Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Liquid carbon dioxide of magmatic origin and its role in volcanic eruptions

Abstract

Natural liquid carbon dioxide is produced commercially from a 2.5-km-deep well near the 4,500-yr-old maar volcano, Mount Gambier, South Australia. The carbon dioxide has accumulated in a dome that is located on the extension of a linear chain of volcanic activity. A magmatic origin for the fluid is suggested by the geological setting, δ13CPDB of –4.0‰, for the CO2 (where PDB represents the carbon-isotope standard), and a relatively high 3He component of the contained helium and high 3He/C ratio (6.4 x 10−10). The 3He/4He and He/Ne ratios are 3.0 and > 1,370 times those of air, respectively. The CO2, as collected at the Earth's surface at 29.5 °C and 75 bar, expands more than 300-fold to form a gas at 1 atm and 22 °C. We suggest that liquid CO2 or high-density CO2 fluid (the critical point is 31.1 °C, 73.9 bar) of volcanic origin that expands explosively from shallow levels in the Earth's crust may be a major contributor to 'phreatic' volcanic eruptions and maar formation. Less violent release of magmatic CO2 into crater lakes may cause gas bursts with equally disastrous consequences such as occurred at Lake Nyos, Cameroon, in August 1986.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smith, B. W. & Prescott, J. Aust. J. Earth Sci. (in the press).

  2. Ollier, C. D. Bull. volcan. 31, 45–73 (1967).

    Article  ADS  Google Scholar 

  3. Sheard, M. J. Trans. R. Soc. S. Aust. 102, 125–139 (1978).

    Google Scholar 

  4. Blackburn, G., Allison, G. B. & Leaney, F. W. J. Trans. R. Soc. S. Aust. 106, 163–167 (1982).

    Google Scholar 

  5. Wopfner, H. & Thornton, R. C. N. in The Otway Basin of Southeastern Australia (eds Wopfner, H. & Douglas, J. G.) 377–384 (Spec. Bull. geol. Surveys of South Australia and Victoria, 1971).

    Google Scholar 

  6. Gerlach, T. M. & Thomas, D. M. Nature 319, 480–483 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Pineau, F., Javoy, M. & Bottinga, Y. Earth planet. Sci. Lett. 29, 413–421 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Moore, J. G., Batchelder, J. N. & Cunningham, C. G. J. Volcan. geotherm. Res. 2, 309–327 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Exley, R. A., Mattey, D. P., Clague, D. A. & Pillinger, C. T. Earth planet. Sci Lett. 78, 189–199 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Craig, H. Geochim. cosmochim. Acta 3, 53–92 (1953).

    Article  ADS  CAS  Google Scholar 

  11. Wickman, F. E. Geochim. cosmochim. Acta 9, 136–153 (1956).

    Article  ADS  CAS  Google Scholar 

  12. Sobolev, N. V., Yefimova, E. S., Lavrent'yev, Y. G. & Sobolev, V. S. Dokl. (Proc.) Acad. Sci. U.S.S.R. 274, 148–153 (1985) (translated from Dokl. Akad. Nauk SSSR, 1984.)

    Google Scholar 

  13. Galimov, E. M. Geochem. Int. 22(1), 118–142 (1985).

    Google Scholar 

  14. Des Marais, D. J. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 602–611 (Geophys. Monogr. 32, Am. Geophys. Union, Washington, 1985).

    Google Scholar 

  15. Kamenskiy, I. L., Lobkov, V. A., Prasolov, E. M., Beskrovnyy, N. S., Kudryavtseva, E. I., Anufriyev, G. S. & Pavlov, V. P. Geochem. Int. 13(3), 35–48 (1976).

    Google Scholar 

  16. Sano, Y. & Wakita, H. J. geophys. Res. 90, 8729–8741 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Torgersen, T., Lupton, J. E., Sheppard, D. S. & Giggenbach, W. F. J. volcan. geotherm. Res. 12, 283–298 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Welhan, J. A. & Craig, H. in Hydrothermal Processes at Seafloor Spreading Centers (eds Rona, P. A. et al.) 391–409 (Plenum, New York, 1983).

    Book  Google Scholar 

  19. Kim, K-R., Welhan, J. A. & Craig, H. Trans. Am. geophys. Un. (Eos) 65, 973 (1984).

    Google Scholar 

  20. Deines, P. in Handbook of Environmental Isotope Geochemistry 1, The Terrestrial Environment, A (eds Fritz, P. & Fontes, J. C.) 329–406 (Elsevier, Amsterdam, 1980).

    Google Scholar 

  21. Bottinga, Y. Geochim cosmochim. Acta 33, 49–64 (1969).

    Article  ADS  CAS  Google Scholar 

  22. McKirdy, D. Rep. Aust. miner. Dev. Lab. (AMDEL) F 6433/86 (AMDEL, Adelaide, 1986).

  23. Baertschi, P. Miner. petrogr. Mitt. 37, 73–152 (1957).

    CAS  Google Scholar 

  24. Bottinga, Y. J. phys. Chem. 72, 800–808 (1968).

    Article  CAS  Google Scholar 

  25. Puchelt, H. in Plateau Uplift. The Rhenish Shield—A Case History (eds Fuchs, K., von Gehlen, K., Mälzer, H., Murawski, H. & Semmel, A.) 152 (Springer, Berlin, 1983).

    Google Scholar 

  26. Ollier, C. D. & Joyce, E. B. Proc. R. Soc. Vict. 77, 357–376 (1964).

    Google Scholar 

  27. Andersen, T., O'Reilly, S. Y. & Griffin, W. L. Contr. Miner. Pet. 88, 72–85 (1984).

    Article  ADS  CAS  Google Scholar 

  28. Wopfner, H., Kenley, P. R. & Thornton, R. C. N. in The Otway Basin of Southeastern Australia (eds Wopfner, H. & Douglas, J. G.) 385–435 (Spec. Bull. geol. surveys of South Australia and Victoria, 1971).

    Google Scholar 

  29. Ollier, C. D. in Physical Volcanology (eds Civetta, L., Gasparini, P., Luongo, G. & Rapolla, A.) 289–310 (Elsevier, Amsterdam, 1974).

    Book  Google Scholar 

  30. Lorenz, V. in Kimberlites. I: Kimberlites and Related Rocks (ed. Kornprobst, J.) 299–307 (Elsevier, Amsterdam, 1984).

    Book  Google Scholar 

  31. Lorenz, V. Trans. geol. Soc. S. Afr. 88, 459–470 (1985).

    Google Scholar 

  32. Bailey, D. K. Phil. Trans. R. Soc. A297, 309–322 (1980).

    Article  ADS  CAS  Google Scholar 

  33. Bailey, D. K. Trans. geol. Soc. S. Afr. 88, 449–457 (1985).

    Google Scholar 

  34. Cloos, H. Geol. Rdsch. 32, 703–800 (1941).

    Google Scholar 

  35. Macdonald, G. A. Volcanoes (Prentice-Hall, New Jersey, 1972).

    Google Scholar 

  36. Müller, G. & Veyl, G. 20th Int. Geol. Congr. (Mexico) (ed. Garcia, A.) 1(2), 375–396 (Editorial Stylo, Mexico City, 1957).

    Google Scholar 

  37. Barnes, I. & McCoy, G. A. Geology 7, 434–435 (1979).

    Article  ADS  CAS  Google Scholar 

  38. Sigurdsson, H., Devine, J. D., Tchoua, F. M., Presser, T. S., Pringle, M. K. W. & Evans, W. C. J. Volcan. geotherm. Res. 31, 1–16 (1987).

    Article  ADS  CAS  Google Scholar 

  39. Katzoff, J. A. Trans. Am. geophys. Un. (Eos) 67, 689 (1986).

    Article  ADS  Google Scholar 

  40. Scientific Event Alert Network (SEAN) Bull. 11, 2–5 (Smithsonian Institution, Washington, 1986).

  41. Freeth, S. J. & Kay, R. L.F. Nature 325, 104–105 (1987).

    Article  ADS  Google Scholar 

  42. Tuttle, M. L. et al. U.S. Geol. Survey Open-File Report 87–97 (1987).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chivas, A., Barnes, I., Evans, W. et al. Liquid carbon dioxide of magmatic origin and its role in volcanic eruptions. Nature 326, 587–589 (1987). https://doi.org/10.1038/326587a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326587a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing