ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
  • 2
    Publication Date: 2009-02-01
    Print ISSN: 1755-1307
    Electronic ISSN: 1755-1315
    Topics: Geography , Geosciences , Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-01-31
    Description: The response of a selected number of chemical species is inspected with respect to climate change. The coupled Atmosphere-Ocean General Circulation Model ECHAM4-OPYC3 is providing meteorological fields for the Chemical long-range Transport Model DEHM. Three selected decades (1990s, 2040s and 2090s) are inspected. The 1990s are used as a reference and validation period. In this decade an evaluation of the output from the DEHM model with ECHAM4-OPYC3 meteorology input data is carried out. The model results are tested against similar model simulations with MM5 meteorology and against observations from the EMEP monitoring sites in Europe. The test results from the validation period show that the overall statistics (e.g. mean values and standard deviations) are similar for the two simulations. However, as one would expect the model setup with climate input data fails to predict correctly the timing of the variability in the observations. The overall performance of the ECHAM4-OPYC3 setup as meteorological input to the DEHM model is shown to be acceptable according to the applied ranking method. It is concluded that running a chemical long-range transport model on data from a "free run" climate model is scientifically sound. From the model runs of the three decades, it is found that the overall trend detected in the evolution of the chemical species, is the same between the 1990 decade and the 2040 decade and between the 2040 decade and the 2090 decade, respectively. The dominating impacts from climate change on a large number of the chemical species are related to the predicted temperature increase. Throughout the 21th century the ECHAM4-OPYC3 projects a global mean temperature increase of 3 K with local maxima up to 11 K in the Arctic winter based on the IPCC A2 emission scenario. As a consequence of this temperature increase, the temperature dependent biogenic emission of isoprene is predicted to increase significantly over land by the DEHM model. This leads to an increase in the O3 production and together with an increase in water vapor to an increase in the number of free OH radicals. Furthermore this increase in the number of OH radicals contributes to a significant change in the typical life time of many species, since OH are participating in a large number of chemical reactions. It is e.g. found that more SO42− will be present in the future over the already polluted areas and this increase can be explained by an enhanced conversion of SO2 to SO42− .
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-11-22
    Description: A new 3-D mercury model has been developed within the Danish Arctic Monitoring and Assessment Programme (AMAP). The model is based on the Danish Eulerian Hemispheric Model, which in the original version has been used to study the transport of SO2, SO42- and Pb into the Arctic. It was developed for sulphur in 1990 and in 1999 also lead was included. For the current study a chemical scheme for mercury has been included and the model is now applied to the mercury transport problem. Some experiments with the formulation of the mercury chemistry during the Polar Sunrise are carried out in order to investigate the observed depletion. Some of the main conclusions of the work described in this paper are that atmospheric transport of mercury is a very important pathway into the Arctic and that mercury depletion in the Arctic troposphere during the Polar Sunrise contributes considerably to the deposition of mercury in the Arctic.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-12-17
    Description: A tracer model, DREAM (the Danish Rimpuff and Eulerian Accidental release Model), has been developed for modelling transport, dispersion and deposition (wet and dry) of radioactive material from accidental releases, as the Chernobyl accident. The model is a combination of a Lagrangian model, that includes the near source dispersion, and an Eulerian model describing the long-range transport. The performance of the transport model has previously been tested within the European Tracer Experiment, ETEX, which included transport and dispersion of an inert, non-depositing tracer from a controlled release. The focus of this paper is the model performance with respect to the total deposition of  137Cs, 134Cs and 131I from the Chernobyl accident, using different relatively simple and comprehensive parameterizations for dry- and wet deposition. The performance, compared to measurements, of using different combinations of two different wet deposition parameterizations and three different parameterizations of dry deposition has been evaluated, using different statistical tests. The best model performance, compared to measurements, is obtained when parameterizing the total deposition combined of a simple method for dry deposition and a subgrid-scale averaging scheme for wet deposition based on relative humidities. The same major conclusion is obtained for all the three different radioactive isotopes and using two different deposition measurement databases. Large differences are seen in the results obtained by using the two different parameterizations of wet deposition based on precipitation rates and relative humidities, respectively. The parameterization based on subgrid-scale averaging is, in all cases, performing better than the parameterization based on precipitation rates. This indicates that the in-cloud scavenging process is more important than the below cloud scavenging process for the submicron particles and that the precipitation rates are relatively uncertain in the meteorological model compared to the relative humidity. Relatively small differences are, however, seen in the statistical tests between the three different parameterizations of dry deposition.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-07-02
    Description: The CO2 source and sink distribution across Europe can be estimated in principle through inverse methods by combining CO2 observations and atmospheric transport models. Uncertainties of such estimates are mainly due to insufficient spatiotemporal coverage of CO2 observations and biases of the models. In order to assess the biases related to the use of different models the CO2 concentration field over Europe has been simulated with five different Eulerian atmospheric transport models as part of the EU-funded AEROCARB project, which has the main goal to estimate the carbon balance of Europe. In contrast to previous comparisons, here both global coarse-resolution and regional higher-resolution models are included. Continuous CO2 observations from continental, coastal and mountain sites as well as flasks sampled on aircrafts are used to evaluate the models' ability to capture the spatiotemporal variability and distribution of lower troposphere CO2 across Europe. 14CO2 is used in addition to evaluate separately fossil fuel signal predictions. The simulated concentrations show a large range of variation, with up to ~10 ppm higher surface concentrations over Western and Central Europe in the regional models with highest (mesoscale) spatial resolution. The simulation – data comparison reveals that generally high-resolution models are more successful than coarse models in capturing the amplitude and phasing of the observed short-term variability. At high-altitude stations the magnitude of the differences between observations and models and in between models is less pronounced, but the timing of the diurnal cycle is not well captured by the models. The data comparisons show also that the timing of the observed variability on hourly to daily time scales at low-altitude stations is generally well captured by all models. However, the amplitude of the variability tends to be underestimated. While daytime values are quite well predicted, nighttime values are generally underpredicted. This is a reflection of the different mixing regimes during day and night combined with different vertical resolution between models. In line with this finding, the agreement among models is increased when sampling in the afternoon hours only and when sampling the mixed portion of the PBL, which amounts to sampling at a few hundred meters above ground. The main recommendations resulting from the study for constraining land carbon sources and sinks using high-resolution concentration data and state-of-the art transport models through inverse methods are given in the following: 1) Low altitude stations are presently preferable in inverse studies. If high altitude stations are used then the model level that represents the specific sites should be applied, 2) at low altitude sites only the afternoon values of concentrations can be represented sufficiently well by current models and therefore afternoon values are more appropriate for constraining large-scale sources and sinks in combination with transport models, 3) even when using only afternoon values it is clear that data sampled several hundred meters above ground can be represented substantially more robustly in models than surface station records, which emphasize the use of tower data in inverse studies and finally 4) traditional large scale transport models seem not sufficient to resolve fine-scale features associated with fossil fuel emissions, as well as larger-scale features like the concentration distribution above the south-western Europe. It is therefore recommended to use higher resolution models for interpretation of continental data in future studies.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-12
    Description: We have developed an integrated model system, EVA (Economic Valuation of Air pollution), based on the impact-pathway chain, to assess the health-related economic externalities of air pollution resulting from specific emission sources or sectors, which can be used to support policy-making with respect to emission control. Central for the system is a newly developed tagging method capable of calculating the contribution from a specific emission source or sector to the overall air pollution levels, taking into account the non-linear atmospheric chemistry. The main objective of this work is to identify the anthropogenic emission sources in Europe and Denmark that contribute the most to human health impacts. In this study, we applied the EVA system to Europe and Denmark, with a detailed analysis of health-related external costs from the ten major emission sectors and their relative contributions. The paper contains a thorough description of the EVA system, the main results from the assessment of the main contributors and a discussion of the most important atmospheric chemical reactions relevant for interpreting the results. The main conclusion from the analysis is that the major contributors to health-related external costs are major power production, agriculture, road traffic, and non-industrial domestic combustion, including wood combustion. We conclude that when regulating the emissions of ammonia from the agricultural sector, both the impacts on nature and on human health should be taken into account. This study confirms that air pollution constitutes a serious problem for human health and that the related external costs are considerable. The results in this work emphasize the importance of defining the right questions in the decision-making process. The results from assessing the impacts from each emission sector depend clearly on the assumption that the other emission sectors are not changed, especially emissions changing concentrations of atmospheric OH and therefore lifetimes of other chemical species.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-07-13
    Description: The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs) is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The α-isomer of the pesticide hexachlorocyclohexane (α-HCH) is used as tracer in the model development. The structure of the model and processes included are described in detail. The results from a model simulation showing the atmospheric transport for the years 1991 to 1998 are presented and evaluated against measurements. The annual averaged atmospheric concentration of α-HCH for the 1990s is well described by the model; however, the shorter-term average concentration for most of the stations is not well captured. This indicates that the present simple surface description needs to be refined to get a better description of the air-surface exchange processes of POPs.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-11-28
    Description: A new model system for mapping and forecasting nitrogen deposition to the Baltic Sea has been developed. The system is based on the Lagrangian variable scale transport-chemistry model ACDEP (Atmospheric Chemistry and Deposition model), and aims at delivering deposition estimates to be used as input to marine ecosystem models. The system is tested by comparison of model results to measurements from monitoring stations around the Baltic Sea. The comparison shows that observed annual mean ambient air concentrations and wet depositions are well reproduced by the model. Diurnal mean concentrations of NHx (sum of NH3 and NH4+) and NO2 are fairly well reproduced, whereas concentrations of total nitrate (sum of HNO3 and NO3-) are somewhat overestimated. Wet depositions of nitrate and ammonia are fairly well described for annual mean values, whereas the discrepancy is high for the monthly mean values and the wet depositions are rather poorly described concerning the diurnal mean values. The model calculations show that the annual atmospheric nitrogen deposition has a pronounced south--north gradient with depositions in the range about 1.0 T N km-2 in the south and 0.2 T N km-2 in the north. The results show that in 1999 the maximum diurnal mean deposition to the Danish waters appeared during the summer in the algae growth season. For the northern parts of the Baltic the highest depositions were distributed over most of the year. Total deposition to the Baltic Sea was for the year 1999 estimated to 318 kT N for an area of 464 406 km2 equivalent to an average deposition of 684 kg N/km2.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-06-30
    Description: The response of a selected number of chemical species is inspected with respect to climate change. The coupled Atmosphere-Ocean General Circulation Model ECHAM4-OPYC3 is providing meteorological fields for the Chemical long-range Transport Model DEHM. Three selected decades (1990s, 2040s and 2090s) are inspected. The 1990s are used as a reference and validation period. In this decade an evaluation of the output from the DEHM model with ECHAM4-OPYC3 meteorology input data is carried out. The model results are tested against similar model simulations with MM5 meteorology and against observations from the EMEP monitoring sites in Europe. The test results from the validation period show that the overall statistics (e.g. mean values and standard deviations) are similar for the two simulations. However, as one would expect the model setup with climate input data fails to predict correctly the timing of the variability in the observations. The overall performance of the ECHAM4-OPYC3 setup as meteorological input to the DEHM model is shown to be acceptable according to the applied ranking method. It is concluded that running a chemical long-range transport model on data from a "free run" climate model is scientifically sound. From the model runs of the three decades, it is found that the overall trend detected in the evolution of the chemical species, is the same between the 1990 decade and the 2040 decade and between the 2040 decade and the 2090 decade, respectively. The dominating impacts from climate change on a large number of the chemical species are related to the predicted temperature increase. Throughout the 21th century the ECHAM4-OPYC3 projects a global mean temperature increase of 3 K with local maxima up to 11 K in the Arctic winter based on the IPCC A2 emission scenario. As a consequence of this temperature increase, the temperature dependent biogenic emission of isoprene is predicted to increase significantly over land by the DEHM model. This leads to an increase in the O3 production and together with an increase in water vapor to an increase in the number of free OH radicals. Furthermore this increase in the number of OH radicals contributes to a significant change in the typical life time of many species, since OH are participating in a large number of chemical reactions. It is e.g. found that more SO42− will be present in the future over the already polluted areas and this increase can be explained by an enhanced conversion of SO2 to SO42−.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...