ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Publication Date: 2016-12-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: While the upper crustal structure of the Southern Apennines is known, lack of control on the deep structure allows competing thin-skinned and thick-skinned models of the orogen. In thin-skinned models, the detachment decouples a stack of rootless nappes from the basement. In thick-skinned models, basement is involved in the most recent phase of thrusting. To examine crustal structure, we use teleseismic data from the Calabria-Apennine-Tyrrhenian/Subduction- Accretion-Collision Network (CAT/SCAN) array in southern Italy. We use receiver functions (RF) processed into a common conversion point stack to generate images of the crust. Inter- pretation and correlation to geological structure are done using inversions of individual station RFs. We focus on a shallow discontinuity where P-to-S conversions occur. In the foreland, it corresponds to velocity jumps between carbonate and clastic strata with basement. A similar interpretation for the Apennines provides the most parsimonious explanation and supports a thick-skinned interpretation. In a thick-skinned reconstruction, the amount of shortening is much smaller than for a thin-skinned model. This implies considerably less Pliocene–Pleistocene shortening across the Apennines and suggests an east-southeast motion of the Calabrian arc subparallel to the southern Apennines rather than a radial expansion of the arc.
    Description: Published
    Description: 155-158
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: thrust tectonics ; Apennines ; continental collision ; seismology ; receiver functions ; structural geology ; 01. Atmosphere::01.03. Magnetosphere::01.03.04. Structure and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: While the upper structure of the Southern Apennines is known, lack of control on the deep structure allows competing thin-skin and tick-skin models of the orogen. In thin-skin models the detachment decouples a stack of rootless nappes from the basement. In the tick-skin models, besement is involved in the most recent phase of thrusting. To examine crustal structure, we use teleseismic data from the CAT/SCAN array in southern Italy. We use receiver functions (RF) processed into a Common Conversion Point (CCP) stack to generate images of the crust. Interpretation and correlation to geological structure is done using inversions of individual station RFs. We focus on a shallow discontinuity where P-to-S conversions occur. In the foreland, it corresponds to velocity jumps between carbonate and clastic strata with basement. A similar interpretation for the Apennines provides the most parsimonious explanation and supports a tick-skin interpretation. In a thick-skin reconstruction, the amount of shortening is much smaller than for a thin-skin model. This implies considerably less Plio-Pleistocene shortening across the Apennines and suggests an E-SE motion of the Calabrian Arc subparallel to the southern Apennines rather than a radial expansion of the Arc.
    Description: In press
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: receiver functions ; Apennines ; thrust tectonics ; structural geology ; 01. Atmosphere::01.03. Magnetosphere::01.03.04. Structure and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Field geology, well data and seismic imaging have illuminated the upper crustal structure of the Southern Apennines. However, lack of control of the deep structure allows viable competing thin-skin and thick-skin models of the orogen. In thin-skin models the detachment decouples a stack of rootless nappes from the basement. In thick-skin models, basement is involved in the most recent phase of thrusting. To examine the deep crustal structure, we use the teleseismic recordings from the CAT/SCAN array, deployed in southern Italy from Dec. 2003-Oct. 2005. We use receiver functions processed into a Common Conversion Point stack to generate images of the crust. We image three main westward-dipping seismic-velocity discontinuities where P-to-S conversions occur. They correspond to velocity jumps at the Moho, the upper-lower crust boundary and sedimentary interfaces resulting from the contrast between clastic and carbonate strata with basement. The CCP image matches features from both thin-skin and thick skin model. The lateral continuity of the converters favors thin skin, but consistent interpretation across the image favors the thick skin. Overall, the results provide a better fit to the thick-skin interpretation. This suggests a change in structural style as the collision with Apulia halted motion. This model also implies considerably less Plio-Pleistocene shortening across the Apennines and a SE motion of the Calabrian Arc subparallel to the southern Apennines rather than a radial expansion of the Arc.
    Description: Published
    Description: AGU General Assembly, S. Francisco
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: Continental Crust ; Suduction zone processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Basaltic volcanism is most typically thought to produce effusion of lava, with the most explosive manifestations ranging from mild Strombolian activity to more energetic fire fountain eruptions. However, some basaltic eruptions are now recognized as extremely violent, i.e., generating widespread phreatomagmatic, subplinian and Plinian fall deposits. We focus here on the influence of conduit processes, especially partial open-system degassing, in triggering abrupt changes in style and intensity that occurred during two examples of basaltic Plinian volcanism. We use the 1886 eruption of Tarawera, New Zealand, the youngest known basaltic Plinian eruption and the only one for which there are detailed written eyewitness accounts, and the well-documented 122 BC eruption of Mount Etna, Italy, and present new grain size and vesicularity data from the proximal deposits. These data show that even during extremely powerful basaltic eruptions, conduit processes play a critical role in modifying the form of the eruptions. Even with very high discharge, and presumably ascent, rates, partial open-system behaviour of basaltic melts becomes a critical factor that leads to development of domains of largely stagnant and outgassed melt that restricts the effective radius of the conduit. The exact path taken in the waning stages of the eruptions varied, in response to factors which included conduit geometry, efficiency and extent of outgassing and availability of ground water, but a relatively abrupt cessation to sustained high-intensity discharge was an inevitable consequence of the degassing processes.
    Description: Published
    Description: 1-14
    Description: partially_open
    Keywords: basaltic Plinian eruption ; Etna ; Tarawera and explosive volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 743033 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Flora Malesiana Bulletin (0071-5778) vol.33 (1980) nr.1 p.3435
    Publication Date: 2015-04-20
    Description: Because of their fleshy nature, thin leaves and membranous sepals and petals, Impatiens tend to make particularly poor herbarium specimens. If dried while still attached to the leafy part of the plant the flowers generally become badly crumpled and brittle. In such a state their more important characters become unrecognisable, and it is rarely possible to restore them to any useful degree. The leaves may also become badly crushed especially if they are not pressed absolutely flat. The collectors’ time may thus be completely wasted.
    Repository Name: National Museum of Natural History, Netherlands
    Type: Article / Letter to the editor
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-10
    Description: Approximately 1700 Pg of soil carbon (C) are stored in the northern circumpolar permafrost zone, more than twice as much C than in the atmosphere. The overall amount, rate, and form of C released to the atmosphere in a warmer world will influence the strength of the permafrost C feedback to climate change. We used a survey to quantify variability in the perception of the vulnerability of permafrost C to climate change. Experts were asked to provide quantitative estimates of permafrost change in response to four scenarios of warming. For the highest warming scenario (RCP 8.5), experts hypothesized that C release from permafrost zone soils could be 19–45 Pg C by 2040, 162–288 Pg C by 2100, and 381–616 Pg C by 2300 in CO2 equivalent using 100-year CH4 global warming potential (GWP). These values become 50 % larger using 20-year CH4 GWP, with a third to a half of expected climate forcing coming from CH4 even though CH4 was only 2.3 % of the expected C release. Experts projected that two-thirds of this release could be avoided under the lowest warming scenario (RCP 2.6). These results highlight the potential risk from permafrost thaw and serve to frame a hypothesis about the magnitude of this feedback to climate change. However, the level of emissions proposed here are unlikely to overshadow the impact of fossil fuel burning, which will continue to be the main source of C emissions and climate forcing.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-03-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-08-16
    Description: Ice-wedges are common permafrost features formed over hundreds to thousands of years of repeated frost cracking and ice vein growth. We used field and remote sensing observations to assess changes in areas dominated by ice-wedges, and we simulated the effects of those changes on snow accumulation and runoff. We show that top melting of ice-wedges and subsequent ground subsidence has occurred at multiple sites in the North American and Russian Arctic. At most sites, melting ice-wedges have initially resulted in increased wetness contrast across the landscape, evident as increased surface water in the ice-wedge polygon troughs and somewhat drier polygon centers. Most areas are becoming more heterogeneous with wetter troughs, more small ponds (themokarst pits forming initially at ice-wedge intersections and then spreading along the troughs) and drier polygon centers. Some areas with initial good drainage, such as near creeks, lake margins, and in hilly terrain, highcentered polygons form an overall landscape drying due to a drying of both polygon centers and troughs. Unlike the multi-decadal warming observed in permafrost temperatures, the ice-wedge melting that we observed appeared as a sub-decadal response, even at locations with low mean annual permafrost temperatures (down to -14 °C). Gradual long-term air and permafrost warming combined with anomalously warm summers or deep snow winters preceded the onset of the ice-wedge melting. To assess hydrological impacts of ice-wedge melting, we simulated tundra water balance before and after melting. Our coupled hydrological and thermal model experiments applied over hypothetical polygon surfaces suggest that 1. ice-wedge melting that produces a connected trough-network reduces inundation and increases runoff, and that 2. changing patterns of snow distribution due to differential ground subsidence has a major control on ice-wedge polygon tundra water balance despite an identical snow water equivalent at the landscape-scale. These decimeter-scale geomorphic changes are expected to continue in permafrost regions dominated by ice-wedge polygons, with implications for landatmosphere and land-ocean fluxes of water, carbon, and energy.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-07-05
    Description: Title and abstract are in English and Spanish.
    Keywords: Earth Sciences ; Fisheries ; GCFI
    Repository Name: AquaDocs
    Type: conference_item
    Format: application/pdf
    Format: application/pdf
    Format: 1006-1007
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...