ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (29)
  • Phosphorylation
  • Nature Publishing Group (NPG)  (17)
  • American Association for the Advancement of Science (AAAS)  (12)
  • American Association of Petroleum Geologists (AAPG)
  • American Geophysical Union (AGU)
  • Elsevier
  • 2010-2014  (29)
  • 1980-1984
  • 2014  (29)
Collection
  • Articles  (29)
Publisher
  • Nature Publishing Group (NPG)  (17)
  • American Association for the Advancement of Science (AAAS)  (12)
  • American Association of Petroleum Geologists (AAPG)
  • American Geophysical Union (AGU)
  • Elsevier
Years
  • 2010-2014  (29)
  • 1980-1984
Year
  • 1
    Publication Date: 2014-06-17
    Description: Disease tolerance is the ability of the host to reduce the effect of infection on host fitness. Analysis of disease tolerance pathways could provide new approaches for treating infections and other inflammatory diseases. Typically, an initial exposure to bacterial lipopolysaccharide (LPS) induces a state of refractoriness to further LPS challenge (endotoxin tolerance). We found that a first exposure of mice to LPS activated the ligand-operated transcription factor aryl hydrocarbon receptor (AhR) and the hepatic enzyme tryptophan 2,3-dioxygenase, which provided an activating ligand to the former, to downregulate early inflammatory gene expression. However, on LPS rechallenge, AhR engaged in long-term regulation of systemic inflammation only in the presence of indoleamine 2,3-dioxygenase 1 (IDO1). AhR-complex-associated Src kinase activity promoted IDO1 phosphorylation and signalling ability. The resulting endotoxin-tolerant state was found to protect mice against immunopathology in Gram-negative and Gram-positive infections, pointing to a role for AhR in contributing to host fitness.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098076/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098076/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bessede, Alban -- Gargaro, Marco -- Pallotta, Maria T -- Matino, Davide -- Servillo, Giuseppe -- Brunacci, Cinzia -- Bicciato, Silvio -- Mazza, Emilia M C -- Macchiarulo, Antonio -- Vacca, Carmine -- Iannitti, Rossana -- Tissi, Luciana -- Volpi, Claudia -- Belladonna, Maria L -- Orabona, Ciriana -- Bianchi, Roberta -- Lanz, Tobias V -- Platten, Michael -- Della Fazia, Maria A -- Piobbico, Danilo -- Zelante, Teresa -- Funakoshi, Hiroshi -- Nakamura, Toshikazu -- Gilot, David -- Denison, Michael S -- Guillemin, Gilles J -- DuHadaway, James B -- Prendergast, George C -- Metz, Richard -- Geffard, Michel -- Boon, Louis -- Pirro, Matteo -- Iorio, Alfonso -- Veyret, Bernard -- Romani, Luigina -- Grohmann, Ursula -- Fallarino, Francesca -- Puccetti, Paolo -- P30 CA056036/CA/NCI NIH HHS/ -- R01 CA109542/CA/NCI NIH HHS/ -- R01 ES007685/ES/NIEHS NIH HHS/ -- R01ES007685/ES/NIEHS NIH HHS/ -- England -- Nature. 2014 Jul 10;511(7508):184-90. doi: 10.1038/nature13323.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy [2] IMS Laboratory, University of Bordeaux, 33607 Pessac, France [3]. ; 1] Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy [2]. ; Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy. ; Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy. ; Department of Chemistry and Technology of Drugs, University of Perugia, 06123 Perugia, Italy. ; 1] Experimental Neuroimmunology Unit, German Cancer Research Center, 69120 Heidelberg, Germany [2] Department of Neurooncology, University Hospital, 69120 Heidelberg, Germany. ; Center for Advanced Research and Education, Asahikawa Medical University, 078-8510 Asahikawa, Japan. ; Kringle Pharma Joint Research Division for Regenerative Drug Discovery, Center for Advanced Science and Innovation, Osaka University, 565-0871 Osaka, Japan. ; CNRS UMR6290, Institut de Genetique et Developpement de Rennes, Universite de Rennes 1, 35043 Rennes, France. ; Department of Environmental Toxicology, University of California, Davis, 95616 California, USA. ; Australian School of Advanced Medicine (ASAM), Macquarie University, 2109 New South Wales, Australia. ; Lankenau Institute for Medical Research, Wynnewood, 19096 Pennsylvania, USA. ; New Link Genetics Corporation, Ames, 50010 Iowa, USA. ; IMS Laboratory, University of Bordeaux, 33607 Pessac, France. ; Bioceros, 3584 Utrecht, The Netherlands. ; Department of Medicine, University of Perugia, 06132 Perugia, Italy. ; Department of Clinical Epidemiology & Biostatistics, McMaster University, Ontario L8S 4K1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24930766" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Infections/immunology/metabolism ; Disease Resistance/drug effects/*genetics/*immunology ; Endotoxemia/genetics/immunology/metabolism ; Enzyme Activation/drug effects ; Gene Expression Regulation/drug effects ; Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism ; Inflammation/enzymology/genetics/metabolism ; Kynurenine/metabolism ; Lipopolysaccharides/pharmacology ; Mice ; Phosphorylation ; Receptors, Aryl Hydrocarbon/genetics/*metabolism ; Signal Transduction ; Tryptophan Oxygenase/metabolism ; src-Family Kinases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-28
    Description: The NRT1/PTR family of proton-coupled transporters are responsible for nitrogen assimilation in eukaryotes and bacteria through the uptake of peptides. However, in most plant species members of this family have evolved to transport nitrate as well as additional secondary metabolites and hormones. In response to falling nitrate levels, NRT1.1 is phosphorylated on an intracellular threonine that switches the transporter from a low-affinity to high-affinity state. Here we present both the apo and nitrate-bound crystal structures of Arabidopsis thaliana NRT1.1, which together with in vitro binding and transport data identify a key role for His 356 in nitrate binding. Our data support a model whereby phosphorylation increases structural flexibility and in turn the rate of transport. Comparison with peptide transporters further reveals how the NRT1/PTR family has evolved to recognize diverse nitrogenous ligands, while maintaining elements of a conserved coupling mechanism within this superfamily of nutrient transporters.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982047/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982047/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parker, Joanne L -- Newstead, Simon -- G0900399/Medical Research Council/United Kingdom -- England -- Nature. 2014 Mar 6;507(7490):68-72. doi: 10.1038/nature13116. Epub 2014 Feb 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. ; 1] Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK [2] Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24572366" target="_blank"〉PubMed〈/a〉
    Keywords: Anion Transport Proteins/*chemistry/*metabolism ; Arabidopsis/*chemistry/metabolism ; Crystallography, X-Ray ; Histidine/chemistry/metabolism ; Ion Transport ; Models, Molecular ; Nitrates/chemistry/*metabolism ; Phosphorylation ; Phosphothreonine/metabolism ; Plant Proteins/*chemistry/*metabolism ; Protein Conformation ; Protons ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-10
    Description: The widespread reorganization of cellular architecture in mitosis is achieved through extensive protein phosphorylation, driven by the coordinated activation of a mitotic kinase network and repression of counteracting phosphatases. Phosphatase activity must subsequently be restored to promote mitotic exit. Although Cdc14 phosphatase drives this reversal in budding yeast, protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) activities have each been independently linked to mitotic exit control in other eukaryotes. Here we describe a mitotic phosphatase relay in which PP1 reactivation is required for the reactivation of both PP2A-B55 and PP2A-B56 to coordinate mitotic progression and exit in fission yeast. The staged recruitment of PP1 (the Dis2 isoform) to the regulatory subunits of the PP2A-B55 and PP2A-B56 (B55 also known as Pab1; B56 also known as Par1) holoenzymes sequentially activates each phosphatase. The pathway is blocked in early mitosis because the Cdk1-cyclin B kinase (Cdk1 also known as Cdc2) inhibits PP1 activity, but declining cyclin B levels later in mitosis permit PP1 to auto-reactivate. PP1 first reactivates PP2A-B55; this enables PP2A-B55 in turn to promote the reactivation of PP2A-B56 by dephosphorylating a PP1-docking site in PP2A-B56, thereby promoting the recruitment of PP1. PP1 recruitment to human, mitotic PP2A-B56 holoenzymes and the sequences of these conserved PP1-docking motifs suggest that PP1 regulates PP2A-B55 and PP2A-B56 activities in a variety of signalling contexts throughout eukaryotes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338534/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338534/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grallert, Agnes -- Boke, Elvan -- Hagting, Anja -- Hodgson, Ben -- Connolly, Yvonne -- Griffiths, John R -- Smith, Duncan L -- Pines, Jonathon -- Hagan, Iain M -- 092096/Wellcome Trust/United Kingdom -- A13678/Cancer Research UK/United Kingdom -- A16406/Cancer Research UK/United Kingdom -- C147/A16406/Cancer Research UK/United Kingdom -- C29/A13678/Cancer Research UK/United Kingdom -- England -- Nature. 2015 Jan 1;517(7532):94-8. doi: 10.1038/nature14019. Epub 2014 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Division Group, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK. ; The Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QN, UK. ; Biological Mass Spectrometry, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487150" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; CDC2 Protein Kinase/metabolism ; Chromosome Segregation ; Conserved Sequence ; Cyclin B/metabolism ; Enzyme Activation ; HeLa Cells ; Holoenzymes/metabolism ; Humans ; Isoenzymes/metabolism ; *Mitosis ; Molecular Sequence Data ; Phosphorylation ; Protein Phosphatase 1/*metabolism ; Protein Phosphatase 2/chemistry/*metabolism ; Protein Subunits/chemistry/metabolism ; Schizosaccharomyces/*cytology/*enzymology ; Schizosaccharomyces pombe Proteins/chemistry/metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-05-17
    Description: A switchlike response in nuclear factor-kappaB (NF-kappaB) activity implies the existence of a threshold in the NF-kappaB signaling module. We show that the CARD-containing MAGUK protein 1 (CARMA1, also called CARD11)-TAK1 (MAP3K7)-inhibitor of NF-kappaB (IkappaB) kinase-beta (IKKbeta) module is a switch mechanism for NF-kappaB activation in B cell receptor (BCR) signaling. Experimental and mathematical modeling analyses showed that IKK activity is regulated by positive feedback from IKKbeta to TAK1, generating a steep dose response to BCR stimulation. Mutation of the scaffolding protein CARMA1 at serine-578, an IKKbeta target, abrogated not only late TAK1 activity, but also the switchlike activation of NF-kappaB in single cells, suggesting that phosphorylation of this residue accounts for the feedback.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shinohara, Hisaaki -- Behar, Marcelo -- Inoue, Kentaro -- Hiroshima, Michio -- Yasuda, Tomoharu -- Nagashima, Takeshi -- Kimura, Shuhei -- Sanjo, Hideki -- Maeda, Shiori -- Yumoto, Noriko -- Ki, Sewon -- Akira, Shizuo -- Sako, Yasushi -- Hoffmann, Alexander -- Kurosaki, Tomohiro -- Okada-Hatakeyama, Mariko -- 5R01CA141722/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 May 16;344(6185):760-4. doi: 10.1126/science.1250020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ; Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan. Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Graduate School of Engineering, Tottori University 4-101, Koyama-minami, Tottori 680-8552, Japan. ; Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833394" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/metabolism ; CARD Signaling Adaptor Proteins/genetics/*metabolism ; Cell Line ; Chickens ; Feedback, Physiological ; Guanylate Cyclase/genetics/*metabolism ; I-kappa B Kinase/*metabolism ; MAP Kinase Kinase Kinases/genetics/*metabolism ; Mice ; Mice, Knockout ; Mutation ; NF-kappa B/*agonists ; Phosphorylation ; Receptors, Antigen, B-Cell/genetics/*metabolism ; Serine/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-01-05
    Description: Metaphase chromosomes are visible hallmarks of mitosis, yet our understanding of their structure and of the forces shaping them is rudimentary. Phosphorylation of histone H3 serine 10 (H3 S10) by Aurora B kinase is a signature event of mitosis, but its function in chromatin condensation is unclear. Using genetically encoded ultraviolet light-inducible cross-linkers, we monitored protein-protein interactions with spatiotemporal resolution in living yeast to identify the molecular details of the pathway downstream of H3 S10 phosphorylation. This modification leads to the recruitment of the histone deacetylase Hst2p that subsequently removes an acetyl group from histone H4 lysine 16, freeing the H4 tail to interact with the surface of neighboring nucleosomes and promoting fiber condensation. This cascade of events provides a condensin-independent driving force of chromatin hypercondensation during mitosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilkins, Bryan J -- Rall, Nils A -- Ostwal, Yogesh -- Kruitwagen, Tom -- Hiragami-Hamada, Kyoko -- Winkler, Marco -- Barral, Yves -- Fischle, Wolfgang -- Neumann, Heinz -- New York, N.Y. -- Science. 2014 Jan 3;343(6166):77-80. doi: 10.1126/science.1244508.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Free Floater (Junior) Research Group "Applied Synthetic Biology," Institute for Microbiology and Genetics, Georg-August University Gottingen, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24385627" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Chromatin/*metabolism ; Chromosomes, Fungal/genetics/metabolism ; Cross-Linking Reagents/chemistry/radiation effects ; DNA-Binding Proteins/metabolism ; Histones/*metabolism ; Lysine/metabolism ; *Mitosis ; Multiprotein Complexes/metabolism ; Phosphorylation ; Protein Interaction Mapping ; *Protein Processing, Post-Translational ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Serine/*metabolism ; Sirtuin 2/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-09-23
    Description: Ribonucleotide reductase (RNR) supplies the balanced pools of deoxynucleotide triphosphates (dNTPs) necessary for DNA replication and maintenance of genomic integrity. RNR is subject to allosteric regulatory mechanisms in all eukaryotes, as well as to control by small protein inhibitors Sml1p and Spd1p in budding and fission yeast, respectively. Here, we show that the metazoan protein IRBIT forms a deoxyadenosine triphosphate (dATP)-dependent complex with RNR, which stabilizes dATP in the activity site of RNR and thus inhibits the enzyme. Formation of the RNR-IRBIT complex is regulated through phosphorylation of IRBIT, and ablation of IRBIT expression in HeLa cells causes imbalanced dNTP pools and altered cell cycle progression. We demonstrate a mechanism for RNR regulation in higher eukaryotes that acts by enhancing allosteric RNR inhibition by dATP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arnaoutov, Alexei -- Dasso, Mary -- New York, N.Y. -- Science. 2014 Sep 19;345(6203):1512-5. doi: 10.1126/science.1251550.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA. arnaouta@mail.nih.gov. ; Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25237103" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Sequence ; Catalytic Domain ; Deoxyadenine Nucleotides/*metabolism ; HeLa Cells ; Humans ; Immunoprecipitation ; Lectins, C-Type/genetics/*metabolism ; Membrane Proteins/genetics/*metabolism ; Molecular Sequence Data ; Phosphorylation ; Ribonucleotide Reductases/*antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-06-07
    Description: After light-induced nuclear translocation, phytochrome photoreceptors interact with and induce rapid phosphorylation and degradation of basic helix-loop-helix transcription factors, such as PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), to regulate gene expression. Concomitantly, this interaction triggers feedback reduction of phytochrome B (phyB) levels. Light-induced phosphorylation of PIF3 is necessary for the degradation of both proteins. We report that this PIF3 phosphorylation induces, and is necessary for, recruitment of LRB [Light-Response Bric-a-Brack/Tramtrack/Broad (BTB)] E3 ubiquitin ligases to the PIF3-phyB complex. The recruited LRBs promote concurrent polyubiqutination and degradation of both PIF3 and phyB in vivo. These data reveal a linked signal-transmission and attenuation mechanism involving mutually assured destruction of the receptor and its immediate signaling partner.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414656/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414656/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ni, Weimin -- Xu, Shou-Ling -- Tepperman, James M -- Stanley, David J -- Maltby, Dave A -- Gross, John D -- Burlingame, Alma L -- Wang, Zhi-Yong -- Quail, Peter H -- 2R01 GM-047475/GM/NIGMS NIH HHS/ -- 5R01GM066258/GM/NIGMS NIH HHS/ -- 8P41GM103481/GM/NIGMS NIH HHS/ -- P41 GM103481/GM/NIGMS NIH HHS/ -- P50 GM082250/GM/NIGMS NIH HHS/ -- R01 GM047475/GM/NIGMS NIH HHS/ -- R01 GM066258/GM/NIGMS NIH HHS/ -- T32 GM008284/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 6;344(6188):1160-4. doi: 10.1126/science.1250778.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA. Plant Gene Expression Center, Agriculture Research Service (ARS), U.S. Department of Agriculture (USDA), Albany, CA 94710, USA. ; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA. Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA. ; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA. ; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA. ; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA. Plant Gene Expression Center, Agriculture Research Service (ARS), U.S. Department of Agriculture (USDA), Albany, CA 94710, USA. quail@berkeley.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24904166" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Arabidopsis/genetics/*growth & development/metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Basic Helix-Loop-Helix Transcription Factors/genetics/*metabolism ; Cell Nucleus/metabolism ; Cullin Proteins/*metabolism ; Gene Expression Regulation, Plant ; HeLa Cells ; Humans ; *Light Signal Transduction ; Nuclear Proteins/genetics/metabolism ; Phosphorylation ; Phytochrome B/*metabolism ; Polyubiquitin/metabolism ; Proteolysis ; *Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-28
    Description: Nitrate is a primary nutrient for plant growth, but its levels in soil can fluctuate by several orders of magnitude. Previous studies have identified Arabidopsis NRT1.1 as a dual-affinity nitrate transporter that can take up nitrate over a wide range of concentrations. The mode of action of NRT1.1 is controlled by phosphorylation of a key residue, Thr 101; however, how this post-translational modification switches the transporter between two affinity states remains unclear. Here we report the crystal structure of unphosphorylated NRT1.1, which reveals an unexpected homodimer in the inward-facing conformation. In this low-affinity state, the Thr 101 phosphorylation site is embedded in a pocket immediately adjacent to the dimer interface, linking the phosphorylation status of the transporter to its oligomeric state. Using a cell-based fluorescence resonance energy transfer assay, we show that functional NRT1.1 dimerizes in the cell membrane and that the phosphomimetic mutation of Thr 101 converts the protein into a monophasic high-affinity transporter by structurally decoupling the dimer. Together with analyses of the substrate transport tunnel, our results establish a phosphorylation-controlled dimerization switch that allows NRT1.1 to uptake nitrate with two distinct affinity modes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968801/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968801/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Ji -- Bankston, John R -- Payandeh, Jian -- Hinds, Thomas R -- Zagotta, William N -- Zheng, Ning -- NS074545/NS/NINDS NIH HHS/ -- R01EY10329/EY/NEI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Mar 6;507(7490):73-7. doi: 10.1038/nature13074. Epub 2014 Feb 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA. ; Department of Physiology and Biophysics, Box 357290, University of Washington, Seattle, Washington 98195, USA. ; 1] Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA [2] Department of Structural Biology, Genentech Inc., South San Francisco, California 94080, USA. ; 1] Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195, USA [2] Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24572362" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anion Transport Proteins/*chemistry/genetics/metabolism ; Arabidopsis/*chemistry/genetics ; Binding Sites ; Biological Transport ; Cell Membrane/chemistry/metabolism ; Crystallography, X-Ray ; Fluorescence Resonance Energy Transfer ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutation/genetics ; Nitrates/chemistry/metabolism ; Phosphorylation ; Phosphothreonine/chemistry/metabolism ; Plant Proteins/*chemistry/genetics/metabolism ; *Protein Multimerization ; Protein Structure, Quaternary ; Protons ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-19
    Description: Naturally occurring variations of Polycomb repressive complex 1 (PRC1) comprise a core assembly of Polycomb group proteins and additional factors that include, surprisingly, autism susceptibility candidate 2 (AUTS2). Although AUTS2 is often disrupted in patients with neuronal disorders, the mechanism underlying the pathogenesis is unclear. We investigated the role of AUTS2 as part of a previously identified PRC1 complex (PRC1-AUTS2), and in the context of neurodevelopment. In contrast to the canonical role of PRC1 in gene repression, PRC1-AUTS2 activates transcription. Biochemical studies demonstrate that the CK2 component of PRC1-AUTS2 neutralizes PRC1 repressive activity, whereas AUTS2-mediated recruitment of P300 leads to gene activation. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) demonstrated that AUTS2 regulates neuronal gene expression through promoter association. Conditional targeting of Auts2 in the mouse central nervous system (CNS) leads to various developmental defects. These findings reveal a natural means of subverting PRC1 activity, linking key epigenetic modulators with neuronal functions and diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323097/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323097/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Zhonghua -- Lee, Pedro -- Stafford, James M -- von Schimmelmann, Melanie -- Schaefer, Anne -- Reinberg, Danny -- 1DP2MH100012-01/DP/NCCDPHP CDC HHS/ -- 1F32GM105275/GM/NIGMS NIH HHS/ -- 5T32CA160002/CA/NCI NIH HHS/ -- DP2 MH100012/MH/NIMH NIH HHS/ -- F32AA022842/AA/NIAAA NIH HHS/ -- GM-64844/GM/NIGMS NIH HHS/ -- P30 CA016087/CA/NCI NIH HHS/ -- R01 GM064844/GM/NIGMS NIH HHS/ -- T32 CA160002/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 18;516(7531):349-54. doi: 10.1038/nature13921.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, New York University Langone School of Medicine, Department of Biochemistry and Molecular Pharmacology, New York, New York 10016, USA. ; Friedman Brain Institute, Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25519132" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/physiology ; Cell Cycle Proteins/genetics/*metabolism ; Central Nervous System/*metabolism ; Female ; Gene Expression Profiling ; Gene Expression Regulation/*genetics ; Gene Knockout Techniques ; Genotype ; HEK293 Cells ; Histones/metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Phosphorylation ; Proteins/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-05-03
    Description: PINK1 (PTEN induced putative kinase 1) and PARKIN (also known as PARK2) have been identified as the causal genes responsible for hereditary recessive early-onset Parkinsonism. PINK1 is a Ser/Thr kinase that specifically accumulates on depolarized mitochondria, whereas parkin is an E3 ubiquitin ligase that catalyses ubiquitin transfer to mitochondrial substrates. PINK1 acts as an upstream factor for parkin and is essential both for the activation of latent E3 parkin activity and for recruiting parkin onto depolarized mitochondria. Recently, mechanistic insights into mitochondrial quality control mediated by PINK1 and parkin have been revealed, and PINK1-dependent phosphorylation of parkin has been reported. However, the requirement of PINK1 for parkin activation was not bypassed by phosphomimetic parkin mutation, and how PINK1 accelerates the E3 activity of parkin on damaged mitochondria is still obscure. Here we report that ubiquitin is the genuine substrate of PINK1. PINK1 phosphorylated ubiquitin at Ser 65 both in vitro and in cells, and a Ser 65 phosphopeptide derived from endogenous ubiquitin was only detected in cells in the presence of PINK1 and following a decrease in mitochondrial membrane potential. Unexpectedly, phosphomimetic ubiquitin bypassed PINK1-dependent activation of a phosphomimetic parkin mutant in cells. Furthermore, phosphomimetic ubiquitin accelerates discharge of the thioester conjugate formed by UBCH7 (also known as UBE2L3) and ubiquitin (UBCH7 approximately ubiquitin) in the presence of parkin in vitro, indicating that it acts allosterically. The phosphorylation-dependent interaction between ubiquitin and parkin suggests that phosphorylated ubiquitin unlocks autoinhibition of the catalytic cysteine. Our results show that PINK1-dependent phosphorylation of both parkin and ubiquitin is sufficient for full activation of parkin E3 activity. These findings demonstrate that phosphorylated ubiquitin is a parkin activator.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koyano, Fumika -- Okatsu, Kei -- Kosako, Hidetaka -- Tamura, Yasushi -- Go, Etsu -- Kimura, Mayumi -- Kimura, Yoko -- Tsuchiya, Hikaru -- Yoshihara, Hidehito -- Hirokawa, Takatsugu -- Endo, Toshiya -- Fon, Edward A -- Trempe, Jean-Francois -- Saeki, Yasushi -- Tanaka, Keiji -- Matsuda, Noriyuki -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Jun 5;510(7503):162-6. doi: 10.1038/nature13392. Epub 2014 Jun 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan [2] Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan. ; Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, The University of Tokushima, Tokushima 770-8503, Japan. ; Research Center for Materials Science, Nagoya University, Nagoya, Aichi 464-8602, Japan. ; Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan. ; 1] Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan [2] Graduate School of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan. ; Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan. ; 1] JST-CREST/Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan [2] JST-CREST/Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan. ; McGill Parkinson Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada. ; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada. ; 1] Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan [2] Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24784582" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Enzyme Activation ; Fibroblasts ; HeLa Cells ; Humans ; Membrane Potential, Mitochondrial ; Mice ; Mitochondria/metabolism ; Mutation/genetics ; Parkinson Disease ; Phosphorylation ; Phosphoserine/metabolism ; Protein Kinases/*metabolism ; Ubiquitin/chemistry/*metabolism ; Ubiquitin-Protein Ligases/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-08-19
    Description: Zinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis. In prokaryotes and photosynthetic eukaryotes, Zn(2+)-transporting P-type ATPases of class IB (ZntA) are crucial for cellular redistribution and detoxification of Zn(2+) and related elements. Here we present crystal structures representing the phosphoenzyme ground state (E2P) and a dephosphorylation intermediate (E2.Pi) of ZntA from Shigella sonnei, determined at 3.2 A and 2.7 A resolution, respectively. The structures reveal a similar fold to Cu(+)-ATPases, with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn(2+) ions by the transporter. The E2P structure displays a wide extracellular release pathway reaching the invariant residues at the high-affinity site, including C392, C394 and D714. The pathway closes in the E2.Pi state, in which D714 interacts with the conserved residue K693, which possibly stimulates Zn(2+) release as a built-in counter ion, as has been proposed for H(+)-ATPases. Indeed, transport studies in liposomes provide experimental support for ZntA activity without counter transport. These findings suggest a mechanistic link between PIB-type Zn(2+)-ATPases and PIII-type H(+)-ATPases and at the same time show structural features of the extracellular release pathway that resemble PII-type ATPases such as the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and Na(+), K(+)-ATPase. These findings considerably increase our understanding of zinc transport in cells and represent new possibilities for biotechnology and biomedicine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259247/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259247/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Kaituo -- Sitsel, Oleg -- Meloni, Gabriele -- Autzen, Henriette Elisabeth -- Andersson, Magnus -- Klymchuk, Tetyana -- Nielsen, Anna Marie -- Rees, Douglas C -- Nissen, Poul -- Gourdon, Pontus -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 23;514(7523):518-22. doi: 10.1038/nature13618. Epub 2014 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark [2] Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark (K.W. and P.G.); Department of Experimental Medical Science, Lund University, Solvegatan 19, SE-221 84 Lund, Sweden (P.G.). [3]. ; 1] Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark [2]. ; Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark. ; Science for Life Laboratory, Department of Theoretical Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, SE-171 21 Solna, Sweden. ; Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA. ; 1] Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark [2] Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark (K.W. and P.G.); Department of Experimental Medical Science, Lund University, Solvegatan 19, SE-221 84 Lund, Sweden (P.G.).〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25132545" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/*metabolism ; Adenosine Triphosphate/metabolism ; Binding Sites ; Cadmium/metabolism ; Calcium-Transporting ATPases/chemistry ; Conserved Sequence ; Crystallography, X-Ray ; Lead/metabolism ; Models, Molecular ; Phosphorylation ; Proteolipids/chemistry/metabolism ; Proton-Translocating ATPases/chemistry/metabolism ; Shigella/*enzymology ; Sodium-Potassium-Exchanging ATPase/chemistry ; Zinc/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-05-30
    Description: Insulin constitutes a principal evolutionarily conserved hormonal axis for maintaining glucose homeostasis; dysregulation of this axis causes diabetes. PGC-1alpha (peroxisome-proliferator-activated receptor-gamma coactivator-1alpha) links insulin signalling to the expression of glucose and lipid metabolic genes. The histone acetyltransferase GCN5 (general control non-repressed protein 5) acetylates PGC-1alpha and suppresses its transcriptional activity, whereas sirtuin 1 deacetylates and activates PGC-1alpha. Although insulin is a mitogenic signal in proliferative cells, whether components of the cell cycle machinery contribute to its metabolic action is poorly understood. Here we report that in mice insulin activates cyclin D1-cyclin-dependent kinase 4 (Cdk4), which, in turn, increases GCN5 acetyltransferase activity and suppresses hepatic glucose production independently of cell cycle progression. Through a cell-based high-throughput chemical screen, we identify a Cdk4 inhibitor that potently decreases PGC-1alpha acetylation. Insulin/GSK-3beta (glycogen synthase kinase 3-beta) signalling induces cyclin D1 protein stability by sequestering cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 messenger RNA transcripts. Activated cyclin D1-Cdk4 kinase phosphorylates and activates GCN5, which then acetylates and inhibits PGC-1alpha activity on gluconeogenic genes. Loss of hepatic cyclin D1 results in increased gluconeogenesis and hyperglycaemia. In diabetic models, cyclin D1-Cdk4 is chronically elevated and refractory to fasting/feeding transitions; nevertheless further activation of this kinase normalizes glycaemia. Our findings show that insulin uses components of the cell cycle machinery in post-mitotic cells to control glucose homeostasis independently of cell division.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076706/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076706/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Yoonjin -- Dominy, John E -- Choi, Yoon Jong -- Jurczak, Michael -- Tolliday, Nicola -- Camporez, Joao Paulo -- Chim, Helen -- Lim, Ji-Hong -- Ruan, Hai-Bin -- Yang, Xiaoyong -- Vazquez, Francisca -- Sicinski, Piotr -- Shulman, Gerald I -- Puigserver, Pere -- DK059635/DK/NIDDK NIH HHS/ -- F32 DK083871/DK/NIDDK NIH HHS/ -- P30 DK034989/DK/NIDDK NIH HHS/ -- R01 CA083688/CA/NCI NIH HHS/ -- R01 CA108420/CA/NCI NIH HHS/ -- R01 DK069966/DK/NIDDK NIH HHS/ -- R01 DK089098/DK/NIDDK NIH HHS/ -- R01069966/PHS HHS/ -- R03 DA032468/DA/NIDA NIH HHS/ -- R03 MH092174/MH/NIMH NIH HHS/ -- R24 DK080261/DK/NIDDK NIH HHS/ -- R24DK080261-06/DK/NIDDK NIH HHS/ -- U24 DK059635/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 Jun 26;510(7506):547-51. doi: 10.1038/nature13267. Epub 2014 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Yale's Mouse Metabolic Phenotyping Center and Departments of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA. ; Chemical Biology Platform, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02141, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870244" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acids/pharmacology ; Animals ; *Cell Cycle ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cells, Cultured ; Cyclin D1/deficiency/genetics/*metabolism ; Cyclin-Dependent Kinase 4/antagonists & inhibitors/*metabolism ; Diabetes Mellitus/metabolism ; Enzyme Activation ; Fasting ; Gene Deletion ; Gluconeogenesis/genetics ; Glucose/*metabolism ; Glycogen Synthase Kinase 3/metabolism ; Hepatocytes/cytology/drug effects/metabolism ; Histone Acetyltransferases/metabolism ; Homeostasis ; Humans ; Hyperglycemia/metabolism ; Hyperinsulinism/metabolism ; Insulin/*metabolism ; Male ; Mice ; Phosphorylation ; RNA, Messenger/analysis/genetics ; *Signal Transduction ; Transcription Factors/metabolism ; Transcription, Genetic/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-08-15
    Description: The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem cells. Here we describe a new method of cancer model generation using the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system in vivo in wild-type mice. We used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs) to the liver that directly target the tumour suppressor genes Pten (ref. 5) and p53 (also known as TP53 and Trp53) (ref. 6), alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology. Simultaneous targeting of Pten and p53 induced liver tumours that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumour tissue revealed insertion or deletion mutations of the tumour suppressor genes, including bi-allelic mutations of both Pten and p53 in tumours. Furthermore, co-injection of Cas9 plasmids harbouring sgRNAs targeting the beta-catenin gene and a single-stranded DNA oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of beta-catenin. This study demonstrates the feasibility of direct mutation of tumour suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xue, Wen -- Chen, Sidi -- Yin, Hao -- Tammela, Tuomas -- Papagiannakopoulos, Thales -- Joshi, Nikhil S -- Cai, Wenxin -- Yang, Gillian -- Bronson, Roderick -- Crowley, Denise G -- Zhang, Feng -- Anderson, Daniel G -- Sharp, Phillip A -- Jacks, Tyler -- 1K99CA169512/CA/NCI NIH HHS/ -- 2-P01-CA42063/CA/NCI NIH HHS/ -- 5-U54-CA151884-04/CA/NCI NIH HHS/ -- DP1 MH100706/MH/NIMH NIH HHS/ -- K99 CA169512/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- R00 CA169512/CA/NCI NIH HHS/ -- R01 DK097768/DK/NIDDK NIH HHS/ -- R01-CA115527/CA/NCI NIH HHS/ -- R01-CA132091/CA/NCI NIH HHS/ -- R01-CA133404/CA/NCI NIH HHS/ -- R01-EB000244/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 16;514(7522):380-4. doi: 10.1038/nature13589. Epub 2014 Aug 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2]. ; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; Tufts University and Harvard Medical School, Boston, Massachusetts 02115, USA. ; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [3] Harvard-MIT Division of Health Sciences &Technology, Cambridge, Massachusetts 02139, USA [4] Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; 1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; 1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [3] Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119044" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *CRISPR-Cas Systems ; Cell Transformation, Neoplastic/genetics ; Clustered Regularly Interspaced Short Palindromic Repeats/genetics ; Female ; *Genes, Tumor Suppressor ; Genes, p53/genetics ; Genetic Engineering/*methods ; Hepatocytes/metabolism/pathology ; Lipid Metabolism ; Liver/cytology/*metabolism/pathology ; Liver Neoplasms/genetics/metabolism/pathology ; Mice ; Molecular Sequence Data ; Mutagenesis/*genetics ; Mutation/*genetics ; Oncogenes/*genetics ; PTEN Phosphohydrolase/genetics ; Phosphorylation ; Proto-Oncogene Proteins c-akt/metabolism ; beta Catenin/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-03-29
    Description: Akt, also known as protein kinase B, plays key roles in cell proliferation, survival and metabolism. Akt hyperactivation contributes to many pathophysiological conditions, including human cancers, and is closely associated with poor prognosis and chemo- or radiotherapeutic resistance. Phosphorylation of Akt at S473 (ref. 5) and T308 (ref. 6) activates Akt. However, it remains unclear whether further mechanisms account for full Akt activation, and whether Akt hyperactivation is linked to misregulated cell cycle progression, another cancer hallmark. Here we report that Akt activity fluctuates across the cell cycle, mirroring cyclin A expression. Mechanistically, phosphorylation of S477 and T479 at the Akt extreme carboxy terminus by cyclin-dependent kinase 2 (Cdk2)/cyclin A or mTORC2, under distinct physiological conditions, promotes Akt activation through facilitating, or functionally compensating for, S473 phosphorylation. Furthermore, deletion of the cyclin A2 allele in the mouse olfactory bulb leads to reduced S477/T479 phosphorylation and elevated cellular apoptosis. Notably, cyclin A2-deletion-induced cellular apoptosis in mouse embryonic stem cells is partly rescued by S477D/T479E-Akt1, supporting a physiological role for cyclin A2 in governing Akt activation. Together, the results of our study show Akt S477/T479 phosphorylation to be an essential layer of the Akt activation mechanism to regulate its physiological functions, thereby providing a new mechanistic link between aberrant cell cycle progression and Akt hyperactivation in cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076493/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076493/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Pengda -- Begley, Michael -- Michowski, Wojciech -- Inuzuka, Hiroyuki -- Ginzberg, Miriam -- Gao, Daming -- Tsou, Peiling -- Gan, Wenjian -- Papa, Antonella -- Kim, Byeong Mo -- Wan, Lixin -- Singh, Amrik -- Zhai, Bo -- Yuan, Min -- Wang, Zhiwei -- Gygi, Steven P -- Lee, Tae Ho -- Lu, Kun-Ping -- Toker, Alex -- Pandolfi, Pier Paolo -- Asara, John M -- Kirschner, Marc W -- Sicinski, Piotr -- Cantley, Lewis -- Wei, Wenyi -- 2P01CA120964/CA/NCI NIH HHS/ -- 5T32HL007893/HL/NHLBI NIH HHS/ -- CA177910/CA/NCI NIH HHS/ -- GM089763/GM/NIGMS NIH HHS/ -- GM094777/GM/NIGMS NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- R01 CA132740/CA/NCI NIH HHS/ -- R01 CA167677/CA/NCI NIH HHS/ -- R01 CA177910/CA/NCI NIH HHS/ -- R01 GM041890/GM/NIGMS NIH HHS/ -- R01 GM089763/GM/NIGMS NIH HHS/ -- R01 GM094777/GM/NIGMS NIH HHS/ -- R01 HL111430/HL/NHLBI NIH HHS/ -- R01CA132740/CA/NCI NIH HHS/ -- S10 OD010612/OD/NIH HHS/ -- T32 HL007893/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Apr 24;508(7497):541-5. doi: 10.1038/nature13079. Epub 2014 Mar 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA. ; 1] Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA [2] Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA [2] Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA [3] Cancer Genetics Program and Division of Genetics, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA. ; Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA. ; Cell Signaling Technology, Danvers, Massachusetts 01923, USA. ; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA. ; 1] Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA [2] The Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, China (Z.W.); Cancer Center at Weill Cornell Medical College and NewYork-Presbyterian Hospital, New York, New York 10065, USA (L.C.). ; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA [2] Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] The Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, China (Z.W.); Cancer Center at Weill Cornell Medical College and NewYork-Presbyterian Hospital, New York, New York 10065, USA (L.C.).〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670654" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/genetics ; Cell Cycle/*physiology ; Cell Proliferation ; Cyclin A2/metabolism ; Cyclin-Dependent Kinase 2/metabolism ; Embryonic Stem Cells/cytology/metabolism ; Enzyme Activation ; Male ; Mice ; Multiprotein Complexes/metabolism ; Neoplasms/enzymology/pathology ; Olfactory Bulb/cytology/enzymology/metabolism ; Oncogene Protein v-akt/chemistry/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Phosphothreonine/metabolism ; Proto-Oncogene Proteins c-akt/*chemistry/*metabolism ; TOR Serine-Threonine Kinases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-09-26
    Description: In eukaryotic cells, post-translational histone modifications have an important role in gene regulation. Starting with early work on histone acetylation, a variety of residue-specific modifications have now been linked to RNA polymerase II (RNAP2) activity, but it remains unclear if these markers are active regulators of transcription or just passive byproducts. This is because studies have traditionally relied on fixed cell populations, meaning temporal resolution is limited to minutes at best, and correlated factors may not actually be present in the same cell at the same time. Complementary approaches are therefore needed to probe the dynamic interplay of histone modifications and RNAP2 with higher temporal resolution in single living cells. Here we address this problem by developing a system to track residue-specific histone modifications and RNAP2 phosphorylation in living cells by fluorescence microscopy. This increases temporal resolution to the tens-of-seconds range. Our single-cell analysis reveals histone H3 lysine-27 acetylation at a gene locus can alter downstream transcription kinetics by as much as 50%, affecting two temporally separate events. First acetylation enhances the search kinetics of transcriptional activators, and later the acetylation accelerates the transition of RNAP2 from initiation to elongation. Signatures of the latter can be found genome-wide using chromatin immunoprecipitation followed by sequencing. We argue that this regulation leads to a robust and potentially tunable transcriptional response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stasevich, Timothy J -- Hayashi-Takanaka, Yoko -- Sato, Yuko -- Maehara, Kazumitsu -- Ohkawa, Yasuyuki -- Sakata-Sogawa, Kumiko -- Tokunaga, Makio -- Nagase, Takahiro -- Nozaki, Naohito -- McNally, James G -- Kimura, Hiroshi -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 11;516(7530):272-5. doi: 10.1038/nature13714. Epub 2014 Sep 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan [2] Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA [3] Transcription Imaging Consortium, Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA. ; 1] Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan [2] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Saitama, 332-0012, Japan [3] Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan. ; 1] Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan [2] Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan. ; Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan. ; 1] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Saitama, 332-0012, Japan [2] Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan. ; 1] Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan [2] RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, 230-0045, Japan. ; Department of Biotechnology Research, Kazusa DNA Research Institute, Chiba, 292-0818, Japan. ; Mab Institute Inc., Sapporo, 001-0021, Japan. ; 1] Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA [2] Institute for Soft Matter and Functional Materials, Helmholtz Zentrum Berlin, Berlin, 14109, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25252976" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Cell Line, Tumor ; Cell Survival ; Chromatin Immunoprecipitation ; Enzyme Activation ; Genome/genetics ; Histones/*chemistry/*metabolism ; Kinetics ; Lysine/metabolism ; Mice ; Microscopy, Fluorescence ; Phosphorylation ; RNA Polymerase II/*metabolism ; *Single-Cell Analysis ; Time Factors ; Transcription Elongation, Genetic ; Transcription Initiation, Genetic ; *Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-12-24
    Description: Intrinsically disordered proteins play important roles in cell signalling, transcription, translation and cell cycle regulation. Although they lack stable tertiary structure, many intrinsically disordered proteins undergo disorder-to-order transitions upon binding to partners. Similarly, several folded proteins use regulated order-to-disorder transitions to mediate biological function. In principle, the function of intrinsically disordered proteins may be controlled by post-translational modifications that lead to structural changes such as folding, although this has not been observed. Here we show that multisite phosphorylation induces folding of the intrinsically disordered 4E-BP2, the major neural isoform of the family of three mammalian proteins that bind eIF4E and suppress cap-dependent translation initiation. In its non-phosphorylated state, 4E-BP2 interacts tightly with eIF4E using both a canonical YXXXXLPhi motif (starting at Y54) that undergoes a disorder-to-helix transition upon binding and a dynamic secondary binding site. We demonstrate that phosphorylation at T37 and T46 induces folding of residues P18-R62 of 4E-BP2 into a four-stranded beta-domain that sequesters the helical YXXXXLPhi motif into a partly buried beta-strand, blocking its accessibility to eIF4E. The folded state of pT37pT46 4E-BP2 is weakly stable, decreasing affinity by 100-fold and leading to an order-to-disorder transition upon binding to eIF4E, whereas fully phosphorylated 4E-BP2 is more stable, decreasing affinity by a factor of approximately 4,000. These results highlight stabilization of a phosphorylation-induced fold as the essential mechanism for phospho-regulation of the 4E-BP:eIF4E interaction and exemplify a new mode of biological regulation mediated by intrinsically disordered proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bah, Alaji -- Vernon, Robert M -- Siddiqui, Zeba -- Krzeminski, Mickael -- Muhandiram, Ranjith -- Zhao, Charlie -- Sonenberg, Nahum -- Kay, Lewis E -- Forman-Kay, Julie D -- MOP-114985/Canadian Institutes of Health Research/Canada -- MOP-119579/Canadian Institutes of Health Research/Canada -- England -- Nature. 2015 Mar 5;519(7541):106-9. doi: 10.1038/nature13999. Epub 2014 Dec 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada [2] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada. ; 1] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada. ; 1] Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada [2] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada [3] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada [4] Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533957" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Eukaryotic Initiation Factor-4E/*chemistry/*metabolism ; Eukaryotic Initiation Factors/*chemistry/*metabolism ; Humans ; Intrinsically Disordered Proteins/*chemistry/*metabolism ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Phosphorylation ; Protein Binding ; *Protein Folding ; Protein Structure, Secondary ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-12-04
    Description: In every living organism, cell division requires accurate identification of the division site and placement of the division machinery. In bacteria, this process is traditionally considered to begin with the polymerization of the highly conserved tubulin-like protein FtsZ into a ring that locates precisely at mid-cell. Over the past decades, several systems have been reported to regulate the spatiotemporal assembly and placement of the FtsZ ring. However, the human pathogen Streptococcus pneumoniae, in common with many other organisms, is devoid of these canonical systems and the mechanisms of positioning the division machinery remain unknown. Here we characterize a novel factor that locates at the division site before FtsZ and guides septum positioning in pneumococcus. Mid-cell-anchored protein Z (MapZ) forms ring structures at the cell equator and moves apart as the cell elongates, therefore behaving as a permanent beacon of division sites. MapZ then positions the FtsZ ring through direct protein-protein interactions. MapZ-mediated control differs from previously described systems mostly on the basis of negative regulation of FtsZ assembly. Furthermore, MapZ is an endogenous target of the Ser/Thr kinase StkP, which was recently shown to have a central role in cytokinesis and morphogenesis of S. pneumoniae. We show that both phosphorylated and non-phosphorylated forms of MapZ are required for proper Z-ring formation and dynamics. Altogether, this work uncovers a new mechanism for bacterial cell division that is regulated by phosphorylation and illustrates that nature has evolved a diversity of cell division mechanisms adapted to the different bacterial clades.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268495/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268495/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fleurie, Aurore -- Lesterlin, Christian -- Manuse, Sylvie -- Zhao, Chao -- Cluzel, Caroline -- Lavergne, Jean-Pierre -- Franz-Wachtel, Mirita -- Macek, Boris -- Combet, Christophe -- Kuru, Erkin -- VanNieuwenhze, Michael S -- Brun, Yves V -- Sherratt, David -- Grangeasse, Christophe -- 083469/Wellcome Trust/United Kingdom -- 091911/Wellcome Trust/United Kingdom -- GM051986/GM/NIGMS NIH HHS/ -- R01 GM051986/GM/NIGMS NIH HHS/ -- WT083469MA/Wellcome Trust/United Kingdom -- England -- Nature. 2014 Dec 11;516(7530):259-62. doi: 10.1038/nature13966. Epub 2014 Nov 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bases Moleculaires et Structurales des Systemes Infectieux, IBCP, Universite Lyon 1, CNRS, UMR 5086, Lyon 69007, France. ; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK. ; Laboratoire de Biologie Tissulaire et d'Ingenierie Threrapeutique, IBCP, Universite Lyon 1, CNRS, UMR 5305, Lyon 69007, France. ; Proteome Center Tubingen, University of Tubingen, Auf der Morgenstelle 15, Tubingen 72076, Germany. ; Departments of Biology and Chemistry, Indiana University, Bloomington, Indiana 47405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470041" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/genetics/*metabolism ; *Cytokinesis ; Cytoskeletal Proteins/*metabolism ; Phosphorylation ; Protein Transport ; Streptococcus pneumoniae/*cytology/*metabolism ; Tubulin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-02-18
    Description: RNA interference is widely distributed in eukaryotes and has a variety of functions, including antiviral defence and gene regulation. All RNA interference pathways use small single-stranded RNA (ssRNA) molecules that guide proteins of the Argonaute (Ago) family to complementary ssRNA targets: RNA-guided RNA interference. The role of prokaryotic Ago variants has remained elusive, although bioinformatics analysis has suggested their involvement in host defence. Here we demonstrate that Ago of the bacterium Thermus thermophilus (TtAgo) acts as a barrier for the uptake and propagation of foreign DNA. In vivo, TtAgo is loaded with 5'-phosphorylated DNA guides, 13-25 nucleotides in length, that are mostly plasmid derived and have a strong bias for a 5'-end deoxycytidine. These small interfering DNAs guide TtAgo to cleave complementary DNA strands. Hence, despite structural homology to its eukaryotic counterparts, TtAgo functions in host defence by DNA-guided DNA interference.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697943/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697943/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Swarts, Daan C -- Jore, Matthijs M -- Westra, Edze R -- Zhu, Yifan -- Janssen, Jorijn H -- Snijders, Ambrosius P -- Wang, Yanli -- Patel, Dinshaw J -- Berenguer, Jose -- Brouns, Stan J J -- van der Oost, John -- P30 CA008748/CA/NCI NIH HHS/ -- R01 GM104962/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Mar 13;507(7491):258-61. doi: 10.1038/nature12971. Epub 2014 Feb 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands [2]. ; Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands. ; Clare Hall Laboratories, Cancer Research UK, London Research Institute, South Mimms EN6 3LD, UK. ; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. ; Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. ; Centro de Biologia Molecular Severo Ochoa, UAM-CSIC, Campus de Cantoblanco, 28049 Madrid, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24531762" target="_blank"〉PubMed〈/a〉
    Keywords: Argonaute Proteins/*metabolism ; Base Pairing/genetics ; Base Sequence ; DNA/genetics/*metabolism ; *DNA Cleavage ; Deoxycytidine/genetics/metabolism ; *Gene Silencing ; Phosphorylation ; Plasmids/genetics ; Prokaryotic Cells/*metabolism ; Thermus thermophilus/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-10-14
    Description: Alzheimer's disease is the most common form of dementia, characterized by two pathological hallmarks: amyloid-beta plaques and neurofibrillary tangles. The amyloid hypothesis of Alzheimer's disease posits that the excessive accumulation of amyloid-beta peptide leads to neurofibrillary tangles composed of aggregated hyperphosphorylated tau. However, to date, no single disease model has serially linked these two pathological events using human neuronal cells. Mouse models with familial Alzheimer's disease (FAD) mutations exhibit amyloid-beta-induced synaptic and memory deficits but they do not fully recapitulate other key pathological events of Alzheimer's disease, including distinct neurofibrillary tangle pathology. Human neurons derived from Alzheimer's disease patients have shown elevated levels of toxic amyloid-beta species and phosphorylated tau but did not demonstrate amyloid-beta plaques or neurofibrillary tangles. Here we report that FAD mutations in beta-amyloid precursor protein and presenilin 1 are able to induce robust extracellular deposition of amyloid-beta, including amyloid-beta plaques, in a human neural stem-cell-derived three-dimensional (3D) culture system. More importantly, the 3D-differentiated neuronal cells expressing FAD mutations exhibited high levels of detergent-resistant, silver-positive aggregates of phosphorylated tau in the soma and neurites, as well as filamentous tau, as detected by immunoelectron microscopy. Inhibition of amyloid-beta generation with beta- or gamma-secretase inhibitors not only decreased amyloid-beta pathology, but also attenuated tauopathy. We also found that glycogen synthase kinase 3 (GSK3) regulated amyloid-beta-mediated tau phosphorylation. We have successfully recapitulated amyloid-beta and tau pathology in a single 3D human neural cell culture system. Our unique strategy for recapitulating Alzheimer's disease pathology in a 3D neural cell culture model should also serve to facilitate the development of more precise human neural cell models of other neurodegenerative disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366007/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366007/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, Se Hoon -- Kim, Young Hye -- Hebisch, Matthias -- Sliwinski, Christopher -- Lee, Seungkyu -- D'Avanzo, Carla -- Chen, Hechao -- Hooli, Basavaraj -- Asselin, Caroline -- Muffat, Julien -- Klee, Justin B -- Zhang, Can -- Wainger, Brian J -- Peitz, Michael -- Kovacs, Dora M -- Woolf, Clifford J -- Wagner, Steven L -- Tanzi, Rudolph E -- Kim, Doo Yeon -- 5P01AG15379/AG/NIA NIH HHS/ -- 5R37MH060009/MH/NIMH NIH HHS/ -- P01 AG004953/AG/NIA NIH HHS/ -- P01 AG015379/AG/NIA NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- P30 NS045776/NS/NINDS NIH HHS/ -- P50 AG005134/AG/NIA NIH HHS/ -- R01 AG014713/AG/NIA NIH HHS/ -- R01 NS045860/NS/NINDS NIH HHS/ -- R21 AG031483/AG/NIA NIH HHS/ -- RF1 AG048080/AG/NIA NIH HHS/ -- England -- Nature. 2014 Nov 13;515(7526):274-8. doi: 10.1038/nature13800. Epub 2014 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA [2]. ; 1] Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA [2] Division of Mass Spectrometry Research, Korea Basic Science Institute, Cheongju-si, Chungbuk 363-883, South Korea [3]. ; 1] Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA [2] Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn and Hertie Foundation, 53127 Bonn, Germany. ; Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA. ; FM Kirby Neurobiology Center, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA. ; The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA. ; Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn and Hertie Foundation, 53127 Bonn, Germany. ; Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25307057" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/genetics/*metabolism/*pathology ; Amyloid beta-Peptides/chemistry/genetics/metabolism ; Cell Culture Techniques/*methods ; Cell Differentiation ; Drug Evaluation, Preclinical/methods ; Extracellular Space/metabolism ; Glycogen Synthase Kinase 3/metabolism ; Humans ; Microtubule-Associated Proteins/metabolism ; *Models, Biological ; Neural Stem Cells/*metabolism/pathology ; Neurites/metabolism ; Phosphorylation ; Presenilin-1/metabolism ; Protein Aggregation, Pathological ; Reproducibility of Results ; tau Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-09-26
    Description: Post-translational histone modifications have a critical role in regulating transcription, the cell cycle, DNA replication and DNA damage repair. The identification of new histone modifications critical for transcriptional regulation at initiation, elongation or termination is of particular interest. Here we report a new layer of regulation in transcriptional elongation that is conserved from yeast to mammals. This regulation is based on the phosphorylation of a highly conserved tyrosine residue, Tyr 57, in histone H2A and is mediated by the unsuspected tyrosine kinase activity of casein kinase 2 (CK2). Mutation of Tyr 57 in H2A in yeast or inhibition of CK2 activity impairs transcriptional elongation in yeast as well as in mammalian cells. Genome-wide binding analysis reveals that CK2alpha, the catalytic subunit of CK2, binds across RNA-polymerase-II-transcribed coding genes and active enhancers. Mutation of Tyr 57 causes a loss of H2B mono-ubiquitination as well as H3K4me3 and H3K79me3, histone marks associated with active transcription. Mechanistically, both CK2 inhibition and the H2A(Y57F) mutation enhance H2B deubiquitination activity of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, suggesting a critical role of this phosphorylation in coordinating the activity of the SAGA complex during transcription. Together, these results identify a new component of regulation in transcriptional elongation based on CK2-dependent tyrosine phosphorylation of the globular domain of H2A.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461219/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461219/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Basnet, Harihar -- Su, Xue B -- Tan, Yuliang -- Meisenhelder, Jill -- Merkurjev, Daria -- Ohgi, Kenneth A -- Hunter, Tony -- Pillus, Lorraine -- Rosenfeld, Michael G -- CA173903/CA/NCI NIH HHS/ -- CA82683/CA/NCI NIH HHS/ -- DK018477/DK/NIDDK NIH HHS/ -- DK039949/DK/NIDDK NIH HHS/ -- GM033279/GM/NIGMS NIH HHS/ -- HL065445/HL/NHLBI NIH HHS/ -- NS034934/NS/NINDS NIH HHS/ -- P30 CA023100/CA/NCI NIH HHS/ -- R01 DK018477/DK/NIDDK NIH HHS/ -- R01 GM033279/GM/NIGMS NIH HHS/ -- R01 HL065445/HL/NHLBI NIH HHS/ -- R01 NS034934/NS/NINDS NIH HHS/ -- R37 DK039949/DK/NIDDK NIH HHS/ -- T32 DK007541/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 11;516(7530):267-71. doi: 10.1038/nature13736. Epub 2014 Sep 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Biomedical Sciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, California 92093, USA. ; Division of Biological Sciences, Section of Molecular Biology, UCSD Moores Cancer Center, University of California San Diego, La Jolla, California 92093-0347, USA. ; Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA. ; Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; 1] Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Bioinformatics and Systems Biology Program, Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25252977" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Casein Kinase II/*metabolism ; Cell Line ; Conserved Sequence ; Histones/*chemistry/genetics/*metabolism ; Humans ; Molecular Sequence Data ; Phosphorylation ; Saccharomyces cerevisiae/genetics/metabolism ; *Transcription Elongation, Genetic ; Tyrosine/chemistry/*metabolism ; Ubiquitination/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-11-20
    Description: Obesity-linked insulin resistance is a major precursor to the development of type 2 diabetes. Previous work has shown that phosphorylation of PPARgamma (peroxisome proliferator-activated receptor gamma) at serine 273 by cyclin-dependent kinase 5 (Cdk5) stimulates diabetogenic gene expression in adipose tissues. Inhibition of this modification is a key therapeutic mechanism for anti-diabetic drugs that bind PPARgamma, such as the thiazolidinediones and PPARgamma partial agonists or non-agonists. For a better understanding of the importance of this obesity-linked PPARgamma phosphorylation, we created mice that ablated Cdk5 specifically in adipose tissues. These mice have both a paradoxical increase in PPARgamma phosphorylation at serine 273 and worsened insulin resistance. Unbiased proteomic studies show that extracellular signal-regulated kinase (ERK) kinases are activated in these knockout animals. Here we show that ERK directly phosphorylates serine 273 of PPARgamma in a robust manner and that Cdk5 suppresses ERKs through direct action on a novel site in MAP kinase/ERK kinase (MEK). Importantly, pharmacological inhibition of MEK and ERK markedly improves insulin resistance in both obese wild-type and ob/ob mice, and also completely reverses the deleterious effects of the Cdk5 ablation. These data show that an ERK/Cdk5 axis controls PPARgamma function and suggest that MEK/ERK inhibitors may hold promise for the treatment of type 2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297557/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297557/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banks, Alexander S -- McAllister, Fiona E -- Camporez, Joao Paulo G -- Zushin, Peter-James H -- Jurczak, Michael J -- Laznik-Bogoslavski, Dina -- Shulman, Gerald I -- Gygi, Steven P -- Spiegelman, Bruce M -- DK31405/DK/NIDDK NIH HHS/ -- DK93638/DK/NIDDK NIH HHS/ -- K01 DK093638/DK/NIDDK NIH HHS/ -- R01 DK031405/DK/NIDDK NIH HHS/ -- England -- Nature. 2015 Jan 15;517(7534):391-5. doi: 10.1038/nature13887. Epub 2014 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Yale Mouse Metabolic Phenotyping Center and Departments of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA. ; Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA. ; 1] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409143" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/enzymology/metabolism ; Adipose Tissue/cytology/enzymology/metabolism ; Animals ; Cell Proliferation ; Cells, Cultured ; Cyclin-Dependent Kinase 5/deficiency/*metabolism ; Diabetes Mellitus/*metabolism ; Diet, High-Fat ; Extracellular Signal-Regulated MAP Kinases/*metabolism ; Humans ; Insulin Resistance ; MAP Kinase Kinase 2/antagonists & inhibitors/metabolism ; MAP Kinase Signaling System ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; PPAR gamma/chemistry/*metabolism ; Phosphorylation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-03-22
    Description: Biological oscillations are observed at many levels of cellular organization. In the social amoeba Dictyostelium discoideum, starvation-triggered multicellular development is organized by periodic cyclic adenosine 3',5'-monophosphate (cAMP) waves, which provide both chemoattractant gradients and developmental signals. We report that GtaC, a GATA transcription factor, exhibits rapid nucleocytoplasmic shuttling in response to cAMP waves. This behavior requires coordinated action of a nuclear localization signal and reversible G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor-mediated phosphorylation. Although both are required for developmental gene expression, receptor occupancy promotes nuclear exit of GtaC, which leads to a transient burst of transcription at each cAMP cycle. We demonstrate that this biological circuit filters out high-frequency signals and counts those admitted, thereby enabling cells to modulate gene expression according to the dynamic pattern of the external stimuli.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061987/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061987/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cai, Huaqing -- Katoh-Kurasawa, Mariko -- Muramoto, Tetsuya -- Santhanam, Balaji -- Long, Yu -- Li, Lei -- Ueda, Masahiro -- Iglesias, Pablo A -- Shaulsky, Gad -- Devreotes, Peter N -- GM 28007/GM/NIGMS NIH HHS/ -- GM 34933/GM/NIGMS NIH HHS/ -- HD 039691/HD/NICHD NIH HHS/ -- P01 HD039691/HD/NICHD NIH HHS/ -- R01 GM028007/GM/NIGMS NIH HHS/ -- R01 GM034933/GM/NIGMS NIH HHS/ -- R37 GM028007/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1249531. doi: 10.1126/science.1249531.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24653039" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Cell Nucleus/*metabolism ; Cyclic AMP/metabolism/pharmacology ; Cytoplasm/*metabolism ; Dictyostelium/growth & development/*metabolism ; GATA Transcription Factors/chemistry/genetics/*metabolism ; Gene Expression Regulation ; Heterotrimeric GTP-Binding Proteins/metabolism ; Nuclear Localization Signals ; Phosphorylation ; Protozoan Proteins/chemistry/genetics/*metabolism ; Receptors, G-Protein-Coupled/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-02-08
    Description: Despite our understanding of actomyosin function in individual migrating cells, we know little about the mechanisms by which actomyosin drives collective cell movement in vertebrate embryos. The collective movements of convergent extension drive both global reorganization of the early embryo and local remodeling during organogenesis. We report here that planar cell polarity (PCP) proteins control convergent extension by exploiting an evolutionarily ancient function of the septin cytoskeleton. By directing septin-mediated compartmentalization of cortical actomyosin, PCP proteins coordinate the specific shortening of mesenchymal cell-cell contacts, which in turn powers cell interdigitation. These data illuminate the interface between developmental signaling systems and the fundamental machinery of cell behavior and should provide insights into the etiology of human birth defects, such as spina bifida and congenital kidney cysts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167615/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167615/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shindo, Asako -- Wallingford, John B -- R01 GM074104/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):649-52. doi: 10.1126/science.1243126.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and University of Texas at Austin, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24503851" target="_blank"〉PubMed〈/a〉
    Keywords: Actomyosin/*metabolism ; Animals ; *Cell Movement ; *Cell Polarity ; Embryo, Nonmammalian/cytology/metabolism ; Female ; Gastrula/cytology/metabolism ; Gene Knockdown Techniques ; Humans ; Mesoderm/cytology/metabolism ; Organogenesis ; Phosphorylation ; Septins/genetics/*metabolism ; Xenopus Proteins/genetics/*metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-01-18
    Description: Btk29A is the Drosophila ortholog of the mammalian Bruton's tyrosine kinase (Btk), mutations of which in humans cause a heritable immunodeficiency disease. Btk29A mutations stabilized the proliferating cystoblast fate, leading to an ovarian tumor. This phenotype was rescued by overexpression of wild-type Btk29A and phenocopied by the interference of Wnt4-beta-catenin signaling or its putative downstream nuclear protein Piwi in somatic escort cells. Btk29A and mammalian Btk directly phosphorylated tyrosine residues of beta-catenin, leading to the up-regulation of its transcriptional activity. Thus, we identify a transcriptional switch involving the kinase Btk29A/Btk and its phosphorylation target, beta-catenin, which functions downstream of Wnt4 in escort cells to terminate Drosophila germ cell proliferation through up-regulation of piwi expression. This signaling mechanism likely represents a versatile developmental switch.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hamada-Kawaguchi, Noriko -- Nore, Beston F -- Kuwada, Yusuke -- Smith, C I Edvard -- Yamamoto, Daisuke -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):294-7. doi: 10.1126/science.1244512.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology and Neurosciences, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24436419" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/*biosynthesis ; *Cell Proliferation ; DNA Breaks, Double-Stranded ; Drosophila Proteins/*biosynthesis/genetics/*metabolism ; Drosophila melanogaster/genetics/metabolism/*physiology ; Gene Knockdown Techniques ; Genomic Instability ; Germ Cells/cytology/metabolism/*physiology ; Glycoproteins/genetics/*metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/genetics/*metabolism ; RNA, Small Interfering/genetics/metabolism ; Signal Transduction ; Transcription, Genetic ; Tyrosine/genetics/metabolism ; Up-Regulation ; Wnt Proteins/genetics/*metabolism ; beta Catenin/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-11-08
    Description: Mitochondria play central roles in cellular energy conversion, metabolism, and apoptosis. Mitochondria import more than 1000 different proteins from the cytosol. It is unknown if the mitochondrial protein import machinery is connected to the cell division cycle. We found that the cyclin-dependent kinase Cdk1 stimulated assembly of the main mitochondrial entry gate, the translocase of the outer membrane (TOM), in mitosis. The molecular mechanism involved phosphorylation of the cytosolic precursor of Tom6 by cyclin Clb3-activated Cdk1, leading to enhanced import of Tom6 into mitochondria. Tom6 phosphorylation promoted assembly of the protein import channel Tom40 and import of fusion proteins, thus stimulating the respiratory activity of mitochondria in mitosis. Tom6 phosphorylation provides a direct means for regulating mitochondrial biogenesis and activity in a cell cycle-specific manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harbauer, Angelika B -- Opalinska, Magdalena -- Gerbeth, Carolin -- Herman, Josip S -- Rao, Sanjana -- Schonfisch, Birgit -- Guiard, Bernard -- Schmidt, Oliver -- Pfanner, Nikolaus -- Meisinger, Chris -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1109-13. doi: 10.1126/science.1261253. Epub 2014 Nov 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Biochemie und Molekularbiologie, ZBMZ, Universitat Freiburg, 79104 Freiburg, Germany. Trinationales Graduiertenkolleg 1478, Universitat Freiburg, 79104 Freiburg, Germany. Faculty of Biology, Universitat Freiburg, 79104 Freiburg, Germany. BIOSS Centre for Biological Signalling Studies, Universitat Freiburg, 79104 Freiburg, Germany. ; Institut fur Biochemie und Molekularbiologie, ZBMZ, Universitat Freiburg, 79104 Freiburg, Germany. ; Institut fur Biochemie und Molekularbiologie, ZBMZ, Universitat Freiburg, 79104 Freiburg, Germany. Trinationales Graduiertenkolleg 1478, Universitat Freiburg, 79104 Freiburg, Germany. Faculty of Biology, Universitat Freiburg, 79104 Freiburg, Germany. ; Institut fur Biochemie und Molekularbiologie, ZBMZ, Universitat Freiburg, 79104 Freiburg, Germany. Faculty of Biology, Universitat Freiburg, 79104 Freiburg, Germany. Spemann Graduate School of Biology and Medicine, Universitat Freiburg, 79104 Freiburg, Germany. ; Centre de Genetique Moleculaire, CNRS, 91190 Gif-sur-Yvette, France. ; Institut fur Biochemie und Molekularbiologie, ZBMZ, Universitat Freiburg, 79104 Freiburg, Germany. BIOSS Centre for Biological Signalling Studies, Universitat Freiburg, 79104 Freiburg, Germany. ; Institut fur Biochemie und Molekularbiologie, ZBMZ, Universitat Freiburg, 79104 Freiburg, Germany. BIOSS Centre for Biological Signalling Studies, Universitat Freiburg, 79104 Freiburg, Germany. nikolaus.pfanner@biochemie.uni-freiburg.de chris.meisinger@biochemie.uni-freiburg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25378463" target="_blank"〉PubMed〈/a〉
    Keywords: CDC2 Protein Kinase/metabolism ; *Cell Cycle ; Cyclin B/metabolism ; Cytosol/metabolism ; Mitochondria/*metabolism ; Mitochondrial Membrane Transport Proteins/*metabolism ; Phosphorylation ; Protein Precursors/*metabolism ; Protein Transport ; Saccharomyces cerevisiae/*cytology/*metabolism ; Saccharomyces cerevisiae Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-08-02
    Description: Many RNA regulatory proteins controlling pre-messenger RNA splicing contain serine:arginine (SR) repeats. Here, we found that these SR domains bound hydrogel droplets composed of fibrous polymers of the low-complexity domain of heterogeneous ribonucleoprotein A2 (hnRNPA2). Hydrogel binding was reversed upon phosphorylation of the SR domain by CDC2-like kinases 1 and 2 (CLK1/2). Mutated variants of the SR domains changing serine to glycine (SR-to-GR variants) also bound to hnRNPA2 hydrogels but were not affected by CLK1/2. When expressed in mammalian cells, these variants bound nucleoli. The translation products of the sense and antisense transcripts of the expansion repeats associated with the C9orf72 gene altered in neurodegenerative disease encode GRn and PRn repeat polypeptides. Both peptides bound to hnRNPA2 hydrogels independent of CLK1/2 activity. When applied to cultured cells, both peptides entered cells, migrated to the nucleus, bound nucleoli, and poisoned RNA biogenesis, which caused cell death.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kwon, Ilmin -- Xiang, Siheng -- Kato, Masato -- Wu, Leeju -- Theodoropoulos, Pano -- Wang, Tao -- Kim, Jiwoong -- Yun, Jonghyun -- Xie, Yang -- McKnight, Steven L -- U01 GM107623/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 5;345(6201):1139-45. doi: 10.1126/science.1254917. Epub 2014 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9152, USA. ; Quantitative Biomedical Research Center, Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9152, USA. ; Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9152, USA. steven.mcknight@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25081482" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amyotrophic Lateral Sclerosis/genetics/*metabolism/pathology ; Astrocytes/*metabolism/pathology ; Cell Death ; Cell Nucleolus/*metabolism ; Cells, Cultured ; Dipeptides/genetics/*metabolism/pharmacology ; Frontotemporal Dementia/genetics/*metabolism/pathology ; Glutamate Plasma Membrane Transport Proteins/genetics ; Heterogeneous-Nuclear Ribonucleoprotein Group A-B/*metabolism ; Humans ; Hydrogel ; Phosphorylation ; Protein Biosynthesis ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Protein-Tyrosine Kinases/metabolism ; Proteins/*genetics ; RNA, Antisense/antagonists & inhibitors/biosynthesis ; RNA, Messenger/antagonists & inhibitors/biosynthesis ; RNA, Ribosomal/antagonists & inhibitors/biosynthesis ; Repetitive Sequences, Amino Acid ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-01-25
    Description: Plant cells are immobile; thus, plant growth and development depend on cell expansion rather than cell migration. The molecular mechanism by which the plasma membrane initiates changes in the cell expansion rate remains elusive. We found that a secreted peptide, RALF (rapid alkalinization factor), suppresses cell elongation of the primary root by activating the cell surface receptor FERONIA in Arabidopsis thaliana. A direct peptide-receptor interaction is supported by specific binding of RALF to FERONIA and reduced binding and insensitivity to RALF-induced growth inhibition in feronia mutants. Phosphoproteome measurements demonstrate that the RALF-FERONIA interaction causes phosphorylation of plasma membrane H(+)-adenosine triphosphatase 2 at Ser(899), mediating the inhibition of proton transport. The results reveal a molecular mechanism for RALF-induced extracellular alkalinization and a signaling pathway that regulates cell expansion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672726/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672726/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haruta, Miyoshi -- Sabat, Grzegorz -- Stecker, Kelly -- Minkoff, Benjamin B -- Sussman, Michael R -- 5T32HG002760/HG/NHGRI NIH HHS/ -- U54 GM074901/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jan 24;343(6169):408-11. doi: 10.1126/science.1244454.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biotechnology Center, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24458638" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*cytology/metabolism ; Arabidopsis Proteins/*agonists/genetics/*metabolism ; *Cell Enlargement ; Cell Membrane/*enzymology ; Molecular Sequence Data ; Peptide Hormones/genetics/*metabolism ; Phosphorylation ; Phosphotransferases/genetics/metabolism ; Plant Cells/metabolism/physiology ; Plant Roots/cytology/metabolism ; Protein Binding ; Proteome/metabolism ; Proton-Translocating ATPases/*metabolism ; Serine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-04-20
    Description: Long noncoding RNAs (lncRNAs) play important roles in diverse biological processes; however, few have been identified that regulate immune cell differentiation and function. Here, we identified lnc-DC, which was exclusively expressed in human conventional dendritic cells (DCs). Knockdown of lnc-DC impaired DC differentiation from human monocytes in vitro and from mouse bone marrow cells in vivo and reduced capacity of DCs to stimulate T cell activation. lnc-DC mediated these effects by activating the transcription factor STAT3 (signal transducer and activator of transcription 3). lnc-DC bound directly to STAT3 in the cytoplasm, which promoted STAT3 phosphorylation on tyrosine-705 by preventing STAT3 binding to and dephosphorylation by SHP1. Our work identifies a lncRNA that regulates DC differentiation and also broadens the known mechanisms of lncRNA action.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Pin -- Xue, Yiquan -- Han, Yanmei -- Lin, Li -- Wu, Cong -- Xu, Sheng -- Jiang, Zhengping -- Xu, Junfang -- Liu, Qiuyan -- Cao, Xuetao -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):310-3. doi: 10.1126/science.1251456.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744378" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow Cells/cytology ; Cell Differentiation ; Chromatin/metabolism ; Cytoplasm/metabolism ; Dendritic Cells/*cytology/*immunology/physiology ; Epigenesis, Genetic ; Gene Expression Regulation ; Histones/metabolism ; Humans ; Lymphocyte Activation ; Mice ; Monocytes/cytology ; Nucleic Acid Conformation ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism ; RNA, Long Noncoding/*metabolism ; STAT3 Transcription Factor/*metabolism ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-03-15
    Description: Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Macho, Alberto P -- Schwessinger, Benjamin -- Ntoukakis, Vardis -- Brutus, Alexandre -- Segonzac, Cecile -- Roy, Sonali -- Kadota, Yasuhiro -- Oh, Man-Ho -- Sklenar, Jan -- Derbyshire, Paul -- Lozano-Duran, Rosa -- Malinovsky, Frederikke Gro -- Monaghan, Jacqueline -- Menke, Frank L -- Huber, Steven C -- He, Sheng Yang -- Zipfel, Cyril -- BB/G024944/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- R01AI060761/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Mar 28;343(6178):1509-12. doi: 10.1126/science.1248849. Epub 2014 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24625928" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*immunology/*microbiology ; Arabidopsis Proteins/agonists/*metabolism ; Bacterial Proteins/*metabolism ; Peptide Elongation Factor Tu/*metabolism ; Peptides/metabolism/pharmacology ; Phosphorylation ; Protein Tyrosine Phosphatases/*metabolism ; Pseudomonas syringae/enzymology/*pathogenicity ; Receptors, Pattern Recognition/agonists/*metabolism ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...