ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acid Sequence  (78)
  • American Association for the Advancement of Science (AAAS)  (78)
  • 2000-2004  (78)
  • 1990-1994
  • 1950-1954
  • 2003  (78)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (78)
Years
  • 2000-2004  (78)
  • 1990-1994
  • 1950-1954
Year
  • 1
    Publication Date: 2003-04-26
    Description: Tubular nanostructures are suggested to have a wide range of applications in nanotechnology. We report our observation of the self-assembly of a very short peptide, the Alzheimer's beta-amyloid diphenylalanine structural motif, into discrete and stiff nanotubes. Reduction of ionic silver within the nanotubes, followed by enzymatic degradation of the peptide backbone, resulted in the production of discrete nanowires with a long persistence length. The same dipeptide building block, made of D-phenylalanine, resulted in the production of enzymatically stable nanotubes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reches, Meital -- Gazit, Ehud -- New York, N.Y. -- Science. 2003 Apr 25;300(5619):625-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12714741" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Amyloid beta-Peptides/chemistry ; Biosensing Techniques ; Birefringence ; Dipeptides/*chemistry ; Microscopy, Electron ; Microscopy, Electron, Scanning ; Molecular Sequence Data ; *Nanotechnology ; Oxidation-Reduction ; Protein Conformation ; Silver ; Solubility ; Spectroscopy, Fourier Transform Infrared
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-02-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Calladine, C R -- Pratap, V -- Chandran, V -- Mizuguchi, K -- Luisi, B F -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):661-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12561825" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; Escherichia coli Proteins/*chemistry ; Glycine/chemistry ; Ion Channels/*chemistry ; *Models, Molecular ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-01
    Description: Although curvature of biological surfaces has been considered from mathematical and biophysical perspectives, its molecular and developmental basis is unclear. We have studied the cin mutant of Antirrhinum, which has crinkly rather than flat leaves. Leaves of cin display excess growth in marginal regions, resulting in a gradual introduction of negative curvature during development. This reflects a change in the shape and the progression of a cell-cycle arrest front moving from the leaf tip toward the base. CIN encodes a TCP protein and is expressed downstream of the arrest front. We propose that CIN promotes zero curvature (flatness) by making cells more sensitive to an arrest signal, particularly in marginal regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nath, Utpal -- Crawford, Brian C W -- Carpenter, Rosemary -- Coen, Enrico -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1404-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610308" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antirrhinum/cytology/*genetics/*growth & development/metabolism ; Base Sequence ; Cell Cycle ; Cell Differentiation ; Cell Division ; Cell Size ; Cyclin D3 ; Cyclins/genetics/metabolism ; Gene Deletion ; *Gene Expression Regulation, Plant ; *Genes, Plant ; Histones/genetics/metabolism ; Molecular Sequence Data ; Mutagenesis, Insertional ; Mutation ; Plant Leaves/anatomy & histology/cytology/*growth & development/metabolism ; Plant Proteins/chemistry/genetics/metabolism ; Surface Properties ; Transcription Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2003-06-14
    Description: In eukaryotes, the combinatorial association of sequence-specific DNA binding proteins is essential for transcription. We have used protein arrays to test 492 pairings of a nearly complete set of coiled-coil strands from human basic-region leucine zipper (bZIP) transcription factors. We find considerable partnering selectivity despite the bZIPs' homologous sequences. The interaction data are of high quality, as assessed by their reproducibility, reciprocity, and agreement with previous observations. Biophysical studies in solution support the relative binding strengths observed with the arrays. New associations provide insights into the circadian clock and the unfolded protein response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Newman, John R S -- Keating, Amy E -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2097-101. Epub 2003 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12805554" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Basic-Leucine Zipper Transcription Factors ; Chromatography, High Pressure Liquid ; Circadian Rhythm ; Circular Dichroism ; Cyclic AMP Response Element-Binding Protein/chemistry/metabolism ; DNA-Binding Proteins/chemistry/isolation & purification/*metabolism ; Dimerization ; G-Box Binding Factors ; Humans ; *Leucine Zippers ; Peptides/chemistry/isolation & purification/metabolism ; *Protein Array Analysis ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; Signal Transduction ; Temperature ; Thermodynamics ; Transcription Factors/*chemistry/isolation & purification/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-07-19
    Description: We collected and completely sequenced 28,469 full-length complementary DNA clones from Oryza sativa L. ssp. japonica cv. Nipponbare. Through homology searches of publicly available sequence data, we assigned tentative protein functions to 21,596 clones (75.86%). Mapping of the cDNA clones to genomic DNA revealed that there are 19,000 to 20,500 transcription units in the rice genome. Protein informatics analysis against the InterPro database revealed the existence of proteins presented in rice but not in Arabidopsis. Sixty-four percent of our cDNAs are homologous to Arabidopsis proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rice Full-Length cDNA Consortium -- National Institute of Agrobiological Sciences Rice Full-Length cDNA Project Team -- Kikuchi, Shoshi -- Satoh, Kouji -- Nagata, Toshifumi -- Kawagashira, Nobuyuki -- Doi, Koji -- Kishimoto, Naoki -- Yazaki, Junshi -- Ishikawa, Masahiro -- Yamada, Hitomi -- Ooka, Hisako -- Hotta, Isamu -- Kojima, Keiichi -- Namiki, Takahiro -- Ohneda, Eisuke -- Yahagi, Wataru -- Suzuki, Kohji -- Li, Chao Jie -- Ohtsuki, Kenji -- Shishiki, Toru -- Foundation of Advancement of International Science Genome Sequencing & Analysis Group -- Otomo, Yasuhiro -- Murakami, Kazuo -- Iida, Yoshiharu -- Sugano, Sumio -- Fujimura, Tatsuto -- Suzuki, Yutaka -- Tsunoda, Yuki -- Kurosaki, Takashi -- Kodama, Takeko -- Masuda, Hiromi -- Kobayashi, Michie -- Xie, Quihong -- Lu, Min -- Narikawa, Ryuya -- Sugiyama, Akio -- Mizuno, Kouichi -- Yokomizo, Satoko -- Niikura, Junko -- Ikeda, Rieko -- Ishibiki, Junya -- Kawamata, Midori -- Yoshimura, Akemi -- Miura, Junichirou -- Kusumegi, Takahiro -- Oka, Mitsuru -- Ryu, Risa -- Ueda, Mariko -- Matsubara, Kenichi -- RIKEN -- Kawai, Jun -- Carninci, Piero -- Adachi, Jun -- Aizawa, Katsunori -- Arakawa, Takahiro -- Fukuda, Shiro -- Hara, Ayako -- Hashizume, Wataru -- Hayatsu, Norihito -- Imotani, Koichi -- Ishii, Yoshiyuki -- Itoh, Masayoshi -- Kagawa, Ikuko -- Kondo, Shinji -- Konno, Hideaki -- Miyazaki, Ai -- Osato, Naoki -- Ota, Yoshimi -- Saito, Rintaro -- Sasaki, Daisuke -- Sato, Kenjiro -- Shibata, Kazuhiro -- Shinagawa, Akira -- Shiraki, Toshiyuki -- Yoshino, Masayasu -- Hayashizaki, Yoshihide -- Yasunishi, Ayako -- New York, N.Y. -- Science. 2003 Jul 18;301(5631):376-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, National Institute of Agrobiological Sciences, 2-1-2 Kannon-dai, Tsukuba, Ibaraki 305-8602, Japan. skikuchi@nias.affrc.go.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12869764" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; Cloning, Molecular ; Computational Biology ; DNA, Complementary ; Databases, Nucleic Acid ; Databases, Protein ; Genes, Plant ; *Genome, Plant ; Molecular Sequence Data ; Open Reading Frames ; Oryza/*genetics ; Plant Proteins/chemistry/genetics/physiology ; Protein Structure, Tertiary ; RNA, Antisense/genetics ; *Sequence Analysis, DNA ; Sequence Homology, Amino Acid ; Sequence Homology, Nucleic Acid ; Transcription Factors/chemistry/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-09-13
    Description: Phototropins are light-activated kinases important for plant responses to blue light. Light initiates signaling in these proteins by generating a covalent protein-flavin mononucleotide (FMN) adduct within sensory Per-ARNT-Sim (PAS) domains. We characterized the light-dependent changes of a phototropin PAS domain by solution nuclear magnetic resonance spectroscopy and found that an alpha helix located outside the canonical domain plays a key role in this activation process. Although this helix associates with the PAS core in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent bond formation to kinase activation and identifies a signaling pathway conserved among PAS domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harper, Shannon M -- Neil, Lori C -- Gardner, Kevin H -- CA90601/CA/NCI NIH HHS/ -- GM08297/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 12;301(5639):1541-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12970567" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Avena/*chemistry ; Cryptochromes ; Darkness ; *Drosophila Proteins ; *Eye Proteins ; Flavoproteins/*chemistry/metabolism ; *Light ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; *Photoreceptor Cells, Invertebrate ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2003-06-28
    Description: Human antibody 2G12 neutralizes a broad range of human immunodeficiency virus type 1 (HIV-1) isolates by binding an unusually dense cluster of carbohydrate moieties on the "silent" face of the gp120 envelope glycoprotein. Crystal structures of Fab 2G12 and its complexes with the disaccharide Manalpha1-2Man and with the oligosaccharide Man9GlcNAc2 revealed that two Fabs assemble into an interlocked VH domain-swapped dimer. Further biochemical, biophysical, and mutagenesis data strongly support a Fab-dimerized antibody as the prevalent form that recognizes gp120. The extraordinary configuration of this antibody provides an extended surface, with newly described binding sites, for multivalent interaction with a conserved cluster of oligomannose type sugars on the surface of gp120. The unique interdigitation of Fab domains within an antibody uncovers a previously unappreciated mechanism for high-affinity recognition of carbohydrate or other repeating epitopes on cell or microbial surfaces.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Calarese, Daniel A -- Scanlan, Christopher N -- Zwick, Michael B -- Deechongkit, Songpon -- Mimura, Yusuke -- Kunert, Renate -- Zhu, Ping -- Wormald, Mark R -- Stanfield, Robyn L -- Roux, Kenneth H -- Kelly, Jeffery W -- Rudd, Pauline M -- Dwek, Raymond A -- Katinger, Hermann -- Burton, Dennis R -- Wilson, Ian A -- AI33292/AI/NIAID NIH HHS/ -- GM46192/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2065-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829775" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/immunology/metabolism ; Antibody Affinity ; Antibody Specificity ; Binding Sites, Antibody ; Cell Adhesion Molecules/metabolism ; Centrifugation, Density Gradient ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Disaccharides/chemistry/metabolism ; Epitopes ; HIV Antibodies/*chemistry/genetics/*immunology/metabolism ; HIV Envelope Protein gp120/*immunology ; HIV-1/*immunology ; Humans ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/*chemistry/genetics/*immunology/metabolism ; Immunoglobulin Heavy Chains/chemistry/immunology ; Immunoglobulin Light Chains/chemistry/immunology ; Immunoglobulin Variable Region/chemistry/immunology ; Lectins/chemistry/immunology/metabolism ; Lectins, C-Type/metabolism ; Ligands ; Mannans/chemistry/metabolism ; Mannosides/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Oligosaccharides/chemistry/*immunology/metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Cell Surface/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-11-01
    Description: The Arabidopsis autonomous floral-promotion pathway promotes flowering independently of the photoperiod and vernalization pathways by repressing FLOWERING LOCUS C (FLC), a MADS-box transcription factor that blocks the transition from vegetative to reproductive development. Here, we report that FLOWERING LOCUS D (FLD), one of six genes in the autonomous pathway, encodes a plant homolog of a protein found in histone deacetylase complexes in mammals. Lesions in FLD result in hyperacetylation of histones in FLC chromatin, up-regulation of FLC expression, and extremely delayed flowering. Thus, the autonomous pathway regulates flowering in part by histone deacetylation. However, not all autonomous-pathway mutants exhibit FLC hyperacetylation, indicating that multiple means exist by which this pathway represses FLC expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Yuehui -- Michaels, Scott D -- Amasino, Richard M -- New York, N.Y. -- Science. 2003 Dec 5;302(5651):1751-4. Epub 2003 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593187" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Arabidopsis/genetics/*growth & development/metabolism ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Chromatin/metabolism ; Flowers/*growth & development ; Gene Expression Regulation, Plant ; Genes, Plant ; Histone Deacetylases/chemistry/genetics/*metabolism ; Histones/*metabolism ; Humans ; Introns ; MADS Domain Proteins/chemistry/*genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Phenotype ; Plants, Genetically Modified ; Precipitin Tests ; Protein Structure, Tertiary ; Regulatory Sequences, Nucleic Acid ; Repressor Proteins/chemistry/metabolism ; Sequence Deletion ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-04-26
    Description: Eukaryotic 2-Cys peroxiredoxins (2-Cys Prxs) not only act as antioxidants, but also appear to regulate hydrogen peroxide-mediated signal transduction. We show that bacterial 2-Cys Prxs are much less sensitive to oxidative inactivation than are eukaryotic 2-Cys Prxs. By identifying two sequence motifs unique to the sensitive 2-Cys Prxs and comparing the crystal structure of a bacterial 2-Cys Prx at 2.2 angstrom resolution with other Prx structures, we define the structural origins of sensitivity. We suggest this adaptation allows 2-Cys Prxs to act as floodgates, keeping resting levels of hydrogen peroxide low, while permitting higher levels during signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, Zachary A -- Poole, Leslie B -- Karplus, P Andrew -- ES00210/ES/NIEHS NIH HHS/ -- GM50389/GM/NIGMS NIH HHS/ -- R01 GM050389/GM/NIGMS NIH HHS/ -- R01 GM050389-10/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Apr 25;300(5619):650-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97333, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12714747" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Bacteria/enzymology ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Cysteine/metabolism ; Disulfides/chemistry/metabolism ; Evolution, Molecular ; Humans ; Hydrogen Peroxide/*metabolism ; Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Peroxidases/*chemistry/*metabolism ; Peroxiredoxins ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Salmonella typhimurium/*enzymology ; Sequence Alignment ; *Signal Transduction ; Sulfenic Acids/metabolism ; Sulfinic Acids/metabolism ; Yeasts/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2003-11-15
    Description: Prefoldins (PFDs) are members of a recently identified, small-molecular weight protein family able to assemble into molecular chaperone complexes. Here we describe an unusually large member of this family, termed URI, that forms complexes with other small-molecular weight PFDs and with RPB5, a shared subunit of all three RNA polymerases. Functional analysis of the yeast and human orthologs of URI revealed that both are targets of nutrient signaling and participate in gene expression controlled by the TOR kinase. Thus, URI is a component of a signaling pathway that coordinates nutrient availability with gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gstaiger, Matthias -- Luke, Brian -- Hess, Daniel -- Oakeley, Edward J -- Wirbelauer, Christiane -- Blondel, Marc -- Vigneron, Marc -- Peter, Matthias -- Krek, Wilhelm -- New York, N.Y. -- Science. 2003 Nov 14;302(5648):1208-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institut, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14615539" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/*metabolism ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; DNA-Binding Proteins/metabolism ; DNA-Directed RNA Polymerases/metabolism ; GATA Transcription Factors ; *Gene Expression Regulation/drug effects ; Humans ; *Intracellular Signaling Peptides and Proteins ; Molecular Sequence Data ; Phosphorylation ; Protein Kinases/metabolism ; Protein Subunits/metabolism ; RNA Interference ; Repressor Proteins/metabolism ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; *Signal Transduction ; Sirolimus/pharmacology ; TOR Serine-Threonine Kinases ; Trans-Activators/metabolism ; Transcription Factors/metabolism ; *Transcription, Genetic/drug effects ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2003-05-06
    Description: In March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The genome of SARS-CoV is 29,727 nucleotides in length and has 11 open reading frames, and its genome organization is similar to that of other coronaviruses. Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closely related to any of the previously characterized coronaviruses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rota, Paul A -- Oberste, M Steven -- Monroe, Stephan S -- Nix, W Allan -- Campagnoli, Ray -- Icenogle, Joseph P -- Penaranda, Silvia -- Bankamp, Bettina -- Maher, Kaija -- Chen, Min-Hsin -- Tong, Suxiong -- Tamin, Azaibi -- Lowe, Luis -- Frace, Michael -- DeRisi, Joseph L -- Chen, Qi -- Wang, David -- Erdman, Dean D -- Peret, Teresa C T -- Burns, Cara -- Ksiazek, Thomas G -- Rollin, Pierre E -- Sanchez, Anthony -- Liffick, Stephanie -- Holloway, Brian -- Limor, Josef -- McCaustland, Karen -- Olsen-Rasmussen, Melissa -- Fouchier, Ron -- Gunther, Stephan -- Osterhaus, Albert D M E -- Drosten, Christian -- Pallansch, Mark A -- Anderson, Larry J -- Bellini, William J -- New York, N.Y. -- Science. 2003 May 30;300(5624):1394-9. Epub 2003 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA. prota@cdc.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730500" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Conserved Sequence ; Coronavirus/classification/genetics ; DNA, Complementary ; Endopeptidases/chemistry/genetics ; *Genome, Viral ; Humans ; Membrane Glycoproteins/chemistry/genetics ; Molecular Sequence Data ; Nucleocapsid Proteins/chemistry/genetics ; Open Reading Frames ; Phylogeny ; Polyproteins/chemistry/genetics ; RNA Replicase/chemistry/genetics ; RNA, Messenger/genetics/metabolism ; RNA, Viral/*genetics ; Regulatory Sequences, Nucleic Acid ; SARS Virus/chemistry/classification/*genetics/isolation & purification ; Sequence Analysis, DNA ; Severe Acute Respiratory Syndrome/virology ; Spike Glycoprotein, Coronavirus ; Transcription, Genetic ; Viral Envelope Proteins/chemistry/genetics ; Viral Matrix Proteins/chemistry/genetics ; Viral Proteins/chemistry/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2003-08-30
    Description: The rhizobial infection of legumes has the most stringent demand toward Nod factor structure of all host responses, and therefore a specific Nod factor entry receptor has been proposed. The SYM2 gene identified in certain ecotypes of pea (Pisum sativum) is a good candidate for such an entry receptor. We exploited the close phylogenetic relationship of pea and the model legume Medicago truncatula to identify genes specifically involved in rhizobial infection. The SYM2 orthologous region of M. truncatula contains 15 putative receptor-like genes, of which 7 are LysM domain-containing receptor-like kinases (LYKs). Using reverse genetics in M. truncatula, we show that two LYK genes are specifically involved in infection thread formation. This, as well as the properties of the LysM domains, strongly suggests that they are Nod factor entry receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Limpens, Erik -- Franken, Carolien -- Smit, Patrick -- Willemse, Joost -- Bisseling, Ton -- Geurts, Rene -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):630-3. Epub 2003 Aug 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Dreijenlaan 3, 6703HA, Wageningen, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12947035" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Gene Expression ; *Genes, Plant ; Ligands ; Lipopolysaccharides/*metabolism ; Medicago/genetics/microbiology/*physiology ; Models, Biological ; Molecular Sequence Data ; Mutation ; Nitrogen Fixation ; Peas ; Phenotype ; Plant Roots/*microbiology/physiology ; Protein Kinases/chemistry/*genetics/*metabolism ; Protein Structure, Tertiary ; RNA Interference ; Signal Transduction ; Sinorhizobium meliloti/chemistry/genetics/growth & development/*physiology ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2003-09-06
    Description: The earliest of a series of copper efflux genes in Escherichia coli are controlled by CueR, a member of the MerR family of transcriptional activators. Thermodynamic calibration of CueR reveals a zeptomolar (10(-21) molar) sensitivity to free Cu+, which is far less than one atom per cell. Atomic details of this extraordinary sensitivity and selectivity for +1transition-metal ions are revealed by comparing the crystal structures of CueR and a Zn2+-sensing homolog, ZntR. An unusual buried metal-receptor site in CueR restricts the metal to a linear, two-coordinate geometry and uses helix-dipole and hydrogen-bonding interactions to enhance metal binding. This binding mode is rare among metalloproteins but well suited for an ultrasensitive genetic switch.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Changela, Anita -- Chen, Kui -- Xue, Yi -- Holschen, Jackie -- Outten, Caryn E -- O'Halloran, Thomas V -- Mondragon, Alfonso -- F32 DK61868/DK/NIDDK NIH HHS/ -- GM08382/GM/NIGMS NIH HHS/ -- GM38784/GM/NIGMS NIH HHS/ -- GM51350/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 5;301(5638):1383-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2205Tech Drive, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12958362" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Binding Sites ; Copper/*metabolism ; Crystallization ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Dimerization ; Escherichia coli/*chemistry/genetics/metabolism ; Escherichia coli Proteins/*chemistry/genetics/*metabolism ; Helix-Turn-Helix Motifs ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Metals/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Secondary ; Sequence Alignment ; Thermodynamics ; Transcription Factors/chemistry/genetics/metabolism ; Transcriptional Activation ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2003-09-23
    Description: G protein-coupled receptors (GPCRs) at the cell surface activate heterotrimeric G proteins by inducing the G protein alpha (Galpha) subunit to exchange guanosine diphosphate for guanosine triphosphate. Regulators of G protein signaling (RGS) proteins accelerate the deactivation of Galpha subunits to reduce GPCR signaling. Here we identified an RGS protein (AtRGS1) in Arabidopsis that has a predicted structure similar to a GPCR as well as an RGS box with GTPase accelerating activity. Expression of AtRGS1 complemented the pheromone supersensitivity phenotype of a yeast RGS mutant, sst2Delta. Loss of AtRGS1 increased the activity of the Arabidopsis Galpha subunit, resulting in increased cell elongation in hypocotyls in darkness and increased cell production in roots grown in light. These findings suggest that AtRGS1 is a critical modulator of plant cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Jin-Gui -- Willard, Francis S -- Huang, Jirong -- Liang, Jiansheng -- Chasse, Scott A -- Jones, Alan M -- Siderovski, David P -- GM055316/GM/NIGMS NIH HHS/ -- GM62338/GM/NIGMS NIH HHS/ -- GM65533/GM/NIGMS NIH HHS/ -- GM65989/GM/NIGMS NIH HHS/ -- R01 GM065989/GM/NIGMS NIH HHS/ -- R01 GM065989-01/GM/NIGMS NIH HHS/ -- R01 GM065989-02/GM/NIGMS NIH HHS/ -- R01 GM065989-03/GM/NIGMS NIH HHS/ -- R01 GM065989-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 19;301(5640):1728-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14500984" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Arabidopsis/*cytology/genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Cell Differentiation ; *Cell Division ; Cell Membrane/metabolism ; *GTP-Binding Protein alpha Subunits ; Heterotrimeric GTP-Binding Proteins/metabolism ; Meristem/metabolism ; Mitosis ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Phenotype ; Plant Roots/cytology/growth & development/metabolism ; Protein Precursors/metabolism ; Protein Structure, Tertiary ; RGS Proteins/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/genetics/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-05-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holmes, Kathryn V -- Enjuanes, Luis -- New York, N.Y. -- Science. 2003 May 30;300(5624):1377-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Colorado Health Sciences Center, Denver, CO 80262, USA. kathryn.holmes@UCHSC.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12775826" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, Viral/immunology ; Antiviral Agents ; Base Sequence ; Coronavirus/classification/genetics ; Drug Design ; Evolution, Molecular ; *Genome, Viral ; Humans ; Open Reading Frames ; Phylogeny ; RNA, Messenger/genetics ; RNA, Viral/*genetics ; Regulatory Sequences, Nucleic Acid ; SARS Virus/classification/*genetics/physiology ; Sequence Analysis, DNA ; Severe Acute Respiratory Syndrome/drug therapy/prevention & control/virology ; Transcription, Genetic ; Viral Proteins/chemistry/genetics/physiology ; Viral Vaccines
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2003-08-02
    Description: Auxin is a plant hormone that regulates many aspects of plant growth and development. We used a chemical genetics approach to identify SIR1, a regulator of many auxin-inducible genes. The sir1 mutant was resistant to sirtinol, a small molecule that activates many auxin-inducible genes and promotes auxin-related developmental phenotypes. SIR1 is predicted to encode a protein composed of a ubiquitin-activating enzyme E1-like domain and a Rhodanese-like domain homologous to that of prolyl isomerase. We suggest a molecular context for how the auxin signal is propagated to exert its biological effects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Yunde -- Dai, Xinhua -- Blackwell, Helen E -- Schreiber, Stuart L -- Chory, Joanne -- 1R01GM68631-01/GM/NIGMS NIH HHS/ -- 2R01GM52413/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 22;301(5636):1107-10. Epub 2003 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA. yzhao@biomail.ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893885" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Arabidopsis/drug effects/genetics/growth & development/*metabolism ; Arabidopsis Proteins/*chemistry/genetics/*metabolism ; Benzamides/metabolism/pharmacology ; Binding Sites ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant ; Genes, Reporter ; Indoleacetic Acids/*metabolism/pharmacology ; Molecular Sequence Data ; Mutation ; Naphthols/metabolism/pharmacology ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Plant Leaves/drug effects/growth & development ; Plant Roots/drug effects/growth & development ; Protein Structure, Tertiary ; *Signal Transduction ; Sirtuins/antagonists & inhibitors ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2003-08-16
    Description: The severity of many inherited disorders is influenced by genetic background. We describe a modifier interaction in C57BL/6Jmice that converts a chronic movement disorder into a lethal neurological disease. The primary mutation (medJ) changes a splice donor site of the sodium channel gene Scn8a (Nav1.6). The modifier mutation is characteristic of strain C57BL/6Jand introduces a nonsense codon into sodium channel modifier 1 (SCNM1), a zinc finger protein and a putative splice factor. An internally deleted SCNM1 protein is also predicted as a result of exon skipping associated with disruption of a consensus exonic splicing enhancer. The effect of the modifier mutation is to reduce the abundance of correctly spliced sodium channel transcripts below the threshold for survival. Our finding that genetic variation in a putative RNA splicing factor influences disease susceptibility in mice raises the possibility that a similar mechanism modifies the severity of human inherited disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buchner, David A -- Trudeau, Michelle -- Meisler, Miriam H -- GM24872/GM/NIGMS NIH HHS/ -- T32 DC00011/DC/NIDCD NIH HHS/ -- T32 GM07544/GM/NIGMS NIH HHS/ -- T32 HG00040/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 15;301(5635):967-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI 48109-0618, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12920299" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/*genetics/metabolism ; Chromosome Mapping ; Codon, Nonsense ; Codon, Terminator ; Genetic Predisposition to Disease ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Inbred Strains ; Mice, Neurologic Mutants ; Mice, Transgenic ; Molecular Sequence Data ; Movement Disorders/genetics/metabolism ; Mutation ; NAV1.6 Voltage-Gated Sodium Channel ; *Nerve Tissue Proteins ; Nervous System Diseases/*genetics/metabolism ; Phenotype ; Phylogeny ; *RNA Splicing ; RNA, Messenger/genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Sodium Channels/*genetics/metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2003-02-01
    Description: mahoganoid is a mouse coat-color mutation whose pigmentary phenotype and genetic interactions resemble those of Attractin (Atrn). Atrn mutations also cause spongiform neurodegeneration. Here, we show that a null mutation for mahoganoid causes a similar age-dependent neuropathology that includes many features of prion diseases but without accumulation of protease-resistant prion protein. The gene mutated in mahoganoid encodes a RING-containing protein with E3 ubiquitin ligase activity in vitro. Similarities in phenotype, expression, and genetic interactions suggest that mahoganoid and Atrn genes are part of a conserved pathway for regulated protein turnover whose function is essential for neuronal viability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Lin -- Lu, Xin-Yun -- Jolly, Aaron F -- Eldridge, Adam G -- Watson, Stanley J -- Jackson, Peter K -- Barsh, Gregory S -- Gunn, Teresa M -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):710-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, Department of Genetics, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12560552" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Blotting, Northern ; Brain/metabolism/*pathology ; Carrier Proteins/chemistry/*genetics/*metabolism ; Crosses, Genetic ; Female ; Gene Expression ; Ligases/metabolism ; Male ; Membrane Proteins/genetics ; Mice ; Mice, Inbred C3H ; Mice, Mutant Strains ; Mice, Transgenic ; Models, Biological ; Molecular Sequence Data ; *Mutation ; Neurodegenerative Diseases/*genetics/metabolism/*pathology ; Neurons/metabolism/pathology ; Pigmentation ; Prions/metabolism ; RNA, Messenger/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Transgenes ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases ; Vacuoles/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2003-12-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eickmann, Markus -- Becker, Stephan -- Klenk, Hans-Dieter -- Doerr, Hans Wilhelm -- Stadler, Konrad -- Censini, Stefano -- Guidotti, Silvia -- Masignani, Vega -- Scarselli, Maria -- Mora, Marirosa -- Donati, Claudio -- Han, Jang H -- Song, Hyun Chul -- Abrignani, Sergio -- Covacci, Antonello -- Rappuoli, Rino -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1504-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645828" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Sequence ; Consensus Sequence ; Coronavirus/chemistry/*classification ; Genome, Viral ; Membrane Glycoproteins/chemistry ; Nucleocapsid/chemistry ; *Phylogeny ; SARS Virus/chemistry/*classification/*genetics ; Spike Glycoprotein, Coronavirus ; Viral Envelope Proteins/chemistry ; Viral Matrix Proteins/chemistry ; Viral Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2003-10-11
    Description: The stone-like otoliths from the ears of teleost fishes are involved in balance and hearing and consist of calcium carbonate crystallites embedded in a protein framework. We report that a previously unknown gene, starmaker, is required in zebrafish for otolith morphogenesis. Reduction of starmaker activity by injection of modified antisense oligonucleotides causes a change in the crystal lattice structure and thus a change in otolith morphology. The expression pattern of starmaker, along with the presence of the protein on the growing otolith, suggest that the expression levels of starmaker control the shape of the otoliths.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sollner, Christian -- Burghammer, Manfred -- Busch-Nentwich, Elisabeth -- Berger, Jurgen -- Schwarz, Heinz -- Riekel, Christian -- Nicolson, Teresa -- New York, N.Y. -- Science. 2003 Oct 10;302(5643):282-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institut fur Entwicklungsbiologie, Spemannstrasse 35, 72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14551434" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Calcification, Physiologic ; Calcium Carbonate/chemistry ; Computational Biology ; Crystallization ; Crystallography, X-Ray ; Ear/embryology/physiology ; Gene Expression ; Hearing ; Hydrogen-Ion Concentration ; Microscopy, Electron, Scanning ; Molecular Sequence Data ; Morphogenesis ; Oligonucleotides, Antisense ; Otolithic Membrane/chemistry/growth & development/*physiology/ultrastructure ; Phenotype ; Postural Balance ; X-Ray Diffraction ; Zebrafish/anatomy & histology/genetics/growth & development/*physiology ; Zebrafish Proteins/chemistry/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2003-09-06
    Description: A novel coronavirus (SCoV) is the etiological agent of severe acute respiratory syndrome (SARS). SCoV-like viruses were isolated from Himalayan palm civets found in a live-animal market in Guangdong, China. Evidence of virus infection was also detected in other animals (including a raccoon dog, Nyctereutes procyonoides) and in humans working at the same market. All the animal isolates retain a 29-nucleotide sequence that is not found in most human isolates. The detection of SCoV-like viruses in small, live wild mammals in a retail market indicates a route of interspecies transmission, although the natural reservoir is not known.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guan, Y -- Zheng, B J -- He, Y Q -- Liu, X L -- Zhuang, Z X -- Cheung, C L -- Luo, S W -- Li, P H -- Zhang, L J -- Guan, Y J -- Butt, K M -- Wong, K L -- Chan, K W -- Lim, W -- Shortridge, K F -- Yuen, K Y -- Peiris, J S M -- Poon, L L M -- New York, N.Y. -- Science. 2003 Oct 10;302(5643):276-8. Epub 2003 Sep 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, The University of Hong Kong, University Pathology Building, Queen Mary Hospital, Hong Kong Special Administrative Region, People's Republic of China. yguan@hkucc.hku.hk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12958366" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Wild/*virology ; Antibodies, Viral/blood ; Blotting, Western ; Carnivora/*virology ; China ; Coronavirus/classification/genetics/immunology/*isolation & purification ; Coronavirus Infections/veterinary/virology ; Disease Reservoirs ; Feces/virology ; Genome, Viral ; Humans ; Membrane Glycoproteins/chemistry/genetics ; Molecular Sequence Data ; Neutralization Tests ; Nose/virology ; Open Reading Frames/genetics ; Phylogeny ; Polymorphism, Genetic ; Reverse Transcriptase Polymerase Chain Reaction ; SARS Virus/classification/genetics/immunology/*isolation & purification ; Sequence Deletion ; Sequence Homology, Nucleic Acid ; Spike Glycoprotein, Coronavirus ; Viral Envelope Proteins/chemistry/genetics ; Viral Proteins/chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2003-03-29
    Description: Acetyl-coenzyme A carboxylases (ACCs) are required for the biosynthesis and oxidation of long-chain fatty acids. They are targets for therapeutics against obesity and diabetes, and several herbicides function by inhibiting their carboxyltransferase (CT) domain. We determined the crystal structure of the free enzyme and the coenzyme A complex of yeast CT at 2.7 angstrom resolution and found that it comprises two domains, both belonging to the crotonase/ClpP superfamily. The active site is at the interface of a dimer. Mutagenesis and kinetic studies reveal the functional roles of conserved residues here. The herbicides target the active site of CT, providing a lead for inhibitor development against human ACCs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Hailong -- Yang, Zhiru -- Shen, Yang -- Tong, Liang -- New York, N.Y. -- Science. 2003 Mar 28;299(5615):2064-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, NY 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12663926" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl-CoA Carboxylase/antagonists & inhibitors/*chemistry/genetics/metabolism ; Amino Acid Sequence ; Binding Sites ; Biotin/chemistry/metabolism ; Catalysis ; Coenzyme A/chemistry/metabolism ; Crystallography, X-Ray ; Dimerization ; Enzyme Inhibitors/metabolism/pharmacology ; Hydrogen Bonding ; Kinetics ; Molecular Sequence Data ; Mutagenesis ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyridines/metabolism/pharmacology ; Saccharomyces cerevisiae/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2003-10-04
    Description: Control of integrin affinity for ligands (integrin activation) is essential for normal cell adhesion, migration, and assembly of an extracellular matrix. Integrin activation is usually mediated through the integrin beta subunit cytoplasmic tail and can be regulated by many different biochemical signaling pathways. We report that specific binding of the cytoskeletal protein talin to integrin beta subunit cytoplasmic tails leads to the conformational rearrangements of integrin extracellular domains that increase their affinity. Thus, regulated binding of talin to integrin beta tails is a final common element of cellular signaling cascades that control integrin activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tadokoro, Seiji -- Shattil, Sanford J -- Eto, Koji -- Tai, Vera -- Liddington, Robert C -- de Pereda, Jose M -- Ginsberg, Mark H -- Calderwood, David A -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):103-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, The Scripps Research Institute, The Burnham Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526080" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Antibodies, Monoclonal/immunology ; Antigens, CD29/chemistry/metabolism ; Cell Line ; Fibronectins/metabolism ; Humans ; Integrin beta Chains/chemistry/*metabolism ; Integrin beta3/chemistry/metabolism ; Molecular Sequence Data ; Mutation ; Platelet Glycoprotein GPIIb-IIIa Complex/chemistry/immunology/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Small Interfering ; Recombinant Proteins/metabolism ; *Signal Transduction ; Talin/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2003-05-15
    Description: A novel coronavirus has been identified as the causative agent of severe acute respiratory syndrome (SARS). The viral main proteinase (Mpro, also called 3CLpro), which controls the activities of the coronavirus replication complex, is an attractive target for therapy. We determined crystal structures for human coronavirus (strain 229E) Mpro and for an inhibitor complex of porcine coronavirus [transmissible gastroenteritis virus (TGEV)] Mpro, and we constructed a homology model for SARS coronavirus (SARS-CoV) Mpro. The structures reveal a remarkable degree of conservation of the substrate-binding sites, which is further supported by recombinant SARS-CoV Mpro-mediated cleavage of a TGEV Mpro substrate. Molecular modeling suggests that available rhinovirus 3Cpro inhibitors may be modified to make them useful for treating SARS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anand, Kanchan -- Ziebuhr, John -- Wadhwani, Parvesh -- Mesters, Jeroen R -- Hilgenfeld, Rolf -- New York, N.Y. -- Science. 2003 Jun 13;300(5626):1763-7. Epub 2003 May 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry, University of Lubeck, D-23538 Lubeck, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12746549" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Chloromethyl Ketones/chemistry/metabolism ; Amino Acid Sequence ; *Antiviral Agents ; Binding Sites ; Catalytic Domain ; Coronavirus 229E, Human/*enzymology ; Crystallization ; Crystallography, X-Ray ; Cysteine Endopeptidases/*chemistry/metabolism ; Cysteine Proteinase Inhibitors/chemistry/metabolism ; Dimerization ; *Drug Design ; Humans ; Isoxazoles/chemistry/metabolism/pharmacology ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyrrolidinones/chemistry/metabolism/pharmacology ; Recombinant Proteins/chemistry/metabolism ; SARS Virus/*drug effects/*enzymology ; Sequence Alignment ; Sequence Homology, Amino Acid ; Severe Acute Respiratory Syndrome/drug therapy ; Transmissible gastroenteritis virus/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2003-03-01
    Description: Molecular etiologies of heart failure, an emerging cardiovascular epidemic affecting 4.7 million Americans and costing 17.8 billion health-care dollars annually, remain poorly understood. Here we report that an inherited human dilated cardiomyopathy with refractory congestive heart failure is caused by a dominant Arg --〉 Cys missense mutation at residue 9 (R9C) in phospholamban (PLN), a transmembrane phosphoprotein that inhibits the cardiac sarcoplasmic reticular Ca2+-adenosine triphosphatase (SERCA2a) pump. Transgenic PLN(R9C) mice recapitulated human heart failure with premature death. Cellular and biochemical studies revealed that, unlike wild-type PLN, PLN(R9C) did not directly inhibit SERCA2a. Rather, PLN(R9C) trapped protein kinase A (PKA), which blocked PKA-mediated phosphorylation of wild-type PLN and in turn delayed decay of calcium transients in myocytes. These results indicate that myocellular calcium dysregulation can initiate human heart failure-a finding that may lead to therapeutic opportunities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmitt, Joachim P -- Kamisago, Mitsuhiro -- Asahi, Michio -- Li, Guo Hua -- Ahmad, Ferhaan -- Mende, Ulrike -- Kranias, Evangelia G -- MacLennan, David H -- Seidman, J G -- Seidman, Christine E -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1410-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School and Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610310" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Calcium/metabolism ; Calcium Signaling ; Calcium-Binding Proteins/chemistry/*genetics/*physiology ; Calcium-Transporting ATPases/antagonists & inhibitors/metabolism ; Cardiomegaly ; Cardiomyopathy, Dilated/*genetics/pathology/physiopathology ; Cell Line ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Female ; Heart Failure/*genetics/pathology/physiopathology ; Heart Ventricles/metabolism/pathology ; Humans ; Lod Score ; Male ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Muscle Cells/metabolism/physiology ; *Mutation, Missense ; Myocardial Contraction ; Myocardium/pathology ; Pedigree ; Phosphorylation ; Sarcoplasmic Reticulum Calcium-Transporting ATPases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2003-10-11
    Description: The genomes of several nonphotosynthetic bacteria, such as Bacillus subtilis, and some Archaea include genes for proteins with sequence homology to the large subunit of ribulose bisphosphate carboxylase/oxygenase (RuBisCO). We found that such a RuBisCO-like protein (RLP) from B. subtilis catalyzed the 2,3-diketo-5-methylthiopentyl-1-phosphate enolase reaction in the methionine salvage pathway. A growth-defective mutant, in which the gene for this RLP had been disrupted, was rescued by the gene for RuBisCOfrom the photosynthetic bacterium Rhodospirillum rubrum. Thus, the photosynthetic RuBisCO from R. rubrum retains the ability to function in the methionine salvage pathway in B. subtilis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ashida, Hiroki -- Saito, Yohtaro -- Kojima, Chojiro -- Kobayashi, Kazuo -- Ogasawara, Naotake -- Yokota, Akiho -- New York, N.Y. -- Science. 2003 Oct 10;302(5643):286-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14551435" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacillus subtilis/*enzymology/genetics/growth & development ; Bacterial Proteins/chemistry/genetics/*metabolism ; Catalysis ; Genes, Bacterial ; Magnetic Resonance Spectroscopy ; Methionine/metabolism ; Molecular Sequence Data ; Mutation ; Operon ; Phylogeny ; Recombinant Proteins/metabolism ; Rhodospirillum rubrum/*enzymology/genetics ; Ribulose-Bisphosphate Carboxylase/chemistry/genetics/*metabolism ; Sequence Alignment ; Thioglycosides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2003-05-31
    Description: In the genetic code, UGA serves as a stop signal and a selenocysteine codon, but no computational methods for identifying its coding function are available. Consequently, most selenoprotein genes are misannotated. We identified selenoprotein genes in sequenced mammalian genomes by methods that rely on identification of selenocysteine insertion RNA structures, the coding potential of UGA codons, and the presence of cysteine-containing homologs. The human selenoproteome consists of 25 selenoproteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kryukov, Gregory V -- Castellano, Sergi -- Novoselov, Sergey V -- Lobanov, Alexey V -- Zehtab, Omid -- Guigo, Roderic -- Gladyshev, Vadim N -- GM61603/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 May 30;300(5624):1439-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12775843" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Codon ; Codon, Terminator ; Computational Biology ; DNA Transposable Elements ; Gene Expression Profiling ; Genome, Human ; Humans ; Mice ; Molecular Sequence Data ; Open Reading Frames ; Proteins/*chemistry/*genetics ; *Proteome ; Rats ; *Selenium ; Selenocysteine/chemistry/*genetics ; Selenoproteins ; Sequence Alignment ; Sequence Analysis, DNA ; Sequence Homology, Amino Acid ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2003-11-25
    Description: A major challenge of computational protein design is the creation of novel proteins with arbitrarily chosen three-dimensional structures. Here, we used a general computational strategy that iterates between sequence design and structure prediction to design a 93-residue alpha/beta protein called Top7 with a novel sequence and topology. Top7 was found experimentally to be folded and extremely stable, and the x-ray crystal structure of Top7 is similar (root mean square deviation equals 1.2 angstroms) to the design model. The ability to design a new protein fold makes possible the exploration of the large regions of the protein universe not yet observed in nature.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuhlman, Brian -- Dantas, Gautam -- Ireton, Gregory C -- Varani, Gabriele -- Stoddard, Barry L -- Baker, David -- New York, N.Y. -- Science. 2003 Nov 21;302(5649):1364-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14631033" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Sequence ; Circular Dichroism ; Computational Biology ; Computer Graphics ; Computer Simulation ; Crystallization ; Crystallography, X-Ray ; Databases, Protein ; Models, Molecular ; Molecular Sequence Data ; Monte Carlo Method ; Nuclear Magnetic Resonance, Biomolecular ; *Protein Conformation ; Protein Denaturation ; *Protein Engineering ; *Protein Folding ; Protein Structure, Secondary ; Proteins/*chemistry ; *Software ; Solubility ; Temperature ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2003-08-30
    Description: In Drosophila, maternally supplied Nanos functions in the migration of primordial germ cells (PGCs) into the gonad; in mice, zygotic genes are involved instead. We report the cloning and the functional analyses of nanos2 and nanos3 in mice. These genes are differentially expressed in mouse PGCs. nanos2 is predominantly expressed in male germ cells, and the elimination of this gene results in a complete loss of spermatogonia. However, nanos3 is found in migrating PGCs, and the elimination of this factor results in the complete loss of germ cells in both sexes. Hence, although mice and flies differ in their mechanisms for germ cell specification, there seems to be conserved function for nanos proteins among invertebrates and vertebrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsuda, Masayuki -- Sasaoka, Yumiko -- Kiso, Makoto -- Abe, Kuniya -- Haraguchi, Seiki -- Kobayashi, Satoru -- Saga, Yumiko -- New York, N.Y. -- Science. 2003 Aug 29;301(5637):1239-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Mammalian Development, National Institute of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12947200" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis ; Carrier Proteins/chemistry/genetics/*physiology ; Cell Count ; Cell Division ; Cell Movement ; Cloning, Molecular ; Female ; Gene Expression Profiling ; Gene Targeting ; Germ Cells/*growth & development/*metabolism ; Gonads/embryology/growth & development/*metabolism ; In Situ Nick-End Labeling ; Male ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Organ Size ; Ovary/anatomy & histology/metabolism ; Ovum/physiology ; Phenotype ; *RNA-Binding Proteins ; Spermatogenesis ; Spermatozoa/physiology ; Testis/anatomy & histology/embryology/growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2003-11-08
    Description: Activated CD8+ T cells play a critical role in host defense against viruses, intracellular microbes, and tumors. It is not clear if a key regulatory transcription factor unites the effector functions of CD8+ T cells. We now show that Eomesodermin (Eomes), a paralogue of T-bet, is induced in effector CD8+ T cells in vitro and in vivo. Ectopic expression of Eomes was sufficient to invoke attributes of effector CD8+ T cells, including interferon-gamma (IFN-gamma), perforin, and granzyme B. Loss-of-function analysis suggests Eomes may also be necessary for full effector differentiation of CD8+ T cells. We suggest that Eomesodermin is likely to complement the actions of T-bet and act as a key regulatory gene in the development of cell-mediated immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pearce, Erika L -- Mullen, Alan C -- Martins, Gislaine A -- Krawczyk, Connie M -- Hutchins, Anne S -- Zediak, Valerie P -- Banica, Monica -- DiCioccio, Catherine B -- Gross, Darrick A -- Mao, Chai-An -- Shen, Hao -- Cereb, Nezih -- Yang, Soo Y -- Lindsten, Tullia -- Rossant, Janet -- Hunter, Christopher A -- Reiner, Steven L -- AI-042370/AI/NIAID NIH HHS/ -- GM-07229/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 7;302(5647):1041-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abramson Family Cancer Research Institute, and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14605368" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arenaviridae Infections/immunology ; Base Sequence ; CD8-Positive T-Lymphocytes/*immunology/physiology ; Cell Differentiation ; Cytotoxicity, Immunologic ; Gene Expression Regulation ; Granzymes ; Interferon-gamma/biosynthesis ; Lymphocyte Activation ; Lymphocytic choriomeningitis virus/immunology ; Membrane Glycoproteins/biosynthesis/genetics ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Molecular Sequence Data ; Perforin ; Pore Forming Cytotoxic Proteins ; RNA, Messenger/genetics/metabolism ; Serine Endopeptidases/biosynthesis/genetics ; T-Box Domain Proteins/chemistry/genetics/*physiology ; Th2 Cells/immunology/physiology ; Transcription Factors/chemistry/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2003-10-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, Robert F -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):46-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526056" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Differentiation ; Cells, Cultured ; Hydrocarbons ; Mice ; *Nanotechnology ; Neurons/*cytology ; *Peptides/chemistry ; Rats ; Spinal Cord Injuries/therapy ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2003-12-20
    Description: The Caenorhabditis elegans excretory canal is composed of a single elongated and branched cell that is tunneled by an inner lumen of apical character. Loss of the exc-4 gene causes a cystic enlargement of this intracellular tube. exc-4 encodes a member of the chloride intracellular channel (CLIC) family of proteins. EXC-4 protein localizes to various tubular membranes in distinct cell types, including the lumenal membrane of the excretory tubes. A conserved 55-amino acid domain enables EXC-4 translocation from the cytosol to the lumenal membrane. The tubular architecture of this membrane requires EXC-4 for both its formation and maintenance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berry, Katherine L -- Bulow, Hannes E -- Hall, David H -- Hobert, Oliver -- New York, N.Y. -- Science. 2003 Dec 19;302(5653):2134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684823" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Caenorhabditis elegans/cytology/*embryology/growth & development/*physiology ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Cell Membrane/*metabolism ; Chloride Channels/chemistry/genetics/*metabolism ; Cytoplasm/metabolism ; Epithelial Cells/metabolism ; Gene Expression ; Genes, Reporter ; Green Fluorescent Proteins ; Hot Temperature ; Humans ; Intracellular Membranes/*metabolism ; Luminescent Proteins ; Molecular Sequence Data ; Morphogenesis ; Mutation ; Pinocytosis ; Promoter Regions, Genetic ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Vacuoles/*metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2003-08-30
    Description: Plant disease-resistance (R) proteins are thought to function as receptors for ligands produced directly or indirectly by pathogen avirulence (Avr) proteins. The biochemical functions of most Avr proteins are unknown, and the mechanisms by which they activate R proteins have not been determined. In Arabidopsis, resistance to Pseudomonas syringae strains expressing AvrPphB requires RPS5, a member of the class of R proteins that have a predicted nucleotide-binding site and leucine-rich repeats, and PBS1, a protein kinase. AvrPphB was found to proteolytically cleave PBS1, and this cleavage was required for RPS5-mediated resistance, which indicates that AvrPphB is detected indirectly via its enzymatic activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shao, Feng -- Golstein, Catherine -- Ade, Jules -- Stoutemyer, Mark -- Dixon, Jack E -- Innes, Roger W -- DK18849/DK/NIDDK NIH HHS/ -- GM46451/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 29;301(5637):1230-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Medical School and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12947197" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*metabolism/microbiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Bacterial Proteins/chemistry/genetics/*metabolism ; Carrier Proteins/genetics/metabolism ; Cell Line ; Cysteine Endopeptidases/chemistry/genetics/*metabolism ; Genes, Bacterial ; Genes, Plant ; Genetic Complementation Test ; Humans ; Models, Biological ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Plant Diseases/*microbiology ; Plant Extracts/metabolism ; Plant Proteins/genetics/metabolism ; Plants, Genetically Modified ; Precipitin Tests ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Pseudomonas/*metabolism ; Recombinant Proteins/metabolism ; Tobacco/genetics/metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2003-01-11
    Description: After transport across the cytoplasmic membrane, bacterial outer membrane proteins are assembled into the outer membrane. Meningococcal Omp85 is a highly conserved protein in Gram-negative bacteria, and its homolog Toc75 is a component of the chloroplast protein-import machinery. Omp85 appeared to be essential for viability, and unassembled forms of various outer membrane proteins accumulated upon Omp85 depletion. Immunofluorescence microscopy revealed decreased surface exposure of outer membrane proteins, which was particularly apparent at the cell-division planes. Thus, Omp85 is likely to play a role in outer membrane protein assembly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Voulhoux, Rome -- Bos, Martine P -- Geurtsen, Jeroen -- Mols, Maarten -- Tommassen, Jan -- New York, N.Y. -- Science. 2003 Jan 10;299(5604):262-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12522254" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Outer Membrane Proteins/chemistry/genetics/*metabolism/*physiology ; Cell Membrane/*metabolism ; Conserved Sequence ; Fimbriae Proteins/metabolism ; Isopropyl Thiogalactoside/pharmacology ; Lipopolysaccharides/metabolism ; Microscopy, Fluorescence ; Molecular Sequence Data ; Neisseria meningitidis/genetics/growth & development/*metabolism ; Phospholipases A/chemistry/metabolism ; Phospholipases A1 ; Porins/metabolism ; Protein Denaturation ; Protein Folding ; Protein Structure, Tertiary ; Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2003-05-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lecossier, Denise -- Bouchonnet, Francine -- Clavel, Francois -- Hance, Allan J -- New York, N.Y. -- Science. 2003 May 16;300(5622):1112.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INSERM U552, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12750511" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Line ; Cytidine Deaminase ; DNA Mutational Analysis ; DNA, Viral/biosynthesis/*genetics ; Gene Products, vif/*physiology ; HIV-1/genetics/*physiology ; HeLa Cells ; Humans ; Molecular Sequence Data ; *Mutation ; Nucleoside Deaminases ; Proteins/physiology ; Repressor Proteins ; Virion/genetics/physiology ; Virus Replication ; vif Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2003-07-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Waller, Ross F -- Keeling, Patrick J -- van Dooren, Giel G -- McFadden, Geoffrey I -- New York, N.Y. -- Science. 2003 Jul 4;301(5629):49; author reply 49.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and, Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12843377" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apicomplexa/enzymology/*genetics/ultrastructure ; *Biological Evolution ; Chlorophyta/enzymology/*genetics ; Ciliophora/enzymology/genetics/ultrastructure ; Electron Transport Complex IV/chemistry/*genetics ; Gene Transfer, Horizontal ; Genes, Protozoan ; Hydrophobic and Hydrophilic Interactions ; Mitochondria/genetics ; Molecular Sequence Data ; *Phylogeny ; Plastids/*genetics ; Rhodophyta/enzymology/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2003-06-14
    Description: The senses of hearing and balance in vertebrates rely on the sensory hair cells (HCs) of the inner ear. The central element of the HC's transduction apparatus is a mechanically gated ion channel of unknown identity. Here we report that the zebrafish ortholog of Drosophila no mechanoreceptor potential C (nompC), which encodes a transient receptor potential (TRP) channel, is critical for HC mechanotransduction. In zebrafish larvae, nompC is selectively expressed in sensory HCs. Morpholino-mediated removal of nompC function eliminated transduction-dependent endocytosis and electrical responses in HCs, resulting in larval deafness and imbalance. These observations indicate that nompC encodes a vertebrate HC mechanotransduction channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sidi, Samuel -- Friedrich, Rainer W -- Nicolson, Teresa -- New York, N.Y. -- Science. 2003 Jul 4;301(5629):96-9. Epub 2003 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Entwicklungsbiologie, Spemannstrasse 35, 72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12805553" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cochlear Microphonic Potentials ; Computational Biology ; Deafness ; Ear, Inner/embryology ; Endocytosis ; Gene Expression ; Hair Cells, Auditory/*physiology ; Hearing ; In Situ Hybridization ; Ion Channels/chemistry/genetics/*physiology ; *Mechanotransduction, Cellular ; Molecular Sequence Data ; Oligonucleotides, Antisense ; Phenotype ; Phylogeny ; Postural Balance ; Reflex, Startle ; Reverse Transcriptase Polymerase Chain Reaction ; Transient Receptor Potential Channels ; Zebrafish ; Zebrafish Proteins/chemistry/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2003-01-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walther, Diego J -- Peter, Jens-Uwe -- Bashammakh, Saleh -- Hortnagl, Heide -- Voits, Mechthild -- Fink, Heidrun -- Bader, Michael -- New York, N.Y. -- Science. 2003 Jan 3;299(5603):76.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Delbruck Center for Molecular Medicine (MDC), Robert-Rossle-Strasse 10, D-13092 Berlin-Buch, Germany. dwalther@mdc-berlin.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12511643" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/*enzymology/metabolism ; COS Cells ; Cloning, Molecular ; Conserved Sequence ; DNA, Complementary ; Duodenum/enzymology/metabolism ; Humans ; Hydroxylation ; Isoenzymes/chemistry/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; RNA, Messenger/genetics/metabolism ; Rats ; Serotonin/*biosynthesis ; Transfection ; Tryptophan Hydroxylase/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2003-01-18
    Description: In plants, cell-to-cell communication is mediated by plasmodesmata and involves the trafficking of non-cell-autonomous proteins (NCAPs). A component in this pathway, Nicotiana tabacum NON-CELL-AUTONOMOUS PATHWAY PROTEIN1 (NtNCAPP1), was affinity purified and cloned. Protein overlay assays and in vivo studies showed that NtNCAPP1 is located on the endoplasmic reticulum at the cell periphery and displays specificity in its interaction with NCAPs. Deletion of the NtNCAPP1 amino-terminal transmembrane domain produced a dominant-negative mutant that blocked the trafficking of specific NCAPs. Transgenic tobacco plants expressing this mutant form of NtNCAPP1 and plants in which the NtNCAPP1 gene was silenced were compromised in their ability to regulate leaf and floral development. These results support a model in which NCAP delivery to plasmodesmata is both selective and regulated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jung-Youn -- Yoo, Byung-Chun -- Rojas, Maria R -- Gomez-Ospina, Natalia -- Staehelin, L Andrew -- Lucas, William J -- GM18639/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 17;299(5605):392-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Plant Biology, Division of Biological Sciences, University of California, 1 Shields Avenue, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12532017" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Communication ; Cell Line ; Cloning, Molecular ; Cytoplasm/metabolism ; Endoplasmic Reticulum/metabolism ; Flowers/growth & development ; Gene Silencing ; Green Fluorescent Proteins ; Immunohistochemistry ; Luminescent Proteins/metabolism ; Molecular Sequence Data ; Mutation ; Phenotype ; Plant Leaves/growth & development ; Plant Proteins/chemistry/genetics/*isolation & purification/*metabolism ; Plants, Genetically Modified ; Plasmodesmata/*metabolism ; Protein Transport ; Recombinant Fusion Proteins/metabolism ; Tobacco/genetics/growth & development/*metabolism ; Tobacco Mosaic Virus ; Viral Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2003-12-03
    Description: The early genetic pathway(s) triggering the pathogenesis of coronary artery disease (CAD) and myocardial infarction (MI) remain largely unknown. Here, we describe an autosomal dominant form of CAD/MI (adCAD1) that is caused by the deletion of seven amino acids in transcription factor MEF2A. The deletion disrupts nuclear localization of MEF2A, reduces MEF2A-mediated transcription activation, and abolishes synergistic activation by MEF2A and by the transcription factor GATA-1 through a dominant-negative mechanism. The MEF2A protein demonstrates strong expression in the endothelium of coronary arteries. These results identify a pathogenic gene for a familial vascular disease with features of CAD and implicate the MEF2A signaling pathway in the pathogenesis of CAD/MI.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618876/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618876/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Lejin -- Fan, Chun -- Topol, Sarah E -- Topol, Eric J -- Wang, Qing -- R01 HL065630/HL/NHLBI NIH HHS/ -- R01 HL066251/HL/NHLBI NIH HHS/ -- R01 HL65630/HL/NHLBI NIH HHS/ -- R01 HL66251/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1578-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645853" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Amino Acid Sequence ; Animals ; Arteries/metabolism ; Base Sequence ; Cell Nucleus/metabolism ; Chromosomes, Human, Pair 15/genetics ; Coronary Artery Disease/*genetics/metabolism ; Coronary Vessels/metabolism ; DNA-Binding Proteins/chemistry/*genetics/metabolism ; Dimerization ; Endothelium, Vascular/metabolism ; Erythroid-Specific DNA-Binding Factors ; Female ; Fluorescent Antibody Technique ; GATA1 Transcription Factor ; Gene Expression ; Genes, Dominant ; Genetic Linkage ; Genetic Markers ; Genetic Predisposition to Disease ; Humans ; MADS Domain Proteins ; MEF2 Transcription Factors ; Male ; Middle Aged ; Molecular Sequence Data ; Muscle, Smooth/cytology/metabolism ; Myocardial Infarction/*genetics/metabolism ; Myogenic Regulatory Factors ; Pedigree ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Protein Transport ; Rats ; Risk Factors ; *Sequence Deletion ; Signal Transduction ; Transcription Factors/chemistry/*genetics/metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2003-12-03
    Description: The BAR (Bin/amphiphysin/Rvs) domain is the most conserved feature in amphiphysins from yeast to human and is also found in endophilins and nadrins. We solved the structure of the Drosophila amphiphysin BAR domain. It is a crescent-shaped dimer that binds preferentially to highly curved negatively charged membranes. With its N-terminal amphipathic helix and BAR domain (N-BAR), amphiphysin can drive membrane curvature in vitro and in vivo. The structure is similar to that of arfaptin2, which we find also binds and tubulates membranes. From this, we predict that BAR domains are in many protein families, including sorting nexins, centaurins, and oligophrenins. The universal and minimal BAR domain is a dimerization, membrane-binding, and curvature-sensing module.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peter, Brian J -- Kent, Helen M -- Mills, Ian G -- Vallis, Yvonne -- Butler, P Jonathan G -- Evans, Philip R -- McMahon, Harvey T -- New York, N.Y. -- Science. 2004 Jan 23;303(5657):495-9. Epub 2003 Nov 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645856" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factors/chemistry/genetics/metabolism ; *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; COP-Coated Vesicles/metabolism ; Carrier Proteins/chemistry/genetics/metabolism ; Cell Membrane/chemistry/metabolism ; Clathrin/metabolism ; Clathrin-Coated Vesicles/metabolism ; Coated Vesicles/chemistry/*metabolism ; Crystallography, X-Ray ; *Cytoskeletal Proteins ; Dimerization ; Drosophila/chemistry ; Drosophila Proteins/*chemistry/*metabolism ; GTPase-Activating Proteins/chemistry/metabolism ; Liposomes/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Nuclear Proteins/chemistry/metabolism ; Phosphoproteins/chemistry/metabolism ; Protein Binding ; Protein Structure, Secondary ; *Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2003-09-06
    Description: Major histocompatibility complex (MHC) class I molecules display tens of thousands of peptides on the cell surface, derived from virtually all endogenous proteins, for inspection by cytotoxic T cells (CTLs). We show that, in normal mouse cells, MHC I molecules present a peptide encoded in the 3' "untranslated" region. Despite its rarity, the peptide elicits CTL responses and induces self-tolerance, establishing that immune surveillance extends well beyond conventional polypeptides. Furthermore, translation of this cryptic peptide occurs by a previously unknown mechanism that decodes the CUG initiation codon as leucine rather than the canonical methionine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwab, Susan R -- Li, Katy C -- Kang, Chulho -- Shastri, Nilabh -- New York, N.Y. -- Science. 2003 Sep 5;301(5638):1367-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12958358" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Amino Acid Sequence ; Animals ; *Antigen Presentation ; B-Lymphocytes/metabolism ; Base Sequence ; Codon, Initiator ; Codon, Terminator ; Dendritic Cells/immunology/metabolism ; Female ; Fibroblasts/metabolism ; H-2 Antigens/*immunology ; Hybridomas ; Leucine/genetics/metabolism ; Male ; Mice ; Mice, Transgenic ; Minor Histocompatibility Antigens/genetics ; Molecular Sequence Data ; Peptides/*genetics/*immunology ; *Protein Biosynthesis ; Proteins/genetics ; Self Tolerance ; Spleen/cytology/immunology ; T-Lymphocytes, Cytotoxic/immunology ; Transfection ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2003-05-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bardelli, Alberto -- Parsons, D Williams -- Silliman, Natalie -- Ptak, Janine -- Szabo, Steve -- Saha, Saurabh -- Markowitz, Sanford -- Willson, James K V -- Parmigiani, Giovanni -- Kinzler, Kenneth W -- Vogelstein, Bert -- Velculescu, Victor E -- CA43460/CA/NCI NIH HHS/ -- CA57345/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 May 9;300(5621):949.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Howard Hughes Medical Institute and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738854" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Colorectal Neoplasms/*enzymology/*genetics ; Computational Biology ; *DNA Mutational Analysis ; Exons ; Fusion Proteins, gag-onc/genetics ; Guanylate Cyclase/genetics ; Humans ; Molecular Sequence Data ; Mutation ; Polymerase Chain Reaction ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/chemistry/*genetics/metabolism ; Receptor, EphA3/genetics ; Receptor, trkB/genetics ; Receptor, trkC/genetics ; Sequence Analysis, DNA ; Vascular Endothelial Growth Factor Receptor-2/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2003-02-01
    Description: Transit peptides mediate protein targeting into plastids and are only poorly understood. We extracted amino acid features from transit peptides that target proteins to the relict plastid (apicoplast) of malaria parasites. Based on these amino acid characteristics, we identified 466 putative apicoplast proteins in the Plasmodium falciparum genome. Altering the specific charge characteristics in a model transit peptide by site-directed mutagenesis severely disrupted organellar targeting in vivo. Similarly, putative Hsp70 (DnaK) binding sites present in the transit peptide proved to be important for correct targeting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Foth, Bernardo J -- Ralph, Stuart A -- Tonkin, Christopher J -- Struck, Nicole S -- Fraunholz, Martin -- Roos, David S -- Cowman, Alan F -- McFadden, Geoffrey I -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):705-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12560551" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Carrier Protein/metabolism ; Algorithms ; Amino Acid Sequence ; Amino Acid Substitution ; Amino Acids/analysis/chemistry ; Animals ; Asparagine/analysis ; Binding Sites ; Computational Biology ; Green Fluorescent Proteins ; HSP70 Heat-Shock Proteins/metabolism ; Heat-Shock Proteins/metabolism ; Luminescent Proteins/metabolism ; Lysine/analysis ; Models, Biological ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Neural Networks (Computer) ; Organelles/*metabolism ; Plasmodium falciparum/*metabolism ; Protein Binding ; *Protein Sorting Signals ; *Protein Transport ; Protozoan Proteins/*chemistry/*metabolism ; Vacuoles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2003-02-08
    Description: Nuclear genes control plastid differentiation in response to developmental signals, environmental signals, and retrograde signals from plastids themselves. In return, plastids emit signals that are essential for proper expression of many nuclear photosynthetic genes. Accumulation of magnesium-protoporphyrin IX (Mg-Proto), an intermediate in chlorophyll biosynthesis, is a plastid signal that represses nuclear transcription through a signaling pathway that, in Arabidopsis, requires the GUN4 gene. GUN4 binds the product and substrate of Mg- chelatase, an enzyme that produces Mg-Proto, and activates Mg-chelatase. Thus, GUN4 participates in plastid-to-nucleus signaling by regulating Mg-Proto synthesis or trafficking.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larkin, Robert M -- Alonso, Jose M -- Ecker, Joseph R -- Chory, Joanne -- New York, N.Y. -- Science. 2003 Feb 7;299(5608):902-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12574634" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Arabidopsis/*genetics/growth & development/metabolism ; Arabidopsis Proteins/chemistry/*genetics/isolation & purification/*metabolism ; Carrier Proteins/chemistry/*genetics/isolation & purification/*metabolism ; Cell Nucleus/metabolism ; Chlorophyll/*biosynthesis ; Chloroplasts/*metabolism ; Chromosome Mapping ; Chromosomes, Plant ; Cloning, Molecular ; Cyanobacteria/enzymology/genetics/metabolism ; Deuteroporphyrins/metabolism ; Enzyme Activation ; *Genes, Plant ; Genes, Reporter ; *Intracellular Signaling Peptides and Proteins ; Lyases/chemistry/isolation & purification/metabolism ; Magnesium/metabolism ; Molecular Sequence Data ; Mutation ; Mutation, Missense ; Protein Binding ; Protein Subunits/metabolism ; Protein Transport ; Protoporphyrins/*metabolism ; Recombinant Proteins/metabolism ; *Signal Transduction ; Thylakoids/chemistry/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2003-10-11
    Description: Neuronal axons connect to multiple target cells through the formation of collateral branches, but the mechanisms that regulate this process are largely unknown. We show that BAM-2, a neurexin-related transmembrane protein, is required for development of VC motoneuron branches in the worm Caenorhabditis elegans. Expression analysis and ectopic expression experiments suggest that BAM-2 functions as a branch termination cue and reveal a mechanism for selective control of branches that sprout off a primary axon.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colavita, Antonio -- Tessier-Lavigne, Marc -- New York, N.Y. -- Science. 2003 Oct 10;302(5643):293-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14551437" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Axons/*physiology/ultrastructure ; Caenorhabditis elegans/genetics/growth & development/*physiology/ultrastructure ; Caenorhabditis elegans Proteins/chemistry/genetics/*physiology ; Cues ; Female ; Gene Expression Profiling ; Genes, Helminth ; Growth Cones/physiology ; Ligands ; Membrane Proteins/chemistry/genetics/*physiology ; Molecular Sequence Data ; Motor Neurons/*physiology/ultrastructure ; Mutation ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Vulva/cytology/innervation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2003-03-01
    Description: A single antibody was shown to adopt different binding-site conformations and thereby bind unrelated antigens. Analysis by both x-ray crystallography and pre-steady-state kinetics revealed an equilibrium between different preexisting isomers, one of which possessed a promiscuous, low-affinity binding site for aromatic ligands, including the immunizing hapten. A subsequent induced-fit isomerization led to high-affinity complexes with a deep and narrow binding site. A protein antigen identified by repertoire selection made use of an unrelated antibody isomer with a wide, shallow binding site. Conformational diversity, whereby one sequence adopts multiple structures and multiple functions, can increase the effective size of the antibody repertoire but may also lead to autoimmunity and allergy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉James, Leo C -- Roversi, Pietro -- Tawfik, Dan S -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1362-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2HQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610298" target="_blank"〉PubMed〈/a〉
    Keywords: 2,4-Dinitrophenol/immunology ; Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/immunology ; Antibody Diversity ; *Antibody Specificity ; Antigen-Antibody Complex ; Antigen-Antibody Reactions ; Antigens/*immunology ; Binding Sites, Antibody ; Cross Reactions ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Haptens/immunology ; Hydrogen Bonding ; Immunoglobulin E/*chemistry/*immunology ; Immunoglobulin Fragments/chemistry/immunology ; Isomerism ; Kinetics ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Peptide Library ; Protein Conformation ; Recombinant Proteins/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2003-06-28
    Description: The sorting of sodium channels to axons and the formation of clusters are of primary importance for neuronal electrogenesis. Here, we showed that the cytoplasmic loop connecting domains II and III of the Nav1 subunit contains a determinant conferring compartmentalization in the axonal initial segment of rat hippocampal neurons. Expression of a soluble Nav1.2II-III linker protein led to the disorganization of endogenous sodium channels. The motif was sufficient to redirect a somatodendritic potassium channel to the axonal initial segment, a process involving association with ankyrin G. Thus, this motif may play a fundamental role in controlling electrical excitability during development and plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garrido, Juan Jose -- Giraud, Pierre -- Carlier, Edmond -- Fernandes, Fanny -- Moussif, Anissa -- Fache, Marie-Pierre -- Debanne, Dominique -- Dargent, Benedicte -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2091-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut National de la Sante et de la Recherche Medicale Unite 464, Institut Jean Roche, Universite de la Mediterranee, Faculte de Medecine Secteur-Nord, Boulevard P. Dramard, 13916 Marseille Cedex 20, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829783" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Ankyrins/metabolism ; Axons/*metabolism ; Cell Membrane/metabolism ; Delayed Rectifier Potassium Channels ; Hippocampus/cytology ; Humans ; Ion Channel Gating ; Molecular Sequence Data ; Mutation ; NAV1.2 Voltage-Gated Sodium Channel ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Neurons/metabolism ; Patch-Clamp Techniques ; Potassium Channels/metabolism ; *Potassium Channels, Voltage-Gated ; Protein Structure, Tertiary ; Protein Transport ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; Sodium Channels/*chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2003-12-03
    Description: The sterol regulatory element-binding protein 2 (SREBP-2), a nuclear transcription factor that is essential for cholesterol metabolism, enters the nucleus through a direct interaction of its helix-loop-helix leucine zipper domain with importin-beta. We show the crystal structure of importin-beta complexed with the active form of SREBP-2. Importin-beta uses characteristic long helices like a pair of chopsticks to interact with an SREBP-2 dimer. Importin-beta changes its conformation to reveal a pseudo-twofold symmetry on its surface structure so that it can accommodate a symmetric dimer molecule. Importin-beta may use a similar strategy to recognize other dimeric cargoes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Soo Jae -- Sekimoto, Toshihiro -- Yamashita, Eiki -- Nagoshi, Emi -- Nakagawa, Atsushi -- Imamoto, Naoko -- Yoshimura, Masato -- Sakai, Hiroaki -- Chong, Khoon Tee -- Tsukihara, Tomitake -- Yoneda, Yoshihiro -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1571-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Protein Research, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645851" target="_blank"〉PubMed〈/a〉
    Keywords: *Active Transport, Cell Nucleus ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Binding Sites ; Cell Nucleus/metabolism ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/*metabolism ; Dimerization ; Helix-Loop-Helix Motifs ; Humans ; Hydrophobic and Hydrophilic Interactions ; Mice ; Models, Molecular ; Molecular Sequence Data ; Nuclear Localization Signals ; Nuclear Pore/metabolism ; Protein Binding ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sterol Regulatory Element Binding Protein 2 ; Transcription Factors/*chemistry/*metabolism ; beta Karyopherins/*chemistry/*metabolism ; ran GTP-Binding Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2003-05-24
    Description: Meiosis is a critical stage of gametogenesis in which alignment and synapsis of chromosomal pairs occur, allowing for the recombination of maternal and paternal genomes. Here we show that FK506 binding protein (Fkbp6) localizes to meiotic chromosome cores and regions of homologous chromosome synapsis. Targeted inactivation of Fkbp6 in mice results in aspermic males and the absence of normal pachytene spermatocytes. Moreover, we identified the deletion of Fkbp6 exon 8 as the causative mutation in spontaneously male sterile as/as mutant rats. Loss of Fkbp6 results in abnormal pairing and misalignments between homologous chromosomes, nonhomologous partner switches, and autosynapsis of X chromosome cores in meiotic spermatocytes. Fertility and meiosis are normal in Fkbp6 mutant females. Thus, Fkbp6 is a component of the synaptonemal complex essential for sex-specific fertility and for the fidelity of homologous chromosome pairing in meiosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882960/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882960/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crackower, Michael A -- Kolas, Nadine K -- Noguchi, Junko -- Sarao, Renu -- Kikuchi, Kazuhiro -- Kaneko, Hiroyuki -- Kobayashi, Eiji -- Kawai, Yasuhiro -- Kozieradzki, Ivona -- Landers, Rushin -- Mo, Rong -- Hui, Chi-Chung -- Nieves, Edward -- Cohen, Paula E -- Osborne, Lucy R -- Wada, Teiji -- Kunieda, Tetsuo -- Moens, Peter B -- Penninger, Josef M -- 38103/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2003 May 23;300(5623):1291-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), c/o Dr. Bohrgasse 7, 1030, Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12764197" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis ; Chromosome Pairing/*physiology ; Cloning, Molecular ; Exons ; Female ; Fertility/*physiology ; Gene Targeting ; Humans ; Infertility, Male/genetics/*physiopathology ; Male ; *Meiosis ; Mice ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/genetics/metabolism ; Oogenesis ; Ovary/physiology ; Prophase ; Rats ; Sequence Deletion ; Spermatids/physiology ; Spermatocytes/physiology/ultrastructure ; Spermatogenesis ; Synaptonemal Complex/*physiology ; Tacrolimus Binding Proteins/chemistry/*genetics/*physiology ; Testis/physiology ; X Chromosome/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2003-12-04
    Description: During apoptosis, phosphatidylserine, which is normally restricted to the inner leaflet of the plasma membrane, is exposed on the surface of apoptotic cells and has been suggested to act as an "eat-me" signal to trigger phagocytosis. It is unclear how phagocytes recognize phosphatidylserine. Recently, a putative phosphatidylserine receptor (PSR) was identified and proposed to mediate recognition of phosphatidylserine and phagocytosis. We report that psr-1, the Caenorhabditis elegans homolog of PSR, is important for cell corpse engulfment. In vitro PSR-1 binds preferentially phosphatidylserine or cells with exposed phosphatidylserine. In C. elegans, PSR-1 acts in the same cell corpse engulfment pathway mediated by intracellular signaling molecules CED-2 (homologous to the human CrkII protein), CED-5 (DOCK180), CED-10 (Rac GTPase), and CED-12 (ELMO), possibly through direct interaction with CED-5 and CED-12. Our findings suggest that PSR-1 is likely an upstream receptor for the signaling pathway containing CED-2, CED-5, CED-10, and CED-12 proteins and plays an important role in recognizing phosphatidylserine during phagocytosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xiaochen -- Wu, Yi-Chun -- Fadok, Valerie A -- Lee, Ming-Chia -- Gengyo-Ando, Keiko -- Cheng, Li-Chun -- Ledwich, Duncan -- Hsu, Pei-Ken -- Chen, Jia-Yun -- Chou, Bin-Kuan -- Henson, Peter -- Mitani, Shohei -- Xue, Ding -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1563-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645848" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; *Apoptosis ; Caenorhabditis elegans/cytology/embryology/metabolism/*physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Carrier Proteins/genetics/*metabolism ; *Cytoskeletal Proteins ; Embryo, Nonmammalian/cytology/metabolism ; Embryonic Development ; Humans ; Jumonji Domain-Containing Histone Demethylases ; Membrane Proteins/genetics/*metabolism ; Molecular Sequence Data ; Mutation ; *Phagocytosis ; Phosphatidylserines/metabolism ; Protein Binding ; Receptors, Cell Surface/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Recombinant Proteins/metabolism ; Signal Transduction ; rac GTP-Binding Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2003-10-25
    Description: Spontaneous resolution of hepatitis C virus (HCV) infection in humans usually affords long-term immunity to persistent viremia and associated liver diseases. Here, we report that memory CD4+ Tcells are essential for this protection. Antibody-mediated depletion of CD4+ Tcells before reinfection of two immune chimpanzees resulted in persistent, low-level viremia despite functional intra-hepatic memory CD8+ Tcell responses. Incomplete control of HCV replication by memory CD8+ Tcells in the absence of adequate CD4+ Tcell help was associated with emergence of viral escape mutations in class I major histocompatibility complex-restricted epitopes and failure to resolve HCV infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grakoui, Arash -- Shoukry, Naglaa H -- Woollard, David J -- Han, Jin-Hwan -- Hanson, Holly L -- Ghrayeb, John -- Murthy, Krishna K -- Rice, Charles M -- Walker, Christopher M -- A14736/PHS HHS/ -- AI40034/AI/NIAID NIH HHS/ -- AI48231/AI/NIAID NIH HHS/ -- CA57973/CA/NCI NIH HHS/ -- CA85883/CA/NCI NIH HHS/ -- N01 HB27091/HB/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):659-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Study of Hepatitis C, Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576438" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Antigen Presentation ; Antigens, Viral/chemistry/genetics/immunology ; CD4-Positive T-Lymphocytes/*immunology ; CD8-Positive T-Lymphocytes/*immunology ; Epitopes ; Evolution, Molecular ; Hepacivirus/genetics/*immunology/*physiology ; Hepatitis C/*immunology/virology ; *Immunologic Memory ; Liver/immunology ; Major Histocompatibility Complex ; Molecular Sequence Data ; Mutation ; Pan troglodytes ; T-Lymphocyte Subsets/immunology ; Time Factors ; Viral Core Proteins/chemistry/genetics/immunology ; Viral Nonstructural Proteins/chemistry/genetics/immunology ; Viremia ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2003-08-02
    Description: The major facilitator superfamily represents the largest group of secondary membrane transporters in the cell. Here we report the 3.3 angstrom resolution structure of a member of this superfamily, GlpT, which transports glycerol-3-phosphate into the cytoplasm and inorganic phosphate into the periplasm. The amino- and carboxyl-terminal halves of the protein exhibit a pseudo two-fold symmetry. Closed off to the periplasm, a centrally located substrate-translocation pore contains two arginines at its closed end, which comprise the substrate-binding site. Upon substrate binding, the protein adopts a more compact conformation. We propose that GlpT operates by a single-binding site, alternating-access mechanism through a rocker-switch type of movement.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Yafei -- Lemieux, M Joanne -- Song, Jinmei -- Auer, Manfred -- Wang, Da-Neng -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):616-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893936" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Biological Transport ; Cell Membrane/chemistry ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/*chemistry/enzymology ; Escherichia coli Proteins/chemistry/metabolism ; Glycerophosphates/*metabolism ; Helix-Turn-Helix Motifs ; Mass Spectrometry ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Periplasm/metabolism ; Phosphates/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2003-02-08
    Description: We report the design and total chemical synthesis of "synthetic erythropoiesis protein" (SEP), a 51-kilodalton protein-polymer construct consisting of a 166-amino-acid polypeptide chain and two covalently attached, branched, and monodisperse polymer moieties that are negatively charged. The ability to control the chemistry allowed us to synthesize a macromolecule of precisely defined covalent structure. SEP was homogeneous as shown by high-resolution analytical techniques, with a mass of 50,825 +/-10 daltons by electrospray mass spectrometry, and with a pI of 5.0. In cell and animal assays for erythropoiesis, SEP displayed potent biological activity and had significantly prolonged duration of action in vivo. These chemical methods are a powerful tool in the rational design of protein constructs with potential therapeutic applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kochendoerfer, Gerd G -- Chen, Shiah-Yun -- Mao, Feng -- Cressman, Sonya -- Traviglia, Stacey -- Shao, Haiyan -- Hunter, Christie L -- Low, Donald W -- Cagle, E Neil -- Carnevali, Maia -- Gueriguian, Vincent -- Keogh, Peter J -- Porter, Heather -- Stratton, Stephen M -- Wiedeke, M Con -- Wilken, Jill -- Tang, Jie -- Levy, Jay J -- Miranda, Les P -- Crnogorac, Milan M -- Kalbag, Suresh -- Botti, Paolo -- Schindler-Horvat, Janice -- Savatski, Laura -- Adamson, John W -- Kung, Ada -- Kent, Stephen B H -- Bradburne, James A -- New York, N.Y. -- Science. 2003 Feb 7;299(5608):884-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gryphon Therapeutics, 250 East Grand Avenue, Suite 90, South San Francisco, CA 94080, USA. Gkochendoerfer@gryphonRX.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12574628" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Circular Dichroism ; *Drug Design ; Drug Stability ; Electrophoresis, Polyacrylamide Gel ; *Erythropoiesis ; Erythropoietin/chemistry/pharmacology ; Hematocrit ; Humans ; Isoelectric Point ; Mice ; Molecular Sequence Data ; Molecular Structure ; Molecular Weight ; *Polymers/*chemical synthesis/*chemistry/pharmacokinetics/pharmacology ; Protein Folding ; Proteins/*chemical synthesis/*chemistry/pharmacokinetics/pharmacology ; Rats ; Receptors, Erythropoietin/drug effects/metabolism ; Recombinant Proteins ; Spectrometry, Mass, Electrospray Ionization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-06-14
    Description: Most proteins have been formed by gene duplication, recombination, and divergence. Proteins of known structure can be matched to about 50% of genome sequences, and these data provide a quantitative description and can suggest hypotheses about the origins of these processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chothia, Cyrus -- Gough, Julian -- Vogel, Christine -- Teichmann, Sarah A -- New York, N.Y. -- Science. 2003 Jun 13;300(5626):1701-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Studies Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12805536" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Catalysis ; Computational Biology ; Enzymes/*chemistry/*genetics/metabolism ; *Evolution, Molecular ; Gene Duplication ; Genome ; Humans ; Metabolism ; Mutation ; Protein Structure, Tertiary ; Proteins/*chemistry/*genetics/metabolism ; Recombination, Genetic ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-06-14
    Description: The relative merits of molecular and paleontological dates of major branching points in the tree of life are currently debated. In some cases, molecular date estimates are up to twice as old as paleontological dates. However, although it is true that paleontological dates are often too young (missing fossils), molecular dates are often too old (statistical bias). Intense study of the dating of major splits in the tree of mammals has shown rapprochement as fossil dates become older and molecular dates become younger.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benton, Michael J -- Ayala, Francisco J -- New York, N.Y. -- Science. 2003 Jun 13;300(5626):1698-700.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. Mike.Benton@bris.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12805535" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Biological Evolution ; Birds/classification ; Classification/*methods ; DNA/analysis ; Evolution, Molecular ; *Fossils ; Invertebrates/classification ; Mammals/classification ; *Paleontology ; *Phylogeny ; Plants/classification ; Polymorphism, Genetic ; Proteins/analysis ; RNA/analysis ; Time ; Vertebrates/classification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2003-01-11
    Description: A small molecule, alpha-(trichloromethyl)-4-pyridineethanol (PETCM), was identified by high-throughput screening as an activator of caspase-3 in extracts of a panel of cancer cells. PETCM was used in combination with biochemical fractionation to identify a pathway that regulates mitochondria-initiated caspase activation. This pathway consists of tumor suppressor putative HLA-DR-associated proteins (PHAP) and oncoprotein prothymosin-alpha (ProT). PHAP proteins promoted caspase-9 activation after apoptosome formation, whereas ProT negatively regulated caspase-9 activation by inhibiting apoptosome formation. PETCM relieved ProT inhibition and allowed apoptosome formation at a physiological concentration of deoxyadenosine triphosphate. Elimination of ProT expression by RNA interference sensitized cells to ultraviolet irradiation-induced apoptosis and negated the requirement of PETCM for caspase activation. Thus, this chemical-biological combinatory approach has revealed the regulatory roles of oncoprotein ProT and tumor suppressor PHAP in apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Xuejun -- Kim, Hyun-Eui -- Shu, Hongjun -- Zhao, Yingming -- Zhang, Haichao -- Kofron, James -- Donnelly, Jennifer -- Burns, Dave -- Ng, Shi-Chung -- Rosenberg, Saul -- Wang, Xiaodong -- GMRO1-57158/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 10;299(5604):223-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12522243" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Apoptosis ; Apoptotic Protease-Activating Factor 1 ; Caspase 3 ; Caspase 9 ; Caspases/metabolism ; Cell Extracts ; Cytochrome c Group/metabolism ; Deoxyadenine Nucleotides/metabolism/pharmacology ; Enzyme Activation ; HeLa Cells ; Humans ; Intracellular Signaling Peptides and Proteins ; Mitochondria/metabolism ; Molecular Sequence Data ; *Neuropeptides ; Nuclear Proteins/chemistry/isolation & purification/*metabolism/pharmacology ; Protein Precursors/chemistry/isolation & purification/*metabolism/pharmacology ; Proteins/chemistry/isolation & purification/*metabolism/pharmacology ; Pyridines/chemistry/*pharmacology ; RNA Interference ; Recombinant Proteins/metabolism/pharmacology ; Signal Transduction ; Thymosin/*analogs & derivatives/chemistry/isolation & ; purification/*metabolism/pharmacology ; Tumor Suppressor Proteins/chemistry/isolation & purification/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-11-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, David T -- New York, N.Y. -- Science. 2003 Nov 21;302(5649):1347-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computer Science and Department of Biochemistry and Molecular Biology, University College, London WC1E 6BT, UK. dtj@cs.ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14631028" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Sequence ; Computational Biology ; Computer Graphics ; Computer Simulation ; Crystallography, X-Ray ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; *Protein Conformation ; *Protein Engineering ; *Protein Folding ; Proteins/*chemistry ; *Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2003-08-23
    Description: The FACT (facilitates chromatin transcription) complex is required for transcript elongation through nucleosomes by RNA polymerase II (Pol II) in vitro. Here, we show that FACT facilitates Pol II-driven transcription by destabilizing nucleosomal structure so that one histone H2A-H2B dimer is removed during enzyme passage. We also demonstrate that FACT possesses intrinsic histone chaperone activity and can deposit core histones onto DNA. Importantly, FACT activity requires both of its constituent subunits and is dependent on the highly acidic C terminus of its larger subunit, Spt16. These findings define the mechanism by which Pol II can transcribe through chromatin without disrupting its epigenetic status.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Belotserkovskaya, Rimma -- Oh, Sangtaek -- Bondarenko, Vladimir A -- Orphanides, George -- Studitsky, Vasily M -- Reinberg, Danny -- GM37120/GM/NIGMS NIH HHS/ -- GM58650/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 22;301(5636):1090-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12934006" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Cycle Proteins/chemistry/metabolism ; Cell Line ; DNA/metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Dimerization ; HeLa Cells ; High Mobility Group Proteins/chemistry/metabolism ; Histones/metabolism ; Humans ; Models, Genetic ; Molecular Chaperones/chemistry/metabolism ; Molecular Sequence Data ; Nucleosomes/*metabolism ; Protein Binding ; Protein Subunits ; RNA Polymerase II/*metabolism ; Recombinant Proteins/chemistry/metabolism ; Templates, Genetic ; Transcription Factors/chemistry/metabolism ; *Transcription, Genetic ; Transcriptional Elongation Factors/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2003-12-06
    Description: In vitro studies have indicated that reactive oxygen species (ROS) and the oxidation of signaling molecules are important mediators of signal transduction. We have identified two pathways by which the altered redox chemistry of the clk-1 mutants of Caenorhabditis elegans acts in vivo on germline development. One pathway depends on the oxidation of an analog of vertebrate low density lipoprotein (LDL) and acts on the germline through the Ack-related tyrosine kinase (ARK-1) kinase and inositol trisphosphate (IP3) signaling. The other pathway is the oncogenic ras signaling pathway, whose action on germline as well as vulval development appears to be modulated by cytoplasmic ROS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shibata, Yukimasa -- Branicky, Robyn -- Landaverde, Irene Oviedo -- Hekimi, Siegfried -- New York, N.Y. -- Science. 2003 Dec 5;302(5651):1779-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, Quebec, Canada, H3A 1B1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14657502" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apolipoproteins B/genetics/metabolism ; Base Sequence ; Caenorhabditis elegans/genetics/*growth & development/*metabolism ; Caenorhabditis elegans Proteins/chemistry/genetics/metabolism ; Cholesterol/metabolism ; Cloning, Molecular ; Disorders of Sex Development ; Female ; Inositol Phosphates/metabolism ; Lipoproteins, LDL/*metabolism ; Molecular Sequence Data ; Mutation ; Oxidation-Reduction ; Phenotype ; Protein-Tyrosine Kinases/metabolism ; RNA Interference ; Reactive Oxygen Species/*metabolism ; Transcription Factors/genetics/metabolism ; Vulva/growth & development ; ras Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2003-05-24
    Description: The capsaicin receptor (TRPV1), a heat-activated ion channel of the pain pathway, is sensitized by phosphatidylinositol-4,5-bisphosphate (PIP2) hydrolysis after phospholipase C activation. We identify a site within the C-terminal domain of TRPV1 that is required for PIP2-mediated inhibition of channel gating. Mutations that weaken PIP2-TRPV1 interaction reduce thresholds for chemical or thermal stimuli, whereas TRPV1 channels in which this region is replaced with a lipid-binding domain from PIP2-activated potassium channels remain inhibited by PIP2. The PIP2-interaction domain therefore serves as a critical determinant of thermal threshold and dynamic sensitivity range, tuning TRPV1, and thus the sensory neuron, to appropriately detect heat under normal or pathophysiological conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prescott, Elizabeth D -- Julius, David -- New York, N.Y. -- Science. 2003 May 23;300(5623):1284-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143-2140, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12764195" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arsenicals/pharmacology ; Binding Sites ; Capsaicin/metabolism/pharmacology ; Carrier Proteins ; Hot Temperature ; Humans ; Ion Channel Gating ; Membrane Proteins ; Molecular Sequence Data ; Mutation ; Oocytes ; Patch-Clamp Techniques ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphorylation ; Potassium Channels, Inwardly Rectifying/chemistry/genetics/metabolism ; Protein Structure, Tertiary ; Rats ; Receptor, Epidermal Growth Factor/metabolism ; Receptor, trkA/metabolism ; Receptors, Drug/*chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Deletion ; Type C Phospholipases/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2003-09-23
    Description: Receptors for sex and adrenal steroid hormones are absent from fully sequenced invertebrate genomes and have not been recovered from other invertebrates. Here we report the isolation of an estrogen receptor ortholog from the mollusk Aplysia californica and the reconstruction, synthesis, and experimental characterization of functional domains of the ancestral protein from which all extant steroid receptors (SRs) evolved. Our findings indicate that SRs are extremely ancient and widespread, having diversified from a primordial gene before the origin of bilaterally symmetric animals, and that this ancient receptor had estrogen receptor-like functionality. This gene was lost in the lineage leading to arthropods and nematodes and became independent of hormone regulation in the Aplysia lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thornton, Joseph W -- Need, Eleanor -- Crews, David -- 41770/PHS HHS/ -- New York, N.Y. -- Science. 2003 Sep 19;301(5640):1714-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR 97403, USA. joet@uoregon.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14500980" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Aplysia/chemistry/genetics/*metabolism ; Biological Evolution ; CHO Cells ; Cloning, Molecular ; Cricetinae ; DNA/metabolism ; Estrogens/*metabolism/pharmacology ; *Evolution, Molecular ; Gene Duplication ; Humans ; Ligands ; Likelihood Functions ; Molecular Sequence Data ; Mutation ; *Phylogeny ; Polymerase Chain Reaction ; Protein Structure, Tertiary ; Receptors, Estrogen/chemistry/genetics/isolation & purification/*metabolism ; Receptors, Steroid/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Steroids/metabolism/pharmacology ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2003-05-10
    Description: The KirBac1.1 channel belongs to the inward-rectifier family of potassium channels. Here we report the structure of the entire prokaryotic Kir channel assembly, in the closed state, refined to a resolution of 3.65 angstroms. We identify the main activation gate and structural elements involved in gating. On the basis of structural evidence presented here, we suggest that gating involves coupling between the intracellular and membrane domains. This further suggests that initiation of gating by membrane or intracellular signals represents different entry points to a common mechanistic pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuo, Anling -- Gulbis, Jacqueline M -- Antcliff, Jennifer F -- Rahman, Tahmina -- Lowe, Edward D -- Zimmer, Jochen -- Cuthbertson, Jonathan -- Ashcroft, Frances M -- Ezaki, Takayuki -- Doyle, Declan A -- New York, N.Y. -- Science. 2003 Jun 20;300(5627):1922-6. Epub 2003 May 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Oxford, Department of Biochemistry, Laboratory of Molecular Biophysics, South Parks Road, Oxford OX1 3QU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738871" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Burkholderia pseudomallei/*chemistry ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Hydrophobic and Hydrophilic Interactions ; *Ion Channel Gating ; Ion Transport ; Models, Molecular ; Molecular Sequence Data ; Potassium/metabolism ; Potassium Channels, Inwardly Rectifying/*chemistry/metabolism ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2003-03-08
    Description: Photosynthetic organisms adapt to changes in light quality by redistributing light excitation energy between two photosystems through state transition. This reorganization of antenna systems leads to an enhanced photosynthetic yield. Using a genetic approach in Chlamydomonas reinhardtii to dissect the signal transduction pathway of state transition, we identified a chloroplast thylakoid-associated serine-threonine protein kinase, Stt7, that has homologs in land plants. Stt7 is required for the phosphorylation of the major light-harvesting protein (LHCII) and for state transition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Depege, Nathalie -- Bellafiore, Stephane -- Rochaix, Jean-David -- New York, N.Y. -- Science. 2003 Mar 7;299(5612):1572-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Department of Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12624266" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/chemistry/genetics/metabolism ; Alleles ; Amino Acid Sequence ; Animals ; Arabidopsis/enzymology/genetics ; Catalytic Domain ; Chlamydomonas reinhardtii/*enzymology/genetics/metabolism ; Chloroplasts/enzymology ; Cosmids ; DNA, Complementary ; Expressed Sequence Tags ; Fluorescence ; Genes ; Genetic Complementation Test ; Light ; Molecular Sequence Data ; Mutation ; Oxidation-Reduction ; Phosphorylation ; Photosynthesis ; Photosynthetic Reaction Center Complex Proteins/*metabolism ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Signal Transduction ; Thylakoids/*enzymology ; Transcription, Genetic ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sreenivasan, Aparna -- New York, N.Y. -- Science. 2003 Dec 19;302(5653):2050.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684795" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Animals ; Calmodulin/metabolism ; Cell Nucleus/*metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Female ; Gonadal Dysgenesis, 46,XY/*etiology/genetics/metabolism ; Gonads/cytology/embryology/metabolism ; Humans ; Male ; Mice ; Mutation ; Nuclear Localization Signals ; Nuclear Pore/metabolism ; *Nuclear Proteins ; Protein Binding ; Sex-Determining Region Y Protein ; *Transcription Factors ; beta Karyopherins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2003-09-27
    Description: The RNA interference (RNAi) pathway is initiated by processing long double-stranded RNA into small interfering RNA (siRNA). The siRNA-generating enzyme was purified from Drosophila S2cells and consists of two stoichiometric subunits: Dicer-2(DCR-2) and a previously unknown protein that we named R2D2. R2D2 is homologous to the Caenorhabditis elegans RNAi protein RDE-4. Association with R2D2 does not affect the enzymatic activity of DCR-2. Rather, the DCR-2/R2D2 complex, but not DCR-2 alone, binds to siRNA and enhances sequence-specific messenger RNA degradation mediated by the RNA-initiated silencing complex (RISC). These results indicate that R2D2 bridges the initiation and effector steps of the Drosophila RNAi pathway by facilitating siRNA passage from Dicer to RISC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Qinghua -- Rand, Tim A -- Kalidas, Savitha -- Du, Fenghe -- Kim, Hyun-Eui -- Smith, Dean P -- Wang, Xiaodong -- DC02539/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 26;301(5641):1921-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512631" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Argonaute Proteins ; Biotinylation ; Caenorhabditis elegans/genetics/metabolism ; Caenorhabditis elegans Proteins/chemistry ; Cell Line ; Chemical Precipitation ; Drosophila Proteins/chemistry/genetics/*isolation & purification/*metabolism ; Drosophila melanogaster/*genetics/metabolism ; Electrophoretic Mobility Shift Assay ; Endoribonucleases/genetics/isolation & purification/*metabolism ; Kinetics ; Molecular Sequence Data ; Mutation ; Protein Structure, Tertiary ; RNA Helicases/genetics/*isolation & purification/*metabolism ; *RNA Interference ; RNA, Double-Stranded/metabolism ; RNA, Messenger/metabolism ; RNA, Small Interfering/*metabolism ; RNA-Binding Proteins/chemistry/genetics/isolation & purification/*metabolism ; RNA-Induced Silencing Complex/isolation & purification/metabolism ; Recombinant Proteins/metabolism ; Ribonuclease III
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2003-05-24
    Description: The phosphorylation of heptahelical receptors by heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor kinases (GRKs) is a universal regulatory mechanism that leads to desensitization of G protein signaling and to the activation of alternative signaling pathways. We determined the crystallographic structure of bovine GRK2 in complex with G protein beta1gamma2 subunits. Our results show how the three domains of GRK2-the RGS (regulator of G protein signaling) homology, protein kinase, and pleckstrin homology domains-integrate their respective activities and recruit the enzyme to the cell membrane in an orientation that not only facilitates receptor phosphorylation, but also allows for the simultaneous inhibition of signaling by Galpha and Gbetagamma subunits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lodowski, David T -- Pitcher, Julie A -- Capel, W Darrell -- Lefkowitz, Robert J -- Tesmer, John J G -- HL16037/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2003 May 23;300(5623):1256-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12764189" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cattle ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Cyclic AMP-Dependent Protein Kinases/*chemistry/*metabolism ; *GTP-Binding Protein beta Subunits ; *GTP-Binding Protein gamma Subunits ; Heterotrimeric GTP-Binding Proteins/*chemistry/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; beta-Adrenergic Receptor Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2003-04-26
    Description: Upon fertilization, remodeling of condensed maternal and paternal gamete DNA occurs to form the diploid genome. In Xenopus laevis, nucleoplasmin 2 (NPM2) decondenses sperm DNA in vitro. To study chromatin remodeling in vivo, we isolated mammalian NPM2 orthologs. Mouse NPM2 accumulates in oocyte nuclei and persists in preimplantation embryos. Npm2 knockout females have fertility defects owing to failed preimplantation embryo development. Although sperm DNA decondensation proceeds without NPM2, abnormalities are evident in oocyte and early embryonic nuclei. These defects include an absence of coalesced nucleolar structures and loss of heterochromatin and deacetylated histone H3 that normally circumscribe nucleoli in oocytes and early embryos, respectively. Thus, Npm2 is a maternal effect gene critical for nuclear and nucleolar organization and embryonic development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burns, Kathleen H -- Viveiros, Maria M -- Ren, Yongsheng -- Wang, Pei -- DeMayo, Francesco J -- Frail, Donald E -- Eppig, John J -- Matzuk, Martin M -- HD07495/HD/NICHD NIH HHS/ -- HD21970/HD/NICHD NIH HHS/ -- HD33438/HD/NICHD NIH HHS/ -- HD42500/HD/NICHD NIH HHS/ -- T32GM07330/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Apr 25;300(5619):633-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12714744" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Nucleolus/*physiology/ultrastructure ; Cell Nucleus/metabolism ; Chorionic Gonadotropin/pharmacology ; Chromatin/physiology/ultrastructure ; Crosses, Genetic ; Cytoplasm/metabolism ; Embryo, Mammalian/*physiology ; *Embryonic and Fetal Development ; Female ; Fertilization ; Heterochromatin/*physiology/ultrastructure ; Histones/metabolism ; Humans ; Male ; Meiosis ; Mice ; Mice, Knockout ; Mitosis ; Molecular Sequence Data ; Nuclear Proteins/chemistry/genetics/*physiology ; Nucleoplasmins ; Oocytes/*physiology ; Oogenesis ; Protein Biosynthesis ; Rats ; Spindle Apparatus/physiology/ultrastructure ; Transcription, Genetic ; Zygote/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2003-05-06
    Description: Transmembrane helices of integrin alpha and beta subunits have been implicated in the regulation of integrin activity. Two mutations, glycine-708 to asparagine-708 (G708N)and methionine-701 to asparagine-701, in the transmembrane helix of the beta3 subunit enabled integrin alphaIIbbeta3 to constitutively bind soluble fibrinogen. Further characterization of the G708N mutant revealed that it induced alphaIIbbeta3 clustering and constitutive phosphorylation of focal adhesion kinase. This mutation also enhanced the tendency of the transmembrane helix to form homotrimers. These results suggest that homomeric associations involving transmembrane domains provide a driving force for integrin activation. They also suggest a structural basis for the coincidence of integrin activation and clustering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Renhao -- Mitra, Neal -- Gratkowski, Holly -- Vilaire, Gaston -- Litvinov, Rustem -- Nagasami, Chandrasekaran -- Weisel, John W -- Lear, James D -- DeGrado, William F -- Bennett, Joel S -- HL40387/HL/NHLBI NIH HHS/ -- HL54500/HL/NHLBI NIH HHS/ -- K01 CA096706/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 May 2;300(5620):795-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730600" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Antibodies, Monoclonal/metabolism ; Biopolymers ; CHO Cells ; Cell Adhesion ; Cell Membrane/*chemistry ; Cricetinae ; Cricetulus ; Dimerization ; Fibrinogen/metabolism ; Fluorescein-5-isothiocyanate ; Focal Adhesion Protein-Tyrosine Kinases ; Ligands ; Microscopy, Fluorescence ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Platelet Glycoprotein GPIIb-IIIa Complex/*chemistry/genetics/*metabolism ; Protein Conformation ; *Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/metabolism ; Receptor Aggregation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2003-06-28
    Description: Bixin, also known as annatto, is a seed-specific pigment widely used in foods and cosmetics since pre-Columbian times. We show that three genes from Bixa orellana, native to tropical America, govern bixin biosynthesis. These genes code for lycopene cleavage dioxygenase, bixin aldehyde dehydrogenase, and norbixin carboxyl methyltransferase, which catalyze the sequential conversion of lycopene into bixin. Introduction of these three genes in Escherichia coli engineered to produce lycopene induced bixin synthesis, thus expanding the supply of this economically important plant product.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bouvier, Florence -- Dogbo, Odette -- Camara, Bilal -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2089-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Biologie Moleculaire des Plantes, CNRS, Universite Louis Pasteur, 67084 Strasbourg, Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829782" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde Dehydrogenase/chemistry/genetics/metabolism ; Amino Acid Sequence ; Bixaceae/*genetics/*metabolism ; Carotenoids/*biosynthesis/metabolism ; Catalysis ; Cloning, Molecular ; DNA, Complementary ; Escherichia coli/genetics/metabolism ; Gene Library ; Genes, Plant ; Methyltransferases/chemistry/genetics/metabolism ; Molecular Sequence Data ; Oxygenases/genetics/metabolism ; Recombinant Proteins/metabolism ; Seeds/genetics ; Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2003-10-04
    Description: Agriculturally advantageous reduction in plant height is usually achieved by blocking the action or production of gibberellins. Here, we describe a different dwarfing mechanism found in maize brachytic2 (br2) mutants characterized by compact lower stalk internodes. The height reduction in these plants results from the loss of a P-glycoprotein that modulates polar auxin transport in the maize stalk. The sorghum ortholog of br2 is dwarf3 (dw3), an unstable mutant of long-standing commercial interest and concern. A direct duplication within the dw3 gene is responsible for its mutant nature and also for its instability, because it facilitates unequal crossing-over at the locus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Multani, Dilbag S -- Briggs, Steven P -- Chamberlin, Mark A -- Blakeslee, Joshua J -- Murphy, Angus S -- Johal, Gurmukh S -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):81-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pioneer Hi-Bred International, 7250 Northwest 62nd Avenue, Johnston, IA 50131, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526073" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Base Sequence ; Biological Transport ; Cloning, Molecular ; Crossing Over, Genetic ; Gene Duplication ; *Genes, Plant ; Genes, Recessive ; Indoleacetic Acids/*metabolism ; Light ; Molecular Sequence Data ; Mutation ; P-Glycoproteins/chemistry/*genetics/metabolism ; Plant Proteins/chemistry/genetics/metabolism ; Plant Stems/cytology/metabolism ; Poaceae/cytology/genetics/growth & development/*metabolism ; Recombination, Genetic ; Zea mays/cytology/genetics/growth & development/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2003-01-18
    Description: Condensed tannins (CTs) are flavonoid oligomers, many of which have beneficial effects on animal and human health. The flavanol (-)-epicatechin is a component of many CTs and contributes to flavor and astringency in tea and wine. We show that the BANYULS (BAN) genes from Arabidopsis thaliana and Medicago truncatula encode anthocyanidin reductase, which converts anthocyanidins to their corresponding 2,3-cis-flavan-3-ols. Ectopic expression of BAN in tobacco flower petals and Arabidopsis leaves results in loss of anthocyanins and accumulation of CTs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, De-Yu -- Sharma, Shashi B -- Paiva, Nancy L -- Ferreira, Daneel -- Dixon, Richard A -- New York, N.Y. -- Science. 2003 Jan 17;299(5605):396-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12532018" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anthocyanins/*biosynthesis/chemistry/*metabolism ; Arabidopsis/*enzymology/genetics ; *Arabidopsis Proteins ; Catechin/metabolism ; Circular Dichroism ; Genes, Plant ; Magnetic Resonance Spectroscopy ; Medicago/*enzymology/genetics ; Molecular Sequence Data ; NAD/metabolism ; NADH, NADPH Oxidoreductases/genetics/*metabolism ; NADP/metabolism ; Oxidation-Reduction ; Oxygenases/metabolism ; Plants, Genetically Modified ; *Proanthocyanidins ; Recombinant Proteins/metabolism ; Seeds/metabolism ; Stereoisomerism ; Tannins/*biosynthesis/chemistry ; Tobacco/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2003-10-04
    Description: Nitric oxide (NO) serves as a signal in plants. An Arabidopsis mutant (Atnos1) was identified that had impaired NO production, organ growth, and abscisic acid-induced stomatal movements. Expression of AtNOS1 with a viral promoter in Atnos1 mutant plants resulted in overproduction of NO. Purified AtNOS1 protein used the substrates arginine and nicotinamide adenine dinucleotide phosphate and was activated by Ca2+ and calmodulin-like mammalian endothelial nitric oxide synthase and neuronal nitric oxide synthase, yet it is a distinct enzyme with no sequence similarities to any mammalian isoform. Thus, AtNOS1 encodes a distinct nitric oxide synthase that regulates growth and hormonal signaling in plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Fang-Qing -- Okamoto, Mamoru -- Crawford, Nigel M -- GM 40672/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):100-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526079" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*pharmacology ; Amino Acid Sequence ; Arabidopsis/*enzymology/*genetics/growth & development ; Arabidopsis Proteins/chemistry/*genetics/isolation & purification/*metabolism ; Enzyme Inhibitors/pharmacology ; Genes, Plant ; Kinetics ; Light ; Molecular Sequence Data ; Mutation ; NG-Nitroarginine Methyl Ester/pharmacology ; Nitric Oxide/*metabolism ; Nitric Oxide Donors/pharmacology ; Nitric Oxide Synthase/chemistry/*genetics/isolation & purification/*metabolism ; Nitroprusside/pharmacology ; Plant Epidermis/drug effects/physiology ; Plant Leaves/enzymology/growth & development/physiology ; Plant Roots/growth & development ; Plant Shoots/growth & development ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2003-09-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delsuc, Frederic -- Phillips, Matthew J -- Penny, David -- New York, N.Y. -- Science. 2003 Sep 12;301(5639):1482; author reply 1482.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Allan Wilson Center for Molecular, Ecology and Evolution, Institute of Molecular BioSciences, Science Tower D, Massey University, Post Office Box 11-222, Palmerston North, New Zealand. D.Penny@massey.ac.nz〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12970547" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arthropods/classification/*genetics ; Base Composition ; Base Sequence ; Bayes Theorem ; Insects/classification/genetics ; Likelihood Functions ; Mitochondria/genetics ; *Phylogeny ; Proteins/chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2003-03-22
    Description: Gibberellin (GA) regulates growth and development in plants. We isolated and characterized a rice GA-insensitive dwarf mutant, gid2. The GID2 gene encodes a putative F-box protein, which interacted with the rice Skp1 homolog in a yeast two-hybrid assay. In gid2, a repressor for GA signaling, SLR1, was highly accumulated in a phosphorylated form and GA increased its concentration, whereas SLR1 was rapidly degraded by GA through ubiquitination in the wild type. We conclude that GID2 is a positive regulator of GA signaling and that regulated degradation of SLR1 is initiated through GA-dependent phosphorylation and finalized by an SCF(GID2)-proteasome pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sasaki, Akie -- Itoh, Hironori -- Gomi, Kenji -- Ueguchi-Tanaka, Miyako -- Ishiyama, Kanako -- Kobayashi, Masatomo -- Jeong, Dong-Hoon -- An, Gynheung -- Kitano, Hidemi -- Ashikari, Motoyuki -- Matsuoka, Makoto -- New York, N.Y. -- Science. 2003 Mar 21;299(5614):1896-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BioScience Center, Nagoya University, Nagoya 464-8601, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12649483" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Codon, Terminator ; Enzyme Induction ; Genes, Plant ; Gibberellins/*metabolism/pharmacology ; Ligases/metabolism ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Oryza/genetics/growth & development/*metabolism ; Peptide Hydrolases/metabolism ; Phenotype ; Phosphorylation ; Plant Proteins/chemistry/*genetics/*metabolism ; *Proteasome Endopeptidase Complex ; Protein Structure, Tertiary ; Seeds/metabolism ; *Signal Transduction ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases ; alpha-Amylases/biosynthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2003-09-06
    Description: beta-Arrestins bind to activated seven transmembrane-spanning (7TMS) receptors (G protein-coupled receptors) after the receptors are phosphorylated by G protein-coupled receptor kinases (GRKs), thereby regulating their signaling and internalization. Here, we demonstrate an unexpected and analogous role of beta-arrestin 2 (betaarr2) for the single transmembrane-spanning type III transforming growth factor-beta (TGF-beta) receptor (TbetaRIII, also referred to as betaglycan). Binding of betaarr2 to TbetaRIII was also triggered by phosphorylation of the receptor on its cytoplasmic domain (likely at threonine 841). However, such phosphorylation was mediated by the type II TGF-beta receptor (TbetaRII), which is itself a kinase, rather than by a GRK. Association with betaarr2 led to internalization of both receptors and down-regulation of TGF-beta signaling. Thus, the regulatory actions of beta-arrestins are broader than previously appreciated, extending to the TGF-beta receptor family as well.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Wei -- Kirkbride, Kellye C -- How, Tam -- Nelson, Christopher D -- Mo, Jinyao -- Frederick, Joshua P -- Wang, Xiao-Fan -- Lefkowitz, Robert J -- Blobe, Gerard C -- CA 75368/CA/NCI NIH HHS/ -- CA 91816/CA/NCI NIH HHS/ -- HL 16037/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 5;301(5638):1394-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Duke University Medical Center, Departments of Medicine and Biochemistry, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12958365" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Arrestins/genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Cytoplasm/metabolism ; Down-Regulation ; *Endocytosis ; Humans ; Keratinocytes/metabolism ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Mutagenesis ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases ; Proteoglycans/chemistry/genetics/*metabolism ; RNA, Small Interfering ; Receptors, Transforming Growth Factor beta/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transfection ; Transforming Growth Factor beta ; Transforming Growth Factor beta1
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2003-09-23
    Description: The T cell coreceptors CD4 and CD8 both associate via their cytoplasmic tails with the N-terminus of the Src-family tyrosine kinase Lck. These interactions require zinc and are critical for T cell development and activation. We examined the folding and solution structures of ternary CD4-Lck-Zn2+ and CD8alpha-Lck-Zn2+ complexes. The coreceptor tails and the Lck N-terminus are unstructured in isolation but assemble in the presence of zinc to form compactly folded heterodimeric domains. The cofolded complexes have similar "zinc clasp" cores that are augmented by distinct structural elements. A dileucine motif required for clathrin-mediated endocytosis of CD4 is masked by Lck.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Peter W -- Sun, Zhen-Yu J -- Blacklow, Stephen C -- Wagner, Gerhard -- Eck, Michael J -- CA080942/CA/NCI NIH HHS/ -- HL61001/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 19;301(5640):1725-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14500983" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Antigens, CD4/*chemistry/metabolism ; Antigens, CD8/*chemistry/metabolism ; Calorimetry ; Cytoplasm/chemistry ; Dimerization ; Dipeptides/chemistry ; Humans ; Hydrophobic and Hydrophilic Interactions ; Lymphocyte Activation ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Phosphorylation ; Phosphoserine/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Alignment ; T-Lymphocytes/immunology/physiology ; Zinc/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2003-07-19
    Description: The evolution of animals from a unicellular ancestor involved many innovations. Choanoflagellates, unicellular and colonial protozoa closely related to Metazoa, provide a potential window into early animal evolution. We have found that choanoflagellates express representatives of a surprising number of cell signaling and adhesion protein families that have not previously been isolated from nonmetazoans, including cadherins, C-type lectins, several tyrosine kinases, and tyrosine kinase signaling pathway components. Choanoflagellates have a complex and dynamic tyrosine phosphoprotein profile, and cell proliferation is selectively affected by tyrosine kinase inhibitors. The expression in choanoflagellates of proteins involved in cell interactions in Metazoa demonstrates that these proteins evolved before the origin of animals and were later co-opted for development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉King, Nicole -- Hittinger, Christopher T -- Carroll, Sean B -- GM-20734/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jul 18;301(5631):361-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI), University of Wisconsin, 1525 Linden Drive, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12869759" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacterial Proteins/chemistry ; Biological Evolution ; Cadherins/chemistry/genetics/metabolism ; Cell Adhesion ; *Cell Adhesion Molecules/chemistry/genetics/metabolism ; Eukaryota/chemistry/*genetics/growth & development/metabolism ; *Evolution, Molecular ; Expressed Sequence Tags ; Fungal Proteins/chemistry ; Lectins, C-Type/chemistry/genetics/metabolism ; Molecular Sequence Data ; Phosphorylation ; Phosphotyrosine/metabolism ; Phylogeny ; Protein Structure, Tertiary ; *Protein-Tyrosine Kinases/chemistry/genetics/metabolism ; Proteome ; *Protozoan Proteins/chemistry/genetics/metabolism ; Sequence Alignment ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...