ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Du, J., Park, K., Yu, X., Zhang, Y. J., & Ye, F. Massive pollutants released to Galveston Bay during Hurricane Harvey: Understanding their retention and pathway using Lagrangian numerical simulations. Science of the Total Environment, 704, (2019): 135364, doi: 10.1016/j.scitotenv.2019.135364.
    Description: Increasing frequency of extreme precipitation events under the future warming climate makes the storm-related pollutant release more and more threatening to coastal ecosystems. Hurricane Harvey, a 1000-year extreme precipitation event, caused massive pollutant release from the Houston metropolitan area to the adjacent Galveston Bay. 0.57 × 106 tons of raw sewage and 22,000 barrels of oil, refined fuels and chemicals were reportly released during Harvey, which would likely deteriorate the water quality and damage the coastal ecosystem. Using a Lagrangian particle-tracking method coupled with a validated 3D hydrodynamic model, we examined the retention, pathway, and fate of the released pollutants. A new timescale, local exposure time (LET), is introduced to quantitatively evaluate the spatially varying susceptibility inside the bay and over the shelf, with a larger LET indicating the region is more susceptible to the released pollutants. We found LET inside the bay is at least one order of magnitude larger for post-storm release than storm release due to a quick recovery in the system's flushing. More than 90% of pollutants released during the storm exited the bay within two days, while those released after the storm could stay inside the bay for up to three months. This implies that post-storm release is potentially more damaging to water quality and ecosystem health. Our results suggest that not only the amount of total pollutant load but also the release timing should be considered when assessing a storm's environmental and ecological influence, because there could be large amounts of pollutants steadily and slowly discharged after storm through groundwater, sewage systems, and reservoirs.
    Description: We like to acknowledge the Texas Coastal Management Program, the Texas General Land Office and NOAA for partial funding of this project through CMP Contract #19-040-000-B074. This work was performed using computing facilities at the College of William and Mary, which were provided by contributions from the National Science Foundation, the Commonwealth of Virginia Equipment Trust Fund and the Office of Naval Research.
    Keywords: Storm discharge ; Retention ; Local exposure time ; Particle tracking ; SCHISM
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(11), (2021): e2021GL093178, https://doi.org/10.1029/2021GL093178.
    Description: The effects of heterogeneous reactions between river-borne particles and the carbonate system were studied in the plumes of the Mississippi and Brazos rivers. Measurements within these plumes revealed significant removal of dissolved inorganic carbon (DIC) and total alkalinity (TA). After accounting for all known DIC and TA sinks and sources, heterogeneous reactions (i.e., heterogeneous CaCO3 precipitation and cation exchange between adsorbed and dissolved ions) were found to be responsible for a significant fraction of DIC and TA removal, exceeding 10% and 90%, respectively, in the Mississippi and Brazos plume waters. This finding was corroborated by laboratory experiments, in which the seeding of seawater with the riverine particles induced the removal of the DIC and TA. The combined results demonstrate that heterogeneous reactions may represent an important controlling mechanism of the seawater carbonate system in particle-rich coastal areas and may significantly impact the coastal carbon cycle.
    Description: This research was funded by the National Science Foundation (NSF) and the Bi-National Science Foundation U.S-Israel award number OCE-BSF 1635388.
    Description: 2021-11-20
    Keywords: Calcium carbonate ; Carbon cycle ; Carbonate chemistry ; Heterogeneous reactions ; Mississippi ; River mouths
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 56(9), (2020): e2020WR027227, doi:10.1029/2020WR027227.
    Description: Hypoxia is a big concern in coastal waters as it affects ecosystem health, fishery yield, and marine water resources. Accurately modeling coastal hypoxia is still very challenging even with the most advanced numerical models. A data‐driven model for coastal water quality is proposed in this study and is applied to predict the temporal‐spatial variations of dissolved oxygen (DO) and hypoxic condition in Chesapeake Bay, the largest estuary in the United States with mean summer hypoxic zone extending about 150 km along its main axis. The proposed model has three major components including empirical orthogonal functions analysis, automatic selection of forcing transformation, and neural network training. It first uses empirical orthogonal functions to extract the principal components, then applies neural network to train models for the temporal variations of principal components, and finally reconstructs the three‐dimensional temporal‐spatial variations of the DO. Using the first 75% of the 32‐year (1985–2016) data set for training, the model shows good performance for the testing period (the remaining 25% data set). Selection of forcings for the first mode points to the dominant role of streamflow in controlling interannual variability of bay‐wide DO condition. Different from previous empirical models, the approach is able to simulate three‐dimensional variations of water quality variables and it does not use in situ measured water quality variables but only external forcings as model inputs. Even though the approach is used for the hypoxia problem in Chesapeake Bay, the methodology is readily applicable to other coastal systems that are systematically monitored.
    Description: This is contribution No. 3934 of the Virginia Institute of Marine Science, College of William and Mary.
    Description: 2021-02-25
    Keywords: Big‐data analysis ; EOF ; Neural network ; Machine‐learning ; Hypoxic volume
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gancel, H. N., Carmichael, R. H., Du, J., & Park, K. Use of settlement patterns and geochemical tagging to test population connectivity of eastern oysters Crassostrea virginica. Marine Ecology Progress Series, 673, (2021): 85–105, https://doi.org/10.3354/meps13796.
    Description: Freshwater-dominated estuaries experience large fluctuations in their physical and chemical environments which may influence larval dispersal, settlement, and connectivity of populations with pelagic larval stages. We used settlement patterns and natural tagging along with numerical hydrodynamic model results to assess settlement and connectivity among oysters across the freshwater-dominated Mobile Bay-eastern Mississippi Sound (MB-EMS) system. Specifically, we (1) tested how freshwater inputs and associated environmental attributes influenced settlement patterns during high and low discharge conditions in 2014 and 2016, respectively, and (2) analyzed trace element (TE) ratios incorporated into multiple shell types (larval and settled shell of spat and adult shells) to determine if shells collected in situ incorporate temporally stable site-specific signatures. We also assessed if TE ratios compared between adult (TE natal signature proxy) and larval shells could infer connectivity. Larval settlement was 4× higher during low discharge than during high discharge when oyster larvae only settled in higher salinity regions (EMS). Spat and adult shells incorporated site-specific TE ratios that varied from weeks to months. Connectivity results (May-June 2016 only) suggest that EMS is an important larval source to EMS and lower MB. While we were able to infer probable connectivity patterns using adult and larval shells, more study is needed to assess the utility of adult shells as proxies for natal-location TE signatures. Results provide a baseline for measuring future larval connectivity and adult distribution changes in the MB-EMS system. Biological and geochemical data demonstrate the potential to identify environmental attributes that spatiotemporally mediate settlement and connectivity in dynamic systems.
    Description: This work was funded by the Mississippi−Alabama Sea Grant Consortium (project number #R/ SFA-03) and the Food and Drug Administration and MESC/ Dauphin Island Sea Lab Collaboration (award numbers: 5U19FD005923-04 and 5U19FD004277-04).
    Keywords: Larval transport ; Larval settlement ; LA-ICP-MS ; Trace elements ; Mobile Bay
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-17
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Shen, J., Du, J., & Lucas, L. Simple relationships between residence time and annual nutrient retention, export, and loading for estuaries. Limnology and Oceanography, 67, (2022): 918-933, https://doi.org/10.1002/lno.12045.
    Description: Simple mathematical models are derived from mass balances for water and transported substance to provide insight into the relationships between import, export, transport, and internal removal for nonconservative substances in an estuary. Extending previous work, our models explicitly include water and substance inputs from the ocean and are expressed in terms of timescales (i.e., mean residence time and the timescale for net removal). Steady-state, timescale-based expressions for ratios of export to import, retention to import, and net export to loading, as well as for loading and annually averaged concentration, are provided. The net export:loading model explains the underlying mechanisms for a well-known empirical relationship between fractional net export and residence time derived by other authors. Although our simplified models are first-order approximations, the relative importance of physical and biochemical processes influencing export or retention of a substance can be assessed using mean residence time and the timescale for net removal. Assumptions employed in deriving the simplified models (e.g., well-mixed, dynamic steady state) may not be met for real estuaries. However, model application to Chesapeake Bay for 1985–2012 demonstrates that interannual variations in total nitrogen (TN) net export:loading can be evaluated, and annual nutrient loadings can be well estimated using numerically modeled time-varying mean residence time, observation-based mean concentration, freshwater inflow, and an appropriately estimated removal timescale. Our model shows that net fractional export of TN loading ranges from 0.3 to 0.5 over the 28-yr period. The models can be employed for other substances and water bodies if the underlying assumptions are applicable.
    Description: .V.L. was supported by the Water Availability and Use Science and National Water Quality Programs of the U.S. Geological Survey. This is contribution no. 4054 of the Virginia Institute of Marine Science, School of Marine Science, College of William and Mary, Virginia.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(5), (2021): e2020JC017136, https://doi.org/10.1029/2020JC017136.
    Description: As the nutrient-rich subsurface slope water intruding into the deep basin of the Gulf of Maine (GoM) supports the high biological productivity in the semi-enclosed gulf, it is important to understand the process and time scale of such slope water intrusion. This study focuses on variations of the GoM deep water on seasonal to interannual time scales and the influences of open ocean processes on the temporal variation of the deep water properties. Based on long-term monitoring data, it is found that the deep water at Jordan Basin (one of three major basins in the GoM) is persistently warmer in winter than in summer, which is distinctly different from the seasonality of surface water in the basin and the deep water on neighboring shelf seas. The unique seasonality in the deep GoM reflects a time-lagged response to shoreward intrusion of the subsurface slope water off the GoM. Both observation-based lag-correlation analyses and numerical simulations confirm a timescale of approximately 3 months for the intruding subsurface slope water to flow from Northeast Channel to Jordan Basin. Properties of the intruding slope water at the Northeast Channel were significantly correlated with the Gulf Stream position and dramatically impacted by episodic warm-core rings shed from Gulf Stream. Inside the deep GoM, the intruding slope water was also indirectly affected by the fresher water input from Nova Scotia Current. Spreading of the fresher water inside the gulf strengthens near-surface stratification, suppresses deep convection, and preserves heat and salt in the deep GoM during the wintertime.
    Description: This study is supported by the National Science Foundation through grant OCE 1634965.
    Description: 2021-11-06
    Keywords: Gulf of Maine deep water ; Gulf Stream ; mooring data ; numerical simulation ; remote sensing data ; warm-core ring
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-25
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1797–1815, https://doi.org/10.1175/JPO-D-21-0288.1.
    Description: Intruding slope water is a major source of nutrients to sustain the high biological productivity in the Gulf of Maine (GoM). Slope water intrusion into the GoM is affected by Gulf Stream warm-core rings (WCRs) impinging onto the nearby shelf edge. This study combines long-term mooring measurements, satellite remote sensing data, an idealized numerical ocean model, and a linear coastal-trapped wave (CTW) model to examine the impact of WCRs on slope water intrusion into the GoM through the Northeast Channel. Analysis of satellite sea surface height and temperature data shows that the slope sea region off the GoM is a hotspot of ring activities. A significant linear relationship is found between interannual variations of ring activities in the slope sea region off the GoM and bottom salinity at the Northeast Channel, suggesting the importance of WCRs in modulating variability of intruding slope water. Analysis of the mooring data reveals enhanced slope water intrusion through bottom-intensified along-channel flow following impingements of WCRs on the nearby shelf edge. Numerical simulations qualitatively reproduce the observed WCR impingement processes and associated episodic enhancement of slope water intrusion in the Northeast Channel. Diagnosis of the model result indicates that baroclinic CTWs excited by the ring–topography interaction are responsible for the episodically intensified subsurface along-channel inflow, which carries more slope water into the GoM. A WCR that impinges onto the shelf edge to the northeast of the Northeast Channel tends to generate stronger CTWs and cause stronger enhancement of the slope water intrusion into the GoM.
    Description: This study is supported by the National Science Foundation through Grant OCE-1634965.
    Keywords: Continental shelf/slope ; Channel flows ; Mesoscale processes ; In situ oceanic observations ; Satellite observations ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-01-04
    Description: Tidal response to sea-level rise (SLR) varies in different coastal systems. To provide a generic pattern of tidal response to SLR, a systematic investigation was conducted using numerical techniques applied to idealized and realistic estuaries, with model results cross-checked by analytical solutions. Our results reveal that the response of tidal range to SLR is nonlinear, spatially heterogeneous, and highly affected by the length and bathymetry of an estuary and weakly affected by the estuary convergence with an exception of strong convergence. Contrary to the common assumption that SLR leads to a weakened bottom friction, resulting in increased tidal amplitude, we demonstrate that tidal range is likely to decrease in short estuaries and in estuaries with a narrow channel and large low-lying shallow areas. ©2017. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-08
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-09-01
    Print ISSN: 0272-7714
    Electronic ISSN: 1096-0015
    Topics: Biology , Geography , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...