ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2021-01-26
    Description: The diversity of life in the sea is critical to the health of ocean ecosystems that support living resources and therefore essential to the economic, nutritional, recreational, and health needs of billions of people. Yet there is evidence that the biodiversity of many marine habitats is being altered in response to a changing climate and human activity. Understanding this change, and forecasting where changes are likely to occur, requires monitoring of organism diversity, distribution, abundance, and health. It requires a minimum of measurements including productivity and ecosystem function, species composition, allelic diversity, and genetic expression. These observations need to be complemented with metrics of environmental change and socio-economic drivers. However, existing global ocean observing infrastructure and programs often do not explicitly consider observations of marine biodiversity and associated processes. Much effort has focused on physical, chemical and some biogeochemical measurements. Broad partnerships, shared approaches, and best practices are now being organized to implement an integrated observing system that serves information to resource managers and decision-makers, scientists and educators, from local to global scales. This integrated observing system of ocean life is now possible due to recent developments among satellite, airborne, and in situ sensors in conjunction with increases in information system capability and capacity, along with an improved understanding of marine processes represented in new physical, biogeochemical, and biological models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-09-28
    Description: Maritime industries routinely collect critical environmental data needed for sustainable management of marine ecosystems, supporting both the blue economy and future growth. Collating this information would provide a valuable resource for all stakeholders. For the North Sea, the oil and gas industry has been a dominant presence for over 50 years that has contributed to a wealth of knowledge about the environment. As the industry begins to decommission its offshore structures, this information will be critical for avoiding duplication of effort in data collection and ensuring best environmental management of offshore activities. This paper summarises the outcomes of a Blue Growth Data Challenge Workshop held in 2017 with participants from: the oil and gas industry; the key UK regulatory and management bodies for oil and gas decommissioning; open access data facilitators; and academic and research institutes. Here, environmental data collection and archiving by oil and gas operators in the North Sea are described, alongside how this compares to other offshore industries; what the barriers and opportunities surrounding environmental data sharing are; and how wider data sharing from offshore industries could be achieved. Five primary barriers to data sharing were identified: 1) Incentives, 2) Risk Perception, 3) Working Cultures, 4) Financial Models, and 5) Data Ownership. Active and transparent communication and collaboration between stakeholders including industry, regulatory bodies, data portals and academic institutions will be key to unlocking the data that will be critical to informing responsible decommissioning decisions for offshore oil and gas structures in the North Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, pp. 411-484, ISBN: 9781107641655
    Publication Date: 2017-01-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Elementa Science of the Anthropocene 5 (2017): 4, doi:10.1525/elementa.203.
    Description: The deep sea encompasses the largest ecosystems on Earth. Although poorly known, deep seafloor ecosystems provide services that are vitally important to the entire ocean and biosphere. Rising atmospheric greenhouse gases are bringing about significant changes in the environmental properties of the ocean realm in terms of water column oxygenation, temperature, pH and food supply, with concomitant impacts on deep-sea ecosystems. Projections suggest that abyssal (3000–6000 m) ocean temperatures could increase by 1°C over the next 84 years, while abyssal seafloor habitats under areas of deep-water formation may experience reductions in water column oxygen concentrations by as much as 0.03 mL L–1 by 2100. Bathyal depths (200–3000 m) worldwide will undergo the most significant reductions in pH in all oceans by the year 2100 (0.29 to 0.37 pH units). O2 concentrations will also decline in the bathyal NE Pacific and Southern Oceans, with losses up to 3.7% or more, especially at intermediate depths. Another important environmental parameter, the flux of particulate organic matter to the seafloor, is likely to decline significantly in most oceans, most notably in the abyssal and bathyal Indian Ocean where it is predicted to decrease by 40–55% by the end of the century. Unfortunately, how these major changes will affect deep-seafloor ecosystems is, in some cases, very poorly understood. In this paper, we provide a detailed overview of the impacts of these changing environmental parameters on deep-seafloor ecosystems that will most likely be seen by 2100 in continental margin, abyssal and polar settings. We also consider how these changes may combine with other anthropogenic stressors (e.g., fishing, mineral mining, oil and gas extraction) to further impact deep-seafloor ecosystems and discuss the possible societal implications. 
    Description: A.K. Sweetman D.O.B. Jones and R. Danovaro acknowledge funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement 603418 (MIDAS), and the European Union Horizon 2020 research and innovation programme under grant agreement 689518 (MERCES). L.-A. Henry and J.M. Roberts acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 678760 (ATLAS).
    Keywords: Deep-sea ; Climate change ; Ecosystem functioning ; Biodiversity ; Benthos
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-10-23
    Description: Knowledge on basic biological functions of organisms is essential to understand not only the role they play in the ecosystems but also to manage and protect their populations. The study of biological processes, such as growth, reproduction and physiology, which can be approached in situ or by collecting specimens and rearing them in aquaria, is particularly challenging for deep-sea organisms like cold-water corals. Field experimental work and monitoring of deep-sea populations is still a chimera. Only a handful of research institutes or companies has been able to install in situ marine observatories in the Mediterranean Sea or elsewhere, which facilitate a continuous monitoring of deep-sea ecosystems. Hence, today’s best way to obtain basic biological information on these organisms is (1) working with collected samples and analysing them post-mortem and / or (2) cultivating corals in aquaria in order to monitor biological processes and investigate coral behaviour and physiological responses under different experimental treatments. The first challenging aspect is the collection process, which implies the use of oceanographic research vessels in most occasions since these organisms inhabit areas between ca. 150 m to more than 1000 m depth, and specific sampling gears. The next challenge is the maintenance of the animals on board (in situations where cruises may take weeks) and their transport to home laboratories. Maintenance in the home laboratories is also extremely challenging since special conditions and set-ups are needed to conduct experimental studies to obtain information on the biological processes of these animals. The complexity of the natural environment from which the corals were collected cannot be exactly replicated within the laboratory setting; a fact which has led some researchers to question the validity of work and conclusions drawn from such undertakings. It is evident that aquaria experiments cannot perfectly reflect the real environmental and trophic conditions where these organisms occur, but: (1) in most cases we do not have the possibility to obtain equivalent in situ information and (2) even with limitations, they produce relevant information about the biological limits of the species, which is especially valuable when considering potential future climate change scenarios. This chapter includes many contributions from different authors and is envisioned as both to be a practical “handbook” for conducting cold-water coral aquaria work, whilst at the same time offering an overview on the cold-water coral research conducted in Mediterranean laboratories equipped with aquaria infrastructure. Experiences from Atlantic and Pacific laboratories with extensive experience with cold-water coral work have also contributed to this chapter, as their procedures are valuable to any researcher interested in conducting experimental work with cold-water corals in aquaria. It was impossible to include contributions from all laboratories in the world currently working experimentally with cold-water corals in the laboratory, but at the conclusion of the chapter we attempt, to our best of our knowledge, to supply a list of several laboratories with operational cold-water coral aquaria facilities.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Spooner, P. T., Thornalley, D. J. R., Oppo, D. W., Fox, A. D., Radionovskaya, S., Rose, N. L., Mallett, R., Cooper, E., & Roberts, J. M. Exceptional 20th century ocean circulation in the Northeast Atlantic. Geophysical Research Letters, 47(10), (2020): e2020GL087577, doi:10.1029/2020GL087577.
    Description: The North Atlantic subpolar gyre (SPG) connects tropical and high‐latitude waters, playing a leading role in deep‐water formation, propagation of Atlantic water into the Arctic, and as habitat for many ecosystems. Instrumental records spanning recent decades document significant decadal variability in SPG circulation, with associated hydrographic and ecological changes. Emerging longer‐term records provide circumstantial evidence that the North Atlantic also experienced centennial trends during the 20th century. Here, we use marine sediment records to show that there has been a long‐term change in SPG circulation during the industrial era, largely during the 20th century. Moreover, we show that the shift and late 20th century SPG configuration were unprecedented in the last 10,000 years. Recent SPG dynamics resulted in an expansion of subtropical ecosystems into new habitats and likely also altered the transport of heat to high latitudes.
    Description: We thank Janet Hope and UCL laboratory staff, colleagues who sailed on EN539, Kathryn Pietro‐Rose, Sean O'Keefe and Henry Abrams, Sara Chipperton, Tanya Monica, Laura Thrower and Kitty Green for sediment processing, Miles Irving for artwork assistance, James Rolfe for nitrogen isotope measurement, Maryline Vautravers and Michael Kucera for guidance, Arne Biastoch and Christian Mohn for discussion of VIKING20, and Chris Brierley, Meric Srokosz, and Jon Robson for comments. Funding was provided by National Science Foundation (NSF) grant OCE‐1304291 to D.W.O. and D.J.R.T., the Leverhulme Trust, National Environment Research Council (NERC) grant NE/S009736/1, and the ATLAS project to D.J.R.T. This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement 678760 (ATLAS). This paper reflects only the authors views and the European Union cannot be held responsible for any use that may be made of the information contained herein.
    Keywords: Foraminifera ; Subpolar gyre ; North Atlantic ; Ocean circulation ; Industrial era
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-11
    Description: To gain information on the physical parameters of deep water in the Northwest Atlantic, CTD measurements were taken during seven dives to the RMS Titanic wreck (front of bow approx. 41.7330181, -49.9460561; 3816 m water depth) and one dive to the Nargeolet-Fanning Ridge (approx. 41.5980514, -49.4386889; 2896 m water depth) during the OceanGate expedition aboard the AHTS Horizon Arctic, 15 June - 25 July 2022. The CTD measurements of the water column down to a maximum water depth of 3853 m were conducted using a Valeport MIDAS SVX2 6000 unit attached to the submersible Titan for the duration of each dive and provided standard data for conductivity, temperature, and pressure. Conductivity and temperature data were used to compute salinity.
    Keywords: Conductivity; CTD; CTD, Valeport, MIDAS SVX2 6000, mounted on submersible; CTD-MIDAS_SVX2-SUB; CTD profile; DATE/TIME; Deep sea; Density, sigma-theta (0); Depth; DEPTH, water; Doppler velocity log (DVL), Sonardyne, mounted on submersible; DVL_Sonardyne_SUB; Event label; Horizon Arctic (AHTS); iAtlantic; Integrated Assessment of Atlantic Marine Ecosystems in Space and Time; LATITUDE; LONGITUDE; Newfoundland; Northwest Atlantic; Number of observations; NW Atlantic; OceanGate; Pressure, water; Salinity; Sigma theta (calculated, using CTD salinity); Temperature; Temperature, water; Titan-2022-C2_0073; Titan-2022-C2_0075; Titan-2022-C2_0076; Titan-2022-C2_0079; Titan-2022-C2_0080; Titan-2022-C2_0081; Titan-2022-C2_0082; Titan-2022-C2_0083
    Type: Dataset
    Format: text/tab-separated-values, 1242327 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-11
    Keywords: ACES; Alcohols; Area/locality; Atlantic Coral Ecosystem Study; Bacterial fatty acids of total fatty acids; Belgica Mounds; Cork Harbour; D248; D248_13823#12; D248_13823#8; D248_13825#1; D248_13828#1; D248_13832#2; D248_13841#1; Darwin Mound; DEPTH, water; Discovery (1962); ECOMOUND; Environmental controls on mound formation along the european margin; Event label; Fatty acids; GeoB6710-1; GeoB6713-1; GeoB6732-1; GeoB6742-1; GeoB8029-1; GeoB8036-1; GeoB8042-1; GeoB8044-1; GeoB8048-1; GeoB8068-1; GeoB8076-1; GeoB8078-1; GeoB8081-1; GeoB8103-1; GeoB8106-1; GeoB8107-1; Latitude of event; Longitude of event; Monounsaturated fatty acids of total fatty acids; Polyunsaturated fatty acids of total fatty acids; Porcupine Seabight; POS265; POS292; POS470-1; POS473-1; POS492-1; POS502-1; POS552-1; POS559-1; POS565-1; POS567-1; POS571-1; POS591-1; POS599-1; POS601-1; POS604-1; POS626-1; POS629-1; POS630-1; Poseidon; SAPS; SAPS1; SAPS2; SAPS4; Stand-alone pumps; Sterols
    Type: Dataset
    Format: text/tab-separated-values, 210 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: La Beur, Laura; Henry, Lea-Anne; Kazanidis, Georgios; Hennige, Sebastian; McDonald, Alison; Roberts, J Murray (2019): Baseline Assessment of Marine Litter and Microplastic Ingestion by Cold-Water Coral Reef Benthos at the East Mingulay Marine Protected Area (Sea of the Hebrides, Western Scotland). Frontiers in Marine Science, 6, 80, https://doi.org/10.3389/fmars.2019.00080
    Publication Date: 2024-03-11
    Description: Analyzing historic cruise data for microplastics is an effective way to create baseline level understanding of microplastic pollution through time. This study analyzed 112 benthic specimens gut contents for ingestion of microplastics. These specimens were collected as part of a research cruise on the RRS Discovery D340b from 26 June to 4 July 2009 as part of the Oceans 2025 programme, the cruise Chief Scientist being Mark Inall. Out of the 112 specimens dissected, only 9 contained microplastic samples. These samples were photographed and their microplastic signatures were analysed using Raman Spectroscopy.
    Keywords: ATLAS; A Trans-Atlantic assessment and deep-water ecosystem-based spatial management plan for Europe; Color description; D340b_1485; D340b_1487; D340b_1490; D340b_1491; D340b_1495; DEPTH, water; Event label; File name; Latitude of event; Longitude of event; Size; Species; Station label; Type; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 63 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...