ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 5885–5907, doi:10.1175/JCLI-D-14-00635.1.
    Description: The structure, variability, and regional connectivity of the Tokar Gap jet (TGJ) are described using WRF Model analyses and supporting atmospheric datasets from the East African–Red Sea–Arabian Peninsula (EARSAP) region during summer 2008. Sources of the TGJ’s unique quasi-diurnal nature and association with atypically high atmospheric moisture transport are traced back to larger-scale atmospheric dynamics influencing its forcing. These include seasonal shifts in the intertropical convergence zone (ITCZ), variability of the monsoon and North African wind regimes, and ties to other orographic flow patterns. Strong modulation of the TGJ by regional processes such as the desert heating cycle, wind convergence at the ITCZ surface front, and the local land–sea breeze cycle are described. Two case studies present the interplay of these influences in detail. The first of these was an “extreme” gap wind event on 12 July, in which horizontal velocities in the Tokar Gap exceeded 26 m s−1 and the flow from the jet extended the full width of the Red Sea basin. This event coincided with development of a large mesoscale convective complex (MCC) and precipitation at the entrance of the Tokar Gap as well as smaller gaps downstream along the Arabian Peninsula. More typical behavior of the TGJ during the 2008 summer is discussed using a second case study on 19 July. Downwind impact of the TGJ is evaluated using Lagrangian model trajectories and analysis of the lateral moisture fluxes (LMFs) during jet events. These results suggest means by which TGJ contributes to large LMFs and has potential bearing upon Sahelian rainfall and MCC development.
    Description: This work was supported by a grant from the King Abdullah University of Science and Technology (KAUST) as well as National Science Foundation Grant OCE0927017 and from DOD (MURI) Grant N000141110087, administered by the Office of Naval Research.
    Description: 2016-02-01
    Keywords: Africa ; Orographic effects ; Monsoons ; Atmosphere-land interaction ; Atmosphere-ocean interaction ; Hydrometeorology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Atmosphere 5 (2014): 973-1001, doi:10.3390/atmos5040973.
    Description: An analysis of coastal meteorological mechanisms facilitating the transit pollution plumes emitted from sources in the Northeastern U.S. was based on observations from the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) 2004 field campaign. Particular attention was given to the relation of these plumes to coastal transport patterns in lower tropospheric layers throughout the Gulf of Maine (GOM), and their contribution to large-scale pollution outflow from the North American continent. Using measurements obtained during a series of flights of the National Oceanic & Atmospheric Administration (NOAA) WP-3D and the National Aeronautics and Space Administration (NASA) DC-8, a unique quasi-Lagrangian case study was conducted for a freshly emitted plume emanating from the New York City source region in late July 2004. The development of this plume stemmed from the accumulation of boundary layer pollutants within a coastal residual layer, where weak synoptic conditions allowed for its advection into the marine troposphere and transport by a mean southwesterly flow. Upon entering the GOM, analysis showed that the plume layer vertical structure evolved into an internal boundary layer form, with signatures of steep vertical gradients in temperature, moisture and wind speed often resulting in periodic turbulence. This structure remained well-defined during the plume study, allowing for the detachment of the plume layer from the surface and minimal plume-sea surface exchange. In contrast, shear driven turbulence within the plume layer facilitated lateral mixing with other low-level plumes during its transit. This turbulence was periodic and further contributed to the high spatial variability in trace gas mixing ratios. Further influences of the turbulent mixing were observed in the impact of the plume inland as observed by the Atmospheric Investigation, Regional Modeling, Analysis and Prediction (AIRMAP) air quality network. This impact was seen as extreme elevations of surface ozone and CO levels, equaling the highest observed that summer.
    Description: Financial support for this work was from the NOAA Office of Oceanic and Atmospheric Research under grant #NA07OAR4600514. - See more at: http://www.mdpi.com/2073-4433/5/4/973/htm#sthash.E0atBClM.dpuf
    Keywords: Coastal ; Atmospheric physics ; Continental outflow ; Trace gas transport ; Turbulence ; Boundary layers ; ICARTT campaign ; New England ; North Atlantic ; Lagrangian ; Regional climate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-20
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Davis, S. R., Farrar, J. T., Weller, R. A., Jiang, H., & Pratt, L. J. The land-sea breeze of the Red Sea: observations, simulations, and relationships to regional moisture transport. Journal of Geophysical Research-Atmospheres, 124, (2019): 13803-13825, doi: 10.1029/2019JD031007.
    Description: Unique in situ observations of atmospheric conditions over the Red Sea and the coastal Arabian Peninsula are examined to study the dynamics and regional impacts of the local land‐sea breeze cycle (LSBC). During a 26‐month data record spanning 2008–2011, observed LSBC events occurred year‐round, frequently exhibiting cross‐shore wind velocities in excess of 8 m/s. Observed onshore and offshore features of both the land‐ and sea‐breeze phases of the cycle are presented, and their seasonal modulation is considered. Weather Research and Forecasting climate downscaling simulations and satellite measurements are used to extend the analysis. In the model, the amplitude of the LSBC is significantly larger in the vicinity of the steeper terrain elements encircling the basin, suggesting an enhancement by the associated slope winds. Observed and simulated conditions also reflected distinct gravity‐current characteristics of the intrinsic moist marine air mass during both phases of the LSBC. Specifically, the advance and retreat of marine air mass was directly tied to the development of internal boundary layers onshore and offshore throughout the period of study. Convergence in the lateral moisture flux resulting from this air mass ascending the coastal topography (sea‐breeze phase) as well as colliding with air masses from the opposing coastline (land‐breeze phase) further resulted in cumulous cloud formation and precipitation.
    Description: This study was supported by National Science Foundation (NSF) Grant OCE‐1435665 and National Aeronautics and Space Administration (NASA) Grants 80NSSC18K1494 and NNX14AM71G. Further support for Lawrence Pratt was provided by NSF Grant OCE‐1154641. The authors wish to thank Sarah Gille for insightful conversations related to this work. GLDAS data used in this study were acquired as part of the mission of NASA's Earth Science Division and archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). We further acknowledge the use of data and imagery from LANCE FIRMS operated by the NASA/GSFC/Earth Science Data and Information System (ESDIS) with funding provided by NASA/HQ. The in situ data from the WHOI/KAUST mooring is available at a WHOI repository (http://uop.whoi.edu/projects/kaust/form.php) for academic and research purposes. The mooring data collected during the WHOI‐KAUST collaboration was made possible by awards USA00001, USA00002, and KSA00011 to WHOI by the KAUST in the Kingdom of Saudi Arabia. The buoy and tower data collection was a result of the work of the WHOI Upper Ocean Processes Group and staff at KAUST; John Kemp, Jason Smith, Paul Bouchard, Sean Whelan, Yasser Abualnaja, Yasser Kattan, and Abdulaziz Al‐Suwailem all made major contributions.
    Keywords: Sea‐breeze ; Land‐breeze ; Red Sea ; African coast ; Air‐sea ; Observations and modelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-07-30
    Description: The structure, variability, and regional connectivity of the Tokar Gap jet (TGJ) are described using WRF Model analyses and supporting atmospheric datasets from the East African–Red Sea–Arabian Peninsula (EARSAP) region during summer 2008. Sources of the TGJ’s unique quasi-diurnal nature and association with atypically high atmospheric moisture transport are traced back to larger-scale atmospheric dynamics influencing its forcing. These include seasonal shifts in the intertropical convergence zone (ITCZ), variability of the monsoon and North African wind regimes, and ties to other orographic flow patterns. Strong modulation of the TGJ by regional processes such as the desert heating cycle, wind convergence at the ITCZ surface front, and the local land–sea breeze cycle are described. Two case studies present the interplay of these influences in detail. The first of these was an “extreme” gap wind event on 12 July, in which horizontal velocities in the Tokar Gap exceeded 26 m s−1 and the flow from the jet extended the full width of the Red Sea basin. This event coincided with development of a large mesoscale convective complex (MCC) and precipitation at the entrance of the Tokar Gap as well as smaller gaps downstream along the Arabian Peninsula. More typical behavior of the TGJ during the 2008 summer is discussed using a second case study on 19 July. Downwind impact of the TGJ is evaluated using Lagrangian model trajectories and analysis of the lateral moisture fluxes (LMFs) during jet events. These results suggest means by which TGJ contributes to large LMFs and has potential bearing upon Sahelian rainfall and MCC development.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-12-25
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...