ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 422 (2003), S. 878-881 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Endeavour segment of the Juan de Fuca ridge is host to one of the most vigorous hydrothermal areas found on the global mid-ocean-ridge system, with five separate vent fields located within 15 km along the top of the ridge segment. Over the past decade, the largest of these vent ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 326 (1987), S. 587-589 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Caroline No. 1 well is situated 15km south-east of Mt Gambier, South Australia, along the southeasterly extension of a small chain of intraplate basaltic volcanism (Fig. 1). On geomorphic grounds, the oldest volcanoes are at the north-west end of the chain. Mt Schank has an age of 4,900 yr1 and ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 346 (1990), S. 556-558 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] When the megaplume at the north end of the Cleft segment of the Juan de Fuca Ridge was discovered in August 1986, an extensive steady-state hydrothermal plume was also found at the same location1,9. The steady-state plume has been annually mapped by near-bottom conductivity- temperature- depth ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-03-31
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q01003, doi:10.1029/2003GC000607.
    Description: Several hydrographic stations in the vicinity of the Samoa Islands have 3He/4He above the regional background in the depth range of 1500–1800 m, indicating injection of mantle helium from a local hydrothermal source. The highest δ(3He) = 43.4% was detected at 1726-m depth at 15.0°S, 173.1°W in the bathymetric gap between the Samoa Islands and the northern end of the Tonga-Kermadec Arc. The δ(3He) profile at this station decreases to δ(3He) = 26% at 2500-m depth. The relatively shallow depth of the maximum hydrothermal signal suggests a source different from the conventional Pacific basin helium plume centered at 2500 m that is carried westward from the East Pacific Rise. Stations to the west of this locality show a progressive decrease in the maximum δ(3He) values in the depth range of 1480–1790 m out to 169°E. Stations east of the Tonga-Fiji region show lower 3He values (〈26%) at 1700 m and the profiles are dominated by a deeper maximum at 2500 m, presumably the distal traces of hydrothermal input from East Pacific Rise. This pattern in the 3He distribution suggests that the 1700-m deep helium plume is carried in a northwesterly direction some 2000 km from its source near the northern end of the Tonga-Kermadec Arc. At this time very little is known about the source of this hydrothermal plume or the details of its areal extent. Numerous seamounts and rift zones in the region are possible hydrothermal sources for the plume. The summit crater of Vailulu'u, a young seamount at the eastern end of the Samoa chain, was recently discovered to be hydrothermally active at ∼600 m depth [Hart et al., 2000]. However this shallow hydrothermal field on Vailulu'u is an unlikely source for the deeper 1700-m signal. The most likely source would appear to be the extensional zones of the northern Lau Basin system, such as the Mangatolo Triple Junction. Just as the helium plume emanating from Lo'ihi has helped our understanding of the circulation near the Hawaiian Islands [Lupton, 1996], this helium plume in the Tonga-Fiji region has great potential for delineating circulation in this area of the south Pacific.
    Description: This work was supported by the NOAA Vents Program and by Grants OCE91-05884, OCE92-96237, OCE92-96169, and OCE98-20132 of the Ocean Sciences Division of the National Science Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 14193530 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C06012, doi:10.1029/2003JC002028.
    Description: The World Ocean Circulation Experiment Indian Ocean helium isotope data are mapped and features of intermediate and deep circulation are inferred and discussed. The 3He added to the deep Indian Ocean originates from (1) a strong source on the mid-ocean ridge at about 19°S/65°E, (2) a source located in the Gulf of Aden in the northwestern Indian Ocean, (3) sources located in the convergent margins in the northeastern Indian Ocean, and (4) water imported from the Indonesian Seas. The main circulation features inferred from the 3He distribution include (1) deep (2000–3000 m) eastward flow in the central Indian Ocean, which overflows into the West Australian Basin through saddles in the Ninetyeast Ridge, (2) a deep (2000–3000 m) southwestward flow in the western Indian Ocean, and (3) influx of Banda Sea Intermediate Waters associated with the deep core (1000–1500 m) of the through flow from the Pacific Ocean. The large-scale 3He distribution is consonant with the known pathways of deep and bottom water circulation in the Indian Ocean.
    Description: National Science Foundation support is acknowledged for the UM part of the work through grants OCE-9820131 and OCE-998150. Support for the LDEO portion of the work was obtained from the National Science Foundation through awards OCE 94-13162 and OCE 98-20130.
    Keywords: Indian Ocean ; Tracers ; Deep circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 18 (2017): 1810–1823, doi:10.1002/2017GC006848.
    Description: The recent GEOTRACES Eastern Pacific Zonal Transect in 2013 crossed the East Pacific Rise at 15°S following the same track as the 1987 Helios Expedition along the core of the mid-depth helium plume that spreads westward from the East Pacific Rise (EPR) axis. The fact that several stations were co-located with the earlier Helios stations has allowed a detailed comparison of the changes in the helium plume over the intervening 26 years. While the plume in many areas is unchanged, there is a marked decrease in plume intensity at longitude 120°W in the 2013 data which was not present in 1987. Recent radioisotope measurements along the plume track suggest that this decrease is due to the intrusion of a different water mass into the plume, rather than a modulation of hydrothermal input on the EPR axis. Analysis of GEOTRACES hydrographic data shows excess heat present in the plume up to 0.04°C, corresponding to a 3He/heat ratio of ∼2.5 × 10−18 mol J−1, similar to that found in mature hydrothermal vents. RAFOS floats deployed in 1987 indicate an average westward transport of ∼0.3 cm s−1 at 2500 m depth in the off-axis plume, in agreement with recent estimates of ∼0.4 cm s−1 based on “aging” of the plume from 227Ac/3He ratios.
    Description: Earth Ocean Interactions Program; NOAA Pacific Marine Environmental Laboratory
    Description: 2017-11-04
    Keywords: Helium ; East Pacific Rise ; Circulation ; Mid-ocean ridge
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q06T01, doi:10.1029/2008GC002104.
    Description: As part of a rapid response cruise in May 2006, we surveyed water column hydrothermal plumes and bottom conditions on the East Pacific Rise between 9°46.0′N and 9°57.6′N, where recent seafloor volcanic activity was suspected. Real-time measurements included temperature, light transmission, and salinity. Samples of the plume waters were analyzed for methane, manganese, helium concentrations, and the δ 13C of methane. These data allow us to examine the effects of the 2005–2006 volcanic eruption(s) on plume chemistry. Methane and manganese are sensitive tracers of hydrothermal plumes, and both were present in high concentrations. Methane reached 347 nM in upper plume samples (250 m above seafloor) and exceeded 1085 nM in a near-bottom sample. Mn reached 54 nM in the upper plume and 98 nM in near-bottom samples. The concentrations of methane and Mn were higher than measurements made after a volcanic eruption in the same area in 1991, but the ratio of CH4/Mn, at 6.7, is slightly lower, though still well above the ratios measured in chronic plumes. High concentrations of methane in near-bottom samples were associated with areas of microbial mats and diffuse venting documented in seafloor imagery. The isotopic composition of the methane carbon shows evidence of active microbial oxidation; however, neither the fractionation factor nor the source of the eruption-associated methane can be determined with any certainty. Considerable scatter in the isotopic data is due to diverse sources for the methane as well as fractionation as methane is consumed. One sample at +21‰ versus Peedee belemnite standard is among the most enriched methane carbon values reported in a hydrothermal plume to date.
    Description: This field work was supported by NSF awards OCE0222069 (J.P.C., M.D.L.); OCE0525863 (D.J.F.); and OCE0327261 (T.M..S.); and the NASA Astrobiology Institute (JPC). The NOAA-VENTS program provided additional support through a grant to the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA17RJ1232.
    Keywords: Hydrothermal ; Plume ; Methane isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-04-02
    Description: Tritium and helium isotope data provide key information on ocean circulation, ventilation, and mixing, as well as the rates of biogeochemical processes and deep-ocean hydrothermal processes. We present here global oceanic datasets of tritium and helium isotope measurements made by numerous researchers and laboratories over a period exceeding 60 years. The dataset’s DOI is https://doi.org/10.25921/c1sn-9631, and the data are available at https://www.nodc.noaa.gov/ocads/data/0176626.xml (last access: 15 March 2019) or alternately http://odv.awi.de/data/ocean/jenkins-tritium-helium-data-compilation/ (last access: 13 March 2019) and includes approximately 60 000 valid tritium measurements, 63 000 valid helium isotope determinations, 57 000 dissolved helium concentrations, and 34 000 dissolved neon concentrations. Some quality control has been applied in that questionable data have been flagged and clearly compromised data excluded entirely. Appropriate metadata have been included, including geographic location, date, and sample depth. When available, we include water temperature, salinity, and dissolved oxygen. Data quality flags and data originator information (including methodology) are also included. This paper provides an introduction to the dataset along with some discussion of its broader qualities and graphics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...