ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: AWI A4-10-0015
    Description / Table of Contents: [...] In diesem Band werden aus dem Arbeitsgebiet von Prof. Klaus Dethloff interessante Ergebnisse und neue Entwicklungen vorgestellt. Zu vielen dieser wissenschaftlichen Fortschritte hat er selber direkt oder indirekt beigetragen. [...]
    Type of Medium: Monograph available for loan
    Pages: 244 S. : Ill., graph. Darst.
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: 21/M 07.0309 ; AWI S6-10-0039
    Type of Medium: Monograph available for loan
    Pages: 120 S.
    Location: Reading room
    Location: Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZSP-168-588
    In: Berichte zur Polar- und Meeresforschung ; 588
    Type of Medium: Series available for loan
    Pages: 198 S. , Ill., graph. Darst.
    ISSN: 1866-3192
    Series Statement: Berichte zur Polar- und Meeresforschung 588
    Language: English
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: AWI A4-06-0007
    Type of Medium: Monograph available for loan
    Pages: ca. 500 S.
    Language: English
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: ZS-090(520) ; ZSP-168-520
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: IV, 152 S. , Ill., graph. Darst., Kt.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 520
    Classification:
    Meteorology and Climatology
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: AWI A13-93-0268
    Type of Medium: Monograph available for loan
    Pages: 208 S. + Anh.
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: MOP 44844 / Mitte
    Type of Medium: Monograph available for loan
    Pages: 127 S. , Ill.
    Note: Rostock, Univ., Diss. A, 1979
    Location: MOP - must be ordered
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: AWI A13-19-92242
    Description / Table of Contents: Die Dynamik der Atmosphäre der Erde umfasst einen Bereich von mikrophysikalischer Turbulenz über konvektive Prozesse und Wolkenbildung bis zu planetaren Wellenmustern. Für Wettervorhersage und zur Betrachtung des Klimas über Jahrzehnte und Jahrhunderte ist diese Gegenstand der Modellierung mit numerischen Verfahren. Mit voranschreitender Entwicklung der Rechentechnik sind Neuentwicklungen der dynamischen Kerne von Klimamodellen, die mit der feiner werdenden Auflösung auch entsprechende Prozesse auflösen können, notwendig. Der dynamische Kern eines Modells besteht in der Umsetzung (Diskretisierung) der grundlegenden dynamischen Gleichungen für die Entwicklung von Masse, Energie und Impuls, so dass sie mit Computern numerisch gelöst werden können. Die vorliegende Arbeit untersucht die Eignung eines unstetigen Galerkin-Verfahrens niedriger Ordnung für atmosphärische Anwendungen. Diese Eignung für Gleichungen mit Wirkungen von externen Kräften wie Erdanziehungskraft und Corioliskraft ist aus der Theorie nicht selbstverständlich. Es werden nötige Anpassungen beschrieben, die das Verfahren stabilisieren, ohne sogenannte „slope limiter” einzusetzen. Für das unmodifizierte Verfahren wird belegt, dass es nicht geeignet ist, atmosphärische Gleichgewichte stabil darzustellen. Das entwickelte stabilisierte Modell reproduziert eine Reihe von Standard-Testfällen der atmosphärischen Dynamik mit Euler- und Flachwassergleichungen in einem weiten Bereich von räumlichen und zeitlichen Skalen. Die Lösung der thermischen Windgleichung entlang der mit den Isobaren identischen charakteristischen Kurven liefert atmosphärische Gleichgewichtszustände mit durch vorgegebenem Grundstrom einstellbarer Neigung zu(barotropen und baroklinen)Instabilitäten, die für die Entwicklung von Zyklonen wesentlich sind. Im Gegensatz zu früheren Arbeiten sind diese Zustände direkt im z-System(Höhe in Metern)definiert und müssen nicht aus Druckkoordinaten übertragen werden.Mit diesen Zuständen, sowohl als Referenzzustand, von dem lediglich die Abweichungen numerisch betrachtet werden, und insbesondere auch als Startzustand, der einer kleinen Störung unterliegt, werden verschiedene Studien der Simulation von barotroper und barokliner Instabilität durchgeführt. Hervorzuheben ist dabei die durch die Formulierung von Grundströmen mit einstellbarer Baroklinität ermöglichte simulationsgestützte Studie des Grades der baroklinen Instabilität verschiedener Wellenlängen in Abhängigkeit von statischer Stabilität und vertikalem Windgradient als Entsprechung zu Stabilitätskarten aus theoretischen Betrachtungen in der Literatu
    Type of Medium: Dissertations
    Pages: v, 160 Seiten , Illustrationen, Diagramme
    Language: German
    Note: Inhaltsverzeichnis: 1. Einleitung. - 2. Atmosphärische Gleichungssysteme. - 2.1. Zur Notation. - 2.2. Geometrie im β-Kanal. - 2.3. Gleichungen in Flussform. - 2.4. Euler-Gleichungen. - 2.4.1. Energiegleichung. - 2.4.2. Bewegungsgleichungen. - 2.4.3. Flussform des gesamten Gleichungssystems. - 2.4.4. Schallgeschwindigkeit. - 2.4.5. Druck und Energie. - 2.4.6. Energie als Erhaltungsvariable. - 2.5. Euler-Gleichungen mit Referenzfeld. - 2.6. Linearisierte Euler-Gleichungen. - 2.7. Flachwassergleichungen. - 2.8. Flachwasseräquivalente Dynamik mit Euler-Gleichungen. - 3. Unstetiges Galerkin-Verfahren. - 3.1. Räumliche Diskretisierung. - 3.1.1. Integralform und numerischer Fluss. - 3.1.2. Koeffizientendarstellung der Gleichungen. - 3.1.3. Koordinatentransformation mit Orographie. - 3.1.4. Quadratur. - 3.1.5. Basisfunktionen im Rechteckgitter. - 3.1.6. Diskretisierung von analytischen Anfangsbedingungen. - 3.2. Zeitliche Diskretisierung. - 3.2.1. Expliziter Zeitschritt. - 3.2.2. Semi-impliziter Zeitschritt. - 3.2.3. Skalierung von Einheiten. - 3.2.4. Zeitschrittbestimmung. - 3.3. Randbedingungen. - 3.3.1. Periodische Randbedingungen. - 3.3.2. Reflektive Randbedingungen. - 3.3.3. Spezifische Randbedingungen für Euler-Gleichungen. - 3.3.4. Absorptionsschicht. - 3.4. Diffusion. - 4. Atmosphärische Gleichgewichtszustände. - 4.1. Anforderungen an stationäre Zustände. - 4.1.1. Verschwindende Advektion von Masse und potentieller Temperatur. - 4.1.2. Stationäre Impulsgleichung. - 4.2. Wind ohne Corioliskraft. - 4.3. Geostrophischer Wind. - 4.4. Vorgegebener Grundstrom mit einstellbarer Baroklinität. - 4.4.1. Lösungsalgorithmus. - 4.4.2. Zulässige Windfelder und ihre Definition außerhalb des Modellgebietes. - 4.4.3. Spezialfall konstanten thermischen Windes. - 4.5. Barotroper Grundstrom als analytischer Spezialfall. - 4.6. Charakterisierung der Baroklinität. - 4.7. Geostrophischer Zustand für Flachwassergleichungen. - 5. Numerische Stabilität von Gleichgewichtszuständen und Erhaltungseigenschaften. - 5.1. Polynomiale Balancierung des DG-Verfahrens. - 5.1.1. Ausgangssituation („low0bal0“). - 5.1.2. Isotrope Reduktion des Polynomgrades der Quellterme („low1bal0“). - 5.1.3. Isotrope Polynomgradreduktion von Quelltermen sowie Projektion der Flussfunktion („low1bal1“). - 5.1.4. Volle Balancierung mit selektiver Polynomgradreduktion und Projektion der Flussfunktion („low2bal1“). - 5.2. Konvergenz. - 5.3. Langzeitstabilität und Erhaltungseigenschaften. - 6. Atmosphärische Testfälle. - 6.1. Aufsteigende warme Blase. - 6.2. Schwerewellen. - 6.3. Bergüberströmung. - 6.4. Barotrope Instabilität. - 7. Atmosphärische Instabilitäten in mittleren Breiten. - 7.1. Barotrope Instabilität mit Euler-Gleichungen in 2D und 3D. - 7.1.1. Wavelet-Spektrum. - 7.2. Barokline Instabilität in Abhängigkeit von statischer Stabilität und thermischem Wind. - 7.2.1. Einfluss der statischen Stabilität. - 7.2.2. Einfluss der vertikalen Diskretisierung. - 7.3. Entstehung zyklonaler Wirbel aus baroklin instabilem Grundstrom. - 7.3.1. Konfiguration. - 7.3.2. Entwicklung von Impulsdifferenz. - 7.3.3. Vorticity im Horizontalschnitt. - 7.3.4. Globale Charakterisierung . - 7.4. Langzeitentwicklung aus baroklinen Zuständen. - 7.4.1. Konfiguration. - 7.4.2. Entwicklung von Impulsdifferenz und Energie. - 7.4.3. Vorticity im Horizontalschnitt. - 7.4.4 Globale Charakterisierung. - 7.4.5. Wavelet-Spektrum. - 7.4.6. Zonales Mittel. - 8. Zusammenfassung und Ausblick. - A. Mathematische Aspekte. - A.1. Profilfunktionen. - A.2. Differenzen und Normen. - A.3. Wavelet-Analyse. - A.4. Darstellung aus der Diskretisierung. - A.5. Erhaltungseigenschaften mit Quadratur. - B. Details zu Euler-Gleichungen. - B.1. Vertikale Linearisierung der Euler-Gleichungen für Präkonditionierer des semi-impliziten Zeitschrittes. - B.1.1. Vertikales lineares Gleichungssystem. - B.1.2. Diskretisierung und Matrizen. - B.1.3. Implizites Gleichungssystem. - B.2. Zustände im hydrostatischen Gleichgewicht. - B.2.1. Isotherm. - B.2.2. Polytrop. - B.2.3. Isentrop. - B.2.4. Mehrfach polytrop. - B.2.5. Uniform geschichtet. - B.3. Barokliner Zustand imp-System. - C. Zusätzliche Simulationsdaten. - C.1. Stabilitätskarten zu baroklinen Langzeitsimulationen. - C.2. Wirbelentstehung nahe Oberrand. - C.3. Zusätzliche Horizontalschnitte des baroklinen Langzeitlaufes. - D. Implementierung: Programmpaket Polyflux. - E. Korrekturen zur Veröffentlichung. - Mathematische Definitionen. - Abkürzungen und Begriffe. - Literatur.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: AWI A6-21-94541
    Description / Table of Contents: Stratospheric variability is one of the main potential sources for sub-seasonal to seasonal predictability in mid-latitudes in winter. Stratospheric pathways play an important role for long-range teleconnections between tropical phenomena, such as the quasi-biennial oscillation (QBO) and El Niño-Southern Oscillation (ENSO), and the mid-latitudes on the one hand, and linkages between Arctic climate change and the mid-latitudes on the other hand. In order to move forward in the field of extratropical seasonal predictions, it is essential that an atmospheric model is able to realistically simulate the stratospheric circulation and variability. The numerical weather prediction (NWP) configuration of the ICOsahedral Non-hydrostatic atmosphere model ICON is currently being used by the German Meteorological Service for the regular weather forecast, and is intended to produce seasonal predictions in future. This thesis represents the first extensive evaluation of Northern Hemisphere stratospheric winter circulation in ICON-NWP by analysing a ...
    Type of Medium: Dissertations
    Pages: viii, 119 Seiten , Illustrationen, Diagramme, Karten
    Language: English
    Note: Dissertation, Universität Potsdam, 2020 , Contents1 Introduction 1.1 Motivation: Seasonal prediction 1.2 The new atmosphere model ICON 1.3 Research questions 2 Theoretical background 2.1 Fundamentals of atmospheric circulation 2.1.1 Primitive equations 2.1.2 The global energy budget 2.1.3 Baroclinic instability 2.1.4 Vertical structure of the atmosphere 2.2 Stratospheric dynamics 2.2.1 Circulation patterns 2.2.2 Atmospheric waves 2.2.3 Sudden stratospheric warmings 2.2.4 Quasi-biennial oscillation 2.3 Atmospheric Teleconnections 2.3.1 NAM, NAO and PNA 2.3.2 El Niño-Southern Oscillation 2.3.3 Arctic-midlatitude linkages 3 Atmospheric model and methods of analysis 3.1 Atmospheric model ICON-NWP 3.1.1 Model description 3.1.2 Experimental setup 3.2 Reanalysis data ERA-Interim 3.3 Methods of analysis 3.3.1 NAM index for stratosphere–troposphere coupling 3.3.2 Stratospheric warmings 3.3.3 ENSO index and composites 3.3.4 Bias and error estimation 3.3.5 Statistical significance 4 Results 4.1 Evaluation of seasonal experiments with ICON-NWP 4.1.1 Tropospheric circulation 4.1.2 Stratospheric circulation 4.2 Effect of gravity wave drag parameterisations 4.2.1 Stratospheric effects 4.2.2 Effects on stratosphere-troposphere coupling 4.2.3 Tropospheric effects 4.3 Low latitudinal influence on the stratospheric polar vortex 4.3.1 Quasi-biennial oscillation 4.3.2 El Niño-Southern Oscillation 4.4 Arctic-midlatitude linkages 4.4.1 Tropospheric processes 4.4.2 Stratospheric pathway 4.4.3 Sea ice sensitivity experiment 5 Discussion and outlook Bibliography Appendix
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: AWI A8-20-93986
    Type of Medium: Dissertations
    Pages: VI, 129 Seiten , Diagramme
    Language: German
    Note: Inhaltsverzeichnis Kurzfassung Abstract 1 EINFÜHRUNG 2 GRUNDLAGEN 2.1 Allgemeine Zirkulation 2.2 Barokline Instabiltät 2.3 Horizontale und vertikale Wellenausbreitung 2.4 Die Rolle der Arktis im Klimasystem 2.5 Einfluss des klimatischen Wandels in der Arktis auf die mittleren Breiten 2.6 Atmosphärisches Energiespektrum und Skalenwechselwirkung 3 DATEN UND METHODEN 3.1 Verwendete Reanalyse- und Modelldaten 3.1.1 ERA-Interim 3.1.2 AFES 3.1.3 Aufteilung der verwendeten Daten in Zeiträume mit hoher und niedriger Meereisbedeckung 3.2 Methoden 3.2.1 Instabilitätsanalyse für einen zonalgemittelten Grundzustand 3.2.2 Identifikation bevorzugter großskaliger Zirkulationsmuster 3.2.3 Energie- und Enstrophiespektren 3.2.4 Statistische Testverfahren 4 ERGEBNISSE 4.1 Instabilitätsanalyse für einen zonalgemittelten Grundzustand . 4.1.1 Klimatologie ERA-Interim und AFES 4.1.2 Sensititvitätsstudie 4.2 Identifikation bevorzugter großskaliger Zirkulationsmuster 4.2.1 September 4.2.2 Oktober 4.2.3 November 4.2.4 Dezember 4.2.5 Januar 4.2.6 Februar 4.2.7 Zugehörige synoptisch-skalige Aktivität und 2m-Temperatur 4.3 Kinetische Energiespektren und nichtlineare Wechselwirkungen 4.3.1 Kinetische Energiespektren 4.3.2 Enstrophiespektren 4.3.3 Nichtlineare Energiewechselwirkungen, Energieflüsse und Enstrophieflüsse 5 ZUSAMMENFASSUNG UND AUSBLICK Tabellenverzeichnis Abbildungsverzeichnis Variablen und Symbole Literaturverzeichnis Danksagung Anhang A.1 Hough-Funktionen und vertikale Strukturfunktionen A.2 Zugeordnete Legendre-Polynome und Kugelflächenfunktionen Eidesstattliche Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...