This study was supported by the NASA Earth and Space Science Fellowship, grants NNX16AP43H S01 and NNX16AP43H S002. Britney Schmidt was additionally supported by the Europa Clipper Mission. Resources supporting this work were provided by the NASA High‐End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center.
    Description: 2021-03-20
    Keywords: Europa ; planetary ices ; ice‐ocean worlds
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-10-21
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Haumann, F. A., Moorman, R., Riser, S. C., Smedsrud, L. H., Maksym, T., Wong, A. P. S., Wilson, E. A., Drucker, R., Talley, L. D., Johnson, K. S., Key, R. M., & Sarmiento, J. L. Supercooled Southern Ocean waters. Geophysical Research Letters, 47(20), (2020): e2020GL090242, doi:10.1029/2020GL090242.
    Description: In cold polar waters, temperatures sometimes drop below the freezing point, a process referred to as supercooling. However, observational challenges in polar regions limit our understanding of the spatial and temporal extent of this phenomenon. We here provide observational evidence that supercooled waters are much more widespread in the seasonally ice‐covered Southern Ocean than previously reported. In 5.8% of all analyzed hydrographic profiles south of 55°S, we find temperatures below the surface freezing point (“potential” supercooling), and half of these have temperatures below the local freezing point (“in situ” supercooling). Their occurrence doubles when neglecting measurement uncertainties. We attribute deep coastal‐ocean supercooling to melting of Antarctic ice shelves and surface‐induced supercooling in the seasonal sea‐ice region to wintertime sea‐ice formation. The latter supercooling type can extend down to the permanent pycnocline due to convective sinking plumes—an important mechanism for vertical tracer transport and water‐mass structure in the polar ocean.
    Description: F. A. H. was supported by the Swiss National Science Foundation (SNSF; Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung) grant numbers P2EZP2_175162 and P400P2_186681. This work was supported by the National Science Foundation (NSF) Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) Project under the NSF Award PLR‐1425989. R. M. would like to thank the National Oceanic and Atmospheric Administration (NOAA) GFDL for mentorship and computational support. S. R. was also supported by the U.S. Argo grant and NOAA grant NA15OAR4320063 to the University of Washington. L. H. S. thanks the Fulbright Foundation for the U.S.‐Norway Arctic Chair grant. We are deeply thankful to the large number of scientists, technicians, and funding agencies contributing to these databases, being responsible for the collection and quality control of the high‐quality data that form the basis of this work. We thank Josh Plant for his initial notification on very low temperatures observed in some of the float profiles. We would also like to thank the students, teachers, and schools who are participating in the SOCCOM Adopt‐a‐Float program. Four of the floats used in this study were adopted and have a clear signal of supercooling. These participants are listed in Table S1.
    Keywords: Southern Ocean ; Supercooling ; Sea ice ; Ice shelf ; Observations ; Convection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-07-04
    Description: Collapse of permafrost coasts delivers large quantities of particulate organic carbon (POC) to arctic coastal areas. With rapidly‐changing environmental conditions, sediment and organic carbon (OC) mobilization and transport pathways are also changing. Here, we assess the sources and sinks of POC in the highly‐dynamic nearshore zone of Herschel Island ‐ Qikiqtaruk (Yukon, Canada). Our results show that POC concentrations sharply decrease, from 15.9 to 0.3 mg L‐1, within the first 100 – 300 meters offshore. Simultaneously, radiocarbon ages of POC drop from 16,400 to 3,600 14C years, indicating rapid settling of old permafrost POC to underlying sediments. This suggests that permafrost OC is, apart from a very narrow resuspension zone (〈5 m water depth), predominantly deposited in nearshore sediments. While long‐term storage of permafrost OC in marine sediments potentially limits biodegradation and its subsequent release as greenhouse gas, resuspension of fine‐grained, OC‐rich sediments in the nearshore zone potentially enhances OC turnover.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ruppel, C. D., & Waite, W. F. Timescales and processes of methane hydrate formation and breakdown, with application to geologic systems. Journal of Geophysical Research: Solid Earth, 125(8), (2020): e2018JB016459, doi:10.1029/2018JB016459.
    Description: Gas hydrate is an ice‐like form of water and low molecular weight gas stable at temperatures of roughly −10°C to 25°C and pressures of ~3 to 30 MPa in geologic systems. Natural gas hydrates sequester an estimated one sixth of Earth's methane and are found primarily in deepwater marine sediments on continental margins, but also in permafrost areas and under continental ice sheets. When gas hydrate is removed from its stability field, its breakdown has implications for the global carbon cycle, ocean chemistry, marine geohazards, and interactions between the geosphere and the ocean‐atmosphere system. Gas hydrate breakdown can also be artificially driven as a component of studies assessing the resource potential of these deposits. Furthermore, geologic processes and perturbations to the ocean‐atmosphere system (e.g., warming temperatures) can cause not only dissociation, but also more widespread dissolution of hydrate or even formation of new hydrate in reservoirs. Linkages between gas hydrate and disparate aspects of Earth's near‐surface physical, chemical, and biological systems render an assessment of the rates and processes affecting the persistence of gas hydrate an appropriate Centennial Grand Challenge. This paper reviews the thermodynamic controls on methane hydrate stability and then describes the relative importance of kinetic, mass transfer, and heat transfer processes in the formation and breakdown (dissociation and dissolution) of gas hydrate. Results from numerical modeling, laboratory, and some field studies are used to summarize the rates of hydrate formation and breakdown, followed by an extensive treatment of hydrate dynamics in marine and cryospheric gas hydrate systems.
    Description: Both authors have received nearly two decades of support from the U.S. Geological Survey's (USGS's) Energy Resources Program and the Coastal/Marine Hazards and Resources Program and from numerous DOE‐USGS Interagency Agreements, most recently DE‐FE0023495. C. R. acknowledges support from NOAA's Office of Ocean Exploration and Research (OER) under NOAA‐USGS Interagency Agreement 16‐01118.
    Keywords: Gas hydrate ; Hydrate breakdown ; Hydrate formation ; Permafrost hydrate ; Geologic systems ; Marine hydrate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Long, M. H., Rheuban, J. E., McCorkle, D. C., Burdige, D. J., & Zimmerman, R. C. Closing the oxygen mass balance in shallow coastal ecosystems. Limnology and Oceanography, 64(6), (2019): 2694-2708, doi: 10.1002/lno.11248.
    Description: The oxygen concentration in marine ecosystems is influenced by production and consumption in the water column and fluxes across both the atmosphere–water and benthic–water boundaries. Each of these fluxes has the potential to be significant in shallow ecosystems due to high fluxes and low water volumes. This study evaluated the contributions of these three fluxes to the oxygen budget in two contrasting ecosystems, a Zostera marina (eelgrass) meadow in Virginia, U.S.A., and a coral reef in Bermuda. Benthic oxygen fluxes were evaluated by eddy covariance. Water column oxygen production and consumption were measured using an automated water incubation system. Atmosphere–water oxygen fluxes were estimated by parameterizations based on wind speed or turbulent kinetic energy dissipation rates. We observed significant contributions of both benthic fluxes and water column processes to the oxygen mass balance, despite the often‐assumed dominance of the benthic communities. Water column rates accounted for 45% and 58% of the total oxygen rate, and benthic fluxes accounted for 23% and 39% of the total oxygen rate in the shallow (~ 1.5 m) eelgrass meadow and deeper (~ 7.5 m) reef site, respectively. Atmosphere–water fluxes were a minor component at the deeper reef site (3%) but a major component at the shallow eelgrass meadow (32%), driven by diel changes in the sign and strength of atmosphere–water gradient. When summed, the measured benthic, atmosphere–water, and water column rates predicted, with 85–90% confidence, the observed time rate of change of oxygen in the water column and provided an accurate, high temporal resolution closure of the oxygen mass balance.
    Description: This work was substantially improved by comments from two anonymous reviewers. We thank Victoria Hill, David Ruble, Jeremy Bleakney, and Brian Collister for assistance in the field and the staff of the Bermuda Institute of Ocean Sciences and the Anheuser‐Busch Coastal Research Center for logistical support. This work was supported by NSF OCE grants 1657727 (to M.H.L. and D.C.M.), 1635403 (to R.C.Z. and D.J.B.), and 1633951 (to M.H.L.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems XX (2019): Tyne, R. L., Barry, P. H., Hillegonds, D. J., Hunt, A. G., Kulongoski, J. T., Stephens, M. J., Byrne, D. J., & Ballentine, C. J. A novel method for the extraction, purification, and characterization of noble gases in produced fluids. Geochemistry Geophysics Geosystems, 20, (2019): 5588-5597, doi: 10.1029/2019GC008552.
    Description: Hydrocarbon systems with declining or viscous oil production are often stimulated using enhanced oil recovery (EOR) techniques, such as the injection of water, steam, and CO2, in order to increase oil and gas production. As EOR and other methods of enhancing production such as hydraulic fracturing have become more prevalent, environmental concerns about the impact of both new and historical hydrocarbon production on overlying shallow aquifers have increased. Noble gas isotopes are powerful tracers of subsurface fluid provenance and can be used to understand the impact of EOR on hydrocarbon systems and potentially overlying aquifers. In oil systems, produced fluids can consist of a mixture of oil, water and gas. Noble gases are typically measured in the gas phase; however, it is not always possible to collect gases and therefore produced fluids (which are water, oil, and gas mixtures) must be analyzed. We outline a new technique to separate and analyze noble gases in multiphase hydrocarbon‐associated fluid samples. An offline double capillary method has been developed to quantitatively isolate noble gases into a transfer vessel, while effectively removing all water, oil, and less volatile hydrocarbons. The gases are then cleaned and analyzed using standard techniques. Air‐saturated water reference materials (n = 24) were analyzed and results show a method reproducibility of 2.9% for 4He, 3.8% for 20Ne, 4.5% for 36Ar, 5 .3% for 84Kr, and 5.7% for 132Xe. This new technique was used to measure the noble gas isotopic compositions in six produced fluid samples from the Fruitvale Oil Field, Bakersfield, California.
    Description: This work was supported by a Natural Environment Research Council studentship to R. L. Tyne (grant NE/L002612/1) and the USGS (grant 15‐080‐250), as part of the California State Water Resource Control Board's, Oil and Gas Regional Groundwater Monitoring Program (RMP). Data can be accessed in Tables 1 and 2 and in the data release from Gannon et al. (2018). We thank the owners and operators at the Fruitvale Oil Field for access to wells. We thank Stuart Gilfillan and an anonymous reviewer for their constructive reviews as well as Marie Edmonds for editorial handling. We also thank Matthew Landon and Myles Moor from the USGS who provided helpful comments on an earlier version of the manuscript. Any use of trade, firm or product names are for descriptive purposes only and do not imply endorsement by the U.S. Government.
    Description: 2020-04-14
    Keywords: Noble Gas ; Methods ; Produced Fluids
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chapman, A. S. A., Beaulieu, S. E., Colaco, A., Gebruk, A. V., Hilario, A., Kihara, T. C., Ramirez-Llodra, E., Sarrazin, J., Tunnicliffe, V., Amon, D. J., Baker, M. C., Boschen-Rose, R. E., Chen, C., Cooper, I. J., Copley, J. T., Corbari, L., Cordes, E. E., Cuvelier, D., Duperron, S., Du Preez, C., Gollner, S., Horton, T., Hourdez, S., Krylova, E. M., Linse, K., LokaBharathi, P. A., Marsh, L., Matabos, M., Mills, S. W., Mullineaux, L. S., Rapp, H. T., Reid, W. D. K., Rybakova (Goroslavskaya), E., Thomas, T. R. A., Southgate, S. J., Stohr, S., Turner, P. J., Watanabe, H. K., Yasuhara, M., & Bates, A. E. sFDvent: a global trait database for deep-sea hydrothermal-vent fauna. Global Ecology and Biogeography, 28(11), (2019): 1538-1551, doi: 10.1111/geb.12975.
    Description: Motivation Traits are increasingly being used to quantify global biodiversity patterns, with trait databases growing in size and number, across diverse taxa. Despite growing interest in a trait‐based approach to the biodiversity of the deep sea, where the impacts of human activities (including seabed mining) accelerate, there is no single repository for species traits for deep‐sea chemosynthesis‐based ecosystems, including hydrothermal vents. Using an international, collaborative approach, we have compiled the first global‐scale trait database for deep‐sea hydrothermal‐vent fauna – sFDvent (sDiv‐funded trait database for the Functional Diversity of vents). We formed a funded working group to select traits appropriate to: (a) capture the performance of vent species and their influence on ecosystem processes, and (b) compare trait‐based diversity in different ecosystems. Forty contributors, representing expertise across most known hydrothermal‐vent systems and taxa, scored species traits using online collaborative tools and shared workspaces. Here, we characterise the sFDvent database, describe our approach, and evaluate its scope. Finally, we compare the sFDvent database to similar databases from shallow‐marine and terrestrial ecosystems to highlight how the sFDvent database can inform cross‐ecosystem comparisons. We also make the sFDvent database publicly available online by assigning a persistent, unique DOI. Main types of variable contained Six hundred and forty‐six vent species names, associated location information (33 regions), and scores for 13 traits (in categories: community structure, generalist/specialist, geographic distribution, habitat use, life history, mobility, species associations, symbiont, and trophic structure). Contributor IDs, certainty scores, and references are also provided. Spatial location and grain Global coverage (grain size: ocean basin), spanning eight ocean basins, including vents on 12 mid‐ocean ridges and 6 back‐arc spreading centres. Time period and grain sFDvent includes information on deep‐sea vent species, and associated taxonomic updates, since they were first discovered in 1977. Time is not recorded. The database will be updated every 5 years. Major taxa and level of measurement Deep‐sea hydrothermal‐vent fauna with species‐level identification present or in progress. Software format .csv and MS Excel (.xlsx).
    Description: We would like to thank the following experts, who are not authors on this publication but made contributions to the sFDvent database: Anna Metaxas, Alexander Mironov, Jianwen Qiu (seep species contributions, to be added to a future version of the database) and Anders Warén. We would also like to thank Robert Cooke for his advice, time, and assistance in processing the raw data contributions to the sFDvent database using R. Thanks also to members of iDiv and its synthesis centre – sDiv – for much‐valued advice, support, and assistance during working‐group meetings: Doreen Brückner, Jes Hines, Borja Jiménez‐Alfaro, Ingolf Kühn and Marten Winter. We would also like to thank the following supporters of the database who contributed indirectly via early design meetings or members of their research groups: Malcolm Clark, Charles Fisher, Adrian Glover, Ashley Rowden and Cindy Lee Van Dover. Finally, thanks to the families of sFDvent working group members for their support while they were participating in meetings at iDiv in Germany. Financial support for sFDvent working group meetings was gratefully received from sDiv, the Synthesis Centre of iDiv (DFG FZT 118). ASAC was a PhD candidate funded by the SPITFIRE Doctoral Training Partnership (supported by the Natural Environmental Research Council, grant number: NE/L002531/1) and the University of Southampton at the time of submission. ASAC also thanks Dominic, Lesley, Lettice and Simon Chapman for their support throughout this project. AEB and VT are sponsored through the Canada Research Chair Programme. SEB received support from National Science Foundation Division of Environmental Biology Award #1558904 and The Joint Initiative Awards Fund from the Andrew W. Mellon Foundation. AC is supported by Program Investigador (IF/00029/2014/CP1230/CT0002) from Fundação para a Ciência e a Tecnologia (FCT). This study also had the support of Fundação para a Ciência e a Tecnologia, through the strategic project UID/MAR/04292/2013 granted to marine environmental sciences centre. Data compiled by AVG and EG were supported by Russian science foundation Grant 14‐50‐00095. AH was supported by the grant BPD/UI88/5805/2017 awarded by CESAM (UID/AMB/50017), which is financed by FCT/Ministério da Educação through national funds and co‐funded by fundo Europeu de desenvolvimento regional, within the PT2020 Partnership Agreement and Compete 2020. ERLL was partially supported by the MarMine project (247626/O30). JS was supported by Ifremer. Data on vent fauna from the East Scotia Ridge, Mid‐Cayman Spreading Centre, and Southwest Indian Ridge were obtained by UK natural environment research council Grants NE/D01249X/1, NE/F017774/1 and NE/H012087/1, respectively. REBR's contribution was supported by a Postdoctoral Fellowship at the University of Victoria, funded by the Canadian Healthy Oceans Network II Strategic Research Program (CHONe II). DC is supported by a post‐doctoral scholarship (SFRH/BPD/110278/2015) from FCT. HTR was supported by the Research Council of Norway through project number 70184227 and the KG Jebsen Centre for Deep Sea Research (University of Bergen). MY was partially supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (project codes: HKU 17306014, HKU 17311316).
    Keywords: biodiversity ; collaboration ; conservation ; cross‐ecosystem ; database ; deep sea ; functional trait ; global‐scale ; hydrothermal vent ; sFDvent
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Weber, L., González-Díaz, P., Armenteros, M., Ferrer, V. M., Bretos, F., Bartels, E., Santoro, A. E., & Apprill, A. Microbial signatures of protected and impacted Northern Caribbean reefs: changes from Cuba to the Florida Keys. Environmental Microbiology, 22(1), (2019): 499-519, doi: 10.1111/1462-2920.14870.
    Description: There are a few baseline reef‐systems available for understanding the microbiology of healthy coral reefs and their surrounding seawater. Here, we examined the seawater microbial ecology of 25 Northern Caribbean reefs varying in human impact and protection in Cuba and the Florida Keys, USA, by measuring nutrient concentrations, microbial abundances, and respiration rates as well as sequencing bacterial and archaeal amplicons and community functional genes. Overall, seawater microbial composition and biogeochemistry were influenced by reef location and hydrogeography. Seawater from the highly protected ‘crown jewel’ offshore reefs in Jardines de la Reina, Cuba had low concentrations of nutrients and organic carbon, abundant Prochlorococcus, and high microbial community alpha diversity. Seawater from the less protected system of Los Canarreos, Cuba had elevated microbial community beta‐diversity whereas waters from the most impacted nearshore reefs in the Florida Keys contained high organic carbon and nitrogen concentrations and potential microbial functions characteristic of microbialized reefs. Each reef system had distinct microbial signatures and within this context, we propose that the protection and offshore nature of Jardines de la Reina may preserve the oligotrophic paradigm and the metabolic dependence of the community on primary production by picocyanobacteria.
    Description: We thank Justin Ossolinski, Sean McNally, Tom Lankiewicz, Lázaro García, and the crew from R/V Felipe Poey for assistance with sample collection and processing. We thank Marlin Nauticas and Marinas for the use of their dive facilities. We thank Chris Wright, Mark Band, and staff at the University of Illinois W. M. Keck Center for Comparative and Functional Genomics for sequencing assistance, Karen Selph for training in flow cytometry, Krista Longnecker for TOC and TN analyses, and Joe Jennings for nutrient analyses. Funding was provided to A.A. and A.E.S. by a Dalio Explore award from the Dalio Foundation (now 'OceanX') and analysis time was supported with the NSF Graduate Research Fellowship award to L.W. and NSF award OCE 1736288 to A.A. Research was conducted under the LH112 AN (25) 2015 licence granted by the Cuban Center for Inspection and Environmental Control.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rheuban, J. E., Doney, S. C., McCorkle, D. C., & Jakuba, R. W. Quantifying the effects of nutrient enrichment and freshwater mixing on coastal ocean acidification. Journal of Geophysical Research-Oceans, 124, (2019): 9085-9100, doi: 10.1029/2019JC015556.
    Description: The U.S. Northeast is vulnerable to ocean and coastal acidification because of low alkalinity freshwater discharge that naturally acidifies the region, and high anthropogenic nutrient loads that lead to eutrophication in many estuaries. This study describes a combined nutrient and carbonate chemistry monitoring program in five embayments of Buzzards Bay, Massachusetts to quantify the effects of nutrient loading and freshwater discharge on aragonite saturation state (Ω). Monitoring occurred monthly from June 2015 to September 2017 with higher frequency at two embayments (Quissett and West Falmouth Harbors) and across nitrogen loading and freshwater discharge gradients. The more eutrophic stations experienced seasonal aragonite undersaturation, and at one site, nearly every measurement collected was undersaturated. We present an analytical framework to decompose variability in aragonite Ω into components driven by temperature, salinity, freshwater endmember mixing, and biogeochemical processes. We observed strong correlations between apparent oxygen utilization and the portion of aragonite Ω variation that we attribute to biogeochemistry. The regression slopes were consistent with Redfield ratios of dissolved inorganic carbon and total alkalinity to dissolved oxygen. Total nitrogen and the contribution of biogeochemical processes to aragonite Ω were highly correlated, and this relationship was used to estimate the likely effects of nitrogen loading improvements on aragonite Ω. Under nitrogen loading reduction scenarios, aragonite Ω in the most eutrophic estuaries could be raised by nearly 0.6 units, potentially increasing several stations above the critical threshold of 1. This analysis provides a quantitative framework for incorporating ocean and coastal acidification impacts into regulatory and management discussions.
    Description: We thank Kelly Luis, Michaela Fendrock, Will Oesterich, Sheron Luk, Marti Jeglinksi, and Tony Williams for their help with field sample collection and logistical support and Chris Neill, Lindsay Scott, Rich McHorney, and Paul Henderson for laboratory sample analysis. We also thank the Waquoit Bay National Estuarine Research Reserve for loaning their handheld water quality meters and two anonymous reviewers for their feedback on this manuscript. Financial support for this work was provided by the John D. and Catherine T. MacArthur Foundation (grant no. 14‐106159‐000‐CFP), MIT Sea Grant (subaward 5710004045) and the West Wind Foundation. The data used in this analysis can be found in the NOAA NCEI repository for carbonate chemistry measurements, the Ocean Carbon Data System at the following link: https://www.nodc.noaa.gov/ocads/data/0206206.xml.
    Keywords: Coastal Acidification ; Eutrophication
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology, 34, (2019): 2141-2157, doi: 10.1029/2019PA003731.
    Description: Dissolution of calcite in deep ocean sediments, which is required to balance global marine CaCO3 production and burial fluxes, is still a poorly understood process. In order to assess the mechanisms of dissolution in sediments, we analyzed four multicore tops taken along a depth transect on the Ontong‐Java Plateau. These cores were taken directly on the equator, and span water column calcite saturation states from ∼0.93 to ∼0.74, allowing us to assess the effect of dissolution on carbonate sediment composition. The top 2 cm of each multicore was sectioned and sieved to separate coccolith from foraminiferal calcite, and the %CaCO3, δ13C, Δ14C, and Mg/Ca were evaluated. The mass ratio of coccoliths to foraminifera increases by a factor of 3 as a function of water depth, reflecting the preferential dissolution of foraminifera. Carbon isotope (δ13C and Δ14C) data suggest that most dissolution takes place at the sediment‐water interface and primarily affects foraminifera. Mg/Ca analyses indicate that the Mg content of the entire foraminiferal assemblage decreases as a function of dissolution. In contrast, coccolith dissolution takes place within the sediments, rather than at the interface. Together these two processes cause coccoliths to be up to 1,000 radiocarbon years younger than foraminifera from the same depth horizon. Despite this within‐sediment coccolith dissolution flux, sediments below the calcite saturation horizon remain enriched in coccolith calcite. Combined with global seafloor hypsometry and calcium carbonate content, this enrichment suggests that globally, coccoliths may outweigh foraminifera in deep ocean sediments by a factor of 1.8.
    Description: A. V. S. thanks the NOSAMS facility and the WHOI/NOSAMS postdoc scholar program, James Funds, and the Bessette family for funding and support. A. Q. acknowledges Williams College research and travel funds. We thank the Stanley W. Watson Director's Discretionary Fund for the Picarro‐Automate analyzer. We thank Ellen Roosen at the WHOI core repository for help with sample identification and sectioning. Thanks to Gretchen Swarr and the WHOI plasma mass spectrometry facility. Finally, we thank Bill Martin and Wally Broecker for enlightening discussions on dissolution and radiocarbon dating of deep ocean sediments. All data are included as supporting information files and are archived with NOAA's World Data Service for Paleoceanography (WDS Paleo; https://www.ncdc.noaa.gov/paleo/study/28150).
    Description: 2020-05-15
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(1), (2020): e2019GL085378, doi:10.1029/2019GL085378.
    Description: Retrospectively comparing future model projections to observations provides a robust and independent test of model skill. Here we analyze the performance of climate models published between 1970 and 2007 in projecting future global mean surface temperature (GMST) changes. Models are compared to observations based on both the change in GMST over time and the change in GMST over the change in external forcing. The latter approach accounts for mismatches in model forcings, a potential source of error in model projections independent of the accuracy of model physics. We find that climate models published over the past five decades were skillful in predicting subsequent GMST changes, with most models examined showing warming consistent with observations, particularly when mismatches between model‐projected and observationally estimated forcings were taken into account.
    Description: Z. H. conceived the project, Z. H. and H. F. D. created the figures, and Z. H., H. F. D., T. A., and G. S. helped gather data and wrote the article text. A public GitHub repository with code used to analyze the data and generate figures and csv files containing the data shown in the figures is available online (https://github.com/hausfath/OldModels). Additional information on the code and data used in the analysis can be found in the supporting information. We would like to thank Piers Forster for providing the ensemble of observationally‐informed radiative forcing estimates. No dedicated funding from any of the authors supported this project.
    Description: 2020-06-04
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liang, Y., Kwon, Y., Frankignoul, C., Danabasoglu, G., Yeager, S., Cherchi, A., Gao, Y., Gastineau, G., Ghosh, R., Matei, D., Mecking, J., V., Peano, D., Suo, L., & Tian, T. Quantification of the arctic sea ice-driven atmospheric circulation variability in coordinated large ensemble simulations. Geophysical Research Letters, 47(1), (2020): e2019GL085397, doi:10.1029/2019GL085397.
    Description: A coordinated set of large ensemble atmosphere‐only simulations is used to investigate the impacts of observed Arctic sea ice‐driven variability (SIDV) on the atmospheric circulation during 1979–2014. The experimental protocol permits separating Arctic SIDV from internal variability and variability driven by other forcings including sea surface temperature and greenhouse gases. The geographic pattern of SIDV is consistent across seven participating models, but its magnitude strongly depends on ensemble size. Based on 130 members, winter SIDV is ~0.18 hPa2 for Arctic‐averaged sea level pressure (~1.5% of the total variance), and ~0.35 K2 for surface air temperature (~21%) at interannual and longer timescales. The results suggest that more than 100 (40) members are needed to separate Arctic SIDV from other components for dynamical (thermodynamical) variables, and insufficient ensemble size always leads to overestimation of SIDV. Nevertheless, SIDV is 0.75–1.5 times as large as the variability driven by other forcings over northern Eurasia and Arctic.
    Description: The authors thank Editor Christina Patricola and two anonymous reviewers for their comprehensive and insightful comments, which have led to improved presentation of this manuscript. We acknowledge support by the Blue‐Action Project (European Union's Horizon 2020 research and innovation program, 727852, http://www.blue‐action.eu/index.php?id = 3498). The WHOI‐NCAR group is also supported by the US National Science Foundation (NSF) Office of Polar Programs Grants 1736738 and 1737377, and their computing and data storage resources, including the Cheyenne supercomputer (doi:10.5065/D6RX99HX), were provided by the Computational and Information Systems Laboratory at NCAR. NCAR is a major facility sponsored by the U.S. NSF under Cooperative Agreement 1852977. The LOCEAN‐IPSL group was granted access to the HPC resources of TGCC under the Allocation A5‐017403 made by GENCI. The SST and SIC data were downloaded from the U.K. Met Office Hadley Centre Observations Datasets (http://www.metoffice.gov.uk/hadobs/hadisst).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 21(2), (2020): e2019GC008414, doi:10.1029/2019GC008414.
    Description: X‐ray fluorescence (XRF) core scanning of marine and lake sediments has been extensively used to study changes in past environmental and climatic processes over a range of timescales. The interpretation of XRF‐derived element ratios in paleoclimatic and paleoceanographic studies primarily considers differences in the relative abundances of particular elements. Here we present new XRF core scanning data from two long sediment cores in the Andaman Sea in the northern Indian Ocean and show that sea level related processes influence terrigenous inputs based proxies such as Ti/Ca, Fe/Ca, and elemental concentrations of the transition metals (e.g., Mn). Zr/Rb ratios are mainly a function of changes in median grain size of lithogenic particles and often covary with changes in Ca concentrations that reflect changes in biogenic calcium carbonate production. This suggests that a common process (i.e., sea level) influences both records. The interpretation of lighter element data (e.g., Si and Al) based on low XRF counts is complicated as variations in mean grain size and water content result in systematic artifacts and signal intensities not related to the Al or Si content of the sediments. This highlights the need for calibration of XRF core scanning data based on discrete sample analyses and careful examination of sediment properties such as porosity/water content for reliably disentangling environmental signals from other physical properties. In the case of the Andaman Sea, reliable extraction of a monsoon signal requires accounting for the sea level influence on the XRF data.
    Description: The staff at the Bremen Core Repository is thanked for their help with core handling and Sam Müller at the University of Kiel provided technical assistance with the XRF scanner. We thank two anonymous reviewers for their insightful comments that improved the manuscript significantly. This work was partially funded through DFG Grant HA 5751/3. P. A. and K. N.‐K. acknowledge support from UK‐IODP and Natural and Environment Research Council, UK. The authors express their thanks to all those who contributed to the success of the National Gas Hydrate Program Expedition 01 (NGHP01) and Expedition 353. The data set supporting the conclusions of this article is available in the PANGEA repository (doi: https://doi.pangaea.de/10.1594/PANGAEA.910533).
    Description: 2020-07-10
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 125(4), (2020): e2019JC015470, doi:10.1029/2019JC015470.
    Description: This study is to quantify the effects of mesoscale eddies on air‐sea heat fluxes and related air‐sea variables in the South China Sea. Using satellite observations of sea surface temperature (SST) and sea surface height anomaly and a high‐resolution air‐sea heat flux product for the 16‐year period from 2000 to 2015, we conducted the composite patterns of air‐sea fluxes and variables associated with anticyclonic eddies (AEs) and cyclonic eddies (CEs). It is found that the SST‐sea surface height correlations over eddies are not always positive. Only 56% of AEs are corresponded with positive SST anomalies (SSTA), that is, SST+ AEs, and 58% of CEs with negative SSTA, that is, SST− CEs. The percentage of these eddies increases with eddy amplitude and shows slight seasonal variations, higher in winter and lower in summer. Composites of SSTA, air‐sea variables, and fluxes are constructed over all eddies, including both SST+ eddies and SST− eddies. All composites show asymmetric patterns, showing that the centers (where the extrema are located) of the fluxes and variables shift westward and poleward (equatorward) relative to the AEs (CEs) cores. Besides, composites of latent heat flux (LHF), sensible heat flux (SHF), and air temperature show monopole patterns, while composites of wind speed and specific humidity show dipole patterns. For SST+ AEs, the coupling strength is 39.6 ± 6.5 W/m2 (7.2 ± 1.7 W/m2) per degree increase of SSTA for LHF (SHF). For SST− CEs, the coupling strength is 39.0 ± 2.0 W/m2 (9.0 ± 0.96 W/m2) per degree decrease of SSTA for LHF (SHF).
    Description: This research was conducted while Y. Liu was a visiting graduate student at Woods Hole Oceanographic Institution (WHOI). She sincerely thanks the WHOI Academic Programs Office for hosting her visit and is grateful to the support from China Scholarship Council (CSC). This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA19060101), the Key R & D project of Shandong Province (Grant 2019JZZY010102), the Key deployment project of Center for Ocean Mega‐Science, CAS (Grant COMS2019R02), the CAS Program (Grant Y9KY04101L), and the National Natural Science Foundation of China (Grant 41776183 and 41906157). Dr. Xiangze Jin is acknowledged for providing the OAFluxHR analysis and for his programming support and guidance to this study. Heat flux data used in this paper can be downloaded (from https://figshare.com/articles/Eddy‐induced_heat_flux_in_the_South_China_Sea/11949735). AVISO SSH data are downloaded from the website (http://www.aviso.altimetry.fr), OISST from the ftp://eclipse.ncdc.noaa.gov/ site, and OAFluxHR analysis will be available from the project website (http://oaflux.whoi.edu).
    Description: 2020-09-16
    Keywords: mesoscale eddies ; air‐sea coupling ; South China Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Staudinger, M. D., Goyert, H., Suca, J. J., Coleman, K., Welch, L., Llopiz, J. K., Wiley, D., Altman, I., Applegate, A., Auster, P., Baumann, H., Beaty, J., Boelke, D., Kaufman, L., Loring, P., Moxley, J., Paton, S., Powers, K., Richardson, D., Robbins, J., Runge, J., Smith, B., Spiegel, C., & Steinmetz, H. The role of sand lances (Ammodytes sp.) in the Northwest Atlantic ecosystem: a synthesis of current knowledge with implications for conservation and management. Fish and Fisheries, 00, (2020): 1-34, doi:10.1111/faf.12445.
    Description: The American sand lance (Ammodytes americanus, Ammodytidae) and the Northern sand lance (A. dubius, Ammodytidae) are small forage fishes that play an important functional role in the Northwest Atlantic Ocean (NWA). The NWA is a highly dynamic ecosystem currently facing increased risks from climate change, fishing and energy development. We need a better understanding of the biology, population dynamics and ecosystem role of Ammodytes to inform relevant management, climate adaptation and conservation efforts. To meet this need, we synthesized available data on the (a) life history, behaviour and distribution; (b) trophic ecology; (c) threats and vulnerabilities; and (d) ecosystem services role of Ammodytes in the NWA. Overall, 72 regional predators including 45 species of fishes, two squids, 16 seabirds and nine marine mammals were found to consume Ammodytes. Priority research needs identified during this effort include basic information on the patterns and drivers in abundance and distribution of Ammodytes, improved assessments of reproductive biology schedules and investigations of regional sensitivity and resilience to climate change, fishing and habitat disturbance. Food web studies are also needed to evaluate trophic linkages and to assess the consequences of inconsistent zooplankton prey and predator fields on energy flow within the NWA ecosystem. Synthesis results represent the first comprehensive assessment of Ammodytes in the NWA and are intended to inform new research and support regional ecosystem‐based management approaches.
    Description: This manuscript is the result of follow‐up work stemming from a working group formed at a two‐day multidisciplinary and international workshop held at the Parker River National Wildlife Refuge, Massachusetts in May 2017, which convened 55 experts scientists, natural resource managers and conservation practitioners from 15 state, federal, academic and non‐governmental organizations with interest and expertise in Ammodytes ecology. Support for this effort was provided by USFWS, NOAA Stellwagen Bank National Marine Sanctuary, U.S. Department of the Interior, U.S. Geological Survey, Northeast Climate Adaptation Science Center (Award # G16AC00237), an NSF Graduate Research Fellowship to J.J.S., a CINAR Fellow Award to J.K.L. under Cooperative Agreement NA14OAR4320158, NSF award OCE‐1325451 to J.K.L., NSF award OCE‐1459087 to J.A.R, a Regional Sea Grant award to H.B. (RNE16‐CTHCE‐l), a National Marine Sanctuary Foundation award to P.J.A. (18‐08‐B‐196) and grants from the Mudge Foundation. The contents of this paper are the responsibility of the authors and do not necessarily represent the views of the National Oceanographic and Atmospheric Administration, U.S. Fish and Wildlife Service, New England Fishery Management Council and Mid‐Atlantic Fishery Management Council. This manuscript is submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints for Governmental purposes. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Keywords: Ammodytes ; ecosystem‐based management ; forage fish ; life history ; sand lance ; trophic ecology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC015348, doi:10.1029/2019JC015348.
    Description: Here we present an assessment of eddy activity in a 3,500 × 2,000 km region of the North Pacific. Eddies were identified and tracked within a numerical simulation that used the Massachusetts Institute of Technology general circulation model and an eddy characterization algorithm. Spatially, eddy births were more frequent: (1) nearshore (cyclones) and offshore (anticyclones) on the windward side of the main Hawai‘ian Islands; (2) in patches of cyclones and anticyclones that resembled the dipole structure of wind stress curl along the islands’ leeward side; and (3) in zonal patches of eddies of both polarities west and north of the islands. Temporally, high eddy activities occurred in spring. There was a meridional distribution of eddy lifespans, which increased northward. Cyclones were more abundant, longer‐lived, smaller, and more nonlinear. Reef fish spawning locations in Hawai‘i coincide with the regions of high eddy activity, with nonlinear eddies responsible for high larval retention.
    Description: This work was supported by the National Ocean and Atmospheric Administration (NOAA) Fisheries And The Environment (FATE) Award WE133F17SE1020. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation Grant NSF‐OCE170005.
    Description: 2020-10-29
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(15), (2020): e2020GL089135, doi:10.1029/2020GL089135.
    Description: Convection penetrates to the ocean bottom in the North Atlantic but not in the North Pacific. This study examines the role of basin width in shutting down high‐latitude ocean convection. Deep convection is triggered by polar cooling, but it is opposed by precipitation. A two‐layer analytical model illustrates that the overturning circulation acts to mitigate the effect of precipitation by advecting salty, dense water from subtropical latitudes to polar latitudes. The nonlinear dependence of the overturning strength on basin width makes it more efficient in a narrow basin, resulting in a convection shutdown at a stronger freshwater forcing. These predictions are confirmed by simulations with a general circulation model configured with a single closed basin to the north and a reentrant channel to the south. This suggests that basin width may play a role in suppressing convection in the North Pacific but not in the North Atlantic.
    Description: M. K. Y. and R. F. acknowledge support through National Science Foundation (NSF) Awards OCE‐1536515 and AGS‐1835576. M. K. Y. acknowledges funding from the National Defense Science and Engineering Graduate Fellowship and the American Meteorological Society Graduate Student Fellowship. G. R. F. was supported by NSF OCE‐1459702.
    Description: 2020-01-2021
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schultz, C., Doney, S. C., Zhang, W. G., Regan, H., Holland, P., Meredith, M. P., & Stammerjohn, S. Modeling of the influence of sea ice cycle and Langmuir circulation on the upper ocean mixed layer depth and freshwater distribution at the West Antarctic Peninsula. Journal of Geophysical Research: Oceans, 125(8), (2020): e2020JC016109, doi:10.1029/2020JC016109.
    Description: The Southern Ocean is chronically undersampled due to its remoteness, harsh environment, and sea ice cover. Ocean circulation models yield significant insight into key processes and to some extent obviate the dearth of data; however, they often underestimate surface mixed layer depth (MLD), with consequences for surface water‐column temperature, salinity, and nutrient concentration. In this study, a coupled circulation and sea ice model was implemented for the region adjacent to the West Antarctic Peninsula, a climatically sensitive region which has exhibited decadal trends towards higher ocean temperature, shorter sea ice season, and increasing glacial freshwater input, overlain by strong interannual variability. Hindcast simulations were conducted with different air‐ice drag coefficients and Langmuir circulation parameterizations to determine the impact of these factors on MLD. Including Langmuir circulation deepened the surface mixed layer, with the deepening being more pronounced in the shelf and slope regions. Optimal selection of an air‐ice drag coefficient also increased modeled MLD by similar amounts and had a larger impact in improving the reliability of the simulated MLD interannual variability. This study highlights the importance of sea ice volume and redistribution to correctly reproduce the physics of the underlying ocean, and the potential of appropriately parameterizing Langmuir circulation to help correct for biases towards shallow MLD in the Southern Ocean. The model also reproduces observed freshwater patterns in the West Antarctic Peninsula during late summer and suggests that areas of intense summertime sea ice melt can still show net annual freezing due to high sea ice formation during the winter.
    Description: C. Schultz and S. Doney acknowledge support by the U.S. National Science Foundation (grant PLR‐1440435 to the Palmer Long Term Ecological Research program) and support from the University of Virginia. W. G. Zhang acknowledge support by the U.S. National Science Foundation (grant OPP‐1643901). The MITgcm model is an open source model (mitgcm.org). The version used in this study, with added parameterizations and specific configurations, is on C. Schultz’s github (https://github.com/crisoceano/WAP_MITgcm). A copy of the files with specific configurations for this study, the forcing files needed for the simulations, and a copy of the files used for the KPP package are in three separate records on zenodo.org, under DOIs 10.5281/zenodo.3627365, 10.5281/zenodo.3627564, and 10.5281/zenodo.3627742.
    Keywords: West Antarctic Peninsula ; sea ice ; Langmuir circulation ; mixed layer depth ; glacial runoff
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 124(8), (2019): 7525-7537, doi: 10.1029/2019JB018186.
    Description: The proliferation of drilling expeditions focused on characterizing natural gas hydrate as a potential energy resource has spawned widespread interest in gas hydrate reservoir properties and associated porous media phenomena. Between 2017 and 2019, a Special Section of this journal compiled contributed papers elucidating interactions between gas hydrate and sediment based on laboratory, numerical modeling, and field studies. Motivated mostly by field observations in the northern Gulf of Mexico and offshore Japan, several papers focus on the mechanisms for gas hydrate formation and accumulation, particularly with vapor phase gas, not dissolved gas, as the precursor to hydrate. These studies rely on numerical modeling or laboratory experiments using sediment packs or benchtop micromodels. A second focus of the Special Section is the role of fines in inhibiting production of gas from methane hydrate, controlling the distribution of hydrate at a pore scale, and influencing the bulk behavior of seafloor sediments. Other papers fill knowledge gaps related to the physical properties of hydrate‐bearing sediments and advance new approaches in coupled thermal‐mechanical modeling of these sediments during hydrate dissociation. Finally, one study addresses the long‐standing question about the fate of methane hydrate at the molecular level when CO2 is injected into natural reservoirs under hydrate‐forming conditions.
    Description: C. R. was supported by the U.S. Geological Survey's Energy Resources Program and the Coastal/Marine Hazards and Resources Program, as well as by DOE Interagency Agreement DE‐FE0023495. C. R. thanks W. Waite and J. Jang for discussions and suggestions that improved this paper and L. Stern for a helpful review. J. Y. Lee was supported by the Ministry of Trade, Industry, and Energy (MOTIE) through the Project “Gas Hydrate Exploration and Production Study (19‐1143)” under the management of the Gas Hydrate Research and Development Organization (GHDO) of Korea and the Korea Institute of Geoscience and Mineral Resources (KIGAM). Any use of trade, firm, or product name is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Keywords: Gas hydrate ; Methane ; Reservoir properties ; Multiphase flow
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC015989, doi:10.1029/2019JC015989.
    Description: Relatively minor amounts of methane, a potent greenhouse gas, are currently emitted from the oceans to the atmosphere, but such methane emissions have been hypothesized to increase as oceans warm. Here, we investigate the source, distribution, and fate of methane released from the upper continental slope of the U.S. Mid‐Atlantic Bight, where hundreds of gas seeps have been discovered between the shelf break and ~1,600 m water depth. Using physical, chemical, and isotopic analyses, we identify two main sources of methane in the water column: seafloor gas seeps and in situ aerobic methanogenesis which primarily occurs at 100–200 m depth in the water column. Stable isotopic analyses reveal that water samples collected at all depths were significantly impacted by aerobic methane oxidation, the dominant methane sink in this region, with the average fraction of methane oxidized being 50%. Due to methane oxidation in the deeper water column, below 200 m depth, surface concentrations of methane are influenced more by methane sources found near the surface (0–10 m depth) and in the subsurface (10–200 m depth), rather than seafloor emissions at greater depths.
    Description: This research was supported by DOE Grant (DE‐FE0028980) to J. K. and by DOE‐USGS Interagency Agreement DE‐FE0026195.
    Description: 2020-10-04
    Keywords: Methane ; Ocean ; Isotopes ; Gas seeps ; Mid Atlantic bight ; Oxidation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 125(1), (2020): e2019JG005222, doi:10.1029/2019JG005222.
    Description: Wetlands play an important role in reducing global warming potential in response to global climate change. Unfortunately, due to the effects of human disturbance and natural erosion, wetlands are facing global extinction. It is essential to implement engineering measures to restore damaged wetlands. However, the carbon sink capacity of restored wetlands is unclear. We examined the seasonal change of greenhouse gas emissions in both restored wetland and natural wetland and then evaluated the carbon sequestration capacity of the restored wetland. We found that (1) the carbon sink capacity of the restored wetland showed clear daily and seasonal change, which was affected by light intensity, air temperature, and vegetation growth, and (2) the annual daytime (8–18 hr) sustained‐flux global warming potential was −11.23 ± 4.34 kg CO2 m−2 y−1, representing a much larger carbon sink than natural wetland (−5.04 ± 3.73 kg CO2 m−2 y−1) from April to December. In addition, the results showed that appropriate tidal flow management may help to reduce CH4 emission in wetland restoration. Thus, we proposed that the restored coastal wetland, via effective engineering measures, reliably acted as a large net carbon sink and has the potential to help mitigate climate change.
    Description: We would like to thank Yangtze Delta Estuarine Wetland Ecosystem Ministry of Education & Shanghai Observation and Research Station for providing sites during our research. This research was supported by the National Key Research and Development Program of China (Grant 2017YFC0506002), the National Natural Science Foundation of China Overseas and Hong Kong‐Macao Scholars Collaborative Research Fund (Grant 31728003), the China Postdoctoral Science Foundation (Grant 2018M640362), the Shanghai University Distinguished Professor (Oriental Scholars) Program (Grant JZ2016006), the Open Fund of Shanghai Key Lab for Urban Ecological Processes and Eco‐Restoration (Grant SHUES2018B06), and the Scientific Projects of Shanghai Municipal Oceanic Bureau (Grant 2018‐03). The complete data set is available at https://data.4tu.nl/repository/uuid:536b2614‐c4ca‐43d2‐84dd‐6180fd859544.
    Keywords: Blue carbon ; Restored wetland ; Sustained‐flux global warming potential (SGWP) ; Greenhouse gas (GHG) ; Carbon sequestration capacity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 125(8),(2020): e2020JF005558, doi:10.1029/2020JF005558.
    Description: Sediment supply is a primary factor in determining marsh response to sea level rise and is typically approximated through high‐resolution measurements of suspended sediment concentrations (SSCs) from adjacent tidal channels. However, understanding sediment transport across the marsh itself remains limited by discontinuous measurements of SSC over individual tidal cycles. Here, we use an array of optical turbidity sensors to build a long‐term, continuous record of SSC across a marsh platform and adjacent tidal channel. We find that channel and marsh concentrations are correlated (i.e., coupled) within tidal cycles but are largely decoupled over longer time scales. We also find that net sediment fluxes decline to near zero within 10 m of the marsh edge. Together, these results suggest that large sections of the marsh platform receive minimal sediment independent of flooding frequency or channel sediment supply. Marsh‐centric, as opposed to channel‐centric, measures of sediment supply may better characterize marsh platform vulnerability.
    Description: This work was funded by NSF Awards 1529245, 1654374, 1426981, 1637630, and 1832221, the NSF Graduate Research Fellowship Program, and the USGS Climate and Land Use Research and Development program. We thank D. Walters, J. Himmelstein, D. Nicks, R. Walker, T. Messerschmidt, and the Plum Island Ecosystems LTER, especially S. Kelsey for laboratory and field assistance. Additionally, we thank C. Friedrichs, G. Guntenspergen, and O. Duran Vinent for contributing ideas that helped develop the work, and the reviewers who helped improve the manuscript. This work is Contribution Number 3928 of the Virginia Institute of Marine Science. In memoriam of David Nicks.
    Description: 2021-01-27
    Keywords: Salt marsh ; Sediment transport ; Turbidity ; Flux convergence ; Decoupling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Riedel, M., Rohr, K. M. M., Spence, G. D., Kelley, D., Delaney, J., Lapham, L., Pohlman, J. W., Hyndman, R. D., & Willoughby, E. C. Focused fluid flow along the Nootka fault zone and continental slope, explorer-Juan de Fuca Plate Boundary. Geochemistry Geophysics Geosystems, 21(8), (2020): e2020GC009095, doi:10.1029/2020GC009095.
    Description: Geophysical and geochemical data indicate there is abundant fluid expulsion in the Nootka fault zone (NFZ) between the Juan de Fuca and Explorer plates and the Nootka continental slope. Here we combine observations from 〉20 years of investigations to demonstrate the nature of fluid‐flow along the NFZ, which is the seismically most active region off Vancouver Island. Seismicity reaching down to the upper mantle is linked to near‐seafloor manifestation of fluid flow through a network of faults. Along the two main fault traces, seismic reflection data imaged bright spots 100–300 m below seafloor that lie above changes in basement topography. The bright spots are conformable to sediment layering, show opposite‐to‐seafloor reflection polarity, and are associated with frequency reduction and velocity push‐down indicating the presence of gas in the sediments. Two seafloor mounds ~15 km seaward of the Nootka slope are underlain by deep, nonconformable high‐amplitude reflective zones. Measurements in the water column above one mound revealed a plume of warm water, and bottom‐video observations imaged hydrothermal vent system biota. Pore fluids from a core at this mound contain predominately microbial methane (C1) with a high proportion of ethane (C2) yielding C1/C2 ratios 〈500 indicating a possible slight contribution from a deep source. We infer the reflective zones beneath the two mounds are basaltic intrusions that create hydrothermal circulation within the overlying sediments. Across the Nootka continental slope, gas hydrate‐related bottom‐simulating reflectors are widespread and occur at depths indicating heat flow values of 80–90 mW/m2.
    Description: This study represents data from numerous cruises acquired over more than two decades. We would like to thank all the scientific personnel and technical staff involved in data acquisition, processing of samples, and making observations during the ROV dives, as well as the crews and captains of the various research vessels involved. This is contribution #5877 from the University of Maryland Center for Environmental Science. This is NRCan contribution number / Numéro de contribution de RNCan: 20200324.
    Keywords: Fluid flow ; Nootka transform fault ; Gas hydrate ; Intrusion ; Heat flow
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-10-27
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ritschard, E. A., Whitelaw, B., Albertin, C. B., Cooke, I. R., Strugnell, J. M., & Simakov, O. Coupled genomic evolutionary histories as signatures of organismal innovations in cephalopods: co-evolutionary signatures across levels of genome organization may shed light on functional linkage and origin of cephalopod novelties. BioEssays, 41, (2019): 1900073, doi: 10.1002/bies.201900073.
    Description: How genomic innovation translates into organismal organization remains largely unanswered. Possessing the largest invertebrate nervous system, in conjunction with many species‐specific organs, coleoid cephalopods (octopuses, squids, cuttlefishes) provide exciting model systems to investigate how organismal novelties evolve. However, dissecting these processes requires novel approaches that enable deeper interrogation of genome evolution. Here, the existence of specific sets of genomic co‐evolutionary signatures between expanded gene families, genome reorganization, and novel genes is posited. It is reasoned that their co‐evolution has contributed to the complex organization of cephalopod nervous systems and the emergence of ecologically unique organs. In the course of reviewing this field, how the first cephalopod genomic studies have begun to shed light on the molecular underpinnings of morphological novelty is illustrated and their impact on directing future research is described. It is argued that the application and evolutionary profiling of evolutionary signatures from these studies will help identify and dissect the organismal principles of cephalopod innovations. By providing specific examples, the implications of this approach both within and beyond cephalopod biology are discussed.
    Description: E.A.R. and O.S. are supported by the Austrian Science Fund (Grant No. P30686‐B29). E.A.R. is supported by Stazione Zoologica Anton Dohrn (Naples, Italy) PhD Program. The authors wish to thank Graziano Fiorito (SZN, Italy), Hannah Schmidbaur (University of Vienna, Austria), Thomas Hummel (University of Vienna, Austria) for many insightful comments and reading of the draft manuscript. The authors would like to apologize to all colleagues whose work has been omitted due to space constraints.
    Keywords: Cephalopod ; Gene duplication ; Genome rearrangement ; Novel gene ; Organismal innovation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Arenas Gómez, Claudia M., Sabin, K. Z., & Echeverri, K. Wound healing across the animal kingdom: Crosstalk between the immune system and the extracellular matrix. Developmental Dynamics, (2020): 1-13, doi:10.1002/dvdy.178.
    Description: Tissue regeneration is widespread in the animal kingdom. To date, key roles for different molecular and cellular programs in regeneration have been described, but the ultimate blueprint for this talent remains elusive. In animals capable of tissue regeneration, one of the most crucial stages is wound healing, whose main goal is to close the wound and prevent infection. In this stage, it is necessary to avoid scar formation to facilitate the activation of the immune system and remodeling of the extracellular matrix, key factors in promoting tissue regeneration. In this review, we will discuss the current state of knowledge regarding the role of the immune system and the interplay with the extracellular matrix to trigger a regenerative response.
    Description: The research in the Echeverri lab is supported NIH NCID R01 to Karen Echeverri and start‐up funds from the MBL. Keith Z. Sabin has been supported by an NIH T32 GM113846 grant.
    Keywords: Extracellular matrix ; Immune system ; Regeneration ; Wound healing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, H. L., Cessi, P., Marshall, D. P., Schloesser, F., & Spall, M. A. Recent contributions of theory to our understanding of the Atlantic Meridional Overturning Circulation. Journal of Geophysical Research-Oceans, 124(8), (2019): 5376-5399, doi: 10.1029/2019JC015330.
    Description: Revolutionary observational arrays, together with a new generation of ocean and climate models, have provided new and intriguing insights into the Atlantic Meridional Overturning Circulation (AMOC) over the last two decades. Theoretical models have also changed our view of the AMOC, providing a dynamical framework for understanding the new observations and the results of complex models. In this paper we review recent advances in conceptual understanding of the processes maintaining the AMOC. We discuss recent theoretical models that address issues such as the interplay between surface buoyancy and wind forcing, the extent to which the AMOC is adiabatic, the importance of mesoscale eddies, the interaction between the middepth North Atlantic Deep Water cell and the abyssal Antarctic Bottom Water cell, the role of basin geometry and bathymetry, and the importance of a three‐dimensional multiple‐basin perspective. We review new paradigms for deep water formation in the high‐latitude North Atlantic and the impact of diapycnal mixing on vertical motion in the ocean interior. And we discuss advances in our understanding of the AMOC's stability and its scaling with large‐scale meridional density gradients. Along with reviewing theories for the mean AMOC, we consider models of AMOC variability and discuss what we have learned from theory about the detection and meridional propagation of AMOC anomalies. Simple theoretical models remain a vital and powerful tool for articulating our understanding of the AMOC and identifying the processes that are most critical to represent accurately in the next generation of numerical ocean and climate models.
    Description: H. L. J. and D. P. M. are grateful for funding from the U.K. Natural Environment Research Council under the UK‐OSNAP project (NE/K010948/1). P. C. gratefully acknowledges support by the National Science Foundation through OCE‐1634128. M. A. S. was supported by the National Science Foundation Grants OCE‐1558742 and OCE‐1634468. We are also grateful to Eli Tziperman and an anonymous reviewer whose comments helped us to improve the manuscript. The Estimating the Circulation and Climate of the Ocean state estimate (ECCO version 4 release 3) used to produce Figure 2 is available online (https://ecco.jpl.nasa.gov). Please refer to the original papers reviewed here for access to any other data discussed.
    Keywords: Atlantic ; Overturning circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(8), (2019): 5999-6014, doi: 10.1029/2019JC015034.
    Description: Oceanic fronts are dynamically active regions of the global ocean that support upwelling and downwelling with significant implications for phytoplankton production and export. However (on time scales urn:x-wiley:jgrc:media:jgrc23568:jgrc23568-math-0001 the inertial time scale), the vertical velocity is 103–104 times weaker than the horizontal velocity and is difficult to observe directly. Using intensive field observations in conjunction with a process study ocean model, we examine vertical motion and its effect on phytoplankton fluxes at multiple spatial horizontal scales in an oligotrophic region in the Western Mediterranean Sea. The mesoscale ageostrophic vertical velocity (∼10 m/day) inferred from our observations shapes the large‐scale phytoplankton distribution but does not explain the narrow (1–10 km wide) features of high chlorophyll content extending 40–60 m downward from the deep chlorophyll maximum. Using modeling, we show that downwelling submesoscale features concentrate 80% of the downward vertical flux of phytoplankton within just 15% of the horizontal area. These submesoscale spatial structures serve as conduits between the surface mixed layer and pycnocline and can contribute to exporting carbon from the sunlit surface layers to the ocean interior.
    Description: The AlborEx experiment was conducted in the framework of PERSEUS EU‐funded project (Grant 287600) and was led by the Spanish National Research Council (CSIC) and involved other national and international partners: Balearic Islands Coastal Observing and Forecasting System (SOCIB, Spain); Consiglio Nazionale delle Ricerche (CNR, Italy); Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italy); and Woods Hole Oceanographic Institution (WHOI, ONR Grant N00014‐16‐1‐3130). Glider operations were partially funded by JERICO FP7 project. Part of this work has been carried out as part of the Copernicus Marine Environment Monitoring Service (CMEMS) MedSUB project. CMEMS is implemented by Mercator Ocean in the framework of a delegation agreement with the European Union. S. R. and A. P. acknowledge support from WHOI Subcontract A101339. Data available from authors: Ship CTDs, glider and VM‐ADCP data files are available in the SOCIB data catalog (https://doi.org/10.25704/z5y2-qpye); model data are available at IMEDEA data catalog https://ide.imedea.uib-csic.es/thredds/catalog/data/projects/alborex/catalog.html. We thank all the crew and participants on board R/V SOCIB for their collaboration and Marc Torner and the SOCIB glider Facility for their efficient cooperation. We also thank B. Mourre for numerical data from the Western Mediterranean Operational Model to initialize the Process Study Ocean Model. Figures were created using the cmocean colormaps package (Thyng et al., 2016).
    Keywords: Vertical motion ; Ocean front ; Mesoscale ; Submesoscale ; Transport ; Phytoplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Little, C. M., Hu, A., Hughes, C. W., McCarthy, G. D., Piecuch, C. G., Ponte, R. M., & Thomas, M. D. The relationship between U.S. East Coast sea level and the Atlantic Meridional Overturning Circulation: a review. Journal of Geophysical Research-Oceans, 124(9), (2019): 6435-6458, doi:10.1029/2019JC015152.
    Description: Scientific and societal interest in the relationship between the Atlantic Meridional Overturning Circulation (AMOC) and U.S. East Coast sea level has intensified over the past decade, largely due to (1) projected, and potentially ongoing, enhancement of sea level rise associated with AMOC weakening and (2) the potential for observations of U.S. East Coast sea level to inform reconstructions of North Atlantic circulation and climate. These implications have inspired a wealth of model‐ and observation‐based analyses. Here, we review this research, finding consistent support in numerical models for an antiphase relationship between AMOC strength and dynamic sea level. However, simulations exhibit substantial along‐coast and intermodel differences in the amplitude of AMOC‐associated dynamic sea level variability. Observational analyses focusing on shorter (generally less than decadal) timescales show robust relationships between some components of the North Atlantic large‐scale circulation and coastal sea level variability, but the causal relationships between different observational metrics, AMOC, and sea level are often unclear. We highlight the importance of existing and future research seeking to understand relationships between AMOC and its component currents, the role of ageostrophic processes near the coast, and the interplay of local and remote forcing. Such research will help reconcile the results of different numerical simulations with each other and with observations, inform the physical origins of covariability, and reveal the sensitivity of scaling relationships to forcing, timescale, and model representation. This information will, in turn, provide a more complete characterization of uncertainty in relevant relationships, leading to more robust reconstructions and projections.
    Description: The authors acknowledge funding support from NSF Grant OCE‐1805029 (C. M. L.) and NASA Contract NNH16CT01C (C. M. L. and R. M. P.), the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy's Office of Biological & Environmental Research Cooperative Agreement DE‐FC02‐97ER62402 (A. H.), Natural Environment Research Council NE/K012789/1 (C. W. H.), Irish Marine Institute Project A4 PBA/CC/18/01 (G. D. M.), and NSF Awards OCE‐1558966 and OCE‐1834739 (C. G. P.). The National Center for Atmospheric Research is sponsored by National Science Foundation. The authors thank the two reviewers for their comments, and CLIVAR and the U.S. AMOC Science Team for inspiration and patience. All CMIP5 data used in Figures 4-6 are available at http://pcmdi9.llnl.gov/ website; the AMOC strength fields were digitized from Chen et al. (2018, supporting information Figure S3).
    Keywords: Sea level ; AMOC ; United States ; Coastal ; Climate model ; Review
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 124 (2019): 10023–10055, doi: 10.1029/2019JB017648.
    Description: We studied long‐term evolution of nontransform discontinuities (NTDs) on the Mid‐Atlantic Ridge from 0‐ to ~20‐ to 25‐Ma crust using plate reconstructions of multibeam bathymetry, long‐range HMR1 sidescan sonar, residual mantle Bouguer gravity anomaly (RMBA), and gravity‐derived crustal thickness. NTDs have propagated north and south with respect to flowlines of relative plate motion and both rapidly and slowly compared to the half spreading rate; at times they have been quasi‐stable. Fast, short‐term (〈2 Myr) propagation is driven by reduced magma supply (increased tectonic extension) in the propagating ridge tip when NTD ridge‐axis offsets are small (≲5 km). Propagation at larger offsets generally is slower and longer term. These NTDs can show classic structures of rift propagation including inner and outer pseudofaults and crustal blocks transferred between ridge flanks by discontinuous jumps of the propagating ridge tip. In all cases crustal transfer occurs within the NTD valley. Aside from ridge‐axis offset, the evolution of NTDs appears to be controlled by three factors: (1) gross volume and distribution of magma supplied to ridge segments as controlled by 3‐D heterogeneities in mantle fertility and/or dynamic upwelling; this controls fundamental ridge segmentation. (2) The lithospheric plumbing system through which magma is delivered to the crust. (3) The consequent focusing of tectonic extension in magma‐poor parts of spreading segments, typically at segment ends, which can drive propagation. We also observe long‐wavelength (5‐10 Myr) RMBA asymmetry between the conjugate ridge flanks, and we attribute this to asymmetric distribution of density anomalies in the upper mantle.
    Description: We thank Tingting Wang for providing plate‐reconstruction codes, Ross Parnell‐Turner for technical support, and Anouk Beniest and an anonymous reviewer for comments that helped to improve the manuscript. We benefited greatly from discussion with the Deep Sea Geodynamics Group of the South China Sea Institute of Oceanology. Figures were drawn using the GMT software of Wessel and Smith (1998). This study was supported by National Natural Science Foundation of China (91628301, 41890813, and U1606401), Chinese Academy of Sciences (Y4SL021001, QYZDY‐SSW‐DQC005, and 133244KYSB20180029), Chinese National 985 Project (1350141509), International Exchange Program for Graduate Students of Tongji University (2016020006), China Scholarship Council (201706260034), and Woods Hole Oceanographic Institution. We thank the crews and science parties of the ARSRP, MAREAST, MODE94, and MODE98 expeditions for their contributions to data acquisition. ARSRP and MAREAST data acquisition was funded by Office of Naval Research grant N00014‐90‐J‐6121 and by U.S. National Science Foundation grant OCE‐9503561, respectively. Access to the original data used in this study is available at https://doi.org/10.26025/z2z7‐kd89.
    Description: 2020-03-11
    Keywords: Mid‐Atlantic Ridge ; Nontransform discontinuity ; Plate reconstruction ; Propagating rift
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124 (2019): 7201-7225, doi: 10.1029/2019JC015520.
    Description: The oceanographic response and atmospheric forcing associated with downwelling along the Alaskan Beaufort Sea shelf/slope is described using mooring data collected from August 2002 to September 2004, along with meteorological time series, satellite data, and reanalysis fields. In total, 55 downwelling events are identified with peak occurrence in July and August. Downwelling is initiated by cyclonic low‐pressure systems displacing the Beaufort High and driving westerly winds over the region. The shelfbreak jet responds by accelerating to the east, followed by a depression of isopycnals along the outer shelf and slope. The storms last 3.25 ± 1.80 days, at which point conditions relax toward their mean state. To determine the effect of sea ice on the oceanographic response, the storms are classified into four ice seasons: open water, partial ice, full ice, and fast ice (immobile). For a given wind strength, the largest response occurs during partial ice cover, while the most subdued response occurs in the fast ice season. Over the two‐year study period, the winds were strongest during the open water season; thus, the shelfbreak jet intensified the most during this period and the cross‐stream Ekman flow was largest. During downwelling, the cold water fluxed off the shelf ventilates the upper halocline of the Canada Basin. The storms approach the Beaufort Sea along three distinct pathways: a northerly route from the high Arctic, a westerly route from northern Siberia, and a southerly route from south of Bering Strait. Differences in the vertical structure of the storms are presented as well.
    Description: The authors thank Paula Fratantoni and Dan Torres for processing the moored profiler and ADCP data, respectively. Data from the SBI mooring array can be found at https://archive.eol.ucar.edu/projects/sbi/all_data.shtml. Funding for the analysis was provided by the following grants: National Science Foundation Grants OCE‐1259618 (N. F. and R. P.), OCE‐1756361 (N. F.), and PLR‐1504333 (N. F. and R. P.); National Oceanic and Atmospheric Administration Grant NA14‐OAR4320158 (R. P. and P. L.); and the Natural Sciences and Engineering Research Council of Canada (K. M.).
    Description: 2020-04-16
    Keywords: Downwelling ; Beaufort Sea ; Shelfbreak ; North Slope ; Arctic cyclone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 21(3), (2020): e2019GC008847, doi:10.1029/2019GC008847.
    Description: To learn more about magnetic properties of the lower ocean crust and its contributions to marine magnetic anomalies, gabbro samples were collected from International Ocean Discovery Program Hole U1473A at Atlantis Bank on the Southwest Indian Ridge. Detailed magnetic property work links certain magnetic behaviors and domain states to specific magnetic mineral populations. Measurements on whole rocks and mineral separates included magnetic hysteresis, first‐order reversal curves, low‐temperature remanence measurements, thermomagnetic analysis, and magnetic force microscopy. Characteristics of the thermomagnetic data indicate that the upper ~500 m of the hole has undergone hydrothermal alteration. The thermomagnetic and natural remanent magnetization data are consistent with earlier observations from Hole 735B that show remanence arises from low‐Ti magnetite and that natural remanent magnetizations are up to 25 A m−1 in evolved Fe‐Ti oxide gabbros, but are mostly 〈1 A m−1. Magnetite is present in at least three forms. Primary magnetite is associated with coarse‐grained oxides that are more frequent in the upper part of the hole. This magnetic population is linked to dominantly “pseudo‐single‐domain” behavior that arises from fine‐scale lamellar intergrowths within the large oxides. Deeper in the hole the magnetic signal is more commonly dominated by an interacting single‐domain assemblage most likely found along crystal discontinuities in olivine and/or pyroxene. A third contribution is from noninteracting single‐domain inclusions within plagioclase. Because the concentration of the highly magnetic, oxide‐rich gabbros is greatest toward the surface, the signal from coarse oxides will likely dominate the near‐bottom magnetic anomaly signal at Atlantis Bank.
    Description: This work used samples and data provided by the International Ocean Discovery Program. Funding was provided by the U.S. Science Support Program (J.B.). I.L. has benefited from a Smithsonian Edward and Helen Hintz Secretarial Scholarship. We thank the members of the IODP Expedition 360 Science Party, and the captain and crew of the JOIDES Resolution. Part of this work was done as a Visiting Fellow at the Institute for Rock Magnetism (IRM) at the University of Minnesota. The IRM is made possible through the Instrumentation and Facilities program of the National Science Foundation, Earth Sciences Division, and by funding from the University of Minnesota. We would like to thank IRM staff M. Jackson, P. Solheid, and D. Bilardello for their generous assistance. Many thanks to A. Butula, K. Vernon, and J. Marquardt for their assistance with rock magnetic measurements at UWM and to L. McHenry for assistance with XRD. We also thank two anonymous reviewers for their thoughtful comments that improved the manuscript. Magnetic data associated with this manuscript are available in the Magnetics Information Consortium (MagIC) database at https://www.earthref.org/MagIC/doi/10.1029/2019GC008847. XRD data are available at https://zenodo.org/record/3611642.
    Description: 2020-08-28
    Keywords: Marine magnetic anomalies ; Ocean crust magnetization ; Magnetic mineralogy ; IODP ; Expedition 360 ; JOIDES Resolution
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 125(4), (2020): e2020JC016046, doi:10.1029/2020JC016046.
    Description: Momentum input from westerly winds blowing over the Southern Ocean can be modulated by mesoscale surface currents and result in changes in large‐scale ocean circulation. Here, using an eddy‐resolving 1/20 degree ocean model configured near Drake Passage, we evaluate the impact of current‐wind interaction on vertical processes. We find a reduction in momentum input from the wind, reduced eddy kinetic energy, and a modification of Ekman pumping rates. Wind stress curl resulting from current‐wind interaction leads to net upward motion, while the nonlinear Ekman pumping term associated with horizontal gradients of relative vorticity induces net downward motion. The spatially averaged mixed layer depth estimated using a density criteria is shoaled slightly by current‐wind interaction. Current‐wind interaction, on the other hand, enhances the stratification in the thermocline below the mixed layer. Such changes have the potential to alter biogeochemical processes including nutrient supply, biological productivity, and air‐sea carbon dioxide exchange.
    Description: The MITgcm can be obtained online (http://mitgcm.org). The geostrophic current product derived from the sea level anomaly can be downloaded in the Copernicus Marine and Environment Monitoring Service of Ssalto/Duacs gridded “allsat” series and along‐track Sea Level Anomalies, Absolute Dynamic Topographies and Geostrophic velocities over the Global Ocean, Mediterranean Sea, Black Sea, European Seas and Acrtic Ocean areas, in Delayed‐Time and in Near‐Real‐Time. Resources supporting this work were provided by the NASA High‐End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center with the award number SMD‐15‐5752. H. S., J. M., and D. J. M. were supported by the NSF MOBY project (OCE‐1048926 and OCE‐1048897). H. S. acknowledges the support by National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF‐2019R1C1C1003663) and Yonsei University Research Fund of 2018‐22‐0053. D. J. M. also gratefully acknowledges NSF and NASA support, along with the Holger W. Jannasch and Columbus O'Donnell Iselin shared chairs for Excellence in Oceanography. H. Seo acknowledges the support from the ONR (N00014‐17‐1‐2398), NOAA (NA10OAR4310376), and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research at WHOI. We also thank two anonymous referees whose comments significantly improved the presentation of results.
    Description: 2020-09-17
    Keywords: Southern Ocean ; Eddy-wind interaction ; Ekman pumping ; Stratification ; Eddy kinetic energy ; Mixed layer depth
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124 (2019): 7575-7590, doi: 10.1029/2019JC015339.
    Description: Satellite altimetry reveals substantial decadal variability in sea level 𝜁 across the tropical Pacific during 1993–2015. An ocean state estimate that faithfully reproduces the observations is used to elucidate the origin of these low-frequency tropical Pacific 𝜁 variations. Analysis of the hydrostatic equation reveals that recent decadal 𝜁 changes in the tropical Pacific are mainly hermosteric in nature, related to changes in upper-ocean heat content. A forcing experiment performed with the numerical model suggests that anomalous wind stress was an important driver of the relevant heat storage and thermosteric variation. Closed budget diagnostics further clarify that the wind-stress-related thermosteric 𝜁 variation resulted from the joint actions of large-scale ocean advection and local surface heat flux, such that advection controlled the budget over shorter, intraseasonal to interannual time scales, and local surface heat flux became increasingly influential at longer decadal periods. In particular, local surface heat flux was important in contributing to a recent reversal of decadal 𝜁 trends in the tropical Pacific. Contributions from local surface heat flux partly reflect damping latent heat flux tied to wind-stress-driven sea-surface-temperature variations.
    Description: This work was supported by NSF Awards OCE‐1558966 and OCE‐1834739. Support of the ECCO project by the NASA Physical Oceanography, Cryospheric Science, and Modeling, Analysis and Prediction programs is also acknowledged. We thank Ou Wang (NASA JPL) for performing the forcing perturbation experiment. Comments from two anonymous reviewers were helpful. Altimetry observations used in Figures 1 and 2 were downloaded from CSIRO (http://www.cmar.csiro.au/sealevel/sl_data_cmar.html). ECCOv4 output is available on the group website (https://ecco.jpl.nasa.gov/).
    Description: 2020-04-30
    Keywords: Sea‐level change ; Sea‐level variability ; Decadal variability ; Tropical Pacific ; State estimation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ramos, R. D., Goodkin, N. F., Siringan, F. P., & Hughen, K. A. Coral records of temperature and salinity in the tropical western Pacific reveal influence of the Pacific Decadal Oscillation since the late nineteenth century. Paleoceanography and Paleoclimatology, 34(8), (2019): 1344-1358, doi: 10.1029/2019PA003684.
    Description: The Pacific Decadal Oscillation (PDO) is a complex aggregate of different atmospheric and oceanographic forcings spanning the extratropical and tropical Pacific. The PDO has widespread climatic and societal impacts, thus understanding the processes contributing to PDO variability is critical. Distinguishing PDO‐related variability is particularly challenging in the tropical Pacific due to the dominance of the El Niño–Southern Oscillation and influence of anthropogenic warming signals. Century‐long western Pacific records of subannual sea surface temperature (SST) and sea surface salinity (SSS), derived from coral Sr/Ca and δ18O profiles, respectively, allow for evaluating different climatic sensitivities and identifying PDO‐related variability in the region. The summer Sr/Ca‐SST record provides evidence of a significant SST increase, likely tied to greenhouse gas emissions. Anthropogenic warming is masked in the winter Sr/Ca‐SST record by interannual to multidecadal scale changes driven by the East‐Asian Winter Monsoon and the PDO. Decadal climate variability during winter is strongly correlated to the PDO, in agreement with other PDO records in the region. The PDO also exerts influence on the SSS difference between the dry and wet season coral δ18O (δ18Oc)‐SSS records through water advection. The PDO and El Niño–Southern Oscillation constructively combine to enhance/reduce advection of saline Kuroshio waters at our site. Overall, we are able to demonstrate that climate records from a tropical reef environment significantly capture PDO variability and related changes over the period of a century. This implies that the tropical western Pacific is a key site in understanding multifrequency climate variability, including its impact on tropical climate at longer timescales.
    Description: The authors would like to thank J. Ossolinski, J. Aggangan, J. Quevedo, R. Lloren, G. Albano, J. Perez, and A. Bolton for their help in acquiring core samples in the field. The detailed comments and suggestions of two anonymous reviewers significantly improved the original manuscript. This research was funded by the National Research Foundation Singapore under its Singapore NRF Fellowship scheme awarded to N. F. Goodkin (National Research Fellow award NRF‐RF2012‐03), as administered by the Earth Observatory of Singapore and the Singapore Ministry of Education under the Research Centers of Excellence initiative and by the Ministry of Education, Singapore through its Academic Research Fund Tier 2 (Project MOE2016‐T2‐1‐016). The coral Sr/Ca and δ18O data generated in this study are available in the supporting information Data Set S1 and are archived at the NOAA NCDC World Data Center for Paleoclimatology (https://www.ncdc.noaa.gov/paleo/study/27271). Other data and resources used in this study were sourced from the following sites: PDO index (http://research.jisao.washington.edu/pdo/PDO.latest); IPO index (https://www.esrl.noaa.gov/psd/data/timeseries/IPOTPI/ipotpi.hadisst2.data); NP index (https://www.esrl.noaa.gov/psd/data/correlation/np.data); PDO and North Pacific SST reconstructions (https://www.ncdc.noaa.gov/data‐access/paleoclimatology‐data); and MTM coherence and phase analysis MATLAB® code (https://www.mathworks.com/matlabcentral/fileexchange/22551‐multi‐taper‐coherence‐method‐with‐bias‐correction).
    Keywords: Coral proxies ; PDO ; ENSO ; EAWM ; Western Pacific
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ma, Q., Dick, H. J. B., Urann, B., & Zhou, H. Silica-rich vein formation in an evolving stress field, Atlantis Bank Oceanic Core Complex. Geochemistry Geophysics Geosystems, 21(7), (2020): e2019GC008795, doi:10.1029/2019GC008795.
    Description: Drilling 809‐m Hole U1473A in the gabbro batholith at the Atlantis Bank Oceanic Core Complex (OCC) found two felsic vein generations: late magmatic fractionates, rich in deuteric water, hosted by oxide gabbros, and anatectic veins associated with dike intrusion and introduction of seawater‐derived volatiles. Microtextures show a change from compressional to tensional stress during vein formation. Temperatures and oxidation state were obtained from amphibole‐plagioclase and oxide pairs in the adjacent gabbros. Type I veins generally have reverse shear‐sense, with restricted ΔFMQ, high Mt/Ilm ratios, and low‐amphibole Cl/F indicating deuteric fluids. They formed during percolation and fractionation of Fe‐Ti‐rich melts into the primary olivine gabbro. Type II veins are usually hosted by olivine gabbro, occur at dike contacts and the margins of normal‐sense shear zones. They are undeformed or weakly deformed, with highly variable ΔFMQ, low Mt/Ilm ratios, and high‐amphibole Cl/F, indicating seawater‐derived fluids. The detachment fault on which the gabbro massif was emplaced rooted near the base of the dike‐gabbro transition beneath the rift valley. The ingress of seawater volatiles began at 〉800°C and penetrated at least ~590 m into the lower crust during extensional faulting in the rift valley and adjacent rift mountains. The sequence of the felsic vein formation likely reflects asymmetric diapiric flow, with a reversal of the stress regime, and a transition from juvenile to seawater‐derived volatiles. This, in turn, is consistent with fault capture leading to the large asymmetries in spreading rates during OCC formations and heat flow beneath the rift mountains.
    Description: This study was supported by the Chinese National Key Basic Research Program (Grant 2012CB417300). H. Dick and B. Urann were supported by U.S. National Science Foundation (Grant OCE‐MG&G 8371300). Emmanuel Codillo provided numerous useful comments and moral support. We thank N. Chatterjee for assistance in analyzing major element mineral composition in the MIT Electron Microprobe Laboratory. The great contributions of 360 Scientific Party for their initial shipboard description and interpretations of the Hole U1473A cores made this work possible. Special thanks go to C. J. MacLeod, Expedition cochief scientist, and Peter Blum, staff scientist, Stephen Midgley, IODP operations superintendent, and Siem Offshore James Samuel McLelland, offshore installation manager, ship's master Terry Skinner, and the crew and drillers on the JOIDES Resolution.
    Keywords: Felsic veins ; Magma chambers ; Ocean ridge ; Geothermometry ; Flourine‐chlorine ; Dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Munoz, S. E., Porter, T. J., Bakkelund, A., Nusbaumer, J., Dee, S. G., Hamilton, B., Giosan, L., & Tierney, J. E. Lipid biomarker record documents hydroclimatic variability of the Mississippi River Basin during the common era. Geophysical Research Letters, 47(12), (2020): e2020GL087237, doi:10.1029/2020GL087237.
    Description: Floods and droughts in the Mississippi River basin are perennial hazards that cause severe economic disruption. Here we develop and analyze a new lipid biomarker record from Horseshoe Lake (Illinois, USA) to evaluate the climatic conditions associated with hydroclimatic extremes that occurred in this region over the last 1,800 years. We present geochemical proxy evidence of temperature and moisture variability using branched glycerol dialkyl glycerol tetraethers (brGDGTs) and plant leaf wax hydrogen isotopic composition (δ2Hwax) and use isotope‐enabled coupled model simulations to diagnose the controls on these proxies. Our data show pronounced warming during the Medieval era (CE 1000–1,600) that corresponds to midcontinental megadroughts. Severe floods on the upper Mississippi River basin also occurred during the Medieval era and correspond to periods of enhanced warm‐season moisture. Our findings imply that projected increases in temperature and warm‐season precipitation could enhance both drought and flood hazards in this economically vital region.
    Description: This project was supported by grants to S. E. M and L. G. (NSF EAR‐1804107), T. J. P. (NSERC Discovery Grant), and S. G. D. (NOAA‐NA18OAR4310427).
    Keywords: Lipid biomarker ; Leaf wax ; BrGDGT ; Common Era ; Paleoclimate ; Hydroclimate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Spooner, P. T., Thornalley, D. J. R., Oppo, D. W., Fox, A. D., Radionovskaya, S., Rose, N. L., Mallett, R., Cooper, E., & Roberts, J. M. Exceptional 20th century ocean circulation in the Northeast Atlantic. Geophysical Research Letters, 47(10), (2020): e2020GL087577, doi:10.1029/2020GL087577.
    Description: The North Atlantic subpolar gyre (SPG) connects tropical and high‐latitude waters, playing a leading role in deep‐water formation, propagation of Atlantic water into the Arctic, and as habitat for many ecosystems. Instrumental records spanning recent decades document significant decadal variability in SPG circulation, with associated hydrographic and ecological changes. Emerging longer‐term records provide circumstantial evidence that the North Atlantic also experienced centennial trends during the 20th century. Here, we use marine sediment records to show that there has been a long‐term change in SPG circulation during the industrial era, largely during the 20th century. Moreover, we show that the shift and late 20th century SPG configuration were unprecedented in the last 10,000 years. Recent SPG dynamics resulted in an expansion of subtropical ecosystems into new habitats and likely also altered the transport of heat to high latitudes.
    Description: We thank Janet Hope and UCL laboratory staff, colleagues who sailed on EN539, Kathryn Pietro‐Rose, Sean O'Keefe and Henry Abrams, Sara Chipperton, Tanya Monica, Laura Thrower and Kitty Green for sediment processing, Miles Irving for artwork assistance, James Rolfe for nitrogen isotope measurement, Maryline Vautravers and Michael Kucera for guidance, Arne Biastoch and Christian Mohn for discussion of VIKING20, and Chris Brierley, Meric Srokosz, and Jon Robson for comments. Funding was provided by National Science Foundation (NSF) grant OCE‐1304291 to D.W.O. and D.J.R.T., the Leverhulme Trust, National Environment Research Council (NERC) grant NE/S009736/1, and the ATLAS project to D.J.R.T. This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement 678760 (ATLAS). This paper reflects only the authors views and the European Union cannot be held responsible for any use that may be made of the information contained herein.
    Keywords: Foraminifera ; Subpolar gyre ; North Atlantic ; Ocean circulation ; Industrial era
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(10), (2020): e2020GL087215, doi:10.1029/2020GL087215.
    Description: Cross‐equator transects occupied by an underwater glider and a research vessel in the western Indian Ocean captured the evolution of equatorial circulation during onset of the boreal summer monsoon in 2018. At the end of the winter monsoon in March, surface currents were westward, while the equatorial undercurrent carried salty Arabian Sea High‐Salinity Water eastward. As winds transitioned from westward to eastward during April, an eastward near‐surface Wyrtki Jet developed, while the equatorial undercurrent weakened, vanishing by May. A first‐mode baroclinic Kelvin wave propagated through the survey region after westward winds relaxed. However, the vertical structure of the evolving circulation was inconsistent with the first baroclinic mode, suggesting the influence of higher modes in setting observed vertical structure. The strong equatorial undercurrent at the end of the winter monsoon allowed high‐salinity waters from the western equatorial Indian Ocean to reach the southern Bay of Bengal in summer 2018.
    Description: This work was supported by the Office of Naval Research as part of the NASCar DRI under Grant N000141512632 and as part of the MISO‐BOB DRI under Grant N000141712968.
    Keywords: Monsoon ; Indian Ocean ; Equatorial ; Underwater glider ; Equatorial undercurrent
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016147, doi:10.1029/2020JC016147.
    Description: Net ecosystem calcification (NEC) rates of Palau's largest lagoon and barrier reef system between 1992 and 2015 are estimated from sparse total alkalinity (TA) and salinity measurements and a tidal exchange model in which surface lagoon water transported offshore on the ebb tide is replaced by saltier (denser) ocean water that sinks to the bottom after entering the lagoon on the flood tide. Observed lagoon salinities are accurately reproduced by the model with no adjustable parameters. To accurately reproduce observed lagoon TA, NEC for the lagoon‐barrier reef system was 70 mmols m−2 day−1 from 1992 to 1998, 35 mmols m−2 day−1 from 1999 to 2012, and 25 mmols m−2 day−1 from 2013 to 2015. This indicates that Palau's largest lagoon and barrier reef system has not recovered, as of 2015, from the 50% decline in NEC in 1998 caused by the loss of coral cover following a severe bleaching event. The cause of the further decline in NEC in 2012–2013 is unclear. Lagoon residence times vary from 8 days during spring tides to 14 days during neap tides and drive substantial spring‐neap variations in lagoon TA (~25% of the mean salinity‐normalized ocean‐lagoon TA difference). Sparse measurements that do not resolve these spring‐neap variations can exhibit apparent long‐term variations in alkalinity that are not due to changes in NEC.
    Description: This work was partially supported by NSF award 1220529 to A.L.C., S.J.L., and K.E.F.S and NSF award 1737311 to A.L.C. and the Oceanography Department, Texas A&M University K.E.F.S.
    Description: 2021-01-06
    Keywords: Coral reef ; Calcification ; Bleaching ; Residence time ; Net ecosystem calcification ; Palau
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Dunlea, A. G., Murray, R. W., Tada, R., Alvarez-Zarikian, C. A., Anderson, C. H., Gilli, A., Giosan, L., Gorgas, T., Hennekam, R., Irino, T., Murayama, M., Peterson, L. C., Reichart, G., Seki, A., Zheng, H., & Ziegler, M. Intercomparison of XRF core scanning results from seven labs and approaches to practical calibration. Geochemistry Geophysics Geosystems, 21(9), (2020): e2020GC009248, doi:10.1029/2020GC009248.
    Description: X‐ray fluorescence (XRF) scanning of marine sediment has the potential to yield near‐continuous and high‐resolution records of elemental abundances, which are often interpreted as proxies for paleoceanographic processes over different time scales. However, many other variables also affect scanning XRF measurements and convolute the quantitative calibrations of element abundances and comparisons of data from different labs. Extensive interlab comparisons of XRF scanning results and calibrations are essential to resolve ambiguities and to understand the best way to interpret the data produced. For this study, we sent a set of seven marine sediment sections (1.5 m each) to be scanned by seven XRF facilities around the world to compare the outcomes amidst a myriad of factors influencing the results. Results of raw element counts per second (cps) were different between labs, but element ratios were more comparable. Four of the labs also scanned a set of homogenized sediment pellets with compositions determined by inductively coupled plasma‐optical emission spectrometry (ICP‐OES) and ICP‐mass spectrometry (MS) to convert the raw XRF element cps to concentrations in two ways: a linear calibration and a log‐ratio calibration. Although both calibration curves are well fit, the results show that the log‐ratio calibrated data are significantly more comparable between labs than the linearly calibrated data. Smaller‐scale (higher‐resolution) features are often not reproducible between the different scans and should be interpreted with caution. Along with guidance on practical calibrations, our study recommends best practices to increase the quality of information that can be derived from scanning XRF to benefit the field of paleoceanography.
    Description: Funding for this research was provided by the U.S. National Science Foundation to R. W. M. (Grant 1130531). USSSP postcruise support was provided to Expedition 346 shipboard participants A. G. D., R. W. M., L. G., C. A. Z., and L. P. Portions of this material are based upon work supported while R. W. M. was serving at the National Science Foundation.
    Keywords: XRF scanning ; Quantitative XRF ; Paleoceanography ; Sedimentary geochemistry ; XRF calibration ; XRF intercomparison
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 125(9),(2020): e2020JB020393, doi:10.1029/2020JB020393.
    Description: Fast diffusing Li isotopes provide important insights into the “recent” transient events or processes for both modern and ancient times, but questions remain concerning the large Li isotopic variations of mantle peridotites, which greatly hampers their usage as a geochemical tracer. This study investigates in situ Li content and isotopic profiles of the constituent minerals of abyssal peridotites from the Gakkel Ridge and Southwest Indian Ridge. The complicated and large variations of Li isotopic profiles in Clinopyroxene (Cpx) and Orthopyroxene (Opx) indicate Li isotopic disequilibrium at millimeter scale. The negative correlations of a wide range of Li contents (0.5 to 6.5 ppm) and δ7Li values (−10 to +20‰) of olivine, Opx and Cpx grains/relicts, trace element zoning of Cpx, the occurrence of plagioclase, olivine serpentinization along cracks, together with numerical modeling demonstrate the observed Li characteristics to be a manifestation of high‐temperature mineral‐melt Li diffusion during melt impregnation overprinted by low‐temperature mineral‐fluid Li diffusion during dissolution and serpentinization. The preservation of the Li isotopic diffusion profiles requires rapid cooling of 0.3–5°C/year after final‐stage melt impregnation at the Moho boundary, which is consistent with the low temperature at very slow spreadin g ridges caused by conductive cooling. Compared with the well‐studied melt‐rock interaction process, our study indicates that low‐temperature fluid‐rock interaction can induce Li diffusion even in the visibly unaltered mineral relicts of partially altered rocks.
    Description: This study was financially supported by the National Science Foundation of China (grant no. 41872058) and the U.S. National Science Foundation grant.
    Description: 2021-03-07
    Keywords: Li isotope ; Abyssal peridotite ; Isotope diffusion ; Melt‐rock interaction ; Fluid‐rock interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016091, doi:10.1029/2020JC016091.
    Description: The floating ice tongue of 79 North Glacier, a major outlet glacier of the Northeast Greenland Ice Stream, has thinned by 30% since 1999. Earlier studies have indicated that long‐term warming of Atlantic Intermediate Water (AIW) is likely driving increased basal melt, causing the observed thinning. Still, limited ocean measurements in 79 North Fjord beneath the ice tongue have made it difficult to test this hypothesis. Here we use data from an Ice Tethered Mooring (ITM) deployed in a rift in the ice tongue from August 2016 to July 2017 to show that the subannual AIW temperature variability is smaller than the observed interannual variability, supporting the conclusion that AIW has warmed over the period of ice tongue thinning. In July 2017, the AIW at 500 m depth in the ice tongue cavity reached a maximum recorded temperature of 1.5°C. Velocity measurements reveal weak tides and a mean overturning circulation, which is likely seasonally enhanced by subglacial runoff discharged at the grounding line. Deep inflow of AIW and shallow export of melt‐modified water persist throughout the record, indicating year‐round basal melting of the ice tongue. Comparison with a mooring outside of the cavity suggests a rapid exchange between the cavity and continental shelf. Warming observed during 2016–2017 is estimated to drive a 33 ± 20% increase in basal melt rate near the ice tongue terminus and a 14 ± 2% increase near the grounding line if sustained.
    Description: Funding for the ITM was provided by the Grossman Family Foundation through the WHOI Development Office. M. R. L. is supported by a National Defense Science and Engineering Graduate Fellowship. N. L. B. is supported by a grant from the National Science Foundation (NSF OCE‐1536856).
    Description: 2021-02-10
    Keywords: 79 North ; Basal melt ; Fjord ; Greenland ; Ice ocean interaction ; Ice shelf
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Atmospheres 125(18), (2020): e2019JD032368, doi:10.1029/2019JD032368.
    Description: Hurricane Irma (2017) underwent rapid intensification (RI) while passing over the Amazon‐Orinoco River plume in the tropical Atlantic. The freshwater discharge from the plume creates a vertical salinity gradient that suppresses turbulent heat flux from the cool, ocean subsurface. The stability within the plume reduces sea surface temperature (SST) cooling and promotes energetic air‐sea fluxes. Hence, it is hypothesized that this ocean feature may have facilitated Irma's RI through favorable upper ocean conditions. This hypothesis is validated using a collection of atmospheric and oceanic observations to quantify how the ocean response influences surface flux and atmospheric boundary layer thermodynamics during Hurricane Irma's RI over the river plume. Novel aircraft‐deployed oceanic profiling floats highlight the detailed evolution of the ocean response during Irma's passage over the river plume. Analyses include quantifying the ocean response and identifying how it influenced atmospheric boundary layer temperature, moisture, and equivalent potential temperature (θE). An atmospheric boundary layer recovery analysis indicates that surface fluxes were sufficient to support the enhanced boundary layer θE (moist entropy) observed, which promotes inner‐core convection and facilitates TC intensification. The implicit influence of salinity stratification on Irma's intensity during RI is assessed using theoretical intensity frameworks. Overall, the findings suggest that the salinity stratification sustained SST during Irma's passage, which promoted energetic air‐sea fluxes that aided in boundary layer recovery and facilitated Irma's intensity during RI. Examination of the air‐sea coupling over this river plume, corresponding atmospheric boundary layer response, and feedback on TC intensity was previously absent in literature.
    Description: This research was performed while the corresponding author held an NRC Research Associateship Award at the U.S. Naval Research Lab, Monterey. Chen is supported by Office of Naval Research (ONR) grant N0001416WX00470. Sanabia is sponsored by ONR grants N0001416WX01384 and N0001416WX01262. Jayne is supported by National Oceanic and Atmospheric Administration (NOAA) grant NA13OAR4830233.The authors gratefully acknowledge the HRD scientists, NOAA AOC crews, U.S. Air Force crews, and U.S. Navy crews who were involved in the collection of both atmospheric and oceanic data. This research would not be possible without your efforts. We are thankful for helpful discussion and pre‐RI AXBT data provided by Jun Zhang (NOAA/HRD).
    Description: 2020-12-12
    Keywords: Hurricane Irma ; Air-sea interaction ; Atmospheric boundary layer ; River plume ; Tropical cyclone ; Upper ocean response
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Reviews of Geophysics 58(3), (2020): e2019RG000672, doi:10.1029/2019RG000672.
    Description: Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea‐level observing system, the knowledge of regional sea‐level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time. Despite the advances, gaps in the understanding of contemporary sea‐level change remain and inhibit the ability to predict how the relevant processes may lead to future change. These gaps arise in part due to the complexity of the linkages between the drivers of sea‐level change. Here we review the individual processes which lead to sea‐level change and then describe how they combine and vary regionally. The intent of the paper is to provide an overview of the current state of understanding of the processes that cause regional sea‐level change and to identify and discuss limitations and uncertainty in our understanding of these processes. Areas where the lack of understanding or gaps in knowledge inhibit the ability to provide the needed information for comprehensive planning efforts are of particular focus. Finally, a goal of this paper is to highlight the role of the expanded sea‐level observation network—particularly as related to satellite observations—in the improved scientific understanding of the contributors to regional sea‐level change.
    Description: The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors acknowledge support from the National Aeronautics and Space Administration under Grants 80NSSC17K0565, 80NSSC170567, 80NSSC17K0566, 80NSSC17K0564, and NNX17AB27G. A. A. acknowledges support under GRACE/GRACEFO Science Team Grant (NNH15ZDA001N‐GRACE). T. W. acknowledges support by the National Aeronautics and Space Administration (NASA) under the New (Early Career) Investigator Program in Earth Science (Grant: 80NSSC18K0743). C. G. P was supported by the J. Lamar Worzel Assistant Scientist Fund and the Penzance Endowed Fund in Support of Assistant Scientists at the Woods Hole Oceanographic Institution.
    Keywords: Sea level ; Satellite observations ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC015377, doi:10.1029/2019JC015377.
    Description: Internal waves strongly influence the physical and chemical environment of coastal ecosystems worldwide. We report novel observations from a distributed temperature sensing (DTS) system that tracked the transformation of internal waves from the shelf break to the surf zone over a narrow shelf slope region in the South China Sea. The spatially continuous view of temperature fields provides a perspective of physical processes commonly available only in laboratory settings or numerical models, including internal wave reflection off a natural slope, shoreward transport of dense fluid within trapped cores, and observations of internal rundown (near‐bed, offshore‐directed jets of water preceding a breaking internal wave). Analysis shows that the fate of internal waves on this shelf—whether transmitted into shallow waters or reflected back offshore—is mediated by local water column density structure and background currents set by the previous shoaling internal waves, highlighting the importance of wave‐wave interactions in nearshore internal wave dynamics.
    Description: We are grateful for the support of the Dongsha Atoll Research Station (DARS) and the Dongsha Atoll Marine National Park, whose efforts made this research possible. The authors would also like to thank A. Hall, S. Tyler, and J. Selker from the Center for Transformative Environmental Monitoring Programs (CTEMPs) funded by the National Science Foundation (EAR awards 1440596 and 1440506), G. Lohmann from WHOI, A. Safaie from UC Irvine, G. Wong, L. Hou, F. Shiah, and K. Lee from Academia Sinica for providing logistical and field support, as well as E. Pawlak, S. Lentz, B. Sanders, and S. Grant for equipment, and B. Raubenheimer, S. Elgar, R. Walter and D. Lucas for informative discussions that improved this work. We acknowledge the US Army Research Laboratory DoD Supercomputing Resource Center for computer time on Excalibur, which was used for the numerical simulations in this work. Funding for this work supported by Academia Sinica and for K.D. and E.R. from NSF‐OCE 1753317 and for O.F., J.R., and R.A. from ONR Grant 1182789‐1‐TDZZM. A portion of this work (R.A.) was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE‐AC52‐07NA27344.
    Description: 2020-10-21
    Keywords: Internal waves ; Distributed temperature sensing ; Coral reef ; Internal wave reflection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kirkels, F. M. S. A., Ponton, C., Galy, V., West, A. J., Feakins, S. J., & Peterse, F. From Andes to Amazon: assessing branched tetraether lipids as tracers for soil organic carbon in the Madre de Dios River system. Journal of Geophysical Research-Biogeosciences, 125(1), (2020): e2019JG005270, doi:10.1029/2019JG005270.
    Description: We investigate the implications of upstream processes and hydrological seasonality on the transfer of soil organic carbon (OC) from the Andes mountains to the Amazon lowlands by the Madre de Dios River (Peru), using branched glycerol dialkyl glycerol tetraether (brGDGT) lipids. The brGDGT signal in Andean soils (0.5 to 3.5 km elevation) reflects air temperature, with a lapse rate of −6.0 °C/km elevation (r 2 = 0.89, p 〈 0.001) and −5.6 °C/km elevation (r 2 = 0.89, p 〈 0.001) for organic and mineral horizons, respectively. The same compounds are present in river suspended particulate matter (SPM) with a lapse rate of −4.1 °C/km elevation (r 2 = 0.82, p 〈 0.001) during the wet season, where the offset in intercept between the temperature lapse rates for soils and SPM indicates upstream sourcing of brGDGTs. The lapse rate for SPM appears insensitive to an increasing relative contribution of 6‐methyl isomer brGDGTs produced within the river. River depth profiles show that brGDGTs are well mixed in the river and are not affected by hydrodynamic sorting. The brGDGTs accumulate relative to OC downstream, likely due to the transition of particulate OC to the dissolved phase and input of weathered soils toward the lowlands. The temperature‐altitude correlation of brGDGTs in Madre de Dios SPM contrasts with the Lower Amazon River, where the initial soil signature is altered by changes in seasonal in‐river production and variable provenance of brGDGTs. Our study indicates that brGDGTs in the Madre de Dios River system are initially soil derived and highlights their use to study OC sourcing in mountainous river systems.
    Description: The brGDGT analyses were supported by NWO‐Veni grant 863.13.016 to F.P. This material is based upon work supported by the US National Science Foundation under grant EAR‐1227192 to A. J. W. and S. J. F. for the river fieldwork and lipid purification. In Perú, we thank the Servicio Nacional de Áreas Naturales Protegidas por el Estado (SERNANP) and personnel of Manu and Tambopata National Parks for logistical assistance and permission to work in the protected areas. We thank the Explorers' Inn and the Pontifical Catholic University of Perú (PUCP), as well as the Amazon Conservation Association for the use of the Tambopata and Wayqecha Research Stations, respectively. For river fieldwork assistance, we thank M. Torres, A. Robles, and A. Cachuana. Soil samples were contributed by Andrew Nottingham and Patrick Meir. Logistical support was provided by Y. Malhi, J. Huaman, W. Huaraca Huasco, and other collaborators as part of the Andes Biodiversity and Ecosystems Research Group ABERG (www.andesresearch.org). We thank Dominika Kasjaniuk for technical support at Utrecht. Two anonymous reviewers have provided valuable comments that have helped to improve this manuscript. Geochemical and brGDGT data are available in the PANGAEA Data Repository (Kirkels et al., 2019) and can be accessed at https://doi.pangaea.de/10.1594/PANGAEA.906170
    Keywords: Bacterial membrane lipids (brGDGTs) ; Altitude‐temperature relations ; Amazon headwaters ; Soil‐river connectivity ; Riverine organic carbon transport, brGDGT proxy signal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bowen, J. C., Ward, C. P., Kling, G. W., & Cory, R. M. Arctic amplification of global warming strengthened by sunlight oxidation of permafrost carbon to CO2. Geophysical Research Letters, 47(12), (2020): e2020GL087085, doi:10.1029/2020GL087085.
    Description: Once thawed, up to 15% of the ∼1,000 Pg of organic carbon (C) in arctic permafrost soils may be oxidized to carbon dioxide (CO2) by 2,100, amplifying climate change. However, predictions of this amplification strength ignore the oxidation of permafrost C to CO2 in surface waters (photomineralization). We characterized the wavelength dependence of permafrost dissolved organic carbon (DOC) photomineralization and demonstrate that iron catalyzes photomineralization of old DOC (4,000–6,300 a BP) derived from soil lignin and tannin. Rates of CO2 production from photomineralization of permafrost DOC are twofold higher than for modern DOC. Given that model predictions of future net loss of ecosystem C from thawing permafrost do not include the loss of CO2 to the atmosphere from DOC photomineralization, current predictions of an average of 208 Pg C loss by 2,299 may be too low by ~14%.
    Description: This research was supported by National Science Foundation (NSF) CAREER 1351745 (R.M.C.), DEB 1637459 and 1754835 (G.W.K.), the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry (R.M.C. and C.P.W.), the Frank and Lisina Hock Endowed Fund (C.P.W.), and the NOSAMS Graduate Student Internship Program (J.C.B.).
    Keywords: Photochemistry ; Permafrost ; Arctic ; Carbon cycling ; Dissolved organic carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 125 (2020): e2020JB020323, doi: 10.1029/2020JB020323.
    Description: Ultramylonites—intensely deformed rocks with fine grain sizes and well‐mixed mineral phases—are thought to be a key component of Earth‐like plate tectonics, because coupled phase mixing and grain boundary pinning enable rocks to deform by grain‐size‐sensitive, self‐softening creep mechanisms over long geologic timescales. In isoviscous two‐phase composites, “geometric” phase mixing occurs via the sequential formation, attenuation (stretching), and disaggregation of compositional layering. However, the effects of viscosity contrast on the mechanisms and timescales for geometric mixing are poorly understood. Here, we describe a series of high‐strain torsion experiments on nonisoviscous calcite‐fluorite composites (viscosity contrast, ηca/ηfl ≈ 200) at 500°C, 0.75 GPa confining pressure, and 10−6–10−4 s−1 shear strain rate. At low to intermediate shear strains (γ ≤ 10), polycrystalline domains of the individual phases become sheared and form compositional layering. As layering develops, strain localizes into the weaker phase, fluorite. Strain partitioning impedes mixing by reducing the rate at which the stronger (calcite) layers deform, attenuate, and disaggregate. Even at very large shear strains (γ ≥ 50), grain‐scale mixing is limited, and thick compositional layers are preserved. Our experiments (1) demonstrate that viscosity contrasts impede mechanical phase mixing and (2) highlight the relative inefficiency of mechanical mixing. Nevertheless, by employing laboratory flow laws, we show that “ideal” conditions for mechanical phase mixing may be found in the wet middle to lower continental crust and in the dry mantle lithosphere, where quartz‐feldspar and olivine‐pyroxene viscosity contrasts are minimized, respectively.
    Description: This work was funded through a National Science Foundation grant (EAR‐1352306) awarded to P. S., with additional support for A. J. C. provided by the McDonnell Center for the Space Sciences (Washington University in St. Louis), the J. Lamar Worzel Assistant Scientist Fund (WHOI), and the Penzance Endowed Fund in Support of Assistant Scientists (WHOI). Partial support for electron microscopy was provided by the Institute of Materials Science and Engineering (Washington University in St. Louis).
    Description: 2021-02-04
    Keywords: Ultramylonite ; Geometric mixing ; Strain partitioning ; Shear zone ; Calcite ; Torsion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in DeGrandpre, M., Evans, W., Timmermans, M., Krishfield, R., Williams, B., & Steele, M. Changes in the arctic ocean carbon cycle with diminishing ice cover. Geophysical Research Letters, 47(12), (2020): e2020GL088051, doi:10.1029/2020GL088051.
    Description: Less than three decades ago only a small fraction of the Arctic Ocean (AO) was ice free and then only for short periods. The ice cover kept sea surface pCO2 at levels lower relative to other ocean basins that have been exposed year round to ever increasing atmospheric levels. In this study, we evaluate sea surface pCO2 measurements collected over a 6‐year period along a fixed cruise track in the Canada Basin. The measurements show that mean pCO2 levels are significantly higher during low ice years. The pCO2 increase is likely driven by ocean surface heating and uptake of atmospheric CO2 with large interannual variability in the contributions of these processes. These findings suggest that increased ice‐free periods will further increase sea surface pCO2, reducing the Canada Basin's current role as a net sink of atmospheric CO2.
    Description: This research was made possible by grants from the NSF Arctic Observing Network program (ARC‐1107346, PLR‐1302884, PLR‐1504410, and OPP‐1723308). In addition, M. S. was supported by ONR (Grant 00014‐17‐1‐2545), NASA (Grant NNX16AK43G), and NSF (Grants PLR‐1503298 and OPP‐1751363).
    Keywords: Arctic Ocean ; Ice concentration ; Seawater CO2 ; Interannual variability ; Canada Basin ; Shipboard CO2 measurements
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(7), (2020): e2019JC015676, doi:10.1029/2019JC015676.
    Description: The temperature‐salinity (T‐S) diagram is widely used in water mass analysis, but the boundaries between water masses are vaguely distinguished by conventional T‐S‐based methods. Herein, we propose a new method based on the potential density‐potential spicity (sigma‐pi) diagram. The new method has been applied to the conductivity‐temperature‐depth data collected in the northern South China Sea during a spring cruise in 2011. The water masses in the study region are classified into 13 types according to both the standard deviation of potential spicity in each potential density layer and the water volumetric distribution in the sigma‐pi space. The results suggest that this new method is reasonable and robust for classifying water masses in the sigma‐pi space as compared to previous methods based on the traditional T‐S space. In addition, the westward intrusion of the West Pacific Ocean water to the northern South China Sea can be clearly detected by the tongue‐like potential spicity structure and relatively high potential spicity patches on potential density layers, further verifying the robustness and efficiency of our method in the water mass analysis.
    Description: This work was supported by the National Natural Science Foundation of China (91958203, 41776027, and 11732010) and the National Basic Research Program of China (2015CB954004 and 2009CB421208). Funding of Y.G.'s cotutelle doctoral research project by Région Hauts‐de‐France and Xiamen University is acknowledged. All the cruise participants are appreciated. We also thank the editor and anonymous reviewers for their valuable comments.
    Description: 2020-12-20
    Keywords: Water mass ; Spicity ; Northern South China Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 125 (2020): e2019JF005446, doi: 10.1029/2019JF005446.
    Description: Atoll reef islands primarily consist of unconsolidated sediment, and their ocean‐facing shorelines are maintained by sediment produced and transported across their reefs. Changes in incident waves can alter cross‐shore sediment exchange and, thus, affect the sediment budget and morphology of atoll reef islands. Here we investigate the influence of sea level rise and projected wave climate change on wave characteristics and cross‐shore sediment transport across an atoll reef at Kwajalein Island, Republic of the Marshall Islands. Using a phase‐resolving model, we quantify the influence on sediment transport of quantities not well captured by wave‐averaged models, namely, wave asymmetry and skewness and flow acceleration. Model results suggest that for current reef geometry, sea level, and wave climate, potential bedload transport is directed onshore, decreases from the fore reef to the beach, and is sensitive to the influence of flow acceleration. We find that a projected 12% decrease in annual wave energy by 2100 CE has negligible influence on reef flat hydrodynamics. However, 0.5–2.0 m of sea level rise increases wave heights, skewness, and shear stress on the reef flat and decreases wave skewness and shear stress on the fore reef. These hydrodynamic changes decrease potential sediment inputs onshore from the fore reef where coral production is greatest but increase potential cross‐reef sediment transport from the outer reef flat to the beach. Assuming sediment production on the fore reef remains constant or decreases due to increasing ocean temperatures and acidification, these processes have the potential to decrease net sediment delivery to atoll islands, causing erosion.
    Description: This study was supported by the Strategic Environmental Research and Development Program through awards SERDP: RC‐2334, and RC‐2336. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Description: 2021-03-25
    Keywords: Coral atolls ; Fringing reefs ; Sediment transport ; Wave model ; Wave climate ; Sea level rise
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mankin, J. S., Lehner, F., Coats, S., & McKinnon, K. A. The value of initial condition large ensembles to robust adaptation decision-making. Earth's Future, 8(10), (2020): e2012EF001610, doi:10.1029/2020EF001610.
    Description: The origins of uncertainty in climate projections have major consequences for the scientific and policy decisions made in response to climate change. Internal climate variability, for example, is an inherent uncertainty in the climate system that is undersampled by the multimodel ensembles used in most climate impacts research. Because of this, decision makers are left with the question of whether the range of climate projections across models is due to structural model choices, thus requiring more scientific investment to constrain, or instead is a set of equally plausible outcomes consistent with the same warming world. Similarly, many questions faced by scientists require a clear separation of model uncertainty and that arising from internal variability. With this as motivation and the renewed attention to large ensembles given planning for Phase 7 of the Coupled Model Intercomparison Project (CMIP7), we illustrate the scientific and policy value of the attribution and quantification of uncertainty from initial condition large ensembles, particularly when analyzed in conjunction with multimodel ensembles. We focus on how large ensembles can support regional‐scale robust adaptation decision‐making in ways multimodel ensembles alone cannot. We also acknowledge several recently identified problems associated with large ensembles, namely, that they are (1) resource intensive, (2) redundant, and (3) biased. Despite these challenges, we show, using examples from hydroclimate, how large ensembles provide unique information for the scientific and policy communities and can be analyzed appropriately for regional‐scale climate impacts research to help inform risk management in a warming world.
    Description: F. L. has been supported by the Swiss NSF (grant no. PZ00P2_174128), the NSF Division of Atmospheric and Geospace Sciences (grant no. AGS‐0856145, Amendment 87), and the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S.Department of Energy’s Office of Biological & Environmental Research (BER) via NSF IA 1844590. This is SOEST publication no. 11115.
    Keywords: Large ensembles ; Robust decision‐making ; Internal variability ; Initial conditions ; Climate adaptation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 125(2), (2020): e2019JC015254, doi:10.1029/2019JC015254.
    Description: The Coupled Ocean‐Atmosphere‐Wave‐Sediment Transport (COAWST) modeling system was used to examine axial wind effects on vertical stratification and sediment transport in a convergent estuary. The model demonstrated that stratification dynamics in the upper estuary (Kelvin number 〈1; Ke= fB/√ g'hs) are dominated by longitudinal wind straining, whereas the dominant mechanism governing estuarine stratification in the lower estuary (Kelvin number ~1) is lateral wind straining. Barotropic advection contributes to seaward sediment transport and peaks during spring tides, whereas estuarine circulation causes landward sediment transport with a maximum during neap tides. Down‐estuary winds impose no obvious effects on longitudinal sediment flux, whereas up‐estuary winds contribute to enhanced seaward sediment flux by increasing the tidal oscillatory flux. The model also demonstrates that bottom friction is significantly influenced by vertical stratification over channel regions, which is indirectly affected by axial winds.
    Description: This research was funded by the National Natural Science Foundation of China (Grants 41576089, 51761135021, and 41890851), the National Key Research and Development Program of China (2016YFC0402603) and the Guangdong Provincial Water Conservancy Science and Technology Innovation Project (Grant 201719). We thank Professor Liangwen Jia at the Sun Yat‐sen University for his kindly providing the surficial sediment samples data in 2011. We also thank graduate students Guang Zhang and Yuren Chen from the Sun Yat‐sen University for their help in data analysis. We are grateful to two anonymous reviewers for their insightful comments to help improve this manuscript. The data related to this article is available online at the Zenodo website (https://zenodo.org/record/3606471).
    Description: 2020-07-17
    Keywords: Sediment transport ; Vertical stratification ; Wind effects ; China, Pearl River Delta ; COAWST model system
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2022-10-20
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Martins, M. C. I., Miller, C., Hamilton, P., Robbins, J., Zitterbart, D. P., & Moore, M. Respiration cycle duration and seawater flux through open blowholes of humpback (Megaptera novaeangliae) and North Atlantic right (Eubalaena glacialis) whales. Marine Mammal Science, (2020): 1-20, doi:10.1111/mms.12703.
    Description: Little is known about the dynamics of baleen whale respiratory cycles, especially the mechanics and activity of the blowholes and their interaction with seawater. In this study, the duration of complete respiration cycles (expiration/inhalation events) were quantified for the first time in two species: North Atlantic right whale (NARW) and humpback whale (HW) using high resolution, detailed imagery from an unoccupied aerial system (UAS). The mean duration of complete respiration cycles (expiration/inhalation event) in the NARW and HW were 3.07 s (SD = 0.503, n = 15) and 2.85 s (SD = 0.581, n = 21), respectively. Furthermore, we saw no significant differences in respiration cycle duration between age and sex classes in the NARW, but significant differences were observed between age classes in the HW. The observation of seawater covering an open blowhole was also quantified, with NARW having 20% of all breaths with seawater presence versus 90% in HW. Seawater incursion has not been described previously and challenges the general consensus that water does not enter the respiratory tract in baleen whales. Prevalent seawater has implications for the analysis and interpretation of exhaled respiratory vapor/mucosa samples, as well as for the potential inhalation of oil in spills.
    Description: Samples were collected under NMFS NOAA Permits 17355, 17355‐01, and 21371, and with approval from the Woods Hole Oceanographic Institution Institutional Animal Care and Use Committee. Funding by Ocean Life Institute of the Woods Hole Oceanographic Institution, NOAA NA14OAR4320158 and University College London Master of Research in Biodiversity, Evolution and Conservation program.
    Keywords: Humpback whale ; North Atlantic right whale ; Respiratory cycle ; Respiratory health ; Unoccupied aerial systems
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 125(2), (2020): e2019JC015220, doi:10.1029/2019JC015220.
    Description: Wave‐supported gravity flows (WSGFs) have been identified as a key process driving the offshore delivery of fine sediment across continental shelves. However, our understanding on the various factors controlling the maximum sediment load and the resulting gravity current speed remains incomplete. We adopt a new turbulence‐resolving numerical model for fine sediment transport to investigate the formation, evolution, and termination of WSGFs. We consider the simplest scenario in which fine sediments are supported by the wave‐induced fluid turbulence at a low critical shear stress of erosion over a flat sloping bed. Under the energetic wave condition reported on the Northern California Coast with a shelf slope of 0.005, simulation results show that WSGFs are transitionally turbulent and that the sediment concentration cannot exceed 30 kg/m urn:x-wiley:jgrc:media:jgrc23843:jgrc23843-math-0001 (g/L) due to the attenuation of turbulence by the sediment‐induced stable density stratification. Wave direction is found to be important in the resulting gravity current intensity. When waves are in cross‐shelf direction, the downslope current has a maximum velocity of 1.2 cm/s, which increases to 2.1 cm/s when waves propagate in the along‐shelf direction. Further analysis on the wave‐averaged momentum balance confirms that when waves are parallel to the slope (cross‐shelf) direction, the more intense wave‐current interaction results in larger wave‐averaged Reynolds shear stress and thus in a smaller current speed. Findings from this study suggest that the more intense cross‐shelf gravity current observed in the field may be caused by additional processes, which may enhance the sediment‐carrying capacity of flow, such as the ambient current or bedforms.
    Description: This study is supported by NSF (OCE‐1537231 and OCE‐1924532) and Office of Naval Research (N00014‐17‐1‐2796). Numerical simulations presented in this study were carried out using the Mills and Canviness clusters at University of Delaware, and the SuperMIC cluster at Louisiana State University via XSEDE (TG‐OCE100015). Z. Cheng would like to express thanks for the support of a postdoctoral scholarship from Woods Hole Oceanographic Institution. The source code and the case setup to reproduce the same results are publicly available via the repository maintained by GitHub: https://github.com/yueliangyi/TURBID (source code) and https://github.com/yueliangyi/TURBID/tree/master/spike/wave_supported_gravity_flow (case setup), respectively.
    Description: 2020-08-04
    Keywords: Wave‐supported gravity flows ; Turbulence‐resolving numerical simulation ; Wave direction ; Intermittently turbulent flow
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47 (2020): e2020GL087669, doi:10.1029/2020GL087669.
    Description: We present a year‐round time series of dissolved methane (CH4), along with targeted observations during ice melt of CH4 and carbon dioxide (CO2) in a river and estuary adjacent to Cambridge Bay, Nunavut, Canada. During the freshet, CH4 concentrations in the river and ice‐covered estuary were up to 240,000% saturation and 19,000% saturation, respectively, but quickly dropped by 〉100‐fold following ice melt. Observations with a robotic kayak revealed that river‐derived CH4 and CO2 were transported to the estuary and rapidly ventilated to the atmosphere once ice cover retreated. We estimate that river discharge accounts for 〉95% of annual CH4 sea‐to‐air emissions from the estuary. These results demonstrate the importance of resolving seasonal dynamics in order to estimate greenhouse gas emissions from polar systems.
    Description: All data generated by the authors that were used in this article are available on PANGAEA (https://doi.org/10.1594/PANGAEA.907159) and model code for estimating CH4 transport is available on GitHub (https://doi.org/10.5281/zenodo.3785893). We acknowledge the use of imagery from the NASA Worldview application (https://worldview.earthdata.nasa.gov), part of the NASA Earth Observing System Data and Information System (EOSDIS), and data from Ocean Networks Canada, and Environment Canada. We thank everyone involved in the fieldwork including C. Amegainik, Y. Bernard, A. Cranch, F. Emingak, S. Marriott, and A. Pedersen. Laboratory analysis and experiments were performed by A. Cranch, R. McCulloch, A. Morrison, and Z. Zheng. We thank J. Brinckerhoff, the Arctic Research Foundation, and the staff of the Canadian High Arctic Research Station for support with field logistics. Funding for the work was provided by MEOPAR NCE funding to B. Else, a WHOI Interdisciplinary Award to A. Michel., D. Nicholson. and S. Wankel, and Canadian NSERC grants to P. Tortell. and B. Else. Authors received fellowships, scholarships, and travel grants including an NSERC postdoctoral fellowship to C. Manning, an NDSEG fellowship to V. Preston, NSERC PGS‐D and Izaak Walton Killam Pre‐Doctoral scholarships to S. Jones, and Northern Scientific Training Program funds (Polar Knowledge Canada, administered by the Arctic Institute of North America, University of Calgary) to S. Jones and P. Duke. We also thank Polar Knowledge Canada (POLAR) and Nunavut Arctic College for laboratory space and field logistics support.
    Description: 2020-10-23
    Keywords: Greenhouse gases ; Biogeochemistry ; Arctic coastal waters ; Biogeochemical sensing ; Seasonal cycles ; Methane
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2022-10-20
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Davis, S. R., Farrar, J. T., Weller, R. A., Jiang, H., & Pratt, L. J. The land-sea breeze of the Red Sea: observations, simulations, and relationships to regional moisture transport. Journal of Geophysical Research-Atmospheres, 124, (2019): 13803-13825, doi: 10.1029/2019JD031007.
    Description: Unique in situ observations of atmospheric conditions over the Red Sea and the coastal Arabian Peninsula are examined to study the dynamics and regional impacts of the local land‐sea breeze cycle (LSBC). During a 26‐month data record spanning 2008–2011, observed LSBC events occurred year‐round, frequently exhibiting cross‐shore wind velocities in excess of 8 m/s. Observed onshore and offshore features of both the land‐ and sea‐breeze phases of the cycle are presented, and their seasonal modulation is considered. Weather Research and Forecasting climate downscaling simulations and satellite measurements are used to extend the analysis. In the model, the amplitude of the LSBC is significantly larger in the vicinity of the steeper terrain elements encircling the basin, suggesting an enhancement by the associated slope winds. Observed and simulated conditions also reflected distinct gravity‐current characteristics of the intrinsic moist marine air mass during both phases of the LSBC. Specifically, the advance and retreat of marine air mass was directly tied to the development of internal boundary layers onshore and offshore throughout the period of study. Convergence in the lateral moisture flux resulting from this air mass ascending the coastal topography (sea‐breeze phase) as well as colliding with air masses from the opposing coastline (land‐breeze phase) further resulted in cumulous cloud formation and precipitation.
    Description: This study was supported by National Science Foundation (NSF) Grant OCE‐1435665 and National Aeronautics and Space Administration (NASA) Grants 80NSSC18K1494 and NNX14AM71G. Further support for Lawrence Pratt was provided by NSF Grant OCE‐1154641. The authors wish to thank Sarah Gille for insightful conversations related to this work. GLDAS data used in this study were acquired as part of the mission of NASA's Earth Science Division and archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). We further acknowledge the use of data and imagery from LANCE FIRMS operated by the NASA/GSFC/Earth Science Data and Information System (ESDIS) with funding provided by NASA/HQ. The in situ data from the WHOI/KAUST mooring is available at a WHOI repository (http://uop.whoi.edu/projects/kaust/form.php) for academic and research purposes. The mooring data collected during the WHOI‐KAUST collaboration was made possible by awards USA00001, USA00002, and KSA00011 to WHOI by the KAUST in the Kingdom of Saudi Arabia. The buoy and tower data collection was a result of the work of the WHOI Upper Ocean Processes Group and staff at KAUST; John Kemp, Jason Smith, Paul Bouchard, Sean Whelan, Yasser Abualnaja, Yasser Kattan, and Abdulaziz Al‐Suwailem all made major contributions.
    Keywords: Sea‐breeze ; Land‐breeze ; Red Sea ; African coast ; Air‐sea ; Observations and modelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 20, (2019): 6123-6139, doi: 10.1029/2019GC008711.
    Description: Gravity, magnetic, and bathymetry data collected along a continuous 1,400‐km‐long spreading‐parallel flow line across the Mid‐Atlantic Ridge indicate significant tectonic and magmatic fluctuations in the formation of oceanic crust over a range of time scales. The transect spans from 28 Ma on the African Plate to 74 Ma on the North American plate, crossing the Mid‐Atlantic Ridge at 35.8°N. Gravity‐derived crustal thicknesses vary from 3–9 km with a standard deviation of 1.0 km. Spectral analysis of bathymetry and residual mantle Bouguer anomaly show a diffuse power at 〉1 Myr and concurrent peaks at 390, 550, and 950 kyr. Large‐scale (〉10 km) mantle thermal and compositional heterogeneities, variations in upper mantle flow, and detachment faulting likely generate the 〉1 Myr diffuse power. The 550‐ and 950‐kyr peaks may reflect the presence of magma solitons and/or regularly spaced ~7.7 and 13.3 km short‐wavelength mantle compositional heterogeneities. The 390‐kyr spectral peak corresponds to the characteristic spacing of faults along the flow line. Fault spacing also varies over longer periods (〉10 Myr), which we interpret as reflecting long‐lived changes in the fraction of tectonically versus magmatically accommodated extensional strain. A newly discovered off‐axis oceanic core complex (Kafka Dome) found at 8 Ma on the African plate further suggests extended time periods of tectonically‐dominated plate separation. Fault spacing negatively correlates with gravity‐derived crustal thickness, supporting a strong link between magma input and fault style at mid‐ocean ridges.
    Description: Data and supplemental materials are available at the Woods Hole Open Access Server (doi.org/10.26025/1912/24796). We would like to thank the Woods Hole Oceanographic Institution, National Science Foundation, Naval Oceanographic Office, and the captain and crew of R/V Neil Armstrong for making the SCARF cruise possible. We would also like to thank Eboné Pierce for her help during the cruise. We thank Meghan Jones for advice using MBSystem. We also thank Maurice Tivey, John Greene, and Masako Tominaga for advice on processing the magnetic data sets. We would like to thank Peter Huybers for sharing his spectral analysis codes. We would like to thank Rob Sohn for his help on interpreting the spectral analysis. We would like to thank Del Bohnenstiel, Milena Marjanović, one anonymous reviewer, and Editor Thorsten Becker for their very helpful comments that improved this manuscript. Funding was provided for this research by NSF OCE‐14‐58201.
    Description: 2020-05-19
    Keywords: Ocean crustal thickness ; Faulting style ; Mid‐Atlantic Ridge ; Spectral analysis ; Oceanic core complex ; Magma input variation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Space Physics 125(7), (2020): e2019JA027160, doi:10.1029/2019JA027160.
    Description: This paper reveals unprecedented periodicity in the voltage series of relative ionospheric opacity meters (riometers) of the Canadian Riometer Array (CRA). In quiet times, the riometer voltage series is accurately modeled by a stochastic process whose components include both a six term expansion in harmonic functions and some amplitude modulated modes of lower signal to noise ratio (SNR). In units of cycles per sidereal day (cpsd), the frequencies of the six harmonic functions lie within 0.01 cpsd of an integer. Earth's rotation induces a splitting of the low SNR components, resulting in the appearance of nine multiplets in standardized power spectrum estimates of the considered CRA voltage series. A second feature of these spectrum estimates is a 6 min periodic element appearing in both the CRA voltage series and the proton mass density series of the Advanced Composition Explorer (ACE). Spectral peak frequencies have been detected, which lie near established solar mode frequency estimates. In addition, some of these peak frequency estimates are coincident with peak frequency estimates of the standardized power spectra for the time series of proton mass density and interplanetary magnetic field strength (IMF) at ACE.
    Description: “Marshall_Francois_Supporting_Information_JGR_2019.pdf” contains a summary of the supporting information. The 1 hr sampled F10.7 series was obtained from DRAO (National Research Council, 2017). The three MAG time series of IMF strength were acquired from The ACE Science Center (2007), while the SWEPAM time series of proton mass density was acquired from Space Weather Prediction Center, National Oceanic and Atmospheric Administration (2018). The relevant data sets for the analysis of this paper are included in Marshall (2019). This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Canadian Statistical Sciences Institute (CANSSI), Bonneyville Power Authority, and Queen's University. David J. Thomson, the official holder of the grants and contracts, provided research and conference funding to advance this project. Special thanks to Ken F. Tapping (DRAO of NRCan) for his guidance in finding the data sets relevant to solar radio emissions. Glen Takahara, of the Department of Mathematics and Statistics at Queen's University, suggested exploring different data sets to confirm the modal origin of spectral peaks observed in the Ottawa riometer of the CRA. Alessandra A. Pacini of the Arecibo Observatory recommended checking to see if some of the modes could have been driven by the harmonics of Earth's rotation. Frank Vernon of the Institute of Geophysics and Planetary Physics at Scripps Institution of Oceanography confirmed how seismic data could be expected to reveal coincident spectral peaks at the detected frequencies in the riometer standardized spectra.
    Description: 2020-10-20
    Keywords: Periodic elements ; Riometer ; Multitaper spectral analysis ; Cosmic noise ; Sidereal day ; Solar modes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(7), (2020): e2020JC016185, doi:10.1029/2020JC016185.
    Description: As mass loss from the Greenland Ice Sheet accelerates, this modeling study considers how meltwater inputs to the ocean can impact marine ecosystems using a simplified fjord scenario. At marine‐terminating glaciers in Greenland fjords, meltwater can be delivered far below the sea surface, both as subglacial runoff (from atmosphere‐driven surface melt) and as basal melt (from ocean heat). Such delivery can result in buoyancy‐driven upwelling and the upward entrainment of nutrient‐rich deep water, which can support phytoplankton growth in fjord surface waters. For this study, we use an idealized fjord‐scale model to investigate which properties of glaciers and fjords govern the transport of buoyantly upwelled nutrients from fjords. We model the influence of fjord geometry, hydrology, wind, tides, and phytoplankton growth within the fjord on meltwater‐driven nutrient export to the ocean. We use the Regional Ocean Modeling System (ROMS) coupled to a buoyant plume model and a biogeochemical model to simulate physical and biogeochemical processes within an idealized tidewater glacial fjord. Results show that meltwater‐driven nutrient export increases with larger subglacial discharge rates and deeper grounding lines, features that are both likely to change with continued ice sheet melting. Nutrient export decreases with longer residence times, allowing greater biological drawdown. While the absence of a coastal current in the model setup prevents the downstream advection of exported nutrients, results suggest that shelf‐forced flows could influence nutrient residence time within fjords. This simplified model highlights key uncertainties requiring further observation to understand ecological impacts of Greenland mass loss.
    Description: This project was supported by a University of Georgia Presidential Scholarship and NSF Graduate Research Fellowship (GRFP) (to HO), NASA‐IDS NNX14AD98G, and by NASA Physical Oceanography program (80NSSC18K0766).
    Description: 2020-12-22
    Keywords: Fjord circulation ; Subglacial discharge plumes ; Nutrient export ; Greenland marine‐terminating glaciers ; Biogeochemical cycling ; Primary productivity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 56(9), (2020): e2020WR027227, doi:10.1029/2020WR027227.
    Description: Hypoxia is a big concern in coastal waters as it affects ecosystem health, fishery yield, and marine water resources. Accurately modeling coastal hypoxia is still very challenging even with the most advanced numerical models. A data‐driven model for coastal water quality is proposed in this study and is applied to predict the temporal‐spatial variations of dissolved oxygen (DO) and hypoxic condition in Chesapeake Bay, the largest estuary in the United States with mean summer hypoxic zone extending about 150 km along its main axis. The proposed model has three major components including empirical orthogonal functions analysis, automatic selection of forcing transformation, and neural network training. It first uses empirical orthogonal functions to extract the principal components, then applies neural network to train models for the temporal variations of principal components, and finally reconstructs the three‐dimensional temporal‐spatial variations of the DO. Using the first 75% of the 32‐year (1985–2016) data set for training, the model shows good performance for the testing period (the remaining 25% data set). Selection of forcings for the first mode points to the dominant role of streamflow in controlling interannual variability of bay‐wide DO condition. Different from previous empirical models, the approach is able to simulate three‐dimensional variations of water quality variables and it does not use in situ measured water quality variables but only external forcings as model inputs. Even though the approach is used for the hypoxia problem in Chesapeake Bay, the methodology is readily applicable to other coastal systems that are systematically monitored.
    Description: This is contribution No. 3934 of the Virginia Institute of Marine Science, College of William and Mary.
    Description: 2021-02-25
    Keywords: Big‐data analysis ; EOF ; Neural network ; Machine‐learning ; Hypoxic volume
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Atmospheres 124(16), (2019): 8953-8971, doi: 10.1029/2019JD030424.
    Description: Multiyear droughts are a common occurrence in southwestern North America (SWNA), but it is unclear what causes these persistent dry periods. The ocean‐atmosphere conditions coinciding with droughts have traditionally been studied using correlation and composite methods, which suggest that cool conditions in the tropical Pacific are associated with SWNA droughts and warm conditions are associated with wet periods in SWNA. Nevertheless, the extent to which multiyear droughts are truly consistent with this paradigm remains unknown. This is, in part, because the temporal trajectory of ocean‐atmosphere conditions during these dry periods have not been sufficiently characterized. Here we examine the continuum of ocean‐atmosphere trajectories before, during, and after multiyear droughts in SWNA using observation‐based data and an ensemble of climate model simulations from the Community Earth System Model. An examination of sea surface temperature patterns at the beginning, middle, and end of SWNA droughts shows that an El Niño event tends to precede SWNA droughts, a cool tropical Pacific occurs during droughts, and central Pacific El Niño events end droughts. However, moderate El Niño events can occur in the middle of persistent droughts, so a warm tropical Pacific does not always end these dry periods. These findings are important for drought predictability and emphasize the need to improve simulations of the magnitude, life cycle, and frequency of occurrence of El Niño events.
    Description: L. Parsons thanks the Washington Research Foundation for funding support and thanks R. Jnglin Wills and D. Battisti for suggestions related to tropical Pacific‐SWNA comparisons. We thank B. Otto‐Bliesner and acknowledge the CESM1(CAM5) Last Millennium Ensemble Community Project and supercomputing resources provided by NSF/CISL/Yellowstone. Support for the Twentieth Century Reanalysis Project version 2c data set is provided by the U.S. Department of Energy, Office of Science Biological and Environmental Research (BER), and by the National Oceanic and Atmospheric Administration Climate Program Office. GPCC Precipitation data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site (https://www.esrl.noaa.gov/psd/).
    Description: 2020-02-06
    Keywords: Drought ; Climate dynamics ; Teleconnections ; Southwest ; Climate model ; Tropical Pacific
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46, (2019): 12108-12116, doi: 10.1029/2019GL084183.
    Description: The accelerated calving of ice shelves buttressing the Antarctic Ice Sheet may form unstable ice cliffs. The marine ice cliff instability hypothesis posits that cliffs taller than a critical height (~90 m) will undergo structural collapse, initiating runaway retreat in ice‐sheet models. This critical height is based on inferences from preexisting, static ice cliffs. Here we show how the critical height increases with the timescale of ice‐shelf collapse. We model failure mechanisms within an ice cliff deforming after removal of ice‐shelf buttressing stresses. If removal occurs rapidly, the cliff deforms primarily elastically and fails through tensile‐brittle fracture, even at relatively small cliff heights. As the ice‐shelf removal timescale increases, viscous relaxation dominates, and the critical height increases to ~540 m for timescales greater than days. A 90‐m critical height implies ice‐shelf removal in under an hour. Incorporation of ice‐shelf collapse timescales in prognostic ice‐sheet models will mitigate the marine ice cliff instability, implying less ice mass loss.
    Description: We thank Greg Hirth, Brad Hager, and Bill Durham for their useful comments. The manuscript benefited from constructive reviews by Dan Martin and an anonymous reviewer and editorial handling by Mathieu Morlighem. This work was supported by an NSF‐GRFP (Fiona Clerc), and NSF Awards OPP‐1739031 (Brent Minchew) and EAR‐19‐03897 (Mark Behn). Code reproducing our results is found at this address (https://doi.org/10.5281/zenodo.3379074).
    Description: 2020-04-21
    Keywords: Marine ice cliff ; Buttressing ice shelf ; Antarctic Ice Sheet ; Ice‐shelf collapse ; Brittle‐ductile transition ; Marine ice cliff instability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(8), (2019): 6388-6413, doi: 10.1029/2018JC014881.
    Description: For ice concentrations less than 85%, internal ice stresses in the sea ice pack are small and sea ice is said to be in free drift. The sea ice drift is then the result of a balance between Coriolis acceleration and stresses from the ocean and atmosphere. We investigate sea ice drift using data from individual drifting buoys as well as Arctic‐wide gridded fields of wind, sea ice, and ocean velocity. We perform probabilistic inverse modeling of the momentum balance of free‐drifting sea ice, implemented to retrieve the Nansen number, scaled Rossby number, and stress turning angles. Since this problem involves a nonlinear, underconstrained system, we used a Monte Carlo guided search scheme—the Neighborhood Algorithm—to seek optimal parameter values for multiple observation points. We retrieve optimal drag coefficients of CA=1.2×10−3 and CO=2.4×10−3 from 10‐day averaged Arctic‐wide data from July 2014 that agree with the AIDJEX standard, with clear temporal and spatial variations. Inverting daily averaged buoy data give parameters that, while more accurately resolved, suggest that the forward model oversimplifies the physical system at these spatial and temporal scales. Our results show the importance of the correct representation of geostrophic currents. Both atmospheric and oceanic drag coefficients are found to decrease with shorter temporal averaging period, informing the selection of drag coefficient for short timescale climate models.
    Description: The scripts developed for this publication are available at the GitHub (https://github.com/hheorton/Freedrift_inverse_submit). The Neighborhood Algorithm was developed and kindly supplied by M. Sambridge (http://www.iearth.org.au/codes/NA/). Ice‐Tethered Profiler data are available via the Ice‐Tethered Profiler program website (http://whoi.edu/itp). Buoy data were collected as part of the Marginal Ice Zone program (www.apl.washington.edu/miz) funded by the U.S. Office of Naval Research. The ice drift data were kindly supplied by N. Kimura. H. H. was funded by the Natural Environment Research Council (Grants NE/I029439/1 and NE/R000263/1). M. T. was partially funded by the SKIM Mission Science Study (SKIM‐SciSoc) Project ESA RFP 3‐15456/18/NL/CT/gp. T. A. was supported at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. M. T. and H. H. thank Dr. Nicolas Brantut for early discussions on the implementation of inverse modeling techniques.
    Description: 2020-02-14
    Keywords: Sea ice drift ; Observations ; Inverse modeling ; Drag coefficients
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46 (2019): 12909-12918, doi: 10.1029/2019GL084217.
    Description: Seismic signals from ocean‐solid Earth interactions are ubiquitously recorded on our planet. However, these wavefields are typically incoherent in the time domain limiting their utilization for understanding ocean dynamics or solid Earth properties. In contrast, we find that during large storms such as hurricanes and Nor'easters the interaction of long‐period ocean waves with shallow seafloor features located near the edge of continental shelves, known as ocean banks, excites coherent transcontinental Rayleigh wave packets in the 20‐ to 50‐s period band. These “stormquakes” migrate coincident with the storms but are effectively spatiotemporally focused seismic point sources with equivalent earthquake magnitudes that can be greater than 3.5. Stormquakes thus provide new coherent sources to investigate Earth structure in locations that typically lack both seismic instrumentation and earthquakes. Moreover, they provide a new geophysical observable with high spatial and temporal resolution with which to investigate ocean wave dynamics during large storms.
    Description: We would like to thank the Editor Dr. Hayes, Dr. Ekström, Dr. McNamara, Dr. Pollitz, and the other two reviewers for their constructive suggestions, which have led to improvements in our paper. We would also like to thank Dr. Ardhuin and Dr. Gualtieri for helpful discussions, and specifically Dr. Ardhuin for sharing codes to model ocean wave and seafloor topography interference (Ardhuin et al., 2015). The seismic data were provided by Data Management Center (DMC) of the Incorporated Research Institutions for Seismology (IRIS). The facilities of IRIS Data Services, and specifically the IRIS Data Management Center, were used for access to waveforms, related metadata, and/or derived products used in this study. IRIS Data Services are funded through the Seismological Facilities for the Advancement of Geoscience and EarthScope (SAGE) Proposal of the National Science Foundation under Cooperative Agreement EAR‐1261681. The earthquake catalogs were downloaded from the Global Centroid Moment Tensor GCMT project (Ekström et al., 2012), and the International Seismological Centre (ISC) (International Seismological Centre, 2013). The ocean wave models are obtained from the Environmental Modeling Center at the National Weather Service (NWS) of the National Oceanic and Atmospheric Administration (NOAA; Tolman, 2014). The hurricane tracks are obtained from the National Hurricane Center (NHC) of NOAA (Landsea & Franklin, 2013). The topography is obtained from the ETOPO1 Arc‐Minute Global Relief Model provided by the National Geophysical Data Center (NGDC) of NOAA. Toponymic information, including undersea features, are obtained from the GEONet Names Server (GNS), which is based on the Geographic Names Database, containing official standard names approved by the U.S. Board on Geographic Names and maintained by the National Geospatial‐Intelligence Agency (www.nga.mil, last accessed 21 March 2019). The Bahamas Banks geographic polygons are obtained from the U.S. Geological Survey (USGS) Geographic Names Information System (GNIS) database of names. The AELUMA code can be obtained on request through the IRIS data service product website at https://ds.iris.edu/ds/products/infrasound-aeluma/request(last accessed 21 March 2019). W. F. acknowledges support from the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. C. D. G and M. A. H. H acknowledge support from NSF Grant EAR‐1358520. The processed data are available from the authors upon request.
    Description: 2020-04-14
    Keywords: Stormquake ; Surface wave ; USArray ; Hurriance ; Nor'Easter ; Ambient noise
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...