ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (26,481)
  • Copernicus
  • MDPI Publishing
  • 2020-2024  (43)
  • 2000-2004  (29,867)
  • 1945-1949  (92)
Collection
Years
Year
  • 1
    Publication Date: 2024-04-17
    Description: TR17-08, a marine sedimentary core (14.6 m), was collected during 2017 from the Edisto Inlet (Ross Sea, Antarctica), a small fjord near Cape Hallett. The core is characterized by expanded laminated sedimentary sequences making it suitable for studying submillennial processes during the Early Holocene. By studying different well-known foraminifera species (Globocassidulina biora, G. subglobosa, Trifarina angulosa, Nonionella iridea, Epistominella exigua, Stainforthia feylingi, Miliammina arenacea, Paratrochammina bartrami and Portatrochammina antarctica), we were able to identify five different foraminiferal assemblages over the last ∼ 2000 years BP. Comparison with diatom assemblages and other geochemical proxies retrieved from nearby sediment cores in the Edisto Inlet (BAY05-20 and HLF17-1) made it possible to distinguish three different phases characterized by different environmental settings: (1) a seasonal phase (from 2012 to 1486 years BP) characterized by the dominance of calcareous species, indicating a seasonal opening of the inlet by more frequent events of melting of the sea-ice cover during the austral summer and, in general, a higher-productivity, more open and energetic environment; (2) a transitional phase (from 1486 to 696 years BP) during which the fjord experienced less extensive sea-ice melting, enhanced oxygen-poor conditions and carbonate dissolution conditions, indicated by the shifts from calcareous-dominated association to agglutinated-dominated association probably due to a freshwater input from the retreat of three local glaciers at the start of this period; and (3) a cooler phase (from 696 years BP to present) during which the sedimentation rate decreased and few to no foraminiferal specimens were present, indicating ephemeral openings or a more prolonged cover of the sea ice during the austral summer, affecting the nutrient supply and the sedimentation regime.
    Description: Published
    Description: 95–115
    Description: OSA2: Evoluzione climatica: effetti e loro mitigazione
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-04
    Description: Perturbations in stratospheric aerosol due to explosive volcanic eruptions are a primary contributor to natural climate variability. Observations of stratospheric aerosol are available for the past decades, and information from ice cores has been used to derive estimates of stratospheric sulfur injections and aerosol optical depth over the Holocene (approximately 10 000 BP to present) and into the last glacial period, extending back to 60 000 BP. Tephra records of past volcanism, compared to ice cores, are less complete but extend much further into the past. To support model studies of the potential impacts of explosive volcanism on climate variability across timescales, we present here an ensemble reconstruction of volcanic stratospheric sulfur injection (VSSI) over the last 140 000 years that is based primarily on terrestrial and marine tephra records. VSSI values are computed as a simple function of eruption magnitude based on VSSI estimates from ice cores and satellite observations for identified eruptions. To correct for the incompleteness of the tephra record, we include stochastically generated synthetic eruptions assuming a constant background eruption frequency from the ice core Holocene record. While the reconstruction often differs from ice core estimates for specific eruptions due to uncertainties in the data used and reconstruction method, it shows good agreement with an ice-core-based VSSI reconstruction in terms of millennial-scale cumulative VSSI variations over the Holocene. The PalVol reconstruction provides a new basis to test the contributions of forced vs. unforced natural variability to the spectrum of climate and the mechanisms leading to abrupt transitions in the palaeoclimate record with low- to high-complexity climate models. The PalVol volcanic forcing reconstruction is available at https://doi.org/10.26050/WDCC/PalVolv1 (Toohey and Schindlbeck-Belo, 2023).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-21
    Description: Abstract. Clouds are assumed to play an important role in the Arctic amplification process. This motivated a detailed investigation of cloud processes, including radiative and turbulent fluxes. Data from the aircraft campaign ACLOUD were analyzed with a focus on the mean and turbulent structure of the cloudy boundary layer over the Fram Strait marginal sea ice zone in late spring and early summer 2017. Vertical profiles of turbulence moments are presented from contrasting atmospheric boundary layers (ABLs) from 4 d. They differ by the magnitude of wind speed, boundary-layer height, stability, the strength of the cloud-top radiative cooling and the number of cloud layers. Turbulence statistics up to third-order moments are presented, which were obtained from horizontal-level flights and from slanted profiles. It is shown that both of these flight patterns complement each other and form a data set that resolves the vertical structure of the ABL turbulence well. The comparison of the 4 d shows that especially during weak wind, even in shallow Arctic ABLs with mixing ratios below 3 g kg-1, cloud-top cooling can serve as a main source of turbulent kinetic energy (TKE).Well-mixed ABLs are generated where TKE is increased and vertical velocity variance shows pronounced maxima in the cloud layer. Negative vertical velocity skewness points then to upside-down convection. Turbulent heat fluxes are directed upward in the cloud layer as a result of cold downdrafts. In two cases with single-layer stratocumulus, turbulent transport of heat flux and of temperature variance are both negative in the cloud layer, suggesting an important role of large eddies. In contrast, in a case with weak cloud-top cooling, these quantities are positive in the ABL due to the heating from the surface. Based on observations and results of a mixed-layer model it is shown that the maxima of turbulent fluxes are, however, smaller than the jump of the net terrestrial radiation flux across the upper part of a cloud due to the (i) shallowness of the mixed layer and (ii) the presence of a downward entrainment heat flux. The mixed-layer model also shows that the buoyancy production of TKE is substantially smaller in stratocumulus over the Arctic sea ice compared to subtropics due to a smaller surface moisture flux and smaller decrease in specific humidity (or even humidity inversions) right above the cloud top. In a case of strong wind, wind shear shapes the ABL turbulent structure, especially over rough sea ice, despite the presence of a strong cloud-top cooling. In the presence of mid-level clouds, cloud-top radiative cooling and thus also TKE in the lowermost cloud layer are strongly reduced, and the ABL turbulent structure becomes governed by stability, i.e., by the surface–air temperature difference and wind speed. A comparison of slightly unstable and weakly stable cases shows a strong reduction of TKE due to increased stability even though the absolute value of wind speed was similar. In summary, the presented study documents vertical profiles of the ABL turbulence with a high resolution in a wide range of conditions. It can serve as a basis for turbulence closure evaluation and process studies in Arctic clouds.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-06-21
    Description: Springtime Arctic mixed-phase convection over open water in the Fram Strait as observed during the recent ACLOUD (Arctic CLoud Observations Using airborne measurements during polar Day) field campaign is simulated at turbulence-resolving resolutions. The first objective is to assess the skill of large-eddy simulation (LES) in reproducing the observed mixed-phase convection. The second goal is to then use the model to investigate how aerosol modulates the way in which turbulent mixing and clouds transform the low-level air mass. The focus lies on the low-level thermal structure and lapse rate, the heating efficiency of turbulent entrainment, and the low-level energy budget. A composite case is constructed based on data collected by two research aircraft on 18 June 2017. Simulations are evaluated against independent datasets, showing that the observed thermodynamic, cloudy, and turbulent states are well reproduced. Sensitivity tests on cloud condensation nuclei (CCN) concentration are then performed, covering a broad range between pristine polar and polluted continental values. We find a significant response in the resolved mixed-phase convection, which is in line with previous LES studies. An increased CCN substantially enhances the depth of convection and liquid cloud amount, accompanied by reduced surface precipitation. Initializing with the in situ CCN data yields the best agreement with the cloud and turbulence observations, a result that prioritizes its measurement during field campaigns for supporting high-resolution modeling efforts. A deeper analysis reveals that CCN significantly increases the efficiency of radiatively driven entrainment in warming the boundary layer. The marked strengthening of the thermal inversion plays a key role in this effect. The low-level heat budget shifts from surface driven to radiatively driven. This response is accompanied by a substantial reduction in the surface energy budget, featuring a weakened flow of solar radiation into the ocean. Results are interpreted in the context of air–sea interactions, air mass transformations, and climate feedbacks at high latitudes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Copernicus
    In:  EPIC3Atmospheric Chemistry and Physics, Copernicus, 23(5), pp. 3207-3232, ISSN: 1680-7316
    Publication Date: 2023-10-19
    Description: The presence of reactive bromine in polar regions is a widespread phenomenon that plays an important role in the photochemistry of the Arctic and Antarctic lower troposphere, including the destruction of ozone, the disturbance of radical cycles, and the oxidation of gaseous elemental mercury. The chemical mechanisms leading to the heterogeneous release of gaseous bromine compounds from saline surfaces are in principle well understood. There are, however, substantial uncertainties about the contribution of different potential sources to the release of reactive bromine, such as sea ice, brine, aerosols, and the snow surface, as well as about the seasonal and diurnal variation and the vertical distribution of reactive bromine. Here we use continuous long-term measurements of the vertical distribution of bromine monoxide (BrO) and aerosols at the two Antarctic sites Neumayer (NM) and Arrival Heights (AH), covering the periods of 2003–2021 and 2012–2021, respectively, to investigate how chemical and physical parameters affect the abundance of BrO. We find the strongest correlation between BrO and aerosol extinction (R=0.56 for NM and R=0.28 for AH during spring), suggesting that the heterogeneous release of Br2 from saline airborne particles (blowing snow and aerosols) is a dominant source for reactive bromine. Positive correlations between BrO and contact time of air masses, both with sea ice and the Antarctic ice sheet, suggest that reactive bromine is not only emitted by the sea ice surface but by the snowpack on the ice shelf and in the coastal regions of Antarctica. In addition, the open ocean appears to represent a source for reactive bromine during late summer and autumn when the sea ice extent is at its minimum. A source–receptor analysis based on back trajectories and sea ice maps shows that main source regions for BrO at NM are the Weddell Sea and the Filchner–Ronne Ice Shelf, as well as coastal polynyas where sea ice is newly formed. A strong morning peak in BrO frequently occurring during summer and that is particularly strong during autumn suggests a night-time build-up of Br2 by heterogeneous reaction of ozone on the saline snowpack in the vicinity of the measurement sites. We furthermore show that BrO can be sustained for at least 3 d while travelling across the Antarctic continent in the absence of any saline surfaces that could serve as a source for reactive bromine.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-29
    Description: Stable water isotopologues of snow, firn and ice cores provide valuable information on past climate variations. Yet single profiles are generally not suitable for robust climate reconstructions. Stratigraphic noise, introduced by the irregular deposition, wind-driven erosion and redistribution of snow, impacts the utility of high-resolution isotope records, especially in low-Accumulation areas. However, it is currently unknown how stratigraphic noise differs across the East Antarctic Plateau and how it is affected by local environmental conditions. Here, we assess the amount and structure of stratigraphic noise at seven sites along a 120 km transect on the plateau of Dronning Maud Land, East Antarctica. Replicated oxygen isotope records of 1 m length were used to estimate signal-To-noise ratios as a measure of stratigraphic noise at sites characterised by different accumulation rates (43-64 mm w.e. a-1), snow surface roughnesses and slope inclinations. While we found a high level of stratigraphic noise at all sites, there was also considerable variation between sites. At sastrugi-dominated sites, greater stratigraphic noise coincided with stronger surface roughnesses, steeper slopes and lower accumulation rates, probably related to increased wind speeds. These results provide a first step to modelling stratigraphic noise and might guide site selection and sampling strategies for future expeditions to improve high-resolution climate reconstructions from low-Accumulation regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-31
    Description: Arctic river deltas and deltaic near-shore zones represent important land–ocean transition zones influencing sediment dynamics and nutrient fluxes from permafrost-affected terrestrial ecosystems into the coastal Arctic Ocean. To accurately model fluvial carbon and freshwater export from rapidly changing river catchments as well as assess impacts of future change on the Arctic shelf and coastal ecosystems, we need to understand the sea floor characteristics and topographic variety of the coastal zones. To date, digital bathymetrical data from the poorly accessible, shallow, and large areas of the eastern Siberian Arctic shelves are sparse. We have digitized bathymetrical information for nearly 75 000 locations from large-scale (1:25 000–1:500 000) current and historical nautical maps of the Lena Delta and the Kolyma Gulf region in northeastern Siberia. We present the first detailed and seamless digital models of coastal zone bathymetry for both delta and gulf regions in 50 and 200 m spatial resolution. We validated the resulting bathymetry layers using a combination of our own water depth measurements and a collection of available depth measurements, which showed a strong correlation (r〉0.9). Our bathymetrical models will serve as an input for a high-resolution coupled hydrodynamic–ecosystem model to better quantify fluvial and coastal carbon fluxes to the Arctic Ocean, but they may be useful for a range of other studies related to Arctic delta and near-shore dynamics such as modeling of submarine permafrost, near-shore sea ice, or shelf sediment transport. The new digital high-resolution bathymetry products are available on the PANGAEA data set repository for the Lena Delta (https://doi.org/10.1594/PANGAEA.934045; Fuchs et al., 2021a) and Kolyma Gulf region (https://doi.org/10.1594/PANGAEA.934049; Fuchs et al., 2021b), respectively. Likewise, the depth validation data are available on PANGAEA as well (https://doi.org/10.1594/PANGAEA.933187; Fuchs et al., 2021c).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-29
    Description: Data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition allowed us to investigate the temporal dynamics of snowfall, snow accumulation and erosion in great detail for almost the whole accumulation season (November 2019 to May 2020). We computed cumulative snow water equivalent (SWE) over the sea ice based on snow depth and density retrievals from a SnowMicroPen and approximately weekly measured snow depths along fixed transect paths. We used the derived SWE from the snow cover to compare with precipitation sensors installed during MOSAiC. The data were also compared with ERA5 reanalysis snowfall rates for the drift track. We found an accumulated snow mass of 38 m SWE between the end of October 2019 and end of April 2020. The initial SWE over first-year ice relative to second-year ice increased from 50 % to 90 % by end of the investigation period. Further, we found that the Vaisala Present Weather Detector 22, an optical precipitation sensor, and installed on a railing on the top deck of research vessel Polarstern, was least affected by blowing snow and showed good agreements with SWE retrievals along the transect. On the contrary, the OTT Pluvio2 pluviometer and the OTT Parsivel2 laser disdrometer were largely affected by wind and blowing snow, leading to too high measured precipitation rates. These are largely reduced when eliminating drifting snow periods in the comparison. ERA5 reveals good timing of the snowfall events and good agreement with ground measurements with an overestimation tendency. Retrieved snowfall from the ship-based Ka-band ARM zenith radar shows good agreements with SWE of the snow cover and differences comparable to those of ERA5. Based on the results, we suggest the Ka-band radar-derived snowfall as an upper limit and the present weather detector on RV Polarstern as a lower limit of a cumulative snowfall range. Based on these findings, we suggest a cumulative snowfall of 72 to 107 m and a precipitation mass loss of the snow cover due to erosion and sublimation as between 47 % and 68 %, for the time period between 31 October 2019 and 26 April 2020. Extending this period beyond available snow cover measurements, we suggest a cumulative snowfall of 98-114 m.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface-to-bottom ocean biogeochemical bottle data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2022 is an update of the previous version, GLODAPv2.2021 (Lauvset et al., 2021). The major changes are as follows: data from 96 new cruises were added, data coverage was extended until 2021, and for the first time we performed secondary quality control on all sulphur hexafluoride (SF6) data. In addition, a number of changes were made to data included in GLODAPv2.2021. These changes affect specifically the SF6 data, which are now subjected to secondary quality control, and carbon data measured onboard the RV Knorr in the Indian Ocean in 1994–1995 which are now adjusted using CRM measurements made at the time. GLODAPv2.2022 includes measurements from almost 1.4 million water samples from the global oceans collected on 1085 cruises. The data for the now 13 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, CCl4, and SF6) have undergone extensive quality control with a focus on systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but converted to World Ocean Circulation Experiment (WOCE) exchange format and (ii) as a merged data product with adjustments applied to minimize bias. For the present annual update, adjustments for the 96 new cruises were derived by comparing those data with the data from the 989 quality controlled cruises in the GLODAPv2.2021 data product using crossover analysis. SF6 data from all cruises were evaluated by comparison with CFC-12 data measured on the same cruises. For nutrients and ocean carbon dioxide (CO2) chemistry comparisons to estimates based on empirical algorithms provided additional context for adjustment decisions. The adjustments that we applied are intended to remove potential biases from errors related to measurement, calibration, and data handling practices without removing known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 μmol kg-1 in dissolved inorganic carbon, 4 μmol kg-1 in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete CO2 fugacity (fCO2), were not subjected to bias comparison or adjustments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-01-30
    Description: Methane emissions from boreal and arctic wetlands, lakes, and rivers are expected to increase in response to warming and associated permafrost thaw. However, the lack of appropriate land cover datasets for scaling field-measured methane emissions to circumpolar scales has contributed to a large uncertainty for our understanding of present-day and future methane emissions. Here we present the Boreal–Arctic Wetland and Lake Dataset (BAWLD), a land cover dataset based on an expert assessment, extrapolated using random forest modelling from available spatial datasets of climate, topography, soils, permafrost conditions, vegetation, wetlands, and surface water extents and dynamics. In BAWLD, we estimate the fractional coverage of five wetland, seven lake, and three river classes within 0.5 × 0.5∘ grid cells that cover the northern boreal and tundra biomes (17 % of the global land surface). Land cover classes were defined using criteria that ensured distinct methane emissions among classes, as indicated by a co-developed comprehensive dataset of methane flux observations. In BAWLD, wetlands occupied 3.2 × 106 km2 (14 % of domain) with a 95 % confidence interval between 2.8 and 3.8 × 106 km2. Bog, fen, and permafrost bog were the most abundant wetland classes, covering ∼ 28 % each of the total wetland area, while the highest-methane-emitting marsh and tundra wetland classes occupied 5 % and 12 %, respectively. Lakes, defined to include all lentic open-water ecosystems regardless of size, covered 1.4 × 106 km2 (6 % of domain). Low-methane-emitting large lakes (〉10 km2) and glacial lakes jointly represented 78 % of the total lake area, while high-emitting peatland and yedoma lakes covered 18 % and 4 %, respectively. Small (〈0.1 km2) glacial, peatland, and yedoma lakes combined covered 17 % of the total lake area but contributed disproportionally to the overall spatial uncertainty in lake area with a 95 % confidence interval between 0.15 and 0.38 × 106 km2. Rivers and streams were estimated to cover 0.12  × 106 km2 (0.5 % of domain), of which 8 % was associated with high-methane-emitting headwaters that drain organic-rich landscapes. Distinct combinations of spatially co-occurring wetland and lake classes were identified across the BAWLD domain, allowing for the mapping of “wetscapes” that have characteristic methane emission magnitudes and sensitivities to climate change at regional scales. With BAWLD, we provide a dataset which avoids double-accounting of wetland, lake, and river extents and which includes confidence intervals for each land cover class. As such, BAWLD will be suitable for many hydrological and biogeochemical modelling and upscaling efforts for the northern boreal and arctic region, in particular those aimed at improving assessments of current and future methane emissions. Data are freely available at https://doi.org/10.18739/A2C824F9X (Olefeldt et al., 2021).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-01-31
    Description: Lakes in permafrost regions are dynamiclandscape components and play an important role for climatechange feedbacks. Lake processes such as mineralizationand flocculation of dissolved organic carbon (DOC), oneof the main carbon fractions in lakes, contribute to thegreenhouse effect and are part of the global carbon cycle.These processes are in the focus of climate research, butstudies so far are limited to specific study regions. Inour synthesis, we analyzed 2167 water samples from 1833lakes across the Arctic in permafrost regions of Alaska,Canada, Greenland, and Siberia to provide first pan-Arcticinsights for linkages between DOC concentrations andthe environment. Using published data and unpublisheddatasets from the author team, we report regional DOCdifferences linked to latitude, permafrost zones, ecoregions,geology, near-surface soil organic carbon contents, andground ice classification of each lake region. The lakeDOC concentrations in our dataset range from 0 to1130 mg L−1(10.8 mg L−1median DOC concentration).Regarding the permafrost regions of our synthesis, wefound median lake DOC concentrations of 12.4 mg L−1(Siberia), 12.3 mg L−1(Alaska), 10.3 mg L−1(Greenland),and 4.5 mg L−1(Canada). Our synthesis shows a significantrelationship between lake DOC concentration and lakeecoregion. We found higher lake DOC concentrationsat boreal permafrost sites compared to tundra sites. Wefound significantly higher DOC concentrations in lakesin regions with ice-rich syngenetic permafrost deposits(yedoma) compared to non-yedoma lakes and a weak butsignificant relationship between soil organic carbon contentand lake DOC concentration as well as between ground icecontent and lake DOC. Our pan-Arctic dataset shows that theDOC concentration of a lake depends on its environmentalproperties, especially on permafrost extent and ecoregion, aswell as vegetation, which is the most important driver of lakeDOC in this study. This new dataset will be fundamental toquantify a pan-Arctic lake DOC pool for estimations of theimpact of lake DOC on the global carbon cycle and climatechange.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-04-11
    Description: 〈jats:p〉Abstract. The risk of carbon emissions from permafrost ground is linked to ground temperature and thus in particular to thermal insulation by vegetation and organic soil layers in summer and snow cover in winter. This ground insulation is strongly influenced by the presence of large herbivorous animals browsing for food. In this study, we examine the potential impact of large herbivore presence on the ground carbon storage in thermokarst landscapes of northeastern Siberia. Our aim is to understand how intensive animal grazing may affect permafrost thaw and hence organic matter decomposition, leading to different ground carbon storage, which is significant in the active layer. Therefore, we analysed sites with differing large herbivore grazing intensity in the Pleistocene Park near Chersky and measured maximum thaw depth, total organic carbon content and decomposition state by δ13C isotope analysis. In addition, we determined sediment grain size composition as well as ice and water content. We found the thaw depth to be shallower and carbon storage to be higher in intensively grazed areas compared to extensively and non-grazed sites in the same thermokarst basin. The intensive grazing presumably leads to a more stable thermal ground regime and thus to increased carbon storage in the thermokarst deposits and active layer. However, the high carbon content found within the upper 20 cm on intensively grazed sites could also indicate higher carbon input rather than reduced decomposition, which requires further studies. We connect our findings to more animal trampling in winter, which causes snow disturbance and cooler winter ground temperatures during the average annual 225 days below freezing. This winter cooling overcompensates ground warming due to the lower insulation associated with shorter heavily grazed vegetation during the average annual 140 thaw days. We conclude that intensive grazing influences the carbon storage capacities of permafrost areas and hence might be an actively manageable instrument to reduce net carbon emission from these sites. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Copernicus
    In:  EPIC3Natural Hazards and Earth System Sciences, Copernicus, 2021, pp. 1-34, ISSN: 1561-8633
    Publication Date: 2024-04-22
    Description: 〈jats:p〉Abstract. The combined effect of hot and dry extremes can have disastrous consequences for the society, economy, and the environment. While a significant number of studies have been conducted regarding the variability of the individual hot or dry extremes in Romania, the evaluation of the combined effect of these extremes (e.g. compound effect) is still lacking for this region. Thus, in this study we have assessed the spatio-temporal variability and trends of hot and dry summers in the eastern part of Europe, focusing on Romania, between 1950 and 2020 and we have analyzed the relationship between the frequency of hot summers and the prevailing large-scale atmospheric circulation. The length, spatial extent and frequency of HWs in Romania has increased significantly over the last 70 years, while for the drought conditions no significant changes have been observed. The rate of increase in the frequency and spatial extent of HWs has accelerated significantly after the 1990’s, while the smallest number of HWs was observed between 1970 and 1985. The hottest years, in terms of heatwave duration and frequency, were 2007, 2012, 2015, and 2019. One of the key drivers of hot summers, over our analyzed region, is the prevailing large-scale circulation, featuring an anticyclonic circulation over the central and eastern parts of Europe and enhanced atmospheric blocking activity associated with positive temperature anomalies underneath. We conclude that our study can help improve our understanding of the spatio-temporal variability of hot and dry summers, especially at the regional scale, as well as their driving mechanisms which might lead to a better predictability of these extreme events. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-04-19
    Description: We combine satellite data products to provide a first and general overview of the physical sea ice conditions along the drift of the international Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition and a comparison with previous years (2005–2006 to 2018–2019). We find that the MOSAiC drift was around 20 % faster than the climatological mean drift, as a consequence of large-scale low-pressure anomalies prevailing around the Barents–Kara–Laptev sea region between January and March. In winter (October–April), satellite observations show that the sea ice in the vicinity of the Central Observatory (CO; 50 km radius) was rather thin compared to the previous years along the same trajectory. Unlike ice thickness, satellite-derived sea ice concentration, lead frequency and snow thickness during winter months were close to the long-term mean with little variability. With the onset of spring and decreasing distance to the Fram Strait, variability in ice concentration and lead activity increased. In addition, the frequency and strength of deformation events (divergence, convergence and shear) were higher during summer than during winter. Overall, we find that sea ice conditions observed within 5 km distance of the CO are representative for the wider (50 and 100 km) surroundings. An exception is the ice thickness; here we find that sea ice within 50 km radius of the CO was thinner than sea ice within a 100 km radius by a small but consistent factor (4 %) for successive monthly averages. Moreover, satellite acquisitions indicate that the formation of large melt ponds began earlier on the MOSAiC floe than on neighbouring floes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-05-14
    Description: The thermokarst lakes of permafrost regions play a major role in the global carbon cycle. These lakes are sources of methane to the atmosphere although the methane flux is restricted by an ice cover for most of the year. How methane concentrations and fluxes in these waters are affected by the presence of an ice cover is poorly understood. To relate water body morphology, ice formation and methane to each other, we studied the ice of three different water bodies in locations typical of the transition of permafrost from land to ocean in a continuous permafrost coastal region in Siberia. In total, 11 ice cores were analyzed as records of the freezing process and methane composition during the winter season. The three water bodies differed in terms of connectivity to the sea, which affected fall freezing. The first was a bay underlain by submarine permafrost (Tiksi Bay, BY), the second a shallow thermokarst lagoon cut off from the sea in winter (Polar Fox Lagoon, LG) and the third a land-locked freshwater thermokarst lake (Goltsovoye Lake, LK). Ice on all water bodies was mostly methane-supersaturated with respect to atmospheric equilibrium concentration, except for three cores from the isolated lake. In the isolated thermokarst lake, ebullition from actively thawing basin slopes resulted in the localized integration of methane into winter ice. Stable δ13C-CH4 isotope signatures indicated that methane in the lagoon ice was oxidized to concentrations close to or below the calculated atmospheric equilibrium concentration. Increasing salinity during winter freezing led to a micro-environment on the lower ice surface where methane oxidation occurred and the lagoon ice functioned as a methane sink. In contrast, the ice of the coastal marine environment was slightly supersaturated with methane, consistent with the brackish water below. Our interdisciplinary process study shows how water body morphology affects ice formation which mitigates methane fluxes to the atmosphere.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-05-17
    Description: In this study, the first fully continuous monitoring of water vapour isotopic composition at Neumayer Station III, Antarctica, during the 2-year period from February 2017 to January 2019 is presented. Seasonal and synoptic-scale variations in both stable water isotopes H182O and HDO are reported, and their links to variations in key meteorological variables are analysed. In addition, the diurnal cycle of isotope variations during the summer months (December and January 2017/18 and 2018/19) has been examined. Changes in local temperature and specific humidity are the main drivers for the variability in δ18O and δD in vapour at Neumayer Station III, on both seasonal and shorter timescales. In contrast to the measured δ18O and δD variations, no seasonal cycle in the Deuterium excess signal (d) in vapour is detected. However, a rather high uncertainty in measured d values especially in austral winter limits the confidence of this finding. Overall, the d signal shows a stronger inverse correlation with specific humidity than with temperature, and this inverse correlation between d and specific humidity is stronger for the cloudy-sky conditions than for clear-sky conditions during summertime. Back-trajectory simulations performed with the FLEXPART model show that seasonal and synoptic variations in δ18O and δD in vapour coincide with changes in the main sources of water vapour transported to Neumayer Station III. In general, moisture transport pathways from the east lead to higher temperatures and more enriched δ18O values in vapour, while weather situations with southerly winds lead to lower temperatures and more depleted δ18O values. However, on several occasions, δ18O variations linked to wind direction changes were observed, which were not accompanied by a corresponding temperature change. Comparing isotopic compositions of water vapour at Neumayer Station III and snow samples taken in the vicinity of the station reveals almost identical slopes, both for the δ18O–δD relation and for the temperature–δ18O relation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-10-29
    Description: The mass of the Greenland ice sheet is declining as mass gain from snow accumulation is exceeded by mass loss from surface meltwater runoff, marine-terminating glacier calving and submarine melting, and basal melting. Here we use the input–output (IO) method to estimate mass change from 1840 through next week. Surface mass balance (SMB) gains and losses come from a semi-empirical SMB model from 1840 through 1985 and three regional climate models (RCMs; HIRHAM/HARMONIE, Modèle Atmosphérique Régional – MAR, and RACMO – Regional Atmospheric Climate MOdel) from 1986 through next week. Additional non-SMB losses come from a marine-terminating glacier ice discharge product and a basal mass balance model. From these products we provide an annual estimate of Greenland ice sheet mass balance from 1840 through 1985 and a daily estimate at sector and region scale from 1986 through next week. This product updates daily and is the first IO product to include the basal mass balance which is a source of an additional ∼24 Gt yr−1 of mass loss. Our results demonstrate an accelerating ice-sheet-scale mass loss and general agreement (coefficient of determination, r2, ranges from 0.62 to 0.94) among six other products, including gravitational, volume, and other IO mass balance estimates. Results from this study are available at https://doi.org/10.22008/FK2/OHI23Z (Mankoff et al., 2021).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-10-29
    Description: Forest fires modify soil organic carbon and suppress soil respiration for many decades after the initial disturbance. The associated changes in soil autotrophic and heterotrophic respiration from the time of the forest fire, however, are less well characterized. The FireResp model predicts soil autotrophic and heterotrophic respiration parameterized with a novel dataset across a fire chronosequence in the Yukon and Northwest Territories of Canada. The dataset consisted of soil incubation experiments and field measurements of soil respiration and soil carbon stocks. The FireResp model contains submodels that consider a Q10 (exponential) model of respiration compared to models of heterotrophic respiration using Michaelis–Menten kinetics parameterized with soil microbial carbon. For model evaluation we applied the Akaike information criterion and compared predicted patterns in components of soil respiration across the chronosequence. Parameters estimated with data from the 5 cm soil depth had better model–data comparisons than parameters estimated with data from the 10 cm soil depth. The model–data fit was improved by including parameters estimated from soil incubation experiments. Models that incorporated microbial carbon with Michaelis–Menten kinetics reproduced patterns in autotrophic and heterotrophic soil respiration components across the chronosequence. Autotrophic respiration was associated with aboveground tree biomass at more recently burned sites, but this association was less robust at older sites in the chronosequence. Our results provide support for more structured soil respiration models than standard Q10 exponential models.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-10-29
    Description: Authorship conflicts are a common occurrence in academic publishing, and they can have serious implications for the careers and well-being of the involved researchers as well as the collective success of research organizations. In addition to not inviting relevant contributors to co-author a paper, the order of authors as well as honorary, gift, and ghost authors are all widely recognized problems related to authorship. Unfair authorship practices disproportionately affect those lower in the power hierarchies – early career researchers, women, researchers from the Global South, and other minoritized groups. Here we propose an approach to preparing author lists based on clear, transparent, and timely communication. This approach aims to minimize the potential for late-stage authorship conflicts during manuscript preparation by facilitating timely and transparent decisions on potential co-authors and their responsibilities. Furthermore, our approach can help avoid imbalances between contributions and credits in published papers by recording planned and executed responsibilities. We present authorship guidelines which also include a novel authorship form along with the documentation of the formulation process for a multidisciplinary and interdisciplinary center with more than 250 researchers. Other research groups, departments, and centers can use or build on this template to design their own authorship guidelines as a practical way to promote fair authorship practices.
    Print ISSN: 2569-7102
    Electronic ISSN: 2569-7110
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-10-29
    Description: This work presents the integration of a gas-phase and particulate atmospheric emission inventory (AEI) for Argentina in high spatial resolution (0.025∘×0.025∘; approx. 2.5 km×2.5 km) considering monthly variability from 1995 to 2020. The new inventory, called GEAA-AEIv3.0M, includes the following activities: energy production, fugitive emissions from oil and gas production, industrial fuel consumption and production, transport (road, maritime, and air), agriculture, livestock production, manufacturing, residential, commercial, and biomass and agricultural waste burning. The following species, grouped by atmospheric reactivity, are considered: (i) greenhouse gases (GHGs) – CO2, CH4, and N2O; (ii) ozone precursors – CO, NOx (NO+NO2), and non-methane volatile organic compounds (NMVOCs); (iii) acidifying gases – NH3 and SO2; and (iv) particulate matter (PM) – PM10, PM2.5, total suspended particles (TSPs), and black carbon (BC). The main objective of the GEAA-AEIv3.0M high-resolution emission inventory is to provide temporally resolved emission maps to support air quality and climate modeling oriented to evaluate pollutant mitigation strategies by local governments. This is of major concern, especially in countries where air quality monitoring networks are scarce, and the development of regional and seasonal emissions inventories would result in remarkable improvements in the time and space chemical prediction achieved by air quality models. Despite distinguishing among different sectoral and activity databases as well as introducing a novel spatial distribution approach based on census radii, our high-resolution GEAA-AEIv3.0M shows equivalent national-wide total emissions compared to the Third National Communication of Argentina (TNCA), which compiles annual GHG emissions from 1990 through 2014 (agreement within ±7.5 %). However, the GEAA-AEIv3.0M includes acidifying gases and PM species not considered in TNCA. Temporal comparisons were also performed against two international databases: Community Emissions Data System (CEDS) and EDGAR HTAPv5.0 for several pollutants; for EDGAR it also includes a spatial comparison. The agreement was acceptable within less than 30 % for most of the pollutants and activities, although a 〉90 % discrepancy was obtained for methane from fuel production and fugitive emissions and 〉120 % for biomass burning. Finally, the updated seasonal series clearly showed the pollution reduction due to the COVID-19 lockdown during the first quarter of year 2020 with respect to same months in previous years. Through an open-access data repository, we present the GEAA-AEIv3.0M inventory as the largest and more detailed spatial resolution dataset for the Argentine Republic, which includes monthly gridded emissions for 12 species and 15 stors between 1995 and 2020. The datasets are available at https://doi.org/10.17632/d6xrhpmzdp.2 (Puliafito et al., 2021), under a CC-BY 4 license.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-10-29
    Description: The Arctic is exposed to even faster temperature changes than most other areas on Earth. Constantly increasing temperature will lead to thawing permafrost and changes in the methane (CH4) emissions from wetlands. One of the places exposed to those changes is the Abisko–Stordalen Mire in northern Sweden, where climate and vegetation studies have been conducted since the 1970s. In our study, we analyzed field-scale methane emissions measured by the eddy covariance method at Abisko–Stordalen Mire for 3 years (2014–2016). The site is a subarctic mire mosaic of palsas, thawing palsas, fully thawed fens, and open water bodies. A bimodal wind pattern prevalent at the site provides an ideal opportunity to measure mire patches with different permafrost status with one flux measurement system. The flux footprint for westerly winds was dominated by elevated palsa plateaus, while the footprint was almost equally distributed between palsas and thawing bog-like areas for easterly winds. As these patches are exposed to the same climatic and weather conditions, we analyzed the differences in the responses of their methane emission for environmental parameters. The methane fluxes followed a similar annual cycle over the 3 study years, with a gentle rise during spring and a decrease during autumn, without emission bursts at either end of the ice-free season. The peak emission during the ice-free season differed significantly for the two mire areas with different permafrost status: the palsa mire emitted 19 mg-C m−2 d−1 and the thawing wet sector 40 mg-C m−2 d−1. Factors controlling the methane emission were analyzed using generalized linear models. The main driver for methane fluxes was peat temperature for both wind sectors. Soil water content above the water table emerged as an explanatory variable for the 3 years for western sectors and the year 2016 in the eastern sector. The water table level showed a significant correlation with methane emission for the year 2016 as well. Gross primary production, however, did not show a significant correlation with methane emissions. Annual methane emissions were estimated based on four different gap-filing methods. The different methods generally resulted in very similar annual emissions. The mean annual emission based on all models was 3.1 ± 0.3 g-C m−2 a−1 for the western sector and 5.5 ± 0.5 g-C m−2 a−1 for the eastern sector. The average annual emissions, derived from these data and a footprint climatology, were 2.7 ± 0.5 and 8.2 ± 1.5 g-C m−2 a−1 for the palsa and thawing surfaces, respectively. Winter fluxes were relatively high, contributing 27 %–45 % to the annual emissions.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-11-01
    Description: Non-Gaussian forecast error is a challenge for ensemble-based data assimilation (DA), particularly for more nonlinear convective dynamics. In this study, we investigate the degree of the non-Gaussianity of forecast error distributions at 1 km resolution using a 1000-member ensemble Kalman filter, and how it is affected by the DA update frequency and observation number. Regional numerical weather prediction experiments are performed with the SCALE (Scalable Computing for Advanced Library and Environment) model and the LETKF (local ensemble transform Kalman filter) assimilating phased array radar observations every 30 s. The results show that non-Gaussianity develops rapidly within convective clouds and is sensitive to the DA frequency and the number of assimilated observations. The non-Gaussianity is reduced by up to 40 % when the assimilation window is shortened from 5 min to 30 s, particularly for vertical velocity and radar reflectivity.
    Print ISSN: 1023-5809
    Electronic ISSN: 1607-7946
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-10-29
    Description: Icequakes are the result of processes occurring within the ice mass or between the ice and its environment. Studying icequakes provides a unique view on ice dynamics, specifically on the basal conditions. Changes in conditions due to environmental or climate changes are reflected in icequakes. Counting and characterizing icequakes is thus essential to monitor them. Most of the icequakes recorded by the seismic station at the Belgian Princess Elisabeth Antarctica Station (PE) have small amplitudes corresponding to maximal displacements of a few nanometres. Their detection threshold is highly variable because of the rapid and strong changes in the local seismic noise level. Therefore, we evaluated the influence of katabatic winds on the noise measured by the well-protected PE surface seismometer. Our purpose is to identify whether the lack of icequake detection during some periods could be associated with variations in the processes generating them or simply with a stronger seismic noise linked to stronger wind conditions. We observed that the wind mainly influences seismic noise at frequencies greater than 1 Hz. The seismic noise power exhibits a bilinear correlation with the wind velocity, with two different slopes at a wind velocity lower and greater than 6 m s−1 and with, for example at a period of 0.26 s, a respective variation of 0.4 dB (m −1 s) and 1.4 dB (m −1 s). These results allowed a synthetic frequency and wind-speed-dependent noise model to be presented that explains the behaviour of the wind-induced seismic noise at PE, which shows that seismic noise amplitude increases exponentially with increasing wind speed. This model enables us to study the influence of the wind on the original seismic dataset, which improves the observation of cryoseismic activity near the PE station.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-10-29
    Description: The source apportionment of aerosol iron (Fe), including natural and combustion Fe, is an important issue because aerosol Fe can enhance oceanic primary production in the surface ocean. Based on our previous finding that combustion Fe emitted by evaporation processes has Fe isotope ratios (δ56Fe) that are approximately 4 ‰ lower than those of natural Fe, this study aimed to distinguish aerosol Fe sources over the northwestern Pacific using two size-fractionated marine aerosols. The δ56Fe values of fine and coarse particles from the eastern or northern Pacific were found to be similar to each other, ranging from 0.0 ‰ to 0.4 ‰. Most of them were close to the crustal average, suggesting the dominance of natural Fe. On the other hand, particles from the direction of East Asia demonstrated lower δ56Fe values in fine particles (−0.5 ‰ to −2.2 ‰) than in coarse particles (on average −0.02 ± 0.12 ‰). The correlations between the δ56Fe values and the enrichment factors of lead and vanadium suggested that the low δ56Fe values obtained were due to the presence of combustion Fe. The δ56Fe values of the soluble component of fine particles in this region were lower than the total, indicating the preferential dissolution of combustion Fe. In addition, we found a negative correlation between the δ56Fe value and the fractional Fe solubility in air masses from the direction of East Asia. These results suggest that the presence of combustion Fe is an important factor in controlling the fractional Fe solubility in air masses from the direction of East Asia, whereas other factors are more important in the other areas. By assuming typical δ56Fe values for combustion and natural Fe, the contribution of combustion Fe to the total (acid-digested) Fe in aerosols was estimated to reach up to 50 % of fine and 21 % of bulk (coarse + fine) particles in air masses from the direction of East Asia, whereas its contribution was small in the other areas. The contribution of combustion Fe to the soluble Fe component estimated for one sample was approximately twice as large as the total, indicating the importance of combustion Fe as a soluble Fe source despite lower emissions than the natural. These isotope-based estimates were compared with those estimated using an atmospheric chemical transport model (IMPACT), in which the fractions of combustion Fe in fine particles, especially in air masses from the direction of East Asia, were consistent with each other. In contrast, the model estimated a relatively large contribution from combustion Fe in coarse particles, probably because of the different characteristics of combustion Fe that are included in the model calculation and the isotope-based estimation. This highlights the importance of observational data on δ56Fe for size-fractionated aerosols to scale the combustion Fe emission by the model. The average deposition fluxes of soluble Fe to the surface ocean were 1.4 and 2.9 nmol m−2 d−1 from combustion and natural aerosols, respectively, in air masses from the direction of East Asia, which suggests that combustion Fe could be an important Fe source to the surface seawater among other Fe sources. Distinguishing Fe sources using the δ56Fe values of marine aerosols and seawater is anticipated to lead to a more quantitative understanding of the Fe cycle in the atmosphere and surface ocean.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-10-29
    Description: Aeromagnetic exploration is an important method of geophysical exploration. We study the compensation method of the towed bird system and establish the towed bird interference model. Due to the geomagnetic gradient changing greatly, the geomagnetic gradient is considered in the towed bird interference model. In this paper, we model the geomagnetic field gradient and analyze the influence of the towed bird system on the aeromagnetic compensation results. Finally, we apply the ridge regression method to solve the problem. We verify the feasibility of this compensation method through actual flight tests and further improve the data quality of the towed bird interference.
    Print ISSN: 2193-0856
    Electronic ISSN: 2193-0864
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-10-29
    Description: A new luminescence erosion meter has huge potential for inferring erosion rates on sub-millennial scales for both steady and transient states of erosion, which is not currently possible with any existing techniques capable of measuring erosion. This study applies new rock luminescence techniques to a well-constrained scenario provided by the Beinn Alligin rock avalanche, NW Scotland. Boulders in this deposit are lithologically consistent and have known cosmogenic nuclide ages and independently derived Holocene erosion rates. We find that luminescence-derived exposure ages for the Beinn Alligin rock avalanche were an order of magnitude younger than existing cosmogenic nuclide exposure ages, suggestive of high erosion rates (as supported by field evidence of quartz grain protrusions on the rock surfaces). Erosion rates determined by luminescence were consistent with independently derived rates measured from boulder edge roundness. Inversion modelling indicates a transient state of erosion reflecting the stochastic nature of erosional processes over the last ∼4.5 kyr in the wet, temperate climate of NW Scotland. Erosion was likely modulated by known fluctuations in moisture availability and to a lesser extent temperature, which controlled the extent of chemical weathering of these highly lithified rocks prior to erosion. The use of a multi-elevated temperature, post-infra-red, infra-red stimulated luminescence (MET-pIRIR) protocol (50, 150 and 225 ∘C) was advantageous as it identified samples with complexities that would not have been observed using only the standard infra-red stimulated luminescence (IRSL) signal measured at 50 ∘C, such as that introduced by within-sample variability (e.g. surficial coatings). This study demonstrates that the luminescence erosion meter can infer accurate erosion rates on sub-millennial scales and identify transient states of erosion (i.e. stochastic processes) in agreement with independently derived erosion rates for the same deposit.
    Print ISSN: 2628-3697
    Electronic ISSN: 2628-3719
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-10-29
    Description: The photo-oxidation of myrcene, a monoterpene species emitted by plants, was investigated at atmospheric conditions in the outdoor simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a Large Reaction Chamber). The chemical structure of myrcene consists of one moiety that is a conjugated π system (similar to isoprene) and another moiety that is a triple-substituted olefinic unit (similar to 2-methyl-2-butene). Hydrogen shift reactions of organic peroxy radicals (RO2) formed in the reaction of isoprene with atmospheric OH radicals are known to be of importance for the regeneration of OH. Structure–activity relationships (SARs) suggest that similar hydrogen shift reactions like in isoprene may apply to the isoprenyl part of RO2 radicals formed during the OH oxidation of myrcene. In addition, SAR predicts further isomerization reactions that would be competitive with bimolecular RO2 reactions for chemical conditions that are typical for forested environments with low concentrations of nitric oxide. Assuming that OH peroxy radicals can rapidly interconvert by addition and elimination of O2 like in isoprene, bulk isomerization rate constants of 0.21 and 0.097 s−1 (T=298 K) for the three isomers resulting from the 3′-OH and 1-OH addition, respectively, can be derived from SAR. Measurements of radicals and trace gases in the experiments allowed us to calculate radical production and destruction rates, which are expected to be balanced. The largest discrepancies between production and destruction rates were found for RO2. Additional loss of organic peroxy radicals due to isomerization reactions could explain the observed discrepancies. The uncertainty of the total radical (ROx=OH+HO2+RO2) production rates was high due to the uncertainty in the yield of radicals from myrcene ozonolysis. However, results indicate that radical production can only be balanced if the reaction rate constant of the reaction between hydroperoxy (HO2) and RO2 radicals derived from myrcene is lower (0.9 to 1.6×10-11 cm3 s−1) than predicted by SAR. Another explanation of the discrepancies would be that a significant fraction of products (yield: 0.3 to 0.6) from these reactions include OH and HO2 radicals instead of radical-terminating organic peroxides. Experiments also allowed us to determine the yields of organic oxidation products acetone (yield: 0.45±0.08) and formaldehyde (yield: 0.35±0.08). Acetone and formaldehyde are produced from different oxidation pathways, so that yields of these compounds reflect the branching ratios of the initial OH addition to myrcene. Yields determined in the experiments are consistent with branching ratios expected from SAR. The yield of organic nitrate was determined from the gas-phase budget analysis of reactive oxidized nitrogen in the chamber, giving a value of 0.13±0.03. In addition, the reaction rate constant for myrcene + OH was determined from the measured myrcene concentration, yielding a value of (2.3±0.3)×10-10 cm3 s−1.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-10-29
    Description: The earthquake early warning systems (EEWSs) in China have achieved great progress, with warning alerts being successfully delivered to the public in some regions. We examined the performance of the EEWS in China's Sichuan Province during the 2019 Changning earthquake. Although its technical effectiveness was tested with the first alert released 10 s after the earthquake, we found that a big gap existed between the EEWS's message and the public's response. We highlight the importance of EEWS alert effectiveness and public participation for long-term resiliency, such as delivering useful alert messages through appropriate communication channels and training people to understand and properly respond.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2021-10-21
    Description: The global distribution of cropping intensity (CI) is essential to our understanding of agricultural land use management on Earth. Optical remote sensing has revolutionized our ability to map CI over large areas in a repeated and cost-efficient manner. Previous studies have mainly focused on investigating the spatiotemporal patterns of CI ranging from regions to the entire globe with the use of coarse-resolution data, which are inadequate for characterizing farming practices within heterogeneous landscapes. To fill this knowledge gap, in this study, we utilized multiple satellite data to develop a global, spatially continuous CI map dataset at 30 m resolution (GCI30). Accuracy assessments indicated that GCI30 exhibited high agreement with visually interpreted validation samples and in situ observations from the PhenoCam network. We carried out both statistical and spatial comparisons of GCI30 with six existing global CI estimates. Based on GCI30, we estimated that the global average annual CI during 2016–2018 was 1.05, which is close to the mean (1.09) and median (1.07) CI values of the existing six global CI estimates, although the spatial resolution and temporal coverage vary significantly among products. A spatial comparison with two satellite-based land surface phenology products further suggested that GCI30 was not only capable of capturing the overall pattern of global CI but also provided many spatial details. GCI30 indicated that single cropping was the primary agricultural system on Earth, accounting for 81.57 % (12.28×106 km2) of the world's cropland extent. Multiple-cropping systems, on the other hand, were commonly observed in South America and Asia. We found large variations across countries and agroecological zones, reflecting the joint control of natural and anthropogenic drivers on regulating cropping practices. As the first global-coverage, fine-resolution CI product, GCI30 is expected to fill the data gap for promoting sustainable agriculture by depicting worldwide diversity of agricultural land use intensity. The GCI30 dataset is available on Harvard Dataverse: https://doi.org/10.7910/DVN/86M4PO (Zhang et al., 2020).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-11-01
    Description: Two feature-based verification methods, thus far only used for the diagnostic evaluation of atmospheric models, have been applied to compare ∼7 km resolution pre-operational analyses of chlorophyll-a (Chl-a) concentrations to a 1 km gridded satellite-derived Chl-a concentration product. The aim of this study was to assess the value of applying such methods to ocean models. Chl-a bloom objects were identified in both data sets for the 2019 bloom season (1 March to 31 July). These bloom objects were analysed as discrete (2-D) spatial features, but also as space–time (3-D) features, providing the means of defining the onset, duration and demise of distinct bloom episodes and the season as a whole. The new feature-based verification methods help reveal that the model analyses are not able to represent small coastal bloom objects, given the coarser definition of the coastline, also wrongly producing more bloom objects in deeper Atlantic waters. Model analyses' concentrations are somewhat higher overall. The bias manifests itself in the size of the model analysis bloom objects, which tend to be larger than the satellite-derived bloom objects. The onset of the bloom season is delayed by 26 d in the model analyses, but the season also persists for another month beyond the diagnosed end. The season was diagnosed to be 119 d long in the model analyses, compared to 117 d from the satellite product. Geographically, the model analyses and satellite-derived bloom objects do not necessarily exist in a specific location at the same time and only overlap occasionally.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-11-01
    Description: The observing system design of multidisciplinary field measurements involves a variety of considerations on logistics, safety, and science objectives. Typically, this is done based on investigator intuition and designs of prior field measurements. However, there is potential for considerable increases in efficiency, safety, and scientific success by integrating numerical simulations in the design process. Here, we present a novel numerical simulation–environmental response function (NS–ERF) approach to observing system simulation experiments that aids surface–atmosphere synthesis at the interface of mesoscale and microscale meteorology. In a case study we demonstrate application of the NS–ERF approach to optimize the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19). During CHEESEHEAD19 pre-field simulation experiments, we considered the placement of 20 eddy covariance flux towers, operations for 72 h of low-altitude flux aircraft measurements, and integration of various remote sensing data products. A 2 h high-resolution large eddy simulation created a cloud-free virtual atmosphere for surface and meteorological conditions characteristic of the field campaign domain and period. To explore two specific design hypotheses we super-sampled this virtual atmosphere as observed by 13 different yet simultaneous observing system designs consisting of virtual ground, airborne, and satellite observations. We then analyzed these virtual observations through ERFs to yield an optimal aircraft flight strategy for augmenting a stratified random flux tower network in combination with satellite retrievals. We demonstrate how the novel NS–ERF approach doubled CHEESEHEAD19's potential to explore energy balance closure and spatial patterning science objectives while substantially simplifying logistics. Owing to its modular extensibility, NS–ERF lends itself to optimizing observing system designs also for natural climate solutions, emission inventory validation, urban air quality, industry leak detection, and multi-species applications, among other use cases.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-10-29
    Description: China has experienced dramatic changes in emissions since 2010, which accelerated following the implementation of the Clean Air Action program in 2013. These changes have resulted in significant air quality improvements that are reflected in observations from both surface networks and satellite observations. Air pollutants, such as PM2.5, surface ozone, and their precursors, have long enough lifetimes in the troposphere to be easily transported downwind. Emission changes in China will thus not only change the domestic air quality but will also affect the air quality in other regions. In this study, we use a global chemistry transport model (CAM-chem) to simulate the influence of Chinese emission changes from 2010 to 2017 on both domestic and foreign air quality. We then quantify the changes in air-pollution-associated (including both PM2.5 and O3) premature mortality burdens at regional and global scales. Within our simulation period, the population-weighted annual PM2.5 concentration in China peaks in 2011 (94.1 µg m−3) and decreases to 69.8 µg m−3 by 2017. These estimated national PM2.5 concentration changes in China are comparable with previous studies using fine-resolution regional models, though our model tends to overestimate PM2.5 from 2013 to 2017 when evaluated with surface observations. Relative to 2010, emission changes in China increased the global PM2.5-associated premature mortality burdens through 2013, among which a majority of the changes (∼ 93 %) occurred in China. The sharp emission decreases after 2013 generated significant benefits for human health. By 2017, emission changes in China reduced premature deaths associated with PM2.5 by 108 800 (92 800–124 800) deaths per year globally, relative to 2010, among which 92 % were realized in China. In contrast, the population-weighted, annually averaged maximum daily 8 h ozone concentration peaked in 2014 and did not reach 2010 levels by 2017. As such, O3 generated nearly 8500 (6500–9900) more premature deaths per year in 2017 compared to 2010. Downwind regions, such as South Korea, Japan, and the United States, generally experienced O3 improvements following 2013 due to the decreased export of ozone and its precursors. Overall, we conclude that the sharp emission reductions in China over the past decade have generated substantial benefits for air quality that have reduced premature deaths associated with air pollution at a global scale.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-10-29
    Description: Frequently occurring mega-droughts under current global climate change have attracted broad social attention. A paleoclimatic perspective is needed to increase our understanding of the causes and effects of droughts. South-western (SW) China has been threatened by severe seasonal droughts. Our current knowledge of millennial-scale dry and wet phases in this region is primarily based on the variability of the Indian summer monsoon. However, water availability over land does not always follow patterns of monsoonal precipitation but also depends on water loss from evaporation and transpiration. Here, we reconstructed precipitation intensity, lake hydrological balance and the soil water stress index (SWSI) for the last 27 000 years. Grain size, geochemical and pollen records from Yilong Lake reveal the long-term relationships and inconsistencies of dry–wet patterns in meteorological, hydrological and soil systems in the central Yunnan region, SW China. Our results show that the long-term trends among precipitation, hydrological balance and soil moisture varied through time. The hydrological balance and soil moisture were primarily controlled by temperature-induced evaporation change during periods of low precipitation such as the Last Glacial Maximum and Younger Dryas. During periods of high precipitation (the early to late Holocene), intensified evaporation from the lake surface offset the effects of increased precipitation on the hydrological balance. However, abundant rainfall and the dense vegetation canopy circumvented a soil moisture deficit that might have resulted from rising temperature. In conclusion, the hydrological balance in the central Yunnan region was more sensitive to temperature change while soil moisture could be further regulated by vegetation changes over millennial timescales. Therefore, under future climate warming, the surface water shortage in the central Yunnan region may become even more serious. Our study suggests that reforestation efforts may provide some relief to soil moisture deficits in this region.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-10-29
    Description: This article summarises the results of an analysis of solar radio bursts (SRBs) detected by the Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) spectrometer hosted by the University of Rwanda. The data analysed were detected during the first year (2014–2015) of the instrument operation. Using quick plots provided by the e-CALLISTO website, a total of 201 intense and well-separated solar radio bursts detected by the CALLISTO station located in Rwanda, are found consisting of 4 type II, 175 type III and 22 type IV radio bursts. It is found that all analysed type II and ∼ 37 % of type III bursts are associated with impulsive solar flares, while the minority (∼ 13 %) of type IV radio bursts are associated with solar flares. Furthermore, all type II radio bursts are associated with coronal mass ejections (CMEs), ∼ 44 % of type III bursts are associated with CMEs, and the majority (∼ 82 %) of type IV bursts were accompanied by CMEs. With aid of the atmospheric imaging assembly (AIA) images on board the Solar Dynamics Observatory (SDO), the location of open magnetic field lines of non-flare-associated type III radio bursts are shown. The same images are used to show the magnetic loops in the solar corona for type IV radio bursts observed in the absence of solar flares and/or CMEs. Findings from this study indicate that analysis of SRBs that are observed from the ground can provide a significant contribution to the early diagnosis of solar transients phenomena, such as solar flares and CMEs, which are major drivers of potential space weather hazards.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-10-29
    Description: McMurdo Sound sea ice can generally be partitioned into two regimes: (1) a stable fast-ice cover, forming south of approximately 77.6∘ S around March–April and then breaking out the following January–February, and (2) a more dynamic region north of 77.6∘ S that the McMurdo Sound and Ross Sea polynyas regularly impact. In 2019, a stable fast-ice cover formed unusually late due to repeated break-out events. We analyse the 2019 sea-ice conditions and relate them to a modified storm index (MSI), a proxy for southerly wind events. We find there is a strong correlation between the timing of break-out events and several unusually large MSI events.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2021-10-29
    Description: The Arabian Sea (AS) hosts one of the most intense oxygen minimum zones (OMZs) in the world. Observations suggest a decline in O2 in the northern AS over the recent decades accompanied by an intensification of the suboxic conditions there. Over the same period, the local sea surface temperature has risen significantly, particularly over the Arabian Gulf (also known as Persian Gulf, hereafter the Gulf), while summer monsoon winds may have intensified. Here, we simulate the evolution of dissolved oxygen in the AS from 1982 through 2010 and explore its controlling factors, with a focus on changing atmospheric conditions. To this end, we use a set of eddy-resolving hindcast simulations forced with winds and heat and freshwater fluxes from an atmospheric reanalysis. We find a significant deoxygenation in the northern AS, with O2 inventories north of 20∘ N dropping by over 6 % per decade between 100 and 1000 m. These changes cause an expansion of the OMZ volume north of 20∘ N at a rate of 0.6 % per decade as well as an increase in the volume of suboxia and the rate of denitrification by 14 and 15 % per decade, respectively. We also show that strong interannual and decadal variability modulate dissolved oxygen in the northern AS, with most of the O2 decline taking place in the 1980s and 1990s. Using a set of sensitivity simulations we demonstrate that deoxygenation in the northern AS is essentially caused by reduced ventilation induced by the recent fast warming of the sea surface, including in the Gulf, with a contribution from concomitant summer monsoon wind intensification. This is because, on the one hand, surface warming enhances vertical stratification and increases Gulf water buoyancy, thus inhibiting vertical mixing and ventilation of the thermocline. On the other hand, summer monsoon wind intensification causes a rise in the thermocline depth in the northern AS that lowers O2 levels in the upper ocean. Our findings confirm that the AS OMZ is strongly sensitive to upper-ocean warming and concurrent changes in the Indian monsoon winds. Finally, our results also demonstrate that changes in the local climatic forcing play a key role in regional dissolved oxygen changes and hence need to be properly represented in global models to reduce uncertainties in future projections of deoxygenation.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-11-01
    Description: This paper presents a new technique to derive thermospheric temperature from space-based disk observations of far ultraviolet airglow. The technique, guided by findings from principal component analysis of synthetic daytime Lyman–Birge–Hopfield (LBH) disk emissions, uses a ratio of the emissions in two spectral channels that together span the LBH (2,0) band to determine the change in band shape with respect to a change in the rotational temperature of N2. The two-channel-ratio approach limits representativeness and measurement error by only requiring measurement of the relative magnitudes between two spectral channels and not radiometrically calibrated intensities, simplifying the forward model from a full radiative transfer model to a vibrational–rotational band model. It is shown that the derived temperature should be interpreted as a column-integrated property as opposed to a temperature at a specified altitude without utilization of a priori information of the thermospheric temperature profile. The two-channel-ratio approach is demonstrated using NASA GOLD Level 1C disk emission data for the period of 2–8 November 2018 during which a moderate geomagnetic storm has occurred. Due to the lack of independent thermospheric temperature observations, the efficacy of the approach is validated through comparisons of the column-integrated temperature derived from GOLD Level 1C data with the GOLD Level 2 temperature product as well as temperatures from first principle and empirical models. The storm-time thermospheric response manifested in the column-integrated temperature is also shown to corroborate well with hemispherically integrated Joule heating rates, ESA SWARM mass density at 460 km, and GOLD Level 2 column O/N2 ratio.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-10-29
    Description: Improvements in our capability to reconstruct ancient surface-ocean conditions based on organic-walled dinoflagellate cyst (dinocyst) assemblages from the Southern Ocean provide an opportunity to better establish past position, strength and oceanography of the subtropical front (STF). Here, we aim to reconstruct the late Eocene to early Miocene (37–20 Ma) depositional and palaeoceanographic history of the STF in the context of the evolving Tasmanian Gateway as well as the potential influence of Antarctic circumpolar flow and intense waxing and waning of ice. We approach this by combining information from seismic lines (revisiting existing data and generating new marine palynological data from Ocean Drilling Program (ODP) Hole 1168A) in the western Tasmanian continental slope. We apply improved taxonomic insights and palaeoecological models to reconstruct the sea surface palaeoenvironmental evolution. Late Eocene–early Oligocene (37–30.5 Ma) assemblages show a progressive transition from dominant terrestrial palynomorphs and inner-neritic dinocyst taxa as well as cysts produced by heterotrophic dinoflagellates to predominantly outer-neritic/oceanic autotrophic taxa. This transition reflects the progressive deepening of the western Tasmanian continental margin, an interpretation supported by our new seismic investigations. The dominance of autotrophic species like Spiniferites spp. and Operculodinium spp. reflects relatively oligotrophic conditions, like those of regions north of the modern-day STF. The increased abundance in the earliest Miocene of Nematosphaeropsis labyrinthus, typical for modern subantarctic zone (frontal) conditions, indicates a cooling and/or closer proximity of the STF to the site . The absence of major shifts in dinocyst assemblages contrasts with other records in the region and suggests that small changes in surface oceanographic conditions occurred during the Oligocene. Despite the relatively southerly (63–55∘ S) location of Site 1168, the rather stable oceanographic conditions reflect the continued influence of the proto-Leeuwin Current along the southern Australian coast as Australia continued to drift northward. The relatively “warm” dinocyst assemblages at ODP Site 1168, compared with the cold assemblages at Antarctic Integrated Ocean Drilling Program (IODP) Site U1356, testify to the establishment of a pronounced latitudinal temperature gradient in the Oligocene Southern Ocean.
    Print ISSN: 0262-821X
    Electronic ISSN: 2041-4978
    Topics: Geosciences
    Published by Copernicus on behalf of Micropalaeontological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-10-29
    Description: Recent observational and modeling studies show that variations of stratospheric ozone and the resulting interaction between ozone and the stratospheric circulation play an important role in surface weather and climate. However, in many cases, computationally expensive coupled chemistry models have been used to study these effects. Here, we demonstrate how a much simpler idealized general circulation model (GCM) can be used for studying the impact of interactive stratospheric ozone on the circulation. The model, named Simplified Chemistry-Dynamical Model (SCDM V1.0), is constructed from a preexisting idealized GCM, into which a simplified linear ozone scheme and a parameterization for the shortwave radiative effects of ozone are implemented. The distribution and variability of stratospheric ozone simulated by the new model are in good agreement with the MERRA2 reanalysis, even for extreme circulation events such as Arctic stratospheric sudden warmings. The model thus represents a promising new tool for the study of ozone–circulation interaction in the stratosphere and its associated effects on tropospheric weather and climate.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-10-29
    Description: The importance of Antarctic sea ice and Southern Ocean warming has come into the focus of polar research during the last couple of decades. Especially around West Antarctica, where warm water masses approach the continent and where sea ice has declined, the distribution and evolution of sea ice play a critical role in the stability of nearby ice shelves. Organic geochemical analyses of marine seafloor surface sediments from the Antarctic continental margin allow an evaluation of the applicability of biomarker-based sea-ice and ocean temperature reconstructions in these climate-sensitive areas. We analysed highly branched isoprenoids (HBIs), such as the sea-ice proxy IPSO25 and phytoplankton-derived HBI-trienes, as well as phytosterols and isoprenoidal glycerol dialkyl glycerol tetraethers (GDGTs), which are established tools for the assessment of primary productivity and ocean temperatures respectively. The combination of IPSO25 with a phytoplankton marker (i.e. the PIPSO25 index) permits semi-quantitative sea-ice reconstructions and avoids misleading over- or underestimations of sea-ice cover. Comparisons of the PIPSO25-based sea-ice distribution patterns and TEX86L- and RI-OH′-derived ocean temperatures with (1) sea-ice concentrations obtained from satellite observations and (2) instrument measurements of sea surface and subsurface temperatures corroborate the general capability of these proxies to determine oceanic key variables properly. This is further supported by model data. We also highlight specific aspects and limitations that need to be taken into account for the interpretation of such biomarker data and discuss the potential of IPSO25 as an indicator for the former occurrence of platelet ice and/or the export of ice-shelf water.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-10-29
    Description: In this paper, we present a new version of the chemistry–climate model SOCOL-AERv2 supplemented by an iodine chemistry module. We perform three 20-year ensemble experiments to assess the validity of the modeled iodine and to quantify the effects of iodine on ozone. The iodine distributions obtained with SOCOL-AERv2-I agree well with AMAX-DOAS observations and with CAM-chem model simulations. For the present-day atmosphere, the model suggests that the iodine-induced chemistry leads to a 3 %–4 % reduction in the ozone column, which is greatest at high latitudes. The model indicates the strongest influence of iodine in the lower stratosphere with 30 ppbv less ozone at low latitudes and up to 100 ppbv less at high latitudes. In the troposphere, the account of the iodine chemistry reduces the tropospheric ozone concentration by 5 %–10 % depending on geographical location. In the lower troposphere, 75 % of the modeled ozone reduction originates from inorganic sources of iodine, 25 % from organic sources of iodine. At 50 hPa, the results show that the impacts of iodine from both sources are comparable. Finally, we determine the sensitivity of ozone to iodine by applying a 2-fold increase in iodine emissions, as it might be representative for iodine by the end of this century. This reduces the ozone column globally by an additional 1.5 %–2.5 %. Our results demonstrate the sensitivity of atmospheric ozone to iodine chemistry for present and future conditions, but uncertainties remain high due to the paucity of observational data of iodine species.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2024-01-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2004-11-23
    Description: Snow, through its trace constituents, can have a major impact on lower tropospheric chemistry, as evidenced by ozone depletion events (ODEs) in oceanic polar areas. These ODEs are caused by the chemistry of bromine compounds that originate from sea salt bromide. Bromide may be supplied to the snow surface by upward migration from sea ice, by frost flowers being wind-blown to the snow surface, or by wind-transported aerosol generated by sea spray. We investigate here the relative importance of these processes by analyzing ions in snow near Alert and Ny-Ålesund (Canadian and European high Arctic) in winter and spring. Vertical ionic profiles in the snowpack on sea ice are measured to test upward migration of sea salt ions and to seek evidence for ion fractionation processes. Time series of the ionic composition of surface snow layers are investigated to quantify wind-transported ions. Upward migration of unfractionated sea salt to heights of at least 17cm was observed in winter snow, leading to Cl- concentration of several hundred µM. Upward migration thus has the potential to supply ions to surface snow layers. Time series show that wind can deposit aerosols to the top few cm of the snow, leading also to Cl- concentrations of several hundred µM, so that both diffusion from sea ice and wind transport can significantly contribute ions to snow. At Ny-Ålesund, sea salt transported by wind was unfractionated, implying that it comes from sea spray rather than frost flowers. Estimations based on our results suggest that the marine snowpack contains about 10 times more Na+ than the frost flowers, so that both the marine snowpack and frost flowers need to be considered as sea salt sources. Our data suggest that ozone depletion chemistry can significantly enhance the Br- content of snow. We speculate that this can also take place in coastal regions and contribute to propagate ODEs inland. Finally, we stress the need to measure snow physical parameters such as permeability and specific surface area to understand quantitatively changes in snow chemistry.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2004-11-18
    Description: The results of two methods retrieving actinic flux and ozone photolysis frequencies (JO1D), from measurements of irradiance with a Brewer MKIII spectroradiometer are investigated in this paper. The first method uses actinic flux retrieved from irradiance measurements by the use of known formulas while the second is an empirical method converting irradiance to JO1D through polynomials extracted from a study of synchronous actinic flux and irradiance measurements. When examining the actinic fluxes derived from the first method to those measured by an actinic flux spectrometer data agree within ±10% for solar zenith angles lower than 75° for the UV-B and the UV-A wavelength band. Also, the actinic to global irradiance ratio derived, deviates within ±6% for solar zenith angles lower than 70° compared with cloudless sky calculations of the TUV model. For both cases the deviations are in the order of the magnitude of the measurement or model uncertainties. Values of JO1D calculated by the second method show a mean ratio of 0.99±0.10 (1σ) and 0.98±0.06 for all data and for cloudless skies respectively when compared with values of JO1D derived by a Bentham actinic flux spectroradiometer. Finally, the agreement of the two methods is within ±5% comparing two years' data of JO1D retrieved from irradiance measurements at Thessaloniki, Greece. The use of such methods on extensive data sets of global irradiance can provide JO1D values with acceptable uncertainty, a parameter of particular importance for chemical process studies.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2004-11-22
    Description: A new 3-D mercury model has been developed within the Danish Arctic Monitoring and Assessment Programme (AMAP). The model is based on the Danish Eulerian Hemispheric Model, which in the original version has been used to study the transport of SO2, SO42- and Pb into the Arctic. It was developed for sulphur in 1990 and in 1999 also lead was included. For the current study a chemical scheme for mercury has been included and the model is now applied to the mercury transport problem. Some experiments with the formulation of the mercury chemistry during the Polar Sunrise are carried out in order to investigate the observed depletion. Some of the main conclusions of the work described in this paper are that atmospheric transport of mercury is a very important pathway into the Arctic and that mercury depletion in the Arctic troposphere during the Polar Sunrise contributes considerably to the deposition of mercury in the Arctic.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2004-11-22
    Description: Photolysis of water-soluble components inside cloud droplets by ultraviolet/visible radiation may play an important role in atmospheric chemistry. Two earlier studies have suggested that the actinic flux and hence the photolysis frequency within spherical droplets is enhanced relative to that in the surrounding air, but have given different values for this enhancement. Here, we reconcile these discrepancies by noting slight errors in both studies that, when corrected, lead to consistent results. Madronich (1987) examined the geometric (large droplet) limit and concluded that refraction leads to an enhancement factor, averaged over all incident directions, of 1.56. However, the physically relevant quantity is the enhancement of the average actinic flux (rather than the average enhancement factor) which we show here to be 1.26 in the geometric limit. Ruggaber et al. (1997) used Mie theory to derive energy density enhancements slightly larger than 2 for typical droplet sizes, and applied these directly to the calculation of photolysis rates. However, the physically relevant quantity is the actinic flux (rather than the energy density) which is obtained by dividing the energy density by the refractive index of water, 1.33. Thus, the Mie-predicted enhancement for typical cloud droplet sizes is in the range 1.5, only coincidentally in agreement with the value originally given by Madronich. We also investigated the influence of resonances in the actinic flux enhancement. These narrow spikes which are resolved only by very high resolution calculations are orders of magnitude higher than the intermediate values but contribute only little to the actinic flux enhancement when averaged over droplet size distributions. Finally, a table is provided which may be used to obtain the actinic flux enhancement for the photolysis of any dissolved species.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2004-11-22
    Description: Trends in derived from a 45 year integration of a chemistry-climate model (CCM) run have been compared with ground-based measurements at Lauder (45° S) and Arrival Heights (78° S). Observed trends in at both sites exceed the modelled trends in N2O, the primary source gas for stratospheric NO2. This suggests that the processes driving the trend are not solely dictated by changes in but are coupled to global atmospheric change, either chemically or dynamically or both. If CCMs are to accurately estimate future changes in ozone, it is important that they comprehensively include all processes affecting NOx (NO+NO2) because NOx concentrations are an important factor affecting ozone concentrations. Comparison of measured and modelled NO2 trends is a sensitive test of the degree to which these processes are incorporated in the CCM used here. At Lauder the 1980-2000 CCM NO2 trends (4.2% per decade at sunrise, 3.8% per decade at sunset) are lower than the observed trends (6.5% per decade at sunrise, 6.0% per decade at sunset) but not significantly different at the 2σ level. Large variability in both the model and measurement data from Arrival Heights makes trend analysis of the data difficult. CCM predictions (2001-2019) of NO2 at Lauder and Arrival Heights show significant reductions in the rate of increase of NO2 compared with the previous 20 years (1980-2000). The model results indicate that the partitioning of oxides of nitrogen changes with time and is influenced by both chemical forcing and circulation changes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2004-11-03
    Description: Smoke-haze episodes caused by vegetation and peat fires affect parts of Indonesia every year with significant impacts on human health and climate. Particularly fires in degenerated peat areas release huge amounts of trace gases, e.g. CO2, CO and CH4, and particles into the atmosphere, exceeding by far the emissions per unit area from fires in surface vegetation. However, only limited information is available about the current distribution of pristine and degenerated peat areas in Indonesia, their depth, drainage condition and modification by fire. Particularly during the strong El Niño event in 1997/1998 a huge uncertainty exists about the contribution of Indonesian peat fire emissions to the measured increase of atmospheric CO2, as the published estimates of the peat area burned differ considerably. In this paper we study the contribution of peat fire emissions in Indonesia during the El Niño event 1997/1998. A regional three-dimensional atmosphere-chemistry model is applied over Indonesia using two emission estimates. These vegetation and peat fire emission inventories for Indonesia are set up in 0.5° resolution in weekly intervals and differ only in the size of the fire affected peat areas. We evaluate simulated rainfall and particle concentrations by comparison with observations to draw conclusions on the total carbon emissions released from the vegetation and peat fires in Indonesia in 1997/1998.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2004-11-10
    Description: Water vapour has been measured from the International Scientific Station Jungfraujoch (ISSJ, 47° N, 7° E, 3580m above sea level) during the winters of 1999/2000 and 2000/2001 by microwave radiometry and Raman lidar. The abundance of atmospheric water vapour between the planetary boundary layer and the upper stratosphere varies over more than three orders of magnitude. The currently used measurement techniques are only suited to determine the abundance of water vapour in different atmospheric regimes. None can resolve the vertical distribution profile from ground level to the top of the stratosphere by itself. We present such a water vapour profile where simultaneous measurements from a Raman lidar and a microwave radiometer were combined to cover both the troposphere and the stratosphere, respectively. We also present a study of the stratospheric and tropospheric water vapour variability for the two consecutive winters.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2004-10-05
    Description: Explicit mechanisms describing the complex degradation pathways of atmospheric volatile organic compounds (VOCs) are important, since they allow the study of the contribution of individual VOCS to secondary pollutant formation. They are computationally expensive to solve however, since they contain large numbers of species and a wide range of time-scales causing stiffness in the resulting equation systems. This paper and the following companion paper describe the application of systematic and automated methods for reducing such complex mechanisms, whilst maintaining the accuracy of the model with respect to important species and features. The methods are demonstrated via application to version 2 of the Leeds Master Chemical Mechanism. The methods of Jacobian analysis and overall rate sensitivity analysis proved to be efficient and capable of removing the majority of redundant reactions and species in the scheme across a wide range of conditions relevant to the polluted troposphere. The application of principal component analysis of the rate sensitivity matrix was computationally expensive due to its use of the decomposition of very large matrices, and did not produce significant reduction over and above the other sensitivity methods. The use of the quasi-steady state approximation (QSSA) proved to be an extremely successful method of removing the fast time-scales within the system, as demonstrated by a local perturbation analysis at each stage of reduction. QSSA species were automatically selected via the calculation of instantaneous QSSA errors based on user-selected tolerances. The application of the QSSA led to the removal of a large number of alkoxy radicals and excited Criegee bi-radicals via reaction lumping. The resulting reduced mechanism was shown to reproduce the concentration profiles of the important species selected from the full mechanism over a wide range of conditions, including those outside of which the reduced mechanism was generated. As a result of a reduction in the number of species in the scheme of a factor of 2, and a reduction in stiffness, the computational time required for simulations was reduced by a factor of 4 when compared to the full scheme.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2004-11-15
    Description: Chemical ozone loss in the Arctic stratosphere was investigated for the twelve years between 1991 and 2003 employing the ozone-tracer correlation method. For this method, the change in the relation between ozone and a long-lived tracer is considered for all twelve years over the lifetime of the polar vortex to calculate chemical ozone loss. Both the accumulated local ozone loss in the lower stratosphere and the column ozone loss were derived consistently, mainly on the basis of HALOE satellite observations. HALOE measurements do not cover the polar region homogeneously over the course of the winter. Thus, to derive an early winter reference function for each of the twelve years, all available measurements were additionally used; for two winters climatological considerations were necessary. Moreover, a detailed quantification of uncertainties was performed. This study further demonstrates the interaction between meteorology and ozone loss. The connection between temperature conditions and chlorine activation, and in turn, the connection between chlorine activation and ozone loss, becomes obvious in the HALOE HCl measurements. Additionally, the degree of homogeneity of ozone loss within the vortex was shown to depend on the meteorological conditions. Results derived here are in general agreement with the results obtained by other methods for deducing polar ozone loss. Differences occur mainly owing to different time periods considered in deriving accumulated ozone loss. However, very strong ozone losses as deduced from SAOZ for January in winters 1993-1994 and 1995-1996 cannot be identified using available HALOE observations in the early winter. In general, strong accumulated ozone loss was found to occur in conjunction with a strong cold vortex containing a large volume of possible PSC existence (VPSC), whereas moderate ozone loss was found if the vortex was less strong and moderately warm. Hardly any ozone loss was calculated for very warm winters with small amounts of VPSC during the entire winter. This study supports the linear relationship between VPSC and the accumulated ozone loss reported by Rex et al. (2004) if VPSC was averaged over the entire winter period. Here, further meteorological factors controlling ozone loss were additionally identified if VPSC was averaged over the same time interval as that for which the accumulated ozone loss was deduced. A significant difference in ozone loss (of ≈36DU) was found due to the different duration of solar illumination of the polar vortex of at maximum 4 hours per day in the observed years. Further, the increased burden of aerosols in the atmosphere after the Pinatubo volcanic eruption in 1991 significantly increased the extent of chemical ozone loss.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2004-10-05
    Description: During the calendar years 1998-2002, 147 clear 8nm diameter particle formation events have been identified at the SMEAR I station in Värriö, northern Finland. The events have been classified in detail according to the particle formation rate, growth rate, event starting time, different trace gas concentrations and pre-existing particle concentrations as well as various meteorological conditions. The frequency of particle formation and growth events was highest during the spring months between March and May, suggesting that increasing biological activity might produce the precursor gases for particle formation. The apparent 8nm particle formation rates were around 0.1 /cm3s, and they were uncorrelated with growth rates that varied between 0.5 and 10nm/h. The air masses with clearly elevated sulphur dioxide concentrations (above 1.6ppb) came, as expected, from the direction of the Nikel and Monschegorsk smelters. Only 15 formation events can be explained by the pollution plume from these sources.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2004-09-14
    Description: Forest fire emissions have a strong impact on the concentrations of trace gases and aerosols in the atmosphere. In order to quantify the influence of boreal forest fire emissions on the atmospheric composition, the fire seasons of 1997 and 1998 are compared in this paper. Fire activity in 1998 was very strong, especially over Canada and Eastern Siberia, whereas it was much weaker in 1997. According to burned area estimates the burning in 1998 was more than six times as intense as in 1997. Based on hot spot locations derived from ATSR (Along Track Scanning Radiometer) data and official burned area data, fire emissions were estimated and their transport was simulated with a Lagrangian tracer transport model. Siberian and Canadian forest fire tracers were distinguished to investigate the transport of both separately. The fire emissions were transported even over intercontinental distances. Due to the El Niño induced meteorological situation, transport from Siberia to Canada was enhanced in 1998. Siberian fire emissions were transported towards Canada and contributed concentrations more than twice as high as those due to Canada's own CO emissions by fires. In 1998 both tracers arrive at higher latitudes over Europe, which is due to a higher North Atlantic Oscillation (NAO) index in 1998. The simulated emission plumes are compared to CMDL (Climate Monitoring and Diagnostics Laboratory) CO2 and CO data, Total Ozone Mapping Spectrometer (TOMS) aerosol index (AI) data and Global Ozone Monitoring Experiment (GOME) tropospheric NO2 and HCHO columns. All the data show clearly enhanced signals during the burning season of 1998 compared to 1997. The results of the model simulation are in good agreement with ground-based as well as satellite-based measurements.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2004-09-14
    Description: Here we present a concise and efficient algorithm to mimic the growth and sedimentation of Nitric Acid Trihydate (NAT) particles in the polar vortex in a state-of-the-art 3D chemistry transport model. The particle growth and sedimentation are calculated using the microphysical formulation of Carslaw et al. (2002). Once formed, NAT particles are transported in the model as tracers in the form of size-segregated quantities or size bins. Two different approaches were adopted for this purpose: one assuming a fixed particle number density ("FixedDens") and the other assuming a discrete set of particle diameter values ("FixedRad"). Simulations were performed for three separate 10-day periods during the 1999-2000 Arctic winter and compared to the results of an existing Lagrangian model study, which uses similar microphysics in a computationally more expensive method for the simulation of NAT particle growth. The resulting particle sizes for both our approaches compare favourably at 430K with those obtained from this previous model study, and also in-situ observations related to the size of large NAT particles. The particle growth is faster for "FixedDens" resulting in a difference in (de)nitrification by a factor of ~2 for all three simulation periods. Comparisons were made with a standard equilibrium approach and the differences in the redistribution of HNO3 were found to be substantial. For both approaches the performance of the algorithm is rather insensitive to both the number of size bins and the shape of the size distribution, and show a weak dependence on the prescribed total particle number density during the coldest period. This results in an increase of 7% for the "FixedRad" approach and 17% for the "FixedDens" approach when increasing the total particle number density by a factor of 2.5.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2004-09-13
    Description: We show that mineral dust optical depth and altitude can be retrieved from the Aqua - Advanced Infrared Radiation Sounder (AIRS) measurements. Sensitivity studies performed with a high spectral resolution radiative transfer code show that dust effect on brightness temperatures may reach about 10 Kelvins for some channels. Using a Look-Up-Table approach, we retrieve not only the 10 µm optical depth but also the altitude of Saharan dust layer, above the Atlantic Ocean, from April to September 2003. A key point of our method is its ability to retrieve dust altitude from satellite observations. The time and space distribution of the optical depth is in good agreement with the Moderate resolution Imaging Spectroradiometer (MODIS) products. Comparing MODIS and AIRS aerosol optical depths, we find that the ratio between infrared and visible optical depths decreases during transport from 0.35 to 0.22, revealing a loss in coarse particles caused by gravitational settling. The evolution of dust altitude from spring to summer is in agreement with current knowledge on transport seasonality.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2004-09-13
    Description: Future increases in the concentration of greenhouse gases and water vapour may cool the stratosphere further and increase the amount of polar stratospheric clouds (PSCs). Future Arctic PSC areas have been extrapolated from the highly significant trends 1958-2001. Using a tight correlation between PSC area and the total vortex ozone depletion and taking the decreasing amounts of ozone depleting substances into account we make empirical estimates of future ozone. The result is that Arctic ozone losses increase until 2010-2015 and decrease only slightly afterwards. However, for such a long extrapolation into the future caution is necessary. Tentatively taking the modelled decrease in the ozone trend in the future into account results in almost constant ozone depletions until 2020 and slight decreases afterwards. This approach is a complementary method of prediction to that based on the complex coupled chemistry-climate models (CCMs).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2004-08-03
    Description: A polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. It was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~4.5 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several diagnostics near the tropopause level provide evidence that the wave is emitted from an intense, rapidly evolving, anticyclonically curved jet stream. The precise physical process responsible for the wave emission could not be identified definitely, but geostrophic adjustment and shear instability are likely candidates. In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, the non-linear balance equation diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from spontaneous adjustment.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2004-07-02
    Description: A field measurement campaign was carried out over a Dutch heathland to investigate the effect of gas-to-particle conversion and ammonium aerosol evaporation on surface/atmosphere fluxes of ammonia and related species. Continuous micrometeorological measurements of the surface exchange of NH3, SO2, HNO3 and HCl were made and are analyzed here with regard to average fluxes, deposition velocities (Vd), canopy resistances (Rc) and canopy compensation point for NH3. Gradients of SO2, HNO3 and HCl were measured with a novel wet-denuder system with online anion chromatography. Measurements of HNO3 and HCl indicate an Rc of 100 to 200 s m-1 during warm daytime periods, probably at least partly due to non-zero acid partial pressures above NH4NO3 and NH4Cl on the leaf surfaces. Although it is likely that this observation is exacerbated by the effect of the evaporation of airborne NH4+ on the gradient measurements, the findings nevertheless add to the growing evidence that HNO3 and HCl are not always deposited at the maximum rate. Ammonia (NH3) fluxes show mainly deposition, with some periods of significant daytime emission. The net exchange could be reproduced both with an Rc model (deposition fluxes only) using resistance parameterizations from former measurements, as well as with the canopy compensation point model, using parameterizations derived from the measurements. The apoplastic ratio of ammonium and hydrogen concentration (Γs=[NH4+]/[H+]) of 1200 estimated from the measurements is large for semi-natural vegetation, but smaller than indicated by previous measurements at this site.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2004-06-22
    Description: A Fresnel transform technique has been developed at Adelaide to analyse radar meteor echoes detected in the transverse mode. The genesis for this technique was the study of the structure of the scattering ionization immediately behind the head of the trail, in order to deduce the degree of fragmentation of the ablating meteoroid. The technique has been remarkably successful in not only giving insight into the fragmentation of meteoroids, but also revealing other significant features of the trails including diffusion, lateral motion of the trail during formation due to wind drift, and phase of the scattered signal in the vicinity of the head of the trail. A serendipitous outcome of the analysis is the measurement of the speed and deceleration of the meteoroid producing the trail to a precision far exceeding that available from any other method applied to transverse scatter data. Examples of the outcomes of the technique applied to meteor echoes obtained with a 54MHz narrow beam radar are presented.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2004-06-23
    Description: It is commonly believed that cumulus convection preferentially generates gravity waves with tropospheric vertical wavelengths approximately twice the depth of the convective heating. Individual cumulonimbus, however, act as short term transient heat sources (duration 10 to 30min). Gravity waves generated by such sources have broad frequency spectra and a wide range of vertical scales. The high-frequency components tend to have vertical wavelengths much greater than twice the depth of the heating. Such waves have large vertical group velocities, and are only observed for a short duration and at short horizontal distances from the convective source. At longer times and longer distances from the source the dominant wave components have short vertical wavelengths and much slower group velocities, and thus are more likely to be observed even though their contribution to the momentum flux in the upper stratosphere and mesosphere may be less than that of the high frequency waves. These properties of convectively generated waves are illustrated by a linear numerical model for the wave response to a specified transient heat source. The wave characteristics are documented through Fourier and Wavelet analysis, and implications for observing systems are discussed.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2004-04-27
    Description: As part of the OSOA (Origin and formation of Secondary Organic Aerosols) project, two intensive field campaigns were conducted in Melpitz, Germany and Hyytiälä, Finland. This paper gives an overview of the measurements made during the Hyytiälä campaign, which was held between 1 and 16 August 2001. Various instrumental techniques were used to achieve physical and chemical characterisation of aerosols and to investigate possible precursor gases. During the OSOA campaign in Hyytiälä, particle formation was observed on three consecutive days at the beginning of the campaign (1 to 3 August 2001) and on three days later on. The investigation of the meteorological situation divided the campaign into two parts. During the first three days of August, relatively cold and clean air masses from northwest passed over the station (condensation sink – CS:
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2004-03-17
    Description: A modelling study of the formation of volatile particles in a combustor exhaust has been carried out in the frame of the PartEmis European project. A kinetic model has been used in order to investigate nucleation efficiency of the H2O-H2SO4 binary mixture in the sampling system. A value for the fraction of the fuel sulphur S(IV) converted into S(VI) has been indirectly deduced from comparisons between model results and measurements. In the present study, ranges between roughly 2.5% and 6%, depending on the combustor settings and on the value assumed for the parameter describing sulphuric acid wall losses. Soot particles hygroscopicity has also been investigated as their activation is a key parameter for contrail formation. Growth factors of monodisperse particles exposed to high relative humidity (95%) have been calculated and compared with experimental results. The modelling study confirms that the growth factor increases as the soot particle size decreases.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2004-03-03
    Description: We use a genetic algorithm to construct optimal observing networks of atmospheric concentration for inverse determination of net sources. Optimal networks are those that produce a minimum in average posterior uncertainty plus a term representing the divergence among source estimates for different transport models. The addition of this last term modifies the choice of observing sites, leading to larger networks than would be chosen under the traditional estimated variance metric. Model-model differences behave like sub-grid heterogeneity and optimal networks try to average over some of this. The optimization does not, however, necessarily reject apparently difficult sites to model. Although the results are so conditioned on the experimental set-up that the specific networks chosen are unlikely to be the best choices in the real world, the counter-intuitive behaviour of the optimization suggests the model error contribution should be taken into account when designing observing networks. Finally we compare the flux and total uncertainty estimates from the optimal network with those from the 3 control case. The  3 control case performs well under the chosen uncertainty metric and the flux estimates are close to those from the optimal case. Thus the 3 findings would have been similar if minimizing the total uncertainty guided their network choice.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2004-03-25
    Description: Currently two polar orbiting satellite instruments measure CO2 concentrations in the Earth's atmosphere, while other missions are planned for the coming years. In the future such instruments might become powerful tools for monitoring changes in the atmospheric CO2 abundance and to improve our quantitative understanding of the leading processes controlling this. At the moment, however, we are still in an exploratory phase where first experiences are collected and promising new space-based measurement concepts are investigated. This study assesses the potential of some of these concepts to improve CO2 source and sink estimates obtained from inverse modelling. For this purpose the performance of existing and planned satellite instruments is quantified by synthetic simulations of their ability to reduce the uncertainty of the current source and sink estimates in comparison with the existing ground-based network of sampling sites. Our high resolution inversion of sources and sinks (at 8°x10°) allows us to investigate the variation of instrument performance in space and time and at various temporal and spatial scales. The results of our synthetic tests clearly indicate that the satellite performance increases with increasing sensitivity of the instrument to CO2 near the Earth's surface, favoring the near infra-red technique. Thermal infrared instruments, on the contrary, reach a better global coverage, because the performance in the near infrared is reduced over the oceans owing to a low surface albedo. Near infra-red sounders can compensate for this by measuring in sun-glint, which will allow accurate measurements over the oceans, at the cost, however, of a lower measurement density. Overall, the sun-glint pointing near infrared instrument is the most promising concept of those tested. We show that the ability of satellite instruments to resolve fluxes at smaller temporal and spatial scales is also related to surface sensitivity. All the satellite instruments performed relatively well over the continents resulting mainly from the larger prior flux uncertainties over land than over the oceans. In addition, the surface networks are rather sparse over land increasing the additional benefit of satellite measurements there. Globally, challenging satellite instrument precisions are needed to compete with the current surface network (about 1ppm for weekly and 8°x10° averaged SCIAMACHY columns). Regionally, however, these requirements relax considerably, increasing to 5ppm for SCIAMACHY over tropical continents. This points not only to an interesting research area using SCIAMACHY data, but also to the fact that satellite requirements should not be quantified by only a single number. The applicability of our synthetic results to real satellite instruments is limited by rather crude representations of instrument and data retrieval related uncertainties. This should receive high priority in future work.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2004-02-27
    Description: Formation of binary cluster ions from polar vapours is considered. The effect of vapour polarity on the size and composition of the critical clusters is investigated theoretically and a corrected version of classical Kelvin-Thomson theory of binary ion-induced nucleation is derived. The model predictions of the derived theory are compared to the results given by classical binary homogeneous nucleation theory and ion-induced nucleation theory. The calculations are performed in wide range of the ambient conditions for a system composed of sulfuric acid and water vapour. It is shown that dipole-charge interaction significantly decreases the size of the critical clusters, especially under the atmospheric conditions when the size of critical clusters is predicted to be small.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2004-02-27
    Description: The chemistry of peroxynitric acid (HO2NO2) and methyl peroxynitrate (CH3O2NO2)is predicted to be particularly important in the upper troposphere where temperatures are frequently low enough that these compounds do not rapidly decompose. At temperatures below 240K, we calculate that about 20% of NOy in the mid- and high-latitude upper troposphere is HO2NO2. Under these conditions, the reaction of OH with HO2NO2 is estimated to account for as much as one third of the permanent loss of hydrogen radicals. During the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign, we used thermal dissociation laser-induced fluorescence (TD-LIF) to measure the sum of peroxynitrates (PNs HO2NO2+CH3O2NO2+PAN+PPN+...) aboard the NCAR C-130 research aircraft. We infer the sum of HO2NO2 and CH3O2NO2 as the difference between PN measurements and gas chromatographic measurements of the two major peroxy acyl nitrates, peroxy acetyl nitrate (PAN) and peroxy propionyl nitrate (PPN). Comparison with NOy and other nitrogen oxide measurements confirms the importance of HO2NO2 and CH3O2NO2 to the reactive nitrogen budget and shows that current thinking about the chemistry of these species is approximately correct. During the spring high latitude conditions sampled during the TOPSE experiment, the model predictions of the contribution of (HO2NO2+CH3O2NO2) to NOy are highly temperature dependent: on average 30% of NOy at 230K, 15% of NOy at 240K, and 5% of NOy above 250K. The temperature dependence of the inferred concentrations corroborates the contribution of overtone photolysis to the photochemistry of peroxynitric acid. A model that includes IR photolysis (J=1x10-5s-1) agreed with the observed sum of HO2NO2+CH3O2NO2 to better than 35% below 240K where the concentration of these species is largest.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2004-02-25
    Description: The potential enhancement of tropospheric column ozone values over the Tropical Atlantic Ocean on a seasonal basis by lightning is investigated using satellite derived ozone data, TRMM lightning data, ozonesonde data and NCEP reanalysis during 1998-2001. Our results show that the number of lightning flashes in Africa and South America reach a maximum during September, October and November (SON). The spatial patterns of winds in combination with lightning from West Africa, Central Africa and South America is likely responsible for enriching middle/upper troposphere ozone over the Tropical South Atlantic during SON. Moreover, lightning flashes are high in the hemisphere opposite to biomass burning during December, January, and February (DJF) and June, July and August (JJA). This pattern leads to an enrichment of ozone in the middle/upper troposphere in the Southern Hemisphere Tropics during DJF and the Northern Hemisphere Tropics during JJA. During JJA the largest numbers of lightning flashes are observed in West Africa, enriching tropospheric column ozone to the north of 5S in the absence of biomass burning. During DJF, lightning is concentrated in South America and Central Africa enriching tropospheric column ozone south of the Equator in the absence of biomass burning.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2004-03-24
    Description: The main purpose of this study is to develop a methodology for a multidisciplinary nuclear risk and vulnerability assessment, and to test this methodology through estimation of a nuclear risk to population in the Northern European countries in case of a severe accident at the nuclear risk sites. For assessment of the probabilistic risk and vulnerability, a combination of social-geophysical factors and probabilities are considered. The main focus of this paper is the description of methodology for evaluation of the atmospheric transport of radioactive releases from the risk site regions based on the long-term trajectory modeling. The suggested methodology is given from the probabilistic point of view. The main questions stated are: What are probabilities and times for radionuclide atmospheric transport to different neighbouring countries and territories in case of the hypothetical accidental release at the nuclear risk site? Which geographical territories or countries are at the highest risk from the hypothetical accidental releases? To answer these questions we suggest applying the following research tools for probabilistic atmospheric studies. First tool is atmospheric modelling to calculate multiyear forward trajectories originated over the sites. Second tool is statistical analyses to explore temporal and spatial structure of calculated trajectories and evaluate different probabilistic impact indicators: atmospheric transport pathways, airflow, fast transport, typical transport time, maximum possible impact zone, maximum reaching distance, etc. These indicators are applicable for further GIS-analysis and integration to estimate regional risk and vulnerability in case of accidental releases at the risk sites and for planning the emergency response and preparedness systems.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2004-03-23
    Description: Determining the velocity of meteoroids as they enter the Earth's atmosphere is very important since the value is fundamental in calculating the orbit of the meteoroid and hence eventually its origin. We describe early attempts at this determination and highlight problems that exist today.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2004-04-13
    Description: In a recent published paper, Generoso et al. (2003) describe a method for improving the spatial and temporal distribution of pyrogenic aerosol emission inventories. In the course of their analysis, the authors note several significant discrepancies in the seasonality of burning as observed by the Visible and Infrared Scanner (VIRS) and four other biomass burning data sets derived from satellite observations. In this commentary we explain the source of these discrepancies and clarify the origin of the VIRS observations that were used by Generoso et al.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2004-04-08
    Description: An assessment of the accuracy of OH concentrations measured in a smog chamber by a calibrated laser-induced fluorescence (LIF) instrument has been made, in the course of 9 experiments performed to study the photo-oxidation of benzene, toluene, 1,3,5-trimethylbenzene, para-xylene, ortho-cresol and ethene at the European Photoreactor facility (EUPHORE). The LIF system was calibrated via the water photolysis / ozone actinometry approach. OH concentrations were inferred from the instantaneous rate of removal of each hydrocarbon species (measured by FTIR or HPLC) via the appropriate rate coefficient for their reaction with OH, and compared with those obtained from the LIF system. Good agreement between the two approaches was found for all species with the exception of 1,3,5-trimethylbenzene, for which OH concentrations inferred from hydrocarbon removal were a factor of 3 lower than those measured by the LIF system. From the remaining 8 experiments, an overall value of 1.15±0.13 (±1σ) was obtained for [OH]LIF / [OH]Hydrocarbon Decay, compared with the estimated uncertainty in the accuracy of the water photolysis / ozone actinometry OH calibration technique of 26% (1σ).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2004-02-25
    Description: A set of 813 lidar profiles of tropospheric aerosol and cirrus clouds extinction and depolarization observed in Rome, Italy, between February 2001 and February 2002 is analyzed and discussed. The yearly record reveals a meaningful contribution of both cirrus clouds (38%) and Saharan dust (12%) to the total optical thickness (OT) of 0.26, at 532nm. Seasonal analysis shows the planetary boundary layer (PBL) aerosols to be confined below 2km in winter and 3.8km in summer, with relevant OT shifting from 0.08 to 0.16, respectively. Cirrus clouds maximise in spring and autumn, in both cases with average OT similar to the PBL aerosols one. With the exception of winter months, Saharan dust is found to represent an important third layer mostly residing between PBL aerosols and cirrus clouds, with yearly average OT0.03. Saharan dust and cirrus clouds were detected in 20% and in 45% of the observational days, respectively. Validation of the lidar OT retrievals against collocated sunphotometer observations show very good agreement. These results represent one of the few yearly records of tropospheric aerosol vertical profiles available in the literature.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2004-02-04
    Description: The effect of aqueous versus crystalline sulfate-nitrate-ammonium tropospheric particles on global aerosol direct radiative forcing is assessed. A global three-dimensional chemical transport model predicts sulfate, nitrate, and ammonium aerosol mass. An aerosol thermodynamics model is called twice, once for the upper side (US) and once for lower side (LS) of the hysteresis loop of particle phase. On the LS, the sulfate mass budget is 40% solid ammonium sulfate, 12% letovicite, 11% ammonium bisulfate, and 37% aqueous. The LS nitrate mass budget is 26% solid ammonium nitrate, 7% aqueous, and 67% gas-phase nitric acid release due to increased volatility upon crystallization. The LS ammonium budget is 45% solid ammonium sulfate, 10% letovicite, 6% ammonium bisulfate, 4% ammonium nitrate, 7% ammonia release due to increased volatility, and 28% aqueous. LS aerosol water mass partitions as 22% effloresced to the gas-phase and 78% remaining as aerosol mass. The predicted US/LS global fields of aerosol mass are employed in a Mie scattering model to generate global US/LS aerosol optical properties, including scattering efficiency, single scattering albedo, and asymmetry parameter. Global annual average LS optical depth and mass scattering efficiency are, respectively, 0.023 and 10.7 m2 (g SO4-2)-1, which compare to US values of 0.030 and 13.9 m2 (g SO4-2)-1. Radiative transport is computed, first for a base case having no aerosol and then for the two global fields corresponding to the US and LS of the hysteresis loop. Regional, global, seasonal, and annual averages of top-of-the-atmosphere aerosol radiative forcing on the LS and US (FL and FU, respectively, in W m-2) are calculated. Including both anthropogenic and natural emissions, we obtain global annual averages of FL=-0.750, FU=-0.930, and DFU,L=24% for full sky calculations without clouds and FL=-0.485, FU=-0.605, and DFU,L=25% when clouds are included. Regionally, DFU,L=48% over the USA, 55% over Europe, and 34% over East Asia. Seasonally, DFU,L varies from 18% in DJF to 75% in SON over the USA. The global annual average contribution from anthropogenic aerosol is FL=-0.314 and FU=-0.404, which yield normalized direct radiative forcings (G) of GL=-205 W (g SO4-2)-1 and GU=-264 W (g SO4-2)-1.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2004-02-17
    Description: The interaction of aerosol particles composed of the protein bovine serum albumin (BSA) and the inorganic salts sodium chloride and ammonium nitrate with water vapor has been investigated by hygroscopicity tandem differential mobility analyzer (H-TDMA) experiments complemented by transmission electron microscopy (TEM) and Köhler theory calculations (100-300nm particle size range, 298K, 960hPa). BSA was chosen as a well-defined model substance for proteins and other macromolecular compounds, which constitute a large fraction of the water-soluble organic component of air particulate matter. Pure BSA particles exhibited deliquescence and efflorescence transitions at 35% relative humidity () and a hygroscopic diameter increase by up to 10% at 95% in good agreement with model calculations based on a simple parameterisation of the osmotic coefficient. Pure NaCl particles were converted from near-cubic to near-spherical shape upon interaction with water vapor at relative humidities below the deliquescence threshold (partial surface dissolution and recrystallisation), and the diameters of pure NH4NO3 particles decreased by up to 10% due to chemical decomposition and evaporation. Mixed NaCl-BSA and NH4NO3-BSA particles interacting with water vapor exhibited mobility equivalent diameter reductions of up to 20%, depending on particle generation, conditioning, size, and chemical composition (BSA dry mass fraction 10-90%). These observations can be explained by formation of porous agglomerates (envelope void fractions up to 50%) due to ion-protein interactions and electric charge effects on the one hand, and by compaction of the agglomerate structure due to capillary condensation effects on the other. The size of NH4NO3-BSA particles was apparently also influenced by volatilisation of NH4NO3, but not as much as for pure salt particles, i.e. the protein inhibited the decomposition of NH4NO3 or the evaporation of the decomposition products NH3 and HNO3. The efflorescence threshold of NaCl-BSA particles decreased with increasing BSA dry mass fraction, i.e. the protein inhibited the formation of salt crystals and enhanced the stability of supersaturated solution droplets. The H-TDMA and TEM results indicate that the protein was enriched at the surface of the mixed particles and formed an envelope, which inhibits the access of water vapor to the particle core and leads to kinetic limitations of hygroscopic growth, phase transitions, and microstructural rearrangement processes. The Köhler theory calculations performed with different types of models demonstrate that the hygroscopic growth of particles composed of inorganic salts and proteins can be efficiently described with a simple volume additivity approach, provided that the correct dry solute mass equivalent diameter and composition are known. A parameterisation for the osmotic coefficient of macromolecular substances has been derived from an osmotic pressure virial equation. For its application only the density and molar mass of the substance have to be known or estimated, and it is fully compatible with traditional volume additivity models for salt mixtures.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2004-02-13
    Description: In situ measurements of the partitioning of aerosol particles within cirrus clouds were used to investigate aerosol-cloud interactions in ice clouds. The number density of interstitial aerosol particles (non-activated particles in between the cirrus crystals) was compared to the number density of cirrus crystal residuals. The data was obtained during the two INCA (Interhemispheric Differences in Cirrus Properties from Anthropogenic Emissions) campaigns, performed in the Southern Hemisphere (SH) and Northern Hemisphere (NH) midlatitudes. Different aerosol-cirrus interactions can be linked to the different stages of the cirrus lifecycle. Cloud formation is linked to positive correlations between the number density of interstitial aerosol (Nint) and crystal residuals (Ncvi), whereas the correlations are smaller or even negative in a dissolving cloud. Unlike warm clouds, where the number density of cloud droplets is positively related to the aerosol number density, we observed a rather complex relationship when expressing Ncvi as a function of Nint for forming clouds. The data sets are similar in that they both show local maxima in the Nint range 100 to 200cm, where the SH- maximum is shifted towards the higher value. For lower number densities Nint and Ncvi are positively related. The slopes emerging from the data suggest that a tenfold increase in the aerosol number density corresponds to a 3 to 4 times increase in the crystal number density. As Nint increases beyond the ca. 100 to 200cm, the mean crystal number density decreases at about the same rate for both data sets. For much higher aerosol number densities, only present in the NH data set, the mean Ncvi remains low. The situation for dissolving clouds allows us to offer two possible, but at this point only speculative, alternative interactions between aerosols and cirrus: evaporating clouds might be associated with a source of aerosol particles, or air pollution (high aerosol number density) might retard ice particle evaporation rates.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2004-01-23
    Description: We have compared satellite and balloon observations of methane (CH4) and hydrogen fluoride (HF) during the Arctic winter 1999/2000 with results from the MA-ECHAM4 middle atmospheric general circulation model (GCM). For this purpose, the meteorology in the model was nudged towards ECMWF analyses. This nudging technique is shown to work well for this middle atmospheric model, and offers good opportunities for the simulation of chemistry and transport processes. However, caution must be used inside the polar vortex, particularly late in the winter. The current study focuses on transport of HF and CH4, initialized with satellite measurements from the HALOE instrument aboard the UARS satellite. We have compared the model results with HALOE data and balloon measurements throughout the winter, and analyzed the uncertainties associated with tracer initialization, boundary conditions and the passive tracer assumption. This comparison shows that the model represents some aspects of the Arctic vortex well, including relatively small-scale features. However, while profiles outside the vortex match observations well, the model underestimates HF and overestimates CH4 concentrations inside the vortex, particularly in the middle stratosphere. This problem is also evident in a comparison of vortex descent rates based upon vortex average tracer profiles from MA-ECHAM4, and various observations. This could be due to an underestimate of diabatic subsidence in the model, or due to too much mixing between vortex and non-vortex air.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2004-01-23
    Description: The possibility to calculate linear-source receptor relationships for the transport of atmospheric trace substances with a Lagrangian particle dispersion model (LPDM) running in backward mode is shown and presented with many tests and examples. This mode requires only minor modifications of the forward LPDM. The derivation includes the action of sources and of any first-order processes (transformation with prescribed rates, dry and wet deposition, radioactive decay, etc.). The backward mode is computationally advantageous if the number of receptors is less than the number of sources considered. The combination of an LPDM with the backward (adjoint) methodology is especially attractive for the application to point measurements, which can be handled without artificial numerical diffusion. Practical hints are provided for source-receptor calculations with different settings, both in forward and backward mode. The equivalence of forward and backward calculations is shown in simple tests for release and sampling of particles, pure wet deposition, pure convective redistribution and realistic transport over a short distance. Furthermore, an application example explaining measurements of Cs-137 in Stockholm as transport from areas contaminated heavily in the Chernobyl disaster is included.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2004-01-26
    Description: A new modelling study of the role of transition metal ions on cloud chemistry has been performed. Developments of the Model of Multiphase Cloud Chemistry (M2C2; Leriche et al., 2001) are described, including the transition metal ions reactivity emission/deposition processes and variable photolysis in the aqueous phase. The model is then applied to three summertime scenarios under urban, remote and marine conditions, described by Ervens et al. (2003). Chemical regimes in clouds are analyzed to understand the role of transition metal ions on cloud chemistry and especially, on HxOy chemistry, which consequently influences the sulphur and the VOCs chemistry in droplets. The ratio of Fe(II)/Fe(III) exhibits a diurnal variation with values in agreement with the available measurements of Fe speciation. In the urban case, sensitivity tests with and without TMI chemistry, show an enhancement of OH concentration in the aqueous phase when TMI chemistry is considered.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2004-01-22
    Description: Ambient continental-rural fine aerosol (K-puszta, Hungary, PM1.5) was sampled on quartz fibre filters in winter and summer 2001. Water-soluble matter (WSM) was extracted in MilliQ-water, and, in a second step, solid phase extraction was used to isolate the less hydrophilic fraction (ISOM) of the water-soluble organic matter (WSOM) from remaining inorganic salts and "most" hydrophilic organic matter (MHOM). This approach allowed ISOM, which constitutes the major fraction of WSOM, to be isolated from ambient aerosols and investigated in pure form. Hygroscopic properties of both WSM and ISOM extracts as well as of aquatic reference fulvic and humic acids were investigated using a Hygroscopicity Tandem Differential Mobility Analyser (H-TDMA). ISOM deliquesced between 30% and 60% relative humidity (RH), and hygroscopic growth factors at 90% RH ranged from 1.08 to 1.17. The hygroscopicity of ISOM is comparable to secondary organic aerosols obtained in smog chamber experiments, but lower than the hygroscopicity of highly soluble organic acids. The hygroscopic behaviour of investigated fulvic and humic acids had similarities to ISOM, but hygroscopic growth factors were slightly smaller and deliquescence was observed at higher RH (75-85% and 85-95% RH for fulvic acid and humic acid, respectively). These differences probably originate from larger average molecular mass and lower solubility of fulvic and humic acids. Inorganic composition data, measured ISOM hygroscopicity, and a presumed value for the hygroscopicity of the small remaining MHOM fraction were used to predict hygroscopic growth of WSM extracts. Good agreement between model prediction and measured water uptake was observed with differences (by volume) ranging from +1% to -18%. While deliquescence properties of WSM extracts were mainly determined by the inorganic salts (42-53 wt % of WSM), the WSOM accounted for a significant fraction of particulate water. At 90% RH, according to model predictions and measurements, about 80-62% of particulate water in the samples are associated with inorganic salts and about 20-38% with WSOM. The relative contributions of both distinguished WSOM fractions, ISOM and MHOM, remains uncertain since MHOM was not available in isolated form, but the results suggest that the less abundant MHOM is also important due to its presumably larger hygroscopicity.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2004-12-21
    Description: Polar mesosphere summer echoes (PMSE) are very strong radar echoes primarily studied in the VHF wavelength range from altitudes close to the polar summer mesopause. Radar waves are scattered at irregularities in the radar refractive index which at mesopause altitudes is effectively determined by the electron number density. For efficient scatter, the electron number density must reveal structures at the radar half wavelength (Bragg condition for monostatic radars; ~3 m for typical VHF radars). The question how such small scale electron number density structures are created in the mesopause region has been a longstanding open scientific question for almost 30 years. This paper reviews experimental and theoretical milestones on the way to an advanced understanding of PMSE. Based on new experimental results from in situ observations with sounding rockets, ground based observations with radars and lidars, numerical simulations with microphysical models of the life cycle of mesospheric aerosol particles, and theoretical considerations regarding the diffusivity of electrons in the ice loaded complex plasma of the mesopause region, a consistent explanation for the generation of these radar echoes has been developed. The main idea is that mesospheric neutral air turbulence in combination with a significantly reduced electron diffusivity due to the presence of heavy charged ice aerosol particles (radii ~5–50 nm) leads to the creation of structures at spatial scales significantly smaller than the inner scale of the neutral gas turbulent velocity field itself. Importantly, owing to their very low diffusivity, the plasma structures acquire a very long lifetime, i.e., 10 min to hours in the presence of particles with radii between 10 and 50 nm. This leads to a temporal decoupling of active neutral air turbulence and the existence of small scale plasma structures and PMSE and thus readily explains observations proving the absence of neutral air turbulence at PMSE altitudes. With this explanation at hand, it becomes clear that PMSE are a suitable tool to permanently monitor the thermal and dynamical structure of the mesopause region allowing insights into important atmospheric key parameters like neutral temperatures, winds, gravity wave parameters, turbulence, solar cycle effects, and long term changes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2004-12-20
    Description: Aerosol size distributions have been measured at the Swedish background station Aspvreten (58.8° N, 17.4° E). Different states of the aerosol were determined using a novel application of cluster analysis. The analysis resulted in eight different clusters capturing different stages of the aerosol lifecycle. The atmospheric aerosol size distributions were interpreted as belonging to fresh, intermediate and aged types of size distribution. With aid of back trajectory analysis we present statistics concerning the relation of source area and different meteorological parameters using a non-Lagrangian approach. Source area is argued to be important although not sufficient to describe the observed aerosol properties. Especially processing by clouds and precipitation is shown to be crucial for the evolution of the aerosol size distribution. As much as 60% of the observed size distributions present features that are likely to be related to cloud processes or wet deposition. The lifetime properties of different sized aerosols are discussed by means of measured variability of the aerosol size distribution. Processing by clouds and precipitation is shown to be especially crucial in the size range 100 nm and larger. This indicates an approximate limit for activation in clouds to 100 nm in this type of environment. The aerosol lifecycle is discussed. Size distributions indicating signs of recent new particle formation (~30% of the observed size distributions) represent the first stage in the lifecycle. Aging of the aerosol size distribution may follow two branches: either growth by condensation and coagulation or processing by non-precipitating clouds. In both cases mass is accumulated. Wet removal is the main process capable of removing aerosol mass. Wet deposition is argued to be an important mechanism in reaching a state where nucleation may occur (i.e. sufficiently low aerosol surface area) in environments similar to the one studied.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2004-12-20
    Description: This paper shows that most of the so far identified constituents of the tropospheric organic particulate matter belong to a semivolatile fraction for which gas phase diffusion in the lower troposphere is sufficiently fast to establish thermodynamic equilibrium between aerosol particles. For the first time analytical expressions for this process are derived. Inspection of vapor pressure data of a series of organic substances allows a rough estimate for which substances this mixing process must be considered. As general benchmarks we conclude that for typical aerosol radii between 0.1 and 1 µm this mixing process is efficient at 25°C for polar species with molecular weights up to 200 and for non-polar species up to 320. At −10°C, these values are shifted to 150 for polar and to 270 for non-polar substances. The extent of mixing of this semivolatile fraction is governed by equilibrium thermodynamics, leading to a selectively, though not completely, internally mixed aerosol. The internal mixing leads to a systematic depression of melting and deliquescence points of organic and mixed organic/inorganic aerosols, thus leading to an aerosol population in the lower troposphere which is predominantly liquid.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2004-12-16
    Description: A mass balance inverse modelling procedure is applied with a time-dependent methane concentration boundary condition and a chemical transport model to relate observed changes in the surface distribution of methane mixing ratios during the 1990s to changes in its surface sources. The model reproduces essential features of the global methane cycle, such as the latitudinal distribution and seasonal cycle of fluxes, without using a priori knowledge of methane fluxes. A detailed description of the temporal and spatial variability of the fluxes diagnosed by the inverse procedure is presented, and compared with previously hypothesised changes in the methane budget, and previous inverse modelling studies. The sensitivity of the inverse results to the forcing data supplied by surface measurements of methane from the NOAA CMDL cooperative air sampling network is also examined. This work serves as an important starting point for future inverse modelling work examining changes in both the source and sink terms in the methane budget together.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2004-12-15
    Description: The formation and growth of atmospheric aerosols depend on several steps, namely nucleation, initial steps of growth and subsequent – mainly condensational – growth. This work focuses on the initial steps of growth, meaning the growth right after nucleation, where the interplay of curvature effects and thermodynamics has a significant role on the growth kinetics. More specifically, we investigate how ion clusters and aerosol particles grow from 1.5 nm to 20 nm (diameter) in atmospheric conditions using experimental data obtained by air ion and aerosol spectrometers. The measurements have been performed at a boreal forest site in Finland. The observed trend that the growth rate seems to increase as a function of size can be used to investigate possible growth mechanisms. Such a growth rate is consistent with a recently suggested nano-Köhler mechanism, in which growth is activated at a certain size with respect to condensation of organic vapors. The results also imply that charge-enhanced growth associated with ion-mediated nucleation plays only a minor role in the initial steps of growth, since it would imply a clear decrease of the growth rate with size. Finally, further evidence was obtained on the earlier suggestion that atmospheric nucleation and the subsequent growth of fresh nuclei are likely to be uncoupled phenomena via different participating vapors.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2004-12-14
    Description: A recent World Meteorological Organisation report discussed the importance of continued study of the effect of clouds on the solar UV radiation reaching the earth's surface. The report mentions that the use of all-sky imagery offers the potential to understand and quantify cloud effects more accurately. There are an increasing number of studies investigating the enhancement of surface solar, UV irradiance, and UV actinic flux, using automated CCD and sky imagers. This paper describes new algorithms applicable to a commercially available all-sky imager (TSI-440), for research investigating cloud enhanced spectral UV irradiance. Specifically, these include three new algorithms relating to cloud amount at different spatial positions from 1) zenith and 2) from the solar position and 3) the visible brightness of clouds surrounding the sun. A possible relationship between UV enhancement and the occurrence of near-sun cloud brightness is reported based on this preliminary data. It is found that a range of wavelength dependent intensities, from 306 to 400 nm, can occur in one day for UV enhancements. Evidence for a possible decreasing variation of intensity with longer wavelengths is also presented.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2004-12-10
    Description: Ice crystals were grown in the laboratory at −15°C, at different growth rates and in the presence of a partial pressure of HCl of 1.63×10-3 Pa, to test whether the ice growth rate influences the amount of HCl taken up, XHCl, as predicted by the ice growth mechanism of Domine and Thibert (1996). The plot of HCl concentration in ice as a function of growth rate has the aspect predicted by that mechanism: XHCl decreases with increasing growth rate, from a value that depends on thermodynamic equilibrium to a value that depends only on kinetic factors. The height of the growth steps of the ice crystals is determined to be about 150 nm from these experiments. We discuss that the application of these laboratory experiments to cloud ice crystals and to snow metamorphism is not quantitatively possible at this stage, because the physical variables that determine crystal growth in nature, and in particular the step height, are not known. Qualitative applications are attempted for HCl and HNO3 incorporation in cloud ice and snowpack crystals.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2004-12-08
    Description: Recently several field campaigns and satellite observations have found strong indications for the presence of bromine oxide (BrO) in the free troposphere. Using a global atmospheric chemistry transport model we show that BrO mixing ratios of a few tenths to 2 pmol mol-1 lead to a reduction in the zonal mean O3 mixing ratio of up to 18% in widespread areas and regionally up to 40% compared to a model run without bromine chemistry. A lower limit approach for the marine boundary layer, that does not explicitly include the release of halogens from sea salt aerosol, shows that for dimethyl sulfide (DMS) the effect is even larger, with up to 60% reduction of its tropospheric column. This is accompanied by dramatic changes in DMS oxidation pathways, reducing its cooling effect on climate. In addition there are changes in the HO2:OH ratio that also affect NOx and PAN. These results imply that potentially significant strong sinks for O3 and DMS have so far been ignored in many studies of the chemistry of the troposphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2004-12-08
    Description: The topic of this paper is the sensitivity of the brightness of noctilucent clouds (NLC) on the ambient water vapour mixing ratio f(H2O). Firstly, we use state-of-the-art models of NLC layer formation to predict NLC brightness changes in response to changes in the 80km mixing ratio f(H2O) for the two cases of ground-based 532nm lidar observations at 69° N and for hemispheric satellite SBUV observations at 252nm wavelength. In this study, we include a re-evaluation of the sensitivity of NLC brightness to changes in solar Lyman α flux. Secondly, we review observations of episodic changes in f(H2O) and those in NLC brightness, the former being available since 1992, the latter since 1979. To this review, we add a new series of observations of f(H2O), performed in the Arctic summer at the ALOMAR observatory. The episodic change exhibited by the Arctic summer means of f(H2O) turns out to be quite different from all those derived from annual means of f(H2O). The latter indicate that since 1996 a significant reduction of annually averaged upper mesospheric water vapour has occurred at low, mid, and high latitudes. These decreases of f(H2O) have been observed over the same time period in which a slow increase of SBUV NLC albedo has occurred. From this scenario and additional arguments we conclude that the cause for the observed long-term increase in NLC albedo remains to be identified. We close with comments on the very different character of decadal variations in NLC brightness and occurrence rate.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2004-12-08
    Description: Scattering and absorption coefficients have been measured continuously at several wavelengths since March 2001 at the high altitude site Jungfraujoch (3580ma.s.l.). From these data, the wavelength dependences of the Ångström exponent and particularly of the single scattering albedo are determined. While the exponent of the single scattering albedo usually increases with wavelength, it decreases with wavelength during Saharan dust events (SDE) due to the greater size of the mineral aerosol particles and their different chemical composition. This change in the sign of the single scattering exponent turns out to be a sensitive means for detecting Saharan dust events. The occurrence of SDE detected by this new method was confirmed by visual inspection of filter colors and by studying long-range back-trajectories. An examination of SDE over a 22-month period shows that SDE are more frequent during the March-June period as well as during October and November. The trajectory analysis indicated a mean traveling time of 96.5h, with the most important source countries situated in the northern and north-western part of the Saharan desert. Most of the SDE do not lead to a detectable increase of the 48-h total suspended particulate matter (TSP) concentration at the Jungfraujoch. During Saharan dust events, the average contribution of this dust to hourly TSP at the Jungfraujoch is 16µg/m3, which corresponds to an annual mean of 0.8µg/m3 or 24% of TSP.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2004-12-06
    Description: We present measurements of stratospheric aerosol made at Aberystwyth, UK (52.4° N, 4.06° W) during periods of background aerosol conditions. The measurements were made with a lidar system based on a 532nm laser and two polarisation channels in the receiver. When stratospheric aerosol amounts are very small, as at present, this method is, potentially, free of a number of systematic errors that bedevil more commonly-used methods. The method rests on the assumption that the aerosol consists of spherical droplets which do not depolarise the lidar signal, which is valid under most conditions. Maximum lidar ratios in background aerosol of 1.03-1.06 were measured during the period 2001-2004, with integrated backscatter in the range 2-7x10-5sr-1. In January 2003, depolarising aerosol was measured, which invalidated the dual-polarisation measurements. On 10-11 January, the depolarising aerosol was clearly a polar stratospheric cloud (the first lidar observations of such clouds in the British Isles) but the aerosol observed on 7-8 January was too low in altitude and too warm to be a PSC.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2004-12-03
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2004-12-09
    Description: A Saharan dust event was observed in a rural area in the Maurienne Valley (French Alps) in summer 2000. Detailed data on PM10, particle numbers, and aerosol chemistry (ionic species and Elemental Carbon (EC) and Organic Carbon (OC)) are presented. The comparative evolutions of particle numbers and chemistry (calcium, sodium, and sulfate) show that the overall period included two episodes of dust particles with very distinct chemistry, followed by an episode with a large increase of the concentrations of species with an anthropogenic origin. The overall data set does not indicate large interactions between the dust particles and compounds from anthropogenic origin (sulfate, nitrate) or with organic carbon, all of these species showing very low concentrations. Simplistic calculations indicate that these concentrations are consistent with our current knowledge of adsorption processes of gases on mineral dust in a clean air mass.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2004-11-30
    Description: Methane is a significant atmospheric trace gas in the context of greenhouse warming and climate change. The dominant sink of atmospheric methane is the hydroxyl radical (OH). Recently, a mechanism for production of chlorine radicals (Cl) in the marine boundary layer (MBL) via bromine autocatalysis has been proposed. The importance of this mechanism in producing a methane sink is not clear at present because of the difficulty of in-situ direct measurement of Cl. However, the large kinetic isotope effect of Cl compared with OH produces a large fractionation of 13C compared with 12C in atmospheric methane. This property can be used to estimate the likely minimum size of the methane sink attributable to MBL Cl. By taking account of the mixing of MBL air into the free troposphere, we estimate that the global methane sink due to reaction with Cl atoms in the MBL could be as large as 19Tgyr-1, or about 3.3% of the total CH4 sink. However, its impact on the methane stable carbon isotope budget is large and warrants further attention.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2004-12-10
    Description: The black carbon (BC) burden of the upper troposphere and lowermost stratosphere (UTLS) is investigated with the general circulation model (GCM) ECHAM4. The special focus is the contribution of aircraft emissions to the UTLS BC loading. Previous studies on the role of aircraft emissions in the global BC cycle either neglect BC sources located at the Earth's surface or simplify the BC cycle by assuming pre-defined BC residence times. Here, the global BC cycle including emissions, transport, and removal is explicitly simulated. The BC emissions considered include surface sources as well as BC from aviation. This enables a consistent calculation of the relative contribution of aviation to the global atmospheric BC cycle. As a further extension to the previous studies, the aviation-induced perturbation of the UTLS BC particle number concentration is investigated. The uncertainties associated with the model predictions are evaluated by means of several sensitivity studies. Especially, the sensitivity of the results to different assumptions on the BC hygroscopic properties is analysed. The simulated UTLS BC concentrations are compared to in-situ observations. The simulations suggest that the large-scale contribution of aviation to the UTLS BC mass budget typically amounts to only a few percent, even in the most frequented flight regions. The aviation impact far away from these regions is negligible. The simulated aircraft contributions to the UTLS BC particle number concentration are much larger compared to the corresponding mass perturbations. The simulations suggest that aviation can cause large-scale increases in the UTLS BC particle number concentration of more than 30% in regions highly frequented by aircraft. The relative effect shows a pronounced annual variation with the largest relative aviation impact occurring during winter.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2004-11-30
    Description: In order to gain a more comprehensive picture on different mechanisms behind atmospheric particle formation, measurement results from QUEST 2-campaign are analyzed with an aid of an aerosol dynamic model. A special emphasis is laid on air ion and charged aerosol dynamics. Model simulations indicate that kinetic nucleation of ammonia and sulphuric acid together with condensation of sulphuric acid and low-volatile organic vapours onto clusters and particles explain basic features of particle formation events as well as ion characteristics. However, an observed excess of negative ions in the diameter range 1.5-3nm and overcharge of 3-5nm particles demonstrate that ions are also involved in particle formation. These observations can be explained by preferential condensation of sulphuric acid onto negatively charged clusters and particles and/or contribution of ion-induced nucleation on particle formation. According to model simulations, which assume that the nucleation rate is equal to the sulfuric acid collision rate, the relative contribution of ion-based particle formation seems to be smaller than kinetic nucleation of neutral clusters. Conducted model simulations also corroborate the recently-presented hypothesis according to which a large number of so-called thermodynamically stable clusters (TSCs) having a diameter between 1-3nm exist in the atmosphere. TSCs were found to grow to observable sizes only under favorable conditions, e.g. when the pre-existing particle concentration was low.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2004-12-06
    Description: Sudden depletions of tropospheric ozone during spring were reported from the Arctic and also from Antarctic coastal sites. Field studies showed that those depletion events are caused by reactive halogen species, especially bromine compounds. However the source and seasonal variation of reactive halogen species is still not completely understood. There are several indications that the halogen mobilisation from the sea ice surface of the polar oceans may be the most important source for the necessary halogens. Here we present a one dimensional model study aimed at determining the primary source of reactive halogens. The model includes gas phase and heterogeneous bromine and chlorine chemistry as well as vertical transport between the surface and the top of the boundary layer. The autocatalytic Br release by photochemical processes (bromine explosion) and subsequent rapid bromine catalysed ozone depletion is well reproduced in the model and the major source of reactive bromine appears to be the sea ice surface. The sea salt aerosol alone is not sufficient to yield the high levels of reactive bromine in the gas phase necessary for fast ozone depletion. However, the aerosol efficiently "recycles" less reactive bromine species (e.g. HBr) and feeds them back into the ozone destruction cycle. Isolation of the boundary layer air from the free troposphere by a strong temperature inversion was found to be critical for boundary layer ozone depletion to happen. The combination of strong surface inversions and presence of sunlight occurs only during polar spring.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2004-11-30
    Description: Ozone measurements from ozonesondes, AROTAL, DIAL, and POAM III instruments during the SOLVE-2/VINTERSOL period are composited in a time-varying, flow-following quasi-conservative (PV-θ) coordinate space; the resulting composites from each instrument are mapped onto the other instruments' locations and times. The mapped data are then used to intercompare data from the different instruments. Overall, the four ozone data sets are found to be in good agreement. AROTAL shows somewhat lower values below 16 km, and DIAL has a positive bias at the upper limits of its altitude range. These intercomparisons are consistent with those obtained from more conventional near-coincident profiles, where available. Although the PV-θ mapping technique entails larger uncertainties of individual profile differences compared to direct near-coincident comparisons, the ability to include much larger numbers of comparisons can make this technique advantageous.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2004-11-30
    Description: The one-year (2001) record of aerosol data from the space borne Moderate Resolution Imaging Spectroradiometer (MODIS) is analyzed focusing on the Mediterranean region. The MODIS aerosol optical thickness standard product (AOT at 550nm) provided over both land and ocean is employed to evaluate the seasonal and spatial variability of the atmospheric particulate over the region. Expected accuracy of the MODIS AOT is (±0.05±0.2xAOT) over land and (±0.03±0.05xAOT) over ocean. The seasonal analysis reveals a significant AOT variability all over the region, with minimum values in Winter (AOT0.2). The spatial variability is also found to be considerable, particularly over land. The impact of some major urban sites and industrialized areas is detectable. For the sole Mediterranean basin, a method (aerosol mask) was implemented to separate the contribution of maritime, continental and desert dust aerosol to the total AOT. Input of both continental and desert dust particles is well captured, showing North-to-South and South-to-North AOT gradients, respectively. A quantitative summary of the AOT seasonal and regional variability is given for different sectors of the Mediterranean basin. Results of this summary were also used to test the aerosol mask assumptions and indicate the method adopted to be suitable for the aerosol type selection. Estimates of the atmospheric aerosol mass load were performed employing specifically-derived mass-to-extinction efficiencies (α). For each aerosol type, a reliable mean α value was determined on the basis of both lidar measurements of extinction and aerosol models. These estimates indicate a total of 43Mtons of desert dust suspended over the basin during 2001. A comparable value is derived for maritime aerosol. Opposite to the dust case, a minor seasonal variability (within 15%) of maritime aerosol mass is found. This latter result is considered a further check of the suitability of the methodology adopted to separate, on the basis of MODIS data, the three aerosol types which dominate the Mediterranean region.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2004-12-02
    Description: This paper presents three-dimensional prognostic O3 simulations with parameterized gas-phase photochemistry from the new NOGAPS-ALPHA middle atmosphere forecast model. We compare 5-day NOGAPS-ALPHA hindcasts of stratospheric O3 with satellite and DC-8 aircraft measurements for two cases during the SOLVE II campaign: (1) the cold, isolated vortex during 11-16 January 2003; and (2) the rapidly developing stratospheric warming of 17-22 January 2003. In the first case we test three different photochemistry parameterizations. NOGAPS-ALPHA O3 simulations using the NRL-CHEM2D parameterization give the best agreement with SAGE III and POAM III profile measurements. 5-day NOGAPS-ALPHA hindcasts of polar O3 initialized with the NASA GEOS4 analyses produce better agreement with observations than do the operational ECMWF O3 forecasts of case 1. For case 2, both NOGAPS-ALPHA and ECMWF 114-h forecasts of the split vortex structure in lower stratospheric O3 on 21 January 2003 show comparable skill. Updated ECMWF O3 forecasts of this event at hour 42 display marked improvement from the 114-h forecast; corresponding updated 42-hour NOGAPS-ALPHA prognostic O3 fields initialized with the GEOS4 analyses do not improve significantly. When NOGAPS-ALPHA prognostic O3 is initialized with the higher resolution ECMWF O3 analyses, the NOGAPS-ALPHA 42-hour lower stratospheric O3 fields closely match the operational 42-hour ECMWF O3 forecast of the 21 January event. We find that stratospheric O3 forecasts at high latitudes in winter can depend on both model initial conditions and the treatment of photochemistry over periods of 1-5 days. Overall, these results show that the new O3 initialization, photochemistry parameterization, and spectral transport in the NOGAPS-ALPHA NWP model can provide reliable short-range stratospheric O3 forecasts during Arctic winter.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...