ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Signal Transduction  (109)
  • Rats  (76)
  • American Association for the Advancement of Science (AAAS)  (179)
  • American Institute of Physics (AIP)
  • Oxford University Press
  • 2000-2004  (179)
  • 2001  (179)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (179)
  • American Institute of Physics (AIP)
  • Oxford University Press
Years
  • 2000-2004  (179)
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: Although the development of the inner ear has been a favorite subject for biologists to study, it is not yet clear exactly which molecules are involved in the induction of the otic placode, the plug of embryonic ectoderm that will become the inner ear. In his Perspective, Graham takes us on an inner ear odyssey, explaining how the signaling molecules FGF-19 and Wnt-8c cooperate to induce formation of the otic placode (Ladher et al.).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graham, A -- New York, N.Y. -- Science. 2000 Dec 8;290(5498):1904-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, UK. anthony.graham@kcl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11187047" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Central Nervous System/embryology/metabolism ; Chick Embryo ; Coculture Techniques ; Culture Techniques ; Ear, Inner/*embryology/metabolism ; Ectoderm/metabolism ; *Embryonic Induction ; Fibroblast Growth Factors/genetics/*metabolism ; Gene Expression ; Mesoderm/metabolism ; Proto-Oncogene Proteins/genetics/metabolism ; Signal Transduction ; Wnt Proteins ; *Zebrafish Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: The elegant architecture of photoreceptor cells in the retina is dependent on organization of the actin cytoskeleton during eye development. But what drives this organization? In an equally elegant Perspective, Colley explains new findings in fruit flies (Chang and Ready) that point to the photopigment rhodopsin and its signaling molecule the Rho GTPase Drac1 as the orchestrators of actin organization and the consequent assembly of the sensory membrane in the photoreceptor cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colley, N J -- R01 EY008768/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 8;290(5498):1902-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53706, USA. njcolley@facstaff.wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11187046" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism/*ultrastructure ; Amino Acid Motifs ; Animals ; Drosophila ; *Drosophila Proteins ; Enzyme Activation ; Humans ; Models, Biological ; Morphogenesis ; Photoreceptor Cells, Invertebrate/cytology/*growth & ; development/metabolism/*ultrastructure ; Retina/growth & development/ultrastructure ; Retinitis Pigmentosa/genetics/metabolism/pathology ; Rhodopsin/chemistry/*metabolism ; Signal Transduction ; rac GTP-Binding Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kennedy, D -- New York, N.Y. -- Science. 2000 Oct 27;290(5492):709.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11184194" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aplysia/physiology ; Congresses as Topic ; Dopamine/physiology ; Learning ; Neurons/physiology ; *Neurosciences ; Neurotransmitter Agents/physiology ; *Nobel Prize ; *Publishing ; Signal Transduction ; Societies, Scientific ; Synapses/physiology ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malakoff, D -- New York, N.Y. -- Science. 2000 Oct 6;290(5489):23.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11183138" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Testing Alternatives/*legislation & jurisprudence ; Animal Welfare/*legislation & jurisprudence ; Animals ; *Animals, Laboratory ; Birds ; Mice ; Rats ; United States ; United States Department of Agriculture/*legislation & jurisprudence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-05-31
    Description: Spatially controlled polymerization of actin is at the origin of cell motility and is responsible for the formation of cellular protrusions like lamellipodia. The pathogens Listeria monocytogenes and Shigella flexneri, which undergo actin-based propulsion, are acknowledged models of the leading edge of lamellipodia. Actin-based motility of the bacteria or of functionalized microspheres can be reconstituted in vitro from only five pure proteins. Movement results from the regulated site-directed treadmilling of actin filaments, consistent with observations of actin dynamics in living motile cells and with the biochemical properties of the components of the synthetic motility medium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pantaloni, D -- Le Clainche, C -- Carlier, M F -- New York, N.Y. -- Science. 2001 May 25;292(5521):1502-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dynamique du Cytosquelette, Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11379633" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Depolymerizing Factors ; Actin-Related Protein 2 ; Actin-Related Protein 3 ; Actins/metabolism/*physiology ; Adenosine Triphosphate/metabolism ; Animals ; Bacterial Proteins/metabolism ; Biopolymers ; *Cell Movement ; *Cytoskeletal Proteins ; Destrin ; Listeria monocytogenes/*physiology ; Microfilament Proteins/metabolism ; Models, Biological ; Movement ; Proteins/metabolism ; Pseudopodia/physiology ; Signal Transduction ; Wiskott-Aldrich Syndrome Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2453.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752547" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/physiology ; Circadian Rhythm/drug effects/*physiology ; Cricetinae ; Darkness ; Hypothalamus/*metabolism ; Light ; Mice ; *Motor Activity/drug effects ; Mutation ; Neurons/*metabolism ; Receptor, Epidermal Growth Factor/genetics/*metabolism ; Retinal Ganglion Cells/metabolism ; Signal Transduction ; Suprachiasmatic Nucleus/*metabolism ; Transforming Growth Factor alpha/*metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barres, B A -- Smith, S J -- New York, N.Y. -- Science. 2001 Nov 9;294(5545):1296-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Stanford University School of Medicine, Fairchild Science Building, Stanford, CA 94305-5125, USA. barres@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11701918" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apolipoproteins E/metabolism/pharmacology ; Astrocytes/*metabolism ; Brain/metabolism ; Cells, Cultured ; Cholesterol/*metabolism/pharmacology ; Coculture Techniques ; Mice ; Neuroglia/metabolism ; Neuronal Plasticity ; Neurons/metabolism/*physiology ; Recombinant Proteins/pharmacology ; Signal Transduction ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2001-11-10
    Description: We describe a molecular switch based on the controlled methylation of nucleosome and the transcriptional cofactors, the CREB-binding proteins (CBP)/p300. The CBP/p300 methylation site is localized to an arginine residue that is essential for stabilizing the structure of the KIX domain, which mediates CREB recruitment. Methylation of KIX by coactivator-associated arginine methyltransferase 1 (CARM1) blocks CREB activation by disabling the interaction between KIX and the kinase inducible domain (KID) of CREB. Thus, CARM1 functions as a corepressor in cyclic adenosine monophosphate signaling pathway via its methyltransferase activity while acting as a coactivator for nuclear hormones. These results provide strong in vivo and in vitro evidence that histone methylation plays a key role in hormone-induced gene activation and define cofactor methylation as a new regulatory mechanism in hormone signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, W -- Chen, H -- Du, K -- Asahara, H -- Tini, M -- Emerson, B M -- Montminy, M -- Evans, R M -- 9R01DK57978/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2507-11. Epub 2001 Nov 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Department of Biological Chemistry, University of California Davis Cancer Center/Basic Science, Sacramento, CA 95817, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11701890" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/metabolism ; Amino Acid Sequence ; Animals ; Apoptosis ; Cell Line ; Cyclic AMP Response Element-Binding Protein/metabolism ; Dimerization ; E1A-Associated p300 Protein ; *Gene Expression Regulation ; Genes, Reporter ; Histone Acetyltransferases ; Histones/metabolism ; Methylation ; Molecular Sequence Data ; Nerve Growth Factor/pharmacology ; Nuclear Proteins/chemistry/*metabolism ; PC12 Cells ; Protein Structure, Tertiary ; Protein-Arginine N-Methyltransferases/*metabolism ; Rats ; Receptors, Retinoic Acid/*metabolism ; Recombinant Fusion Proteins/metabolism ; Retinoid X Receptors ; *Saccharomyces cerevisiae Proteins ; Signal Transduction ; Somatostatin/genetics ; Trans-Activators/chemistry/*metabolism ; Transcription Factors/metabolism ; *Transcription, Genetic ; Transcriptional Activation ; Transfection ; Tretinoin/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2001-04-17
    Description: A critical step in the infectious cycle of Leishmania is the differentiation of parasites within the sand fly vector to the highly infective metacyclic promastigote stage. Here, we establish tetrahydrobiopterin (H4B) levels as an important factor controlling the extent of metacyclogenesis. H4B levels decline substantially during normal development, and genetic or nutritional manipulations showed that low H4B caused elevated metacyclogenesis. Mutants lacking pteridine reductase 1 (PTR1) had low levels of H4B, remained infectious to mice, and induced larger cutaneous lesions (hypervirulence). Thus, the control of pteridine metabolism has relevance to the mechanism of Leishmania differentiation and the limitation of virulence during evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, M L -- Titus, R G -- Turco, S J -- Beverley, S M -- AI21903/AI/NIAID NIH HHS/ -- AI31078/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Apr 13;292(5515):285-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11303103" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biopterin/*analogs & derivatives/*metabolism/pharmacology ; Carrier Proteins/genetics/metabolism ; Chromatography, High Pressure Liquid ; Folic Acid/metabolism ; Genes, Protozoan ; Glycosphingolipids/analysis ; Leishmania major/genetics/*growth & development/*metabolism/pathogenicity ; Leishmaniasis, Cutaneous/*parasitology ; *Membrane Transport Proteins ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; Oxidoreductases/genetics/metabolism ; *Protozoan Proteins ; Signal Transduction ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2001-04-17
    Description: In mammals, the central circadian pacemaker resides in the hypothalamic suprachiasmatic nucleus (SCN), but circadian oscillators also exist in peripheral tissues. Here, using wild-type and cryptochrome (mCry)-deficient cell lines derived from mCry mutant mice, we show that the peripheral oscillator in cultured fibroblasts is identical to the oscillator in the SCN in (i) temporal expression profiles of all known clock genes, (ii) the phase of the various mRNA rhythms (i.e., antiphase oscillation of Bmal1 and mPer genes), (iii) the delay between maximum mRNA levels and appearance of nuclear mPER1 and mPER2 protein, (iv) the inability to produce oscillations in the absence of functional mCry genes, and (v) the control of period length by mCRY proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yagita, K -- Tamanini, F -- van Der Horst, G T -- Okamura, H -- New York, N.Y. -- Science. 2001 Apr 13;292(5515):278-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Brain Science, Department of Brain Sciences, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11303101" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; Biological Clocks/*genetics ; CLOCK Proteins ; Cell Cycle Proteins ; Cell Line ; Cell Nucleus/metabolism ; Circadian Rhythm/*genetics ; Cryptochromes ; *DNA-Binding Proteins ; *Drosophila Proteins ; Endothelin-1/pharmacology ; *Eye Proteins ; Fibroblasts/*physiology ; Flavoproteins/genetics/metabolism ; Gene Expression Profiling ; *Gene Expression Regulation ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; *Photoreceptor Cells, Invertebrate ; RNA, Messenger/genetics/metabolism ; Rats ; Receptors, G-Protein-Coupled ; Suprachiasmatic Nucleus/metabolism ; Time Factors ; Trans-Activators/genetics/metabolism ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2001-12-12
    Description: The mouse small intestinal epithelium consists of four principal cell types deriving from one multipotent stem cell: enterocytes, goblet, enteroendocrine, and Paneth cells. Previous studies showed that Math1, a basic helix-loop-helix (bHLH) transcription factor, is expressed in the gut. We find that loss of Math1 leads to depletion of goblet, enteroendocrine, and Paneth cells without affecting enterocytes. Colocalization of Math1 with Ki-67 in some proliferating cells suggests that secretory cells (goblet, enteroendocrine, and Paneth cells) arise from a common progenitor that expresses Math1, whereas absorptive cells (enterocytes) arise from a progenitor that is Math1-independent. The continuous rapid renewal of these cells makes the intestinal epithelium a model system for the study of stem cell regeneration and lineage commitment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Q -- Bermingham, N A -- Finegold, M J -- Zoghbi, H Y -- New York, N.Y. -- Science. 2001 Dec 7;294(5549):2155-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11739954" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; *Cell Differentiation ; Cell Division ; Cell Lineage ; Enterocytes/cytology ; Enteroendocrine Cells/cytology ; Gene Expression ; Goblet Cells/cytology ; Helix-Loop-Helix Motifs ; Heterozygote ; Homeodomain Proteins/metabolism ; Intestinal Mucosa/*cytology/embryology/*metabolism ; Intestine, Large/cytology/embryology ; Intestine, Small/cytology/embryology ; Ki-67 Antigen/analysis ; Membrane Proteins/metabolism ; Mice ; Paneth Cells/cytology/metabolism ; Protein Precursors/analysis ; Receptors, Notch ; Signal Transduction ; Stem Cells/*cytology ; Transcription Factors/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2001-03-17
    Description: The role of NF-kappaB-inducing kinase (NIK) in cytokine signaling remains controversial. To identify the physiologic functions of NIK, we disrupted the NIK locus by gene targeting. Although NIK-/- mice displayed abnormalities in both lymphoid tissue development and antibody responses, NIK-/- cells manifested normal NF-kappaB DNA binding activity when treated with a variety of cytokines, including tumor necrosis factor (TNF), interleukin-1 (IL-1), and lymphotoxin-beta (LTbeta). However, NIK was selectively required for gene transcription induced through ligation of LTbeta receptor but not TNF receptors. These results reveal that NIK regulates the transcriptional activity of NF-kappaB in a receptor-restricted manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yin, L -- Wu, L -- Wesche, H -- Arthur, C D -- White, J M -- Goeddel, D V -- Schreiber, R D -- New York, N.Y. -- Science. 2001 Mar 16;291(5511):2162-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Immunology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11251123" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; B-Lymphocytes/metabolism ; Cells, Cultured ; DNA/metabolism ; Fibroblasts/metabolism ; Gene Targeting ; Genes, Reporter ; Interleukin-1/metabolism/pharmacology ; Ligands ; Lymphoid Tissue/abnormalities ; Lymphotoxin beta Receptor ; Mice ; Mice, Inbred C57BL ; NF-kappa B/genetics/*metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Receptors, Tumor Necrosis Factor/immunology/*metabolism ; Signal Transduction ; *Transcription, Genetic ; Tumor Necrosis Factor-alpha/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2001-12-18
    Description: Agrobacterium tumefaciens is a plant pathogen capable of transferring a defined segment of DNA to a host plant, generating a gall tumor. Replacing the transferred tumor-inducing genes with exogenous DNA allows the introduction of any desired gene into the plant. Thus, A. tumefaciens has been critical for the development of modern plant genetics and agricultural biotechnology. Here we describe the genome of A. tumefaciens strain C58, which has an unusual structure consisting of one circular and one linear chromosome. We discuss genome architecture and evolution and additional genes potentially involved in virulence and metabolic parasitism of host plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goodner, B -- Hinkle, G -- Gattung, S -- Miller, N -- Blanchard, M -- Qurollo, B -- Goldman, B S -- Cao, Y -- Askenazi, M -- Halling, C -- Mullin, L -- Houmiel, K -- Gordon, J -- Vaudin, M -- Iartchouk, O -- Epp, A -- Liu, F -- Wollam, C -- Allinger, M -- Doughty, D -- Scott, C -- Lappas, C -- Markelz, B -- Flanagan, C -- Crowell, C -- Gurson, J -- Lomo, C -- Sear, C -- Strub, G -- Cielo, C -- Slater, S -- R15 GM61690-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 14;294(5550):2323-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Hiram College, Hiram, OH 44234, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743194" target="_blank"〉PubMed〈/a〉
    Keywords: Agrobacterium tumefaciens/classification/*genetics/pathogenicity/physiology ; Bacterial Proteins/chemistry/genetics/metabolism ; Carrier Proteins/chemistry/genetics/metabolism ; Cell Cycle ; Chromosomes, Bacterial/genetics ; DNA Replication ; Genes, Bacterial ; *Genome, Bacterial ; Molecular Sequence Data ; Phylogeny ; Plant Tumors/microbiology ; Plants/microbiology ; Plasmids ; Replicon ; Rhizobiaceae/genetics ; *Sequence Analysis, DNA ; Signal Transduction ; Sinorhizobium meliloti/genetics ; Synteny ; Telomere ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2001-08-18
    Description: The LKB1 tumor suppressor gene, mutated in Peutz-Jeghers syndrome, encodes a serine/threonine kinase of unknown function. Here we show that mice with a targeted disruption of Lkb1 die at midgestation, with the embryos showing neural tube defects, mesenchymal cell death, and vascular abnormalities. Extraembryonic development was also severely affected; the mutant placentas exhibited defective labyrinth layer development and the fetal vessels failed to invade the placenta. These phenotypes were associated with tissue-specific deregulation of vascular endothelial growth factor (VEGF) expression, including a marked increase in the amount of VEGF messenger RNA. Moreover, VEGF production in cultured Lkb1(-/-) fibroblasts was elevated in both normoxic and hypoxic conditions. These findings place Lkb1 in the VEGF signaling pathway and suggest that the vascular defects accompanying Lkb1 loss are mediated at least in part by VEGF.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ylikorkala, A -- Rossi, D J -- Korsisaari, N -- Luukko, K -- Alitalo, K -- Henkemeyer, M -- Makela, T P -- New York, N.Y. -- Science. 2001 Aug 17;293(5533):1323-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cancer Biology Program, Haartman Institute and Biomedicum Helsinki, Post Office Box 63, University of Helsinki, Helsinki 00014, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509733" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Vessels/*abnormalities/embryology ; Cell Death ; Cell Hypoxia ; Cells, Cultured ; DNA-Binding Proteins/metabolism ; Embryo, Mammalian/*metabolism ; Embryonic and Fetal Development ; Endothelial Growth Factors/*genetics/*metabolism ; Endothelium, Vascular/abnormalities/cytology/embryology ; *Gene Expression Regulation, Developmental ; Gene Targeting ; Hypoxia-Inducible Factor 1 ; Hypoxia-Inducible Factor 1, alpha Subunit ; In Situ Hybridization ; Lymphokines/*genetics/*metabolism ; Mesoderm/cytology ; Mice ; Mice, Inbred C57BL ; Muscle, Smooth, Vascular/abnormalities/cytology/embryology ; Neural Tube Defects/embryology ; Nuclear Proteins/metabolism ; Phenotype ; Placenta/blood supply/embryology/metabolism ; Protein-Serine-Threonine Kinases/deficiency/genetics/*physiology ; RNA, Messenger/genetics/metabolism ; Signal Transduction ; *Transcription Factors ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2001-03-10
    Description: GADS is an adaptor protein implicated in CD3 signaling because of its ability to link SLP-76 to LAT. A GADS-deficient mouse was generated by gene targeting, and the function of GADS in T cell development and activation was examined. GADS- CD4-CD8- thymocytes exhibited a severe block in proliferation but still differentiated into mature T cells. GADS- thymocytes failed to respond to CD3 cross-linking in vivo and were impaired in positive and negative selection. Immunoprecipitation experiments revealed that the association between SLP-76 and LAT was uncoupled in GADS- thymocytes. These observations indicate that GADS is a critical adaptor for CD3 signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoder, J -- Pham, C -- Iizuka, Y M -- Kanagawa, O -- Liu, S K -- McGlade, J -- Cheng, A M -- New York, N.Y. -- Science. 2001 Mar 9;291(5510):1987-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11239162" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Animals ; Antigens, CD3/metabolism ; Carrier Proteins/*metabolism ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cell Size ; Female ; Gene Targeting ; Lymphocyte Activation ; Male ; *Membrane Proteins ; Mice ; Mice, Transgenic ; Phosphoproteins/*metabolism ; Phosphorylation ; Receptors, Antigen, T-Cell/metabolism ; Signal Transduction ; Spleen/cytology/immunology ; T-Lymphocytes/*cytology/immunology ; Thymus Gland/cytology/immunology ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2001-06-26
    Description: Clinical studies with the Abl tyrosine kinase inhibitor STI-571 in chronic myeloid leukemia demonstrate that many patients with advanced stage disease respond initially but then relapse. Through biochemical and molecular analysis of clinical material, we find that drug resistance is associated with the reactivation of BCR-ABL signal transduction in all cases examined. In six of nine patients, resistance was associated with a single amino acid substitution in a threonine residue of the Abl kinase domain known to form a critical hydrogen bond with the drug. This substitution of threonine with isoleucine was sufficient to confer STI-571 resistance in a reconstitution experiment. In three patients, resistance was associated with progressive BCR-ABL gene amplification. These studies provide evidence that genetically complex cancers retain dependence on an initial oncogenic event and suggest a strategy for identifying inhibitors of STI-571 resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gorre, M E -- Mohammed, M -- Ellwood, K -- Hsu, N -- Paquette, R -- Rao, P N -- Sawyers, C L -- GM07185/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):876-80. Epub 2001 Jun 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423618" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Antineoplastic Agents/metabolism/pharmacology/therapeutic use ; Base Sequence ; Benzamides ; Blast Crisis/genetics ; Cell Line ; Drug Resistance, Neoplasm/genetics ; Fusion Proteins, bcr-abl/*metabolism ; Gene Amplification ; *Genes, abl ; Humans ; Hydrogen Bonding ; Imatinib Mesylate ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/*drug therapy/*genetics ; Molecular Sequence Data ; Philadelphia Chromosome ; Phosphorylation ; Piperazines/metabolism/*pharmacology/therapeutic use ; Point Mutation ; Protein Structure, Tertiary ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-abl/antagonists & ; inhibitors/chemistry/*genetics/metabolism ; Proto-Oncogene Proteins c-crk ; Pyrimidines/metabolism/*pharmacology/therapeutic use ; Recurrence ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2001-09-05
    Description: We show that high doses of salicylates reverse hyperglycemia, hyperinsulinemia, and dyslipidemia in obese rodents by sensitizing insulin signaling. Activation or overexpression of the IkappaB kinase beta (IKKbeta) attenuated insulin signaling in cultured cells, whereas IKKbeta inhibition reversed insulin resistance. Thus, IKKbeta, rather than the cyclooxygenases, appears to be the relevant molecular target. Heterozygous deletion (Ikkbeta+/-) protected against the development of insulin resistance during high-fat feeding and in obese Lep(ob/ob) mice. These findings implicate an inflammatory process in the pathogenesis of insulin resistance in obesity and type 2 diabetes mellitus and identify the IKKbeta pathway as a target for insulin sensitization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, M -- Konstantopoulos, N -- Lee, J -- Hansen, L -- Li, Z W -- Karin, M -- Shoelson, S E -- AI43477/AI/NIAID NIH HHS/ -- DK45493/DK/NIDDK NIH HHS/ -- DK51729/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 31;293(5535):1673-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533494" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Inflammatory Agents, Non-Steroidal/pharmacology ; Aspirin/administration & dosage/*pharmacology ; Blood Glucose/metabolism ; Cell Line ; Dietary Fats/*administration & dosage ; Gene Deletion ; Gene Targeting ; Glucose Tolerance Test ; I-kappa B Kinase ; Insulin/administration & dosage/blood/*metabolism/pharmacology ; *Insulin Resistance ; Lipids/blood ; Liver/metabolism ; Male ; Mice ; Mice, Obese ; Muscles/metabolism ; Obesity/metabolism/*physiopathology ; Phosphorylation ; Prostaglandin-Endoperoxide Synthases/genetics/metabolism ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/genetics/*metabolism ; Rats ; Rats, Zucker ; Receptor, Insulin/metabolism ; Signal Transduction ; Sodium Salicylate/administration & dosage/*pharmacology ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2001-09-22
    Description: The molecular adapter Fyb/Slap regulates signaling downstream of the T cell receptor (TCR), but whether it plays a positive or negative role is controversial. We demonstrate that Fyb/Slap-deficient T cells exhibit defective proliferation and cytokine production in response to TCR stimulation. Fyb/Slap is also required in vivo for T cell-dependent immune responses. Functionally, Fyb/Slap has no apparent role in the activation of known TCR signaling pathways, F-actin polymerization, or TCR clustering. Rather, Fyb/Slap regulates TCR-induced integrin clustering and adhesion. Thus, Fyb/Slap is the first molecular adapter to be identified that couples TCR stimulation to the avidity modulation of integrins governing T cell adhesion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Griffiths, E K -- Krawczyk, C -- Kong, Y Y -- Raab, M -- Hyduk, S J -- Bouchard, D -- Chan, V S -- Kozieradzki, I -- Oliveira-Dos-Santos, A J -- Wakeham, A -- Ohashi, P S -- Cybulsky, M I -- Rudd, C E -- Penninger, J M -- New York, N.Y. -- Science. 2001 Sep 21;293(5538):2260-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Amgen Institute, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11567140" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; *Adaptor Proteins, Signal Transducing ; Animals ; Antigens, CD/metabolism ; Antigens, CD3/metabolism ; Antigens, Differentiation, T-Lymphocyte/metabolism ; B-Lymphocytes/immunology ; Carrier Proteins/genetics/*physiology ; Cell Adhesion ; Cell Adhesion Molecules/metabolism ; Chimera ; Gene Targeting ; Humans ; Immunization ; Immunoglobulin G/biosynthesis ; Integrins/*metabolism ; Intercellular Adhesion Molecule-1/metabolism ; Interferon-gamma/biosynthesis ; Interleukin-2/biosynthesis/pharmacology ; Lectins, C-Type ; *Lymphocyte Activation ; Lymphocyte Function-Associated Antigen-1/metabolism ; Mice ; Phosphoproteins/genetics/*physiology ; Receptors, Antigen, T-Cell/immunology/metabolism ; Receptors, Interleukin-2/metabolism ; Recombinant Proteins/metabolism ; Signal Transduction ; T-Lymphocytes/immunology/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2001-01-06
    Description: Most traditional cytotoxic anticancer agents ablate the rapidly dividing epithelium of the hair follicle and induce alopecia (hair loss). Inhibition of cyclin-dependent kinase 2 (CDK2), a positive regulator of eukaryotic cell cycle progression, may represent a therapeutic strategy for prevention of chemotherapy-induced alopecia (CIA) by arresting the cell cycle and reducing the sensitivity of the epithelium to many cell cycle-active antitumor agents. Potent small-molecule inhibitors of CDK2 were developed using structure-based methods. Topical application of these compounds in a neonatal rat model of CIA reduced hair loss at the site of application in 33 to 50% of the animals. Thus, inhibition of CDK2 represents a potentially useful approach for the prevention of CIA in cancer patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S T -- Benson, B G -- Bramson, H N -- Chapman, D E -- Dickerson, S H -- Dold, K M -- Eberwein, D J -- Edelstein, M -- Frye, S V -- Gampe Jr, R T -- Griffin, R J -- Harris, P A -- Hassell, A M -- Holmes, W D -- Hunter, R N -- Knick, V B -- Lackey, K -- Lovejoy, B -- Luzzio, M J -- Murray, D -- Parker, P -- Rocque, W J -- Shewchuk, L -- Veal, J M -- Walker, D H -- Kuyper, L F -- New York, N.Y. -- Science. 2001 Jan 5;291(5501):134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Glaxo Wellcome Research and Development, Research Triangle Park, NC 27709, USA. std41085@glaxowellcome.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11141566" target="_blank"〉PubMed〈/a〉
    Keywords: Alopecia/*chemically induced/*prevention & control ; Animals ; Animals, Newborn ; Antineoplastic Agents/*toxicity ; Antineoplastic Combined Chemotherapy Protocols/toxicity ; Apoptosis/drug effects ; *CDC2-CDC28 Kinases ; Cell Cycle/drug effects ; Cell Line ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/*antagonists & inhibitors/metabolism ; Cyclophosphamide/toxicity ; Cytoprotection/drug effects ; DNA/biosynthesis ; Doxorubicin/toxicity ; Drug Design ; Enzyme Inhibitors/chemical synthesis/chemistry/*pharmacology ; Epithelium/drug effects ; Etoposide/toxicity ; Hair Follicle/cytology/*drug effects ; Humans ; Indoles/chemical synthesis/chemistry/*pharmacology ; Mice ; Mice, SCID ; Phosphorylation ; Protein-Serine-Threonine Kinases/*antagonists & inhibitors/metabolism ; Rats ; Retinoblastoma Protein/metabolism ; Scalp/transplantation ; Sulfonamides/chemical synthesis/chemistry/*pharmacology ; Transplantation, Heterologous
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2001-12-01
    Description: Heterotrimeric GTP-binding proteins (G proteins) control cellular functions by transducing signals from the outside to the inside of cells. Regulator of G protein signaling (RGS) proteins are key modulators of the amplitude and duration of G protein-mediated signaling through their ability to serve as guanosine triphosphatase-activating proteins (GAPs). We have identified RGS-PX1, a Galpha(s)-specific GAP. The RGS domain of RGS-PX1 specifically interacted with Galpha(s), accelerated its GTP hydrolysis, and attenuated Galpha(s)-mediated signaling. RGS-PX1 also contains a Phox (PX) domain that resembles those in sorting nexin (SNX) proteins. Expression of RGS-PX1 delayed lysosomal degradation of the EGF receptor. Because of its bifunctional role as both a GAP and a SNX, RGS-PX1 may link heterotrimeric G protein signaling and vesicular trafficking.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, B -- Ma, Y C -- Ostrom, R S -- Lavoie, C -- Gill, G N -- Insel, P A -- Huang, X Y -- Farquhar, M G -- AG14563/AG/NIA NIH HHS/ -- CA58689/CA/NCI NIH HHS/ -- DK17780/DK/NIDDK NIH HHS/ -- GM56904/GM/NIGMS NIH HHS/ -- HL53773/HL/NHLBI NIH HHS/ -- HL63885/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2001 Nov 30;294(5548):1939-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0651, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11729322" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-2 Receptor Agonists ; Amino Acid Sequence ; Animals ; COS Cells ; Carrier Proteins/chemistry/*metabolism ; Cattle ; Cell Line ; Cyclic AMP/metabolism ; Endosomes/chemistry/metabolism ; GTP-Binding Protein alpha Subunits, Gs/antagonists & inhibitors/*metabolism ; GTPase-Activating Proteins/chemistry/*metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Mitogen-Activated Protein Kinases/metabolism ; Molecular Sequence Data ; Protein Binding ; Protein Interaction Mapping ; Protein Structure, Tertiary ; Protein Transport ; RGS Proteins/chemistry/*metabolism ; Receptor, Epidermal Growth Factor/metabolism ; Receptors, Adrenergic, beta-2/genetics/metabolism ; Sequence Alignment ; Signal Transduction ; Sorting Nexins ; Substrate Specificity ; *Vesicular Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-03
    Description: Nerve cells communicate with each other through two mechanisms, referred to as fast and slow synaptic transmission. Fast-acting neurotransmitters, e.g., glutamate (excitatory) and gamma-aminobutyric acid (GABA) (inhibitory), achieve effects on their target cells within one millisecond by virtue of opening ligand-operated ion channels. In contrast, all of the effects of the biogenic amine and peptide neurotransmitters, as well as many of the effects of glutamate and GABA, are achieved over hundreds of milliseconds to minutes by slow synaptic transmission. This latter process is mediated through an enormously more complicated sequence of biochemical steps, involving second messengers, protein kinases, and protein phosphatases. Slow-acting neurotransmitters control the efficacy of fast synaptic transmission by regulating the efficiency of neurotransmitter release from presynaptic terminals and by regulating the efficiency with which fast-acting neurotransmitters produce their effects on postsynaptic receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greengard, P -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1024-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA. greengd@mail.rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691979" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/metabolism ; Animals ; Brain/*physiology ; Dopamine/physiology ; Dopamine and cAMP-Regulated Phosphoprotein 32 ; Glutamic Acid/physiology ; Humans ; *Nerve Tissue Proteins ; Neurons/*physiology ; Neurotransmitter Agents/*physiology ; Phosphoprotein Phosphatases/metabolism ; Phosphoproteins/physiology ; Phosphorylation ; Presynaptic Terminals/physiology ; Protein Kinases/metabolism ; Receptors, Neurotransmitter/physiology ; Second Messenger Systems/physiology ; Signal Transduction ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-04-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gupta, A -- Tsai, L H -- New York, N.Y. -- Science. 2001 Apr 13;292(5515):236-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11305318" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cocaine/*pharmacology ; Corpus Striatum/*drug effects/metabolism ; Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors/metabolism ; Cyclin-Dependent Kinase 5 ; Cyclin-Dependent Kinases/antagonists & inhibitors/genetics/*metabolism ; Dopamine/metabolism ; Dopamine Uptake Inhibitors/*pharmacology ; Dopamine and cAMP-Regulated Phosphoprotein 32 ; Mice ; Mice, Knockout ; Motor Activity/drug effects ; Nerve Tissue Proteins/metabolism ; Neurons/metabolism ; Phosphoprotein Phosphatases/antagonists & inhibitors/metabolism ; Phosphoproteins/metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-fos/metabolism ; Rats ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2001-06-02
    Description: The GGAs are a multidomain protein family implicated in protein trafficking between the Golgi and endosomes. Here, the VHS domain of GGA2 was shown to bind to the acidic cluster-dileucine motif in the cytoplasmic tail of the cation-independent mannose 6-phosphate receptor (CI-MPR). Receptors with mutations in this motif were defective in lysosomal enzyme sorting. The hinge domain of GGA2 bound clathrin, suggesting that GGA2 could be a link between cargo molecules and clathrin-coated vesicle assembly. Thus, GGA2 binding to the CI-MPR is important for lysosomal enzyme targeting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, Y -- Doray, B -- Poussu, A -- Lehto, V P -- Kornfeld, S -- R01 CA-08759/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 1;292(5522):1716-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11387476" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; *Carrier Proteins ; Cations ; Clathrin/metabolism ; Dipeptides/chemistry/metabolism ; L Cells (Cell Line) ; Lysosomes/*enzymology ; Mice ; Molecular Sequence Data ; Mutation ; Protein Sorting Signals ; Protein Structure, Tertiary ; *Protein Transport ; Proteins/chemistry/genetics/*metabolism ; Rats ; Receptor, IGF Type 2/*chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Solubility ; Transcription Factor AP-1/metabolism ; Transport Vesicles/metabolism ; Two-Hybrid System Techniques ; trans-Golgi Network/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-04-09
    Description: How do organisms sense the amount of oxygen in the environment and respond appropriately when the amount of oxygen decreases (a condition called hypoxia)? In their Perspective, Zhu and Bunn discuss new findings (Ivan et al., Jaakkola et al.) that reveal how the HIF transcription factor, which switches on a group of hypoxia-response proteins, is itself regulated by changes in oxygen tension. The authors are in the Hematology Division of the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. E-mail: zhu@calvin.bwh.harvard.edu, bunn@calvin.bwh.harvard.edu〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040953/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040953/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, H -- Bunn, H F -- F32 DK009678/DK/NIDDK NIH HHS/ -- F32 DK009678-03/DK/NIDDK NIH HHS/ -- K01 DK059901/DK/NIDDK NIH HHS/ -- K01 DK059901-01/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2001 Apr 20;292(5516):449-51. Epub 2001 Apr 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hematology Division of the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. zhu@calvin.bwh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11292863" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Hypoxia ; Cysteine Endopeptidases/metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; Hydroxylation ; Hydroxyproline/metabolism ; Hypoxia-Inducible Factor 1 ; Hypoxia-Inducible Factor 1, alpha Subunit ; *Ligases ; Multienzyme Complexes/metabolism ; Nuclear Proteins/chemistry/*metabolism ; Oxygen/*physiology ; Procollagen-Proline Dioxygenase/metabolism ; Proteasome Endopeptidase Complex ; Proteins/metabolism ; Reactive Oxygen Species/*metabolism ; Signal Transduction ; Transcription Factors/chemistry/*metabolism ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Ubiquitins/metabolism ; Von Hippel-Lindau Tumor Suppressor Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2001-04-28
    Description: The protective antigen moiety of anthrax toxin translocates the toxin's enzymic moieties to the cytosol of mammalian cells by a mechanism that depends on its ability to heptamerize and insert into membranes. We identified dominant-negative mutants of protective antigen that co-assemble with the wild-type protein and block its ability to translocate the enzymic moieties across membranes. These mutants strongly inhibited toxin action in cell culture and in an animal intoxication model, suggesting that they could be useful in therapy of anthrax.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sellman, B R -- Mourez, M -- Collier, R J -- 5T32AI07410/AI/NIAID NIH HHS/ -- R37-AI22021/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Apr 27;292(5517):695-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11326092" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthrax/*drug therapy ; *Antigens, Bacterial ; Bacterial Toxins/*antagonists & inhibitors/*genetics/metabolism/toxicity ; CHO Cells ; Cell Membrane/metabolism ; Cricetinae ; Endocytosis ; Genes, Dominant ; Male ; *Mutation ; Protein Transport ; Rats ; Rats, Inbred F344 ; Receptors, Peptide/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2001-08-18
    Description: B cell homeostasis has been shown to critically depend on BAFF, the B cell activation factor from the tumor necrosis factor (TNF) family. Although BAFF is already known to bind two receptors, BCMA and TACI, we have identified a third receptor for BAFF that we have termed BAFF-R. BAFF-R binding appears to be highly specific for BAFF, suggesting a unique role for this ligand-receptor interaction. Consistent with this, the BAFF-R locus is disrupted in A/WySnJ mice, which display a B cell phenotype qualitatively similar to that of the BAFF-deficient mice. Thus, BAFF-R appears to be the principal receptor for BAFF-mediated mature B cell survival.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thompson, J S -- Bixler, S A -- Qian, F -- Vora, K -- Scott, M L -- Cachero, T G -- Hession, C -- Schneider, P -- Sizing, I D -- Mullen, C -- Strauch, K -- Zafari, M -- Benjamin, C D -- Tschopp, J -- Browning, J L -- Ambrose, C -- New York, N.Y. -- Science. 2001 Sep 14;293(5537):2108-11. Epub 2001 Aug 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biogen, 12 Cambridge Center, Cambridge, MA 02142, USA., The Institute of Biochemistry, University of Lausanne, CH-1066, Epalinges, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509692" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Cell Activating Factor ; B-Cell Activation Factor Receptor ; B-Cell Maturation Antigen ; B-Lymphocytes/immunology/metabolism/*physiology ; Cell Line ; Chromosome Mapping ; Chromosomes, Human, Pair 22 ; Cloning, Molecular ; Homeostasis ; Humans ; Ligands ; Lymphoid Tissue/metabolism ; Male ; Membrane Proteins/*metabolism ; Mice ; Mice, Inbred A ; Mice, Inbred C57BL ; Molecular Sequence Data ; RNA, Messenger/chemistry/genetics/metabolism ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transfection ; Transmembrane Activator and CAML Interactor Protein ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2001-02-07
    Description: Although astrocytes constitute nearly half of the cells in our brain, their function is a long-standing neurobiological mystery. Here we show by quantal analyses, FM1-43 imaging, immunostaining, and electron microscopy that few synapses form in the absence of glial cells and that the few synapses that do form are functionally immature. Astrocytes increase the number of mature, functional synapses on central nervous system (CNS) neurons by sevenfold and are required for synaptic maintenance in vitro. We also show that most synapses are generated concurrently with the development of glia in vivo. These data demonstrate a previously unknown function for glia in inducing and stabilizing CNS synapses, show that CNS synapse number can be profoundly regulated by nonneuronal signals, and raise the possibility that glia may actively participate in synaptic plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ullian, E M -- Sapperstein, S K -- Christopherson, K S -- Barres, B A -- NS10784/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2001 Jan 26;291(5504):657-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stanford University School of Medicine, Department of Neurobiology, Fairchild Science Building, Stanford, CA 94305-5125, USA. emu@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11158678" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/*physiology ; Calcium/metabolism ; *Calcium-Binding Proteins ; Cell Communication ; Cells, Cultured ; Coculture Techniques ; Excitatory Postsynaptic Potentials ; Fluorescent Dyes/metabolism ; Glutamic Acid/pharmacology ; Ionomycin/pharmacology ; Membrane Glycoproteins/metabolism ; Microscopy, Electron ; Nerve Tissue Proteins/metabolism ; Neuronal Plasticity ; Patch-Clamp Techniques ; Pyridinium Compounds/metabolism ; Quaternary Ammonium Compounds/metabolism ; Rats ; Rats, Sprague-Dawley ; Retinal Ganglion Cells/*physiology/ultrastructure ; Superior Colliculi/embryology/growth & development/ultrastructure ; Synapses/*physiology/ultrastructure ; Synaptic Transmission ; Synaptic Vesicles/metabolism ; Synaptophysin/metabolism ; Synaptotagmins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2001-12-26
    Description: Stem cells, which regenerate tissue by producing differentiating cells, also produce cells that renew the stem cell population. Signals from regulatory microenvironments (niches) are thought to cause stem cells to retain self-renewing potential. However, the molecular characterization of niches remains an important goal. In Drosophila testes, germ line and somatic stem cells attach to a cluster of support cells called the hub. The hub specifically expresses Unpaired, a ligand activating the JAK-STAT (Janus kinase-signal transducer and activator of transcription) signaling cascade. Without JAK-STAT signaling, germ line stem cells differentiate but do not self-renew. Conversely, ectopic JAK-STAT signaling greatly expands both stem cell populations. We conclude that the support cells of the hub signal to adjacent stem cells by activation of the JAK-STAT pathway, thereby defining a niche for stem cell self-renewal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tulina, N -- Matunis, E -- R01 HD040307/HD/NICHD NIH HHS/ -- R01HD40307/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2546-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Embryology, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, MD 21210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752575" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Lineage ; Cell Survival ; Contractile Proteins/analysis ; DNA-Binding Proteins/genetics/*metabolism ; Drosophila/cytology/genetics/*physiology ; Drosophila Proteins/genetics/*metabolism ; Gene Expression ; Germ Cells/cytology/*physiology ; Glycoproteins/genetics/*metabolism ; Insect Proteins/genetics/metabolism ; Janus Kinases ; Ligands ; Male ; Microscopy, Confocal ; Mutation ; Protein-Tyrosine Kinases/genetics/*metabolism ; STAT Transcription Factors ; Signal Transduction ; Spermatogenesis ; Spermatogonia/physiology ; Stem Cells/cytology/*physiology ; Testis/cytology/metabolism ; Trans-Activators/genetics/*metabolism ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2001-11-03
    Description: The bacterial macrolide rapamycin is an efficacious anticancer agent against solid tumors. In a hypoxic environment, the increase in mass of solid tumors is dependent on the recruitment of mitogens and nutrients. When nutrient concentrations change, particularly those of essential amino acids, the mammalian Target of Rapamycin (mTOR) functions in regulatory pathways that control ribosome biogenesis and cell growth. In bacteria, ribosome biogenesis is independently regulated by amino acids and adenosine triphosphate (ATP). Here we demonstrate that the mTOR pathway is influenced by the intracellular concentration of ATP, independent of the abundance of amino acids, and that mTOR itself is an ATP sensor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dennis, P B -- Jaeschke, A -- Saitoh, M -- Fowler, B -- Kozma, S C -- Thomas, G -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1102-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058, Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691993" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Adenosine Triphosphate/*metabolism ; Amino Acids/metabolism ; Androstadienes/pharmacology ; Carrier Proteins/metabolism ; Cell Line ; Deoxyglucose/pharmacology ; Enzyme Activation ; Homeostasis ; Humans ; Insulin/pharmacology ; Kinetics ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Kinases/*metabolism ; RNA, Transfer, Amino Acyl/metabolism ; Recombinant Fusion Proteins/metabolism ; Ribosomal Protein S6 Kinases/antagonists & inhibitors/metabolism ; Ribosomes/metabolism ; Rotenone/pharmacology ; Signal Transduction ; Sirolimus/pharmacology ; TOR Serine-Threonine Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rakic, P -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1011-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520, USA. pasko.rakic@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691974" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Body Patterning ; Brain Mapping ; Cerebral Cortex/*embryology/metabolism ; Electroporation ; Fibroblast Growth Factor 8 ; Fibroblast Growth Factors/genetics/*metabolism ; Mice ; Neocortex/embryology/metabolism ; Occipital Lobe/embryology/metabolism ; Signal Transduction ; Telencephalon/embryology/metabolism ; Thalamus/embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2001-09-29
    Description: Synapses in the central nervous system are usually defined by presynaptic exocytotic release sites and postsynaptic differentiations. We report here a demonstration of dendrodendritic inhibition that does not engage a conventional synapse. Using amperometric and patch-clamp recordings in rat brain slices of the substantia nigra, we found that blockade of the dopamine transporter abolished the dendritic release of dopamine and the resulting self-inhibition. These findings demonstrate that dendrodendritic autoinhibition entails the carrier-mediated release of dopamine rather than conventional exocytosis. This suggests that some widely used antidepressants that inhibit the dopamine transporter may benefit patients in the early stages of Parkinson's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Falkenburger, B H -- Barstow, K L -- Mintz, I M -- R01-3445/PHS HHS/ -- New York, N.Y. -- Science. 2001 Sep 28;293(5539):2465-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Experimental Therapeutics, Boston University Medical Center, Boston, MA 02118, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11577238" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Transport/drug effects ; Calcium/metabolism ; Carrier Proteins/antagonists & inhibitors/*metabolism ; Dendrites/*metabolism ; Dopamine/*metabolism ; Dopamine D2 Receptor Antagonists ; Dopamine Plasma Membrane Transport Proteins ; Electric Stimulation ; Electrophysiology ; Evoked Potentials/drug effects ; Excitatory Postsynaptic Potentials ; Exocytosis ; Glutamic Acid/pharmacology ; Humans ; In Vitro Techniques ; *Membrane Glycoproteins ; Membrane Potentials ; *Membrane Transport Proteins ; *Nerve Tissue Proteins ; Neural Inhibition ; Neurons/metabolism ; Parkinson Disease/drug therapy/metabolism ; Patch-Clamp Techniques ; Piperazines/pharmacology ; Rats ; Receptors, Dopamine D2/metabolism ; Sodium/metabolism ; Substantia Nigra/cytology/*metabolism ; Subthalamic Nucleus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2001-03-27
    Description: Protein actions are usually discussed in terms of static structures, but function requires motion. We find a strong correlation between phosphorylation-driven activation of the signaling protein NtrC and microsecond time-scale backbone dynamics. Using nuclear magnetic resonance relaxation, we characterized the motions of NtrC in three functional states: unphosphorylated (inactive), phosphorylated (active), and a partially active mutant. These dynamics are indicative of exchange between inactive and active conformations. Both states are populated in unphosphorylated NtrC, and phosphorylation shifts the equilibrium toward the active species. These results support a dynamic population shift between two preexisting conformations as the underlying mechanism of activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Volkman, B F -- Lipson, D -- Wemmer, D E -- Kern, D -- GM62117/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2429-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Magnetic Resonance Facility at Madison (NMRFAM), Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11264542" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; *Bacterial Proteins ; Binding Sites ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Models, Molecular ; Motion ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; PII Nitrogen Regulatory Proteins ; Phosphorylation ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; Time ; *Trans-Activators ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2001-05-26
    Description: Impulsive choice is exemplified by choosing a small or poor reward that is available immediately, in preference to a larger but delayed reward. Impulsive choice contributes to drug addiction, attention-deficit/hyperactivity disorder, mania, and personality disorders, but its neuroanatomical basis is unclear. Here, we show that selective lesions of the nucleus accumbens core induce persistent impulsive choice in rats. In contrast, damage to two of its afferents, the anterior cingulate cortex and medial prefrontal cortex, had no effect on this capacity. Thus, dysfunction of the nucleus accumbens core may be a key element in the neuropathology of impulsivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cardinal, R N -- Pennicott, D R -- Sugathapala, C L -- Robbins, T W -- Everitt, B J -- G9537855/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2001 Jun 29;292(5526):2499-501. Epub 2001 May 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK. rudolf.cardinal@pobox.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11375482" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Attention ; Attention Deficit Disorder with Hyperactivity ; Behavior, Animal ; Brain Mapping ; *Choice Behavior ; Disease Models, Animal ; Gyrus Cinguli/physiology ; *Impulsive Behavior ; Motor Activity ; Nucleus Accumbens/*physiology/surgery ; Prefrontal Cortex/physiology ; Random Allocation ; Rats ; Reinforcement (Psychology) ; Reward
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-09-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carmeliet, P -- New York, N.Y. -- Science. 2001 Aug 31;293(5535):1602-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University Leuven, Herestraat 49, Leuven, B-3000, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533466" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Blood Coagulation ; Blood Coagulation Factors/*physiology ; Blood Vessels/*embryology ; Cell Differentiation ; DNA-Binding Proteins/physiology ; Embryonic and Fetal Development ; Endothelial Growth Factors/physiology ; Endothelium, Vascular/*cytology/embryology/physiology ; Hemostasis ; Hypoxia-Inducible Factor 1 ; Hypoxia-Inducible Factor 1, alpha Subunit ; Lymphokines/physiology ; Mice ; Models, Biological ; Muscle, Smooth, Vascular/cytology/physiology ; *Neovascularization, Physiologic ; Nuclear Proteins/physiology ; Receptor, PAR-1 ; Receptors, Thrombin/genetics/*physiology ; Signal Transduction ; Thrombin/physiology ; Thromboplastin/physiology ; *Transcription Factors ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-01
    Description: Understanding how biochemical pathways are connected in the cell is one of the big challenges facing cell biologists. In a Perspective, von Zastrow and Mostov describe new work that identifies a protein called RGS-PX1 as the linchpin that connects signal transduction activated by G protein-coupled receptors with membrane trafficking events.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Zastrow, M -- Mostov, K -- New York, N.Y. -- Science. 2001 Nov 30;294(5548):1845-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Psychiatry, University of California, San Francisco, CA 94143, USA. zastrow@itsa.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11729293" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/metabolism ; Carrier Proteins/chemistry/*metabolism ; Databases, Genetic ; GTPase-Activating Proteins/chemistry/*metabolism ; Heterotrimeric GTP-Binding Proteins/chemistry/*metabolism ; Humans ; Protein Binding ; Protein Structure, Tertiary ; Protein Transport ; RGS Proteins/chemistry/*metabolism ; Receptor, Epidermal Growth Factor/metabolism ; Signal Transduction ; Sorting Nexins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-25
    Description: In Drosophila melanogaster, the antennae, legs, genitalia, and analia make up a serially homologous set of ventral appendages that depend on different selector genes for their unique identities. The diversity among these structures implies that there is a common ground state that selector genes modify to generate these different appendage morphologies. Here we show that the ventral appendage that forms in the absence of selector gene activity is leglike but consists of only two segments along its proximo-distal axis: a proximal segment and a distal tarsus. These results raise the possibility that, during evolution, leglike appendages could have developed without selector gene activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Casares, F -- Mann, R S -- R01 GM058575/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1477-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West 168 Street, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11520984" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antennapedia Homeodomain Protein ; Biological Evolution ; Calcium-Binding Proteins ; *Drosophila Proteins ; Drosophila melanogaster/anatomy & histology/*genetics/*growth & development ; Epistasis, Genetic ; Extremities/growth & development ; *Gene Expression Regulation, Developmental ; *Genes, Homeobox ; Genes, Insect ; Glycosyltransferases/genetics/metabolism ; Homeodomain Proteins/*genetics/physiology ; Insect Proteins/genetics ; Intercellular Signaling Peptides and Proteins ; Intracellular Signaling Peptides and Proteins ; Ligands ; Membrane Proteins/genetics/metabolism ; Mutation ; *N-Acetylglucosaminyltransferases ; *Nuclear Proteins ; Phenotype ; Receptors, Notch ; Sense Organs/growth & development ; Signal Transduction ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉King, L B -- Monroe, J G -- New York, N.Y. -- Science. 2001 Feb 23;291(5508):1503-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11234081" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Autoantigens/immunology ; B-Lymphocytes/cytology/*immunology ; Clonal Anergy ; Clonal Deletion ; *Gene Rearrangement, B-Lymphocyte, Light Chain ; Genes, Immunoglobulin ; Hematopoietic Stem Cells/cytology/immunology ; Mice ; Mice, Transgenic ; Models, Immunological ; Receptors, Antigen, B-Cell/*genetics/*immunology ; Recombination, Genetic ; *Self Tolerance ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2001-05-12
    Description: Treatment efforts for cocaine addiction are hampered by high relapse rates. To map brain areas underlying relapse, we used electrical brain stimulation and intracranial injection of pharmacological compounds after extinction of cocaine self-administration behavior in rats. Electrical stimulation of the hippocampus containing glutamatergic fibers, but not the medial forebrain bundle containing dopaminergic fibers, elicited cocaine-seeking behavior dependent on glutamate in the ventral tegmental area. This suggests a role for glutamatergic neurotransmission in relapse to cocaine abuse. The medial forebrain bundle electrodes supported intense electrical self-stimulation. These findings suggest a dissociation of neural systems subserving positive reinforcement (self-stimulation) and incentive motivation (relapse).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vorel, S R -- Liu, X -- Hayes, R J -- Spector, J A -- Gardner, E L -- New York, N.Y. -- Science. 2001 May 11;292(5519):1175-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA. robvorel@hotmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11349151" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cocaine/administration & dosage/pharmacology ; Cocaine-Related Disorders/*physiopathology/prevention & control ; Conditioning, Operant/drug effects/physiology ; Dopamine/physiology ; Electric Stimulation ; Electrodes ; Excitatory Amino Acid Agonists/pharmacology ; Excitatory Amino Acid Antagonists/pharmacology ; Extinction, Psychological/drug effects/physiology ; Glutamic Acid/*physiology ; Hippocampus/cytology/*physiology ; Injections, Intravenous ; Kynurenic Acid/pharmacology ; Medial Forebrain Bundle/cytology/drug effects/physiology ; Memory/physiology ; N-Methylaspartate/pharmacology ; Rats ; Rats, Long-Evans ; Recurrence ; Reward ; Self Administration ; Synaptic Transmission/drug effects ; *Theta Rhythm ; Ventral Tegmental Area/cytology/drug effects/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nestler, E J -- New York, N.Y. -- Science. 2001 Jun 22;292(5525):2266-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390--9070, USA. eric.nestler@utsouthwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423644" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/drug effects/physiology/physiopathology ; Calcium/metabolism ; Calcium Signaling ; Cocaine/*pharmacology ; Cocaine-Related Disorders/*physiopathology ; Dopamine/metabolism ; Glutamic Acid/metabolism ; Hippocampus/physiology ; *Long-Term Potentiation ; Memory/*physiology ; Neurons/*drug effects/physiology ; Rats ; Receptors, AMPA/metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Synaptic Transmission/drug effects ; Ventral Tegmental Area/*drug effects/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Waddell, S -- Quinn, W G -- New York, N.Y. -- Science. 2001 Aug 17;293(5533):1271-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. waddell@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509718" target="_blank"〉PubMed〈/a〉
    Keywords: Afferent Pathways/physiology ; Animals ; Brain/physiology ; Cyclic AMP/metabolism ; Drosophila/genetics/*physiology ; *Drosophila Proteins ; Dynamins ; Electroshock ; GTP Phosphohydrolases/genetics/physiology ; Genes, Insect ; Learning/*physiology ; Memory/*physiology ; Mental Recall/physiology ; Models, Neurological ; Neurons/*physiology ; Neuropeptides/genetics/physiology ; Odors ; Presynaptic Terminals/physiology ; Second Messenger Systems ; Signal Transduction ; *Synaptic Transmission ; Temperature ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2001-10-27
    Description: ErbB-4 is a transmembrane receptor tyrosine kinase that regulates cell proliferation and differentiation. After binding of its ligand heregulin (HRG) or activation of protein kinase C (PKC) by 12-O-tetradecanoylphorbol-13-acetate (TPA), the ErbB-4 ectodomain is cleaved by a metalloprotease. We now report a subsequent cleavage by gamma-secretase that releases the ErbB-4 intracellular domain from the membrane and facilitates its translocation to the nucleus. gamma-Secretase cleavage was prevented by chemical inhibitors or a dominant negative presenilin. Inhibition of gamma-secretase also prevented growth inhibition by HRG. gamma-Secretase cleavage of ErbB-4 may represent another mechanism for receptor tyrosine kinase-mediated signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ni, C Y -- Murphy, M P -- Golde, T E -- Carpenter, G -- CA24071/CA/NCI NIH HHS/ -- CA68485/CA/NCI NIH HHS/ -- DK20593/DK/NIDDK NIH HHS/ -- NS39072/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 7;294(5549):2179-81. Epub 2001 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11679632" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Amyloid Precursor Protein Secretases ; Animals ; Aspartic Acid Endopeptidases ; COS Cells ; Carbamates/pharmacology ; Cell Division/drug effects ; Cell Line ; Cell Membrane/metabolism ; Cell Nucleus/*metabolism ; Cytoplasm/metabolism ; Dipeptides/pharmacology ; Endopeptidases/*metabolism ; Fatty Acids, Unsaturated/pharmacology ; Humans ; Membrane Proteins/genetics/metabolism ; Metalloendopeptidases/metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Neuregulin-1/pharmacology ; Presenilin-1 ; Protease Inhibitors/pharmacology ; Protein Structure, Tertiary ; Receptor, Epidermal Growth Factor/chemistry/*metabolism ; Receptor, ErbB-4 ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Tetradecanoylphorbol Acetate/pharmacology ; Transcriptional Activation ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-05-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, C -- New York, N.Y. -- Science. 2001 May 11;292(5519):1039.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11352038" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cocaine/administration & dosage/pharmacology ; Cocaine-Related Disorders/*physiopathology ; Conditioning, Operant/drug effects/physiology ; Dopamine/physiology ; Electric Stimulation ; Extinction, Psychological/drug effects/physiology ; Glutamic Acid/*physiology ; Hippocampus/drug effects/*physiology ; Injections, Intravenous ; Medial Forebrain Bundle/drug effects/physiology ; Memory/*physiology ; Rats ; Recurrence ; Reward ; Self Administration ; Ventral Tegmental Area/drug effects/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2001-03-17
    Description: Little is known about how patterns of cell types are organized to form brain structures of appropriate size and shape. To study this process, we employed in vivo electroporation during midbrain development to create ectopic sources of Sonic Hedgehog, a signaling molecule previously shown to specify different neuronal cell types in a concentration-dependent manner in vitro. We provide direct evidence that a Sonic Hedgehog source can control pattern at a distance in brain development and demonstrate that the size, shape, and orientation of the cell populations produced depend on the geometry of the morphogen source. Thus, a single regulatory molecule can coordinate tissue size and shape with cell-type identity in brain development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Agarwala, S -- Sanders, T A -- Ragsdale, C W -- New York, N.Y. -- Science. 2001 Mar 16;291(5511):2147-50. Epub 2001 Mar 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Pharmacology, and Physiology, The University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11251119" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; *Body Patterning ; Cell Division ; Chick Embryo ; Electroporation ; Embryonic Induction ; Gene Expression ; Hedgehog Proteins ; In Situ Hybridization ; Mesencephalon/cytology/*embryology ; Morphogenesis ; Neurons/*cytology ; Proteins/genetics/*physiology ; Signal Transduction ; *Trans-Activators
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malakoff, D -- New York, N.Y. -- Science. 2001 Nov 23;294(5547):1637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11721028" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Experimentation ; Animal Rights/economics/legislation & jurisprudence ; Animal Welfare/economics/*legislation & jurisprudence ; Animals ; Birds ; Government ; *Government Regulation ; Housing, Animal/economics/legislation & jurisprudence ; Mice ; *Models, Animal ; Rats ; Research Design/legislation & jurisprudence ; *Rodentia ; United States ; United States Department of Agriculture/*legislation & jurisprudence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2001-09-05
    Description: Cardiac valve formation is a complex process that involves cell signaling events between the myocardial and endocardial layers of the heart across an elaborate extracellular matrix. These signals lead to marked morphogenetic movements and transdifferentiation of the endocardial cells at chamber boundaries. Here we identify the genetic defect in zebrafish jekyll mutants, which are deficient in the initiation of heart valve formation. The jekyll mutation disrupts a homolog of Drosophila Sugarless, a uridine 5'-diphosphate (UDP)-glucose dehydrogenase required for heparan sulfate, chondroitin sulfate, and hyaluronic acid production. The atrioventricular border cells do not differentiate from their neighbors in jekyll mutants, suggesting that Jekyll is required in a cell signaling event that establishes a boundary between the atrium and ventricle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walsh, E C -- Stainier, D Y -- HL54737/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 31;293(5535):1670-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, University of California, San Francisco, CA 94143-0448, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533493" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antisense Elements (Genetics) ; Body Patterning ; Bone Morphogenetic Proteins/genetics ; Endocardium/embryology/metabolism ; Female ; Gene Expression ; Glycosaminoglycans/metabolism ; Heart/*embryology ; Heart Valves/cytology/*embryology/enzymology/metabolism ; Male ; Molecular Sequence Data ; Morphogenesis ; Mutation ; Myocardium/cytology/metabolism ; Phenotype ; Physical Chromosome Mapping ; Signal Transduction ; Uridine Diphosphate Glucose Dehydrogenase/*genetics/*metabolism ; Zebrafish/*embryology/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2001-11-27
    Description: Multiple sclerosis is a demyelinating disease, characterized by inflammation in the brain and spinal cord, possibly due to autoimmunity. Large-scale sequencing of cDNA libraries, derived from plaques dissected from brains of patients with multiple sclerosis (MS), indicated an abundance of transcripts for osteopontin (OPN). Microarray analysis of spinal cords from rats paralyzed by experimental autoimmune encephalomyelitis (EAE), a model of MS, also revealed increased OPN transcripts. Osteopontin-deficient mice were resistant to progressive EAE and had frequent remissions, and myelin-reactive T cells in OPN-/- mice produced more interleukin 10 and less interferon-gamma than in OPN+/+ mice. Osteopontin thus appears to regulate T helper cell-1 (TH1)-mediated demyelinating disease, and it may offer a potential target in blocking development of progressive MS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chabas, D -- Baranzini, S E -- Mitchell, D -- Bernard, C C -- Rittling, S R -- Denhardt, D T -- Sobel, R A -- Lock, C -- Karpuj, M -- Pedotti, R -- Heller, R -- Oksenberg, J R -- Steinman, L -- New York, N.Y. -- Science. 2001 Nov 23;294(5547):1731-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, B002, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11721059" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Encephalomyelitis, Autoimmune, ; Experimental/genetics/immunology/metabolism/pathology ; Expressed Sequence Tags ; Gene Deletion ; *Gene Expression Profiling ; Gene Library ; Humans ; Inflammation/genetics/immunology/metabolism/pathology ; Interferon-gamma/genetics/metabolism ; Interleukin-10/genetics/metabolism ; Lymphocyte Activation ; Mice ; Mice, Knockout ; Multiple Sclerosis/*genetics/immunology/*metabolism/pathology ; Oligonucleotide Array Sequence Analysis ; Osteopontin ; RNA, Messenger/genetics/metabolism ; Rats ; Sialoglycoproteins/deficiency/genetics/*metabolism ; Spinal Cord/metabolism ; Th1 Cells/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2001-09-15
    Description: What determines whether transitional B cells newly emerged from the bone marrow will differentiate further to become mature, long-lived, circulating B lymphocytes? In a Perspective, Waldschmidt and Noelle discuss new findings showing that the TNF family ligand BAFF and its receptor BAFF-R are crucial for selecting transitional B cells into the mature B cell pool (Thompson et al., Schiemann et al.).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Waldschmidt, T J -- Noelle, R J -- New York, N.Y. -- Science. 2001 Sep 14;293(5537):2012-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Iowa College of Medicine, Iowa City, IA 52242, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11557866" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Cell Activating Factor ; B-Cell Activation Factor Receptor ; B-Cell Maturation Antigen ; B-Lymphocytes/*immunology/metabolism/*physiology ; Bone Marrow Cells ; Cell Survival ; Immunoglobulin M/biosynthesis ; Ligands ; Membrane Proteins/*metabolism ; Mice ; Mice, Inbred A ; Mice, Knockout ; Mice, Mutant Strains ; Receptors, Tumor Necrosis Factor/genetics/*metabolism ; Signal Transduction ; Spleen/cytology/immunology ; Transmembrane Activator and CAML Interactor Protein ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishioka, K -- Reinberg, D -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2497-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752565" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/metabolism ; *Gene Expression Regulation ; Histone Acetyltransferases ; Methylation ; Nuclear Proteins/*metabolism ; Phosphorylation ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Protein-Arginine N-Methyltransferases/*metabolism ; Receptors, Cytoplasmic and Nuclear/metabolism ; *Saccharomyces cerevisiae Proteins ; Signal Transduction ; Trans-Activators/*metabolism ; Transcription Factors/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spitz, F -- Duboule, D -- New York, N.Y. -- Science. 2001 Mar 2;291(5509):1713-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology and Animal Biology, University of Geneva, Sciences III, 1211 Geneve 4, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11253195" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Development ; Cartilage/cytology/embryology ; Cell Count ; Cell Differentiation ; Chick Embryo ; Chondrocytes/cytology ; Culture Techniques ; Gene Expression ; Joint Capsule/metabolism ; Joints/cytology/*embryology/metabolism ; Limb Buds ; Mesoderm/*cytology/metabolism ; Proteins/*genetics/*metabolism ; Signal Transduction ; Stem Cells/cytology ; Synovial Membrane/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2001-11-03
    Description: In the exocytosis of neurotransmitter, fusion pore opening represents the first instant of fluid contact between the vesicle lumen and extracellular space. The existence of the fusion pore has been established by electrical measurements, but its molecular composition is unknown. The possibility that synaptotagmin regulates fusion pores was investigated with amperometry to monitor exocytosis of single dense-core vesicles. Overexpression of synaptotagmin I prolonged the time from fusion pore opening to dilation, whereas synaptotagmin IV shortened this time. Both synaptotagmin isoforms reduced norepinephrine flux through open fusion pores. Thus, synaptotagmin interacts with fusion pores, possibly by associating with a core complex of membrane proteins and/or lipid.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, C T -- Grishanin, R -- Earles, C A -- Chang, P Y -- Martin, T F -- Chapman, E R -- Jackson, M B -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1111-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Wisconsin Medical School, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691996" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Calcium Channels, P-Type/metabolism ; Calcium Channels, Q-Type/metabolism ; *Calcium-Binding Proteins ; Cell Membrane Structures/*metabolism ; Chromogranins/metabolism ; Electrophysiology ; *Exocytosis ; Kinetics ; *Membrane Fusion ; Membrane Glycoproteins/*metabolism ; Membrane Potentials ; Nerve Tissue Proteins/*metabolism ; Neurotransmitter Agents/*metabolism ; Norepinephrine/metabolism ; PC12 Cells ; Protein Isoforms ; Rats ; Recombinant Fusion Proteins/metabolism ; Secretory Vesicles/*metabolism ; Synaptic Transmission ; Synaptic Vesicles/metabolism ; Synaptotagmin I ; Synaptotagmins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2001-08-18
    Description: Arabidopsis seedling photomorphogenesis involves two antagonistically acting components, COP1 and HY5. COP1 specifically targets HY5 for degradation via the 26S proteasome in the dark through their direct physical interaction. Little is known regarding how light signals perceived by photoreceptors are transduced to regulate COP1. Arabidopsis has two related cryptochromes (cry1 and cry2) mediating various blue/ultraviolet-A light responses. Here we show that both photoactivated cryptochromes repress COP1 activity through a direct protein-protein contact and that this direct regulation is primarily responsible for the cryptochrome-mediated blue light regulation of seedling photomorphogenic development and genome expression profile.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, H -- Ma, L G -- Li, J M -- Zhao, H Y -- Deng, X W -- GM-47850/GM/NIGMS NIH HHS/ -- GM59507/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Oct 5;294(5540):154-8. Epub 2001 Aug 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509693" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*growth & development/*metabolism ; *Arabidopsis Proteins ; Basic-Leucine Zipper Transcription Factors ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Nucleus/metabolism ; Crosses, Genetic ; Cryptochromes ; Darkness ; *Drosophila Proteins ; Expressed Sequence Tags ; *Eye Proteins ; Flavoproteins/genetics/*metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant ; *Light ; Morphogenesis ; Mutation ; Nuclear Proteins/metabolism ; Oxidation-Reduction ; Phenotype ; *Photoreceptor Cells, Invertebrate ; Plant Proteins/chemistry/genetics/*metabolism ; Plants, Genetically Modified ; Precipitin Tests ; Protein Binding ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; *Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2001-12-01
    Description: Cholesterol, fatty acids, fat-soluble vitamins, and other lipids present in our diets are not only nutritionally important but serve as precursors for ligands that bind to receptors in the nucleus. To become biologically active, these lipids must first be absorbed by the intestine and transformed by metabolic enzymes before they are delivered to their sites of action in the body. Ultimately, the lipids must be eliminated to maintain a normal physiological state. The need to coordinate this entire lipid-based metabolic signaling cascade raises important questions regarding the mechanisms that govern these pathways. Specifically, what is the nature of communication between these bioactive lipids and their receptors, binding proteins, transporters, and metabolizing enzymes that links them physiologically and speaks to a higher level of metabolic control? Some general principles that govern the actions of this class of bioactive lipids and their nuclear receptors are considered here, and the scheme that emerges reveals a complex molecular script at work.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chawla, A -- Repa, J J -- Evans, R M -- Mangelsdorf, D J -- New York, N.Y. -- Science. 2001 Nov 30;294(5548):1866-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Gene Expression Laboratory, The Salk Institute for Biological Studies, Post Office Box 85800, San Diego, CA 92186-5800, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11729302" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bile Acids and Salts/metabolism ; Cholesterol/analogs & derivatives/metabolism ; DNA-Binding Proteins/metabolism ; Dimerization ; Fatty Acids/metabolism ; Humans ; Ligands ; *Lipid Metabolism ; Orphan Nuclear Receptors ; Receptors, Cytoplasmic and Nuclear/classification/*metabolism ; Receptors, Retinoic Acid/*metabolism ; *Receptors, Steroid/metabolism ; Retinoid X Receptors ; Signal Transduction ; Transcription Factors/*metabolism ; Xenobiotics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2001-09-22
    Description: The dendritic arbor of pyramidal neurons is not a monolithic structure. We show here that the excitability of terminal apical dendrites differs from that of the apical trunk. In response to fluorescence-guided focal photolysis of caged glutamate, individual terminal apical dendrites generated cadmium-sensitive all-or-none responses that were subthreshold for somatic action potentials. Calcium transients produced by all-or-none responses were not restricted to the sites of photolysis, but occurred throughout individual distal dendritic compartments, indicating that electrogenesis is mediated primarily by voltage-gated calcium channels. Compartmentalized and binary behavior of parallel-connected terminal dendrites can greatly expand the computational power of a single neuron.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wei, D S -- Mei, Y A -- Bagal, A -- Kao, J P -- Thompson, S M -- Tang, C M -- New York, N.Y. -- Science. 2001 Sep 21;293(5538):2272-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11567143" target="_blank"〉PubMed〈/a〉
    Keywords: 2-Amino-5-phosphonovalerate/pharmacology ; Action Potentials ; Animals ; Cadmium/pharmacology ; Calcium/metabolism ; Calcium Channels/metabolism ; Calcium Signaling ; Cesium/pharmacology ; Dendrites/*physiology ; Egtazic Acid/analogs & derivatives/pharmacology ; Glutamates ; Hippocampus/*cytology/physiology ; Light ; Organ Culture Techniques ; Patch-Clamp Techniques ; Photolysis ; Pyramidal Cells/drug effects/*physiology/ultrastructure ; Quinoxalines/pharmacology ; Rats ; Receptors, AMPA/metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Tetrodotoxin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2001-04-09
    Description: The Drosophila melanogaster gene chico encodes an insulin receptor substrate that functions in an insulin/insulin-like growth factor (IGF) signaling pathway. In the nematode Caenorhabditis elegans, insulin/IGF signaling regulates adult longevity. We found that mutation of chico extends fruit fly median life-span by up to 48% in homozygotes and 36% in heterozygotes. Extension of life-span was not a result of impaired oogenesis in chico females, nor was it consistently correlated with increased stress resistance. The dwarf phenotype of chico homozygotes was also unnecessary for extension of life-span. The role of insulin/IGF signaling in regulating animal aging is therefore evolutionarily conserved.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clancy, D J -- Gems, D -- Harshman, L G -- Oldham, S -- Stocker, H -- Hafen, E -- Leevers, S J -- Partridge, L -- New York, N.Y. -- Science. 2001 Apr 6;292(5514):104-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University College London, Wolfson House, 4 Stephenson Way, London NW1 2HE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11292874" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*physiology ; Alleles ; Animals ; Body Constitution ; Carrier Proteins/genetics/metabolism ; Crosses, Genetic ; *Drosophila Proteins ; Drosophila melanogaster/genetics/*physiology ; Female ; Fertility ; Genes, Insect ; Heterozygote ; Hot Temperature ; Insect Proteins/*genetics/*metabolism ; Insulin/metabolism ; Insulin Receptor Substrate Proteins ; *Intracellular Signaling Peptides and Proteins ; Longevity/*physiology ; Male ; Mutation ; Oxidative Stress ; Protein-Tyrosine Kinases/genetics/metabolism ; *Receptor Protein-Tyrosine Kinases ; Receptor, Insulin/*metabolism ; Reproduction ; Signal Transduction ; Somatomedins/metabolism ; Starvation ; Superoxide Dismutase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garrison, H H -- New York, N.Y. -- Science. 2001 Feb 9;291(5506):986-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11232582" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Welfare/*legislation & jurisprudence ; Animals ; *Animals, Laboratory ; Birds ; Mice ; Rats ; *Research Personnel ; Surveys and Questionnaires ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-03
    Description: Highly orchestrated molecular rearrangements are required for two membranes to fuse, as happens, for example, during neurotransmitter release into the synapse. In an elegant Perspective, Scales et al. discuss two studies (Schoch et al., Wang et al.) that shed new light on the protein interactions involved in membrane fusion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scales, S J -- Finley, M F -- Scheller, R H -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1015-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genentech Inc., South San Francisco, CA 94080, USA. sscales@gene.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691976" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Calcium Signaling ; *Calcium-Binding Proteins ; Catecholamines/metabolism ; Cell Membrane/metabolism ; Cells, Cultured ; Electrophysiology ; *Membrane Fusion ; Membrane Glycoproteins/*physiology ; Membrane Proteins/*physiology ; Mice ; Nerve Tissue Proteins/*physiology ; Neurotransmitter Agents/metabolism ; PC12 Cells ; Phospholipids/metabolism ; Protein Isoforms ; R-SNARE Proteins ; Rats ; SNARE Proteins ; Secretory Vesicles/*metabolism ; Synapses/physiology ; Synaptic Transmission ; Synaptic Vesicles/*metabolism ; Synaptotagmins ; *Vesicular Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-05-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olsnes, S -- Wesche, J -- New York, N.Y. -- Science. 2001 Apr 27;292(5517):647-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Oslo, Norway. olsnes@radium.uio.no〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11330322" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthrax/*drug therapy ; *Antigens, Bacterial ; Bacterial Toxins/*antagonists & inhibitors/*genetics/metabolism/toxicity ; Cell Membrane/metabolism ; Cytoplasm/metabolism ; Endocytosis ; *Mutation ; Protein Transport ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wasserman, S A -- DiNardo, S -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2495-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Genetics, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0634, USA. stevenw@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752564" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Aging ; Cell Division ; Cell Nucleus/metabolism ; Drosophila/cytology/embryology/physiology ; Drosophila Proteins/*metabolism ; Germ Cells/cytology/metabolism/*physiology ; Glycoproteins/*metabolism ; Ligands ; Male ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Signal Transduction ; Spermatids/cytology/physiology ; Spermatogenesis ; Stem Cells/cytology/metabolism/*physiology ; Testis/cytology ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2001-02-13
    Description: We cloned and characterized a protein kinase and ion channel, TRP-PLIK. As part of the long transient receptor potential channel subfamily implicated in control of cell division, it is a protein that is both an ion channel and a protein kinase. TRP-PLIK phosphorylated itself, displayed a wide tissue distribution, and, when expressed in CHO-K1 cells, constituted a nonselective, calcium-permeant, 105-picosiemen, steeply outwardly rectifying conductance. The zinc finger containing alpha-kinase domain was functional. Inactivation of the kinase activity by site-directed mutagenesis and the channel's dependence on intracellular adenosine triphosphate (ATP) demonstrated that the channel's kinase activity is essential for channel function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Runnels, L W -- Yue, L -- Clapham, D E -- New York, N.Y. -- Science. 2001 Feb 9;291(5506):1043-7. Epub 2001 Jan 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Cardiology, Department of Neurobiology, Harvard Medical School, 1309 Enders Building, 320 Longwood Avenue, Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11161216" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; CHO Cells ; Calcium/metabolism ; Catalytic Domain ; Cations/metabolism ; Cell Line ; Cricetinae ; DNA, Complementary ; Electric Conductivity ; Humans ; Ion Channels/chemistry/*genetics/*metabolism ; *Membrane Proteins ; Mice ; Molecular Sequence Data ; Mutation ; Myelin Basic Protein/metabolism ; Patch-Clamp Techniques ; Phosphorylation ; Protein Kinases/chemistry/*genetics/*metabolism ; Protein-Serine-Threonine Kinases ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; TRPM Cation Channels ; Transfection ; Two-Hybrid System Techniques ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2001-09-15
    Description: Transcription factor TFIID, composed of TBP and TAFII subunits, is a central component of the RNA polymerase II machinery. Here, we report that the tissue-selective TAFII105 subunit of TFIID is essential for proper development and function of the mouse ovary. Female mice lacking TAFII105 are viable but infertile because of a defect in folliculogenesis correlating with restricted expression of TAFII105 in the granulosa cells of the ovarian follicle. Gene expression profiling has uncovered a defective inhibin-activin signaling pathway in TAFII105-deficient ovaries. Together, these studies suggest that TAFII105 mediates the transcription of a subset of genes required for proper folliculogenesis in the ovary and establishes TAFII105 as a cell type-specific component of the mammalian transcriptional machinery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freiman, R N -- Albright, S R -- Zheng, S -- Sha, W C -- Hammer, R E -- Tjian, R -- New York, N.Y. -- Science. 2001 Sep 14;293(5537):2084-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11557891" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA-Binding Proteins/genetics/*metabolism ; Down-Regulation ; Female ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Granulosa Cells/metabolism/*physiology ; In Situ Hybridization ; Infertility, Female ; Male ; Mice ; Mice, Knockout ; Oligonucleotide Array Sequence Analysis ; Organ Size ; Organ Specificity ; Ovarian Follicle/*growth & development ; Ovary/cytology/growth & development/metabolism/*physiology ; Ovulation ; Protein Subunits ; Signal Transduction ; *TATA-Binding Protein Associated Factors ; Transcription Factor TFIID ; Transcription Factors/genetics/*metabolism ; Transcription Factors, TFII/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2001-02-13
    Description: Circadian rhythms of behavior are driven by oscillators in the brain that are coupled to the environmental light cycle. Circadian rhythms of gene expression occur widely in peripheral organs. It is unclear how these multiple rhythms are coupled together to form a coherent system. To study such coupling, we investigated the effects of cycles of food availability (which exert powerful entraining effects on behavior) on the rhythms of gene expression in the liver, lung, and suprachiasmatic nucleus (SCN). We used a transgenic rat model whose tissues express luciferase in vitro. Although rhythmicity in the SCN remained phase-locked to the light-dark cycle, restricted feeding rapidly entrained the liver, shifting its rhythm by 10 hours within 2 days. Our results demonstrate that feeding cycles can entrain the liver independently of the SCN and the light cycle, and they suggest the need to reexamine the mammalian circadian hierarchy. They also raise the possibility that peripheral circadian oscillators like those in the liver may be coupled to the SCN primarily through rhythmic behavior, such as feeding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokkan, K A -- Yamazaki, S -- Tei, H -- Sakaki, Y -- Menaker, M -- MH 56647/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2001 Jan 19;291(5503):490-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Science Foundation Center for Biological Timing and Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904-4328, USA. mm7e@virginia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11161204" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; *Circadian Rhythm ; Corticosterone/blood/pharmacology ; Culture Techniques ; Eating ; Female ; *Food ; *Gene Expression Regulation ; Genes, Reporter ; Liver/*physiology ; Luciferases/genetics ; Lung/physiology ; Male ; Motor Activity ; Organ Specificity ; Rats ; Suprachiasmatic Nucleus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2001-06-02
    Description: Glucose homeostasis depends on insulin responsiveness in target tissues, most importantly, muscle and liver. The critical initial steps in insulin action include phosphorylation of scaffolding proteins and activation of phosphatidylinositol 3-kinase. These early events lead to activation of the serine-threonine protein kinase Akt, also known as protein kinase B. We show that mice deficient in Akt2 are impaired in the ability of insulin to lower blood glucose because of defects in the action of the hormone on liver and skeletal muscle. These data establish Akt2 as an essential gene in the maintenance of normal glucose homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cho, H -- Mu, J -- Kim, J K -- Thorvaldsen, J L -- Chu, Q -- Crenshaw, E B 3rd -- Kaestner, K H -- Bartolomei, M S -- Shulman, G I -- Birnbaum, M J -- GM07229/GM/NIGMS NIH HHS/ -- P30 19525/PHS HHS/ -- P30 DK50306/DK/NIDDK NIH HHS/ -- R01 DK040936/DK/NIDDK NIH HHS/ -- R01 DK56886/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 1;292(5522):1728-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11387480" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/metabolism ; Deoxyglucose/metabolism ; Diabetes Mellitus, Type 2/*metabolism ; Female ; Gene Targeting ; Glucose/*metabolism ; Glucose Clamp Technique ; Glucose Tolerance Test ; Homeostasis ; Insulin/administration & dosage/blood/*metabolism ; *Insulin Resistance/genetics/physiology ; Islets of Langerhans/cytology/physiology ; Liver/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Muscle, Skeletal/enzymology/metabolism ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/*genetics/*metabolism ; Proto-Oncogene Proteins c-akt ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-05-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hunot, S -- Flavell, R A -- New York, N.Y. -- Science. 2001 May 4;292(5518):865-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology and the Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11341280" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Inducing Factor ; Blastocyst/cytology/metabolism ; Caspases/metabolism ; Cytochrome c Group/metabolism ; DNA Fragmentation ; *Embryonic and Fetal Development ; Flavoproteins/chemistry/genetics/*metabolism ; Gene Targeting ; Growth Substances/metabolism ; Intracellular Membranes/metabolism ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mitochondria/*metabolism ; Morphogenesis ; Signal Transduction ; Stem Cells/cytology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2001-03-17
    Description: The activation of gp130, a shared signal-transducing receptor for a family of cytokines, is initiated by recognition of ligand followed by oligomerization into a higher order signaling complex. Kaposi's sarcoma-associated herpesvirus encodes a functional homolog of human interleukin-6 (IL-6) that activates human gp130. In the 2.4 angstrom crystal structure of the extracellular signaling assembly between viral IL-6 and human gp130, two complexes are cross-linked into a tetramer through direct interactions between the immunoglobulin domain of gp130 and site III of viral IL-6, which is necessary for receptor activation. Unlike human IL-6 (which uses many hydrophilic residues), the viral cytokine largely uses hydrophobic amino acids to contact gp130, which enhances the complementarity of the viral IL-6-gp130 binding interfaces. The cross-reactivity of gp130 is apparently due to a chemical plasticity evident in the amphipathic gp130 cytokine-binding sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chow , D -- He , X -- Snow, A L -- Rose-John, S -- Garcia, K C -- R01-AI-48540-01/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 16;291(5511):2150-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, Fairchild D319, 299 Campus Drive, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11251120" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD/*chemistry/*metabolism ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Cytokine Receptor gp130 ; Epitopes ; Humans ; Hydrogen Bonding ; Interleukin-6/*chemistry/immunology/*metabolism ; Membrane Glycoproteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Mimicry ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; Viral Proteins/*chemistry/immunology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Plous, S -- Herzog, H A -- New York, N.Y. -- Science. 2000 Oct 27;290(5492):711.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11184195" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Welfare/*legislation & jurisprudence ; Animals ; *Animals, Laboratory ; Birds ; Mice ; Rats ; *Research Personnel ; Surveys and Questionnaires ; United States ; United States Department of Agriculture/legislation & jurisprudence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: Work presented last week at the annual meeting of the American Society for Cell Biology in San Francisco suggests that applying a harmless bacterium or its products to surgical wounds may thwart infections by the dangerous pathogen Staphylococcus aureus, a major cause of hospital-acquired infections. Although physicians have previously pitted one bacterium against another to prevent infections of the intestinal and genitourinary tracts, this is the first attempt to use a friendly microbe to prevent infection of surgical wounds, say experts. The findings also point to a possible mechanism for this "bacterial interference." They suggest that a protein secreted by the harmless bacterium prevents the pathogen from getting a foothold in injured tissue.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strauss, E -- New York, N.Y. -- Science. 2000 Dec 22;290(5500):2231-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11188710" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibiosis ; Bacterial Adhesion ; Binding Sites ; Lactobacillus/*physiology ; Rats ; Staphylococcal Infections/*prevention & control ; Staphylococcus aureus/*physiology ; Surgical Wound Infection/*prevention & control
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2001-02-07
    Description: Somatostatin and dopamine are two major neurotransmitter systems that share a number of structural and functional characteristics. Somatostatin receptors and dopamine receptors are colocalized in neuronal subgroups, and somatostatin is involved in modulating dopamine-mediated control of motor activity. However, the molecular basis for such interaction between the two systems is unclear. Here, we show that dopamine receptor D2R and somatostatin receptor SSTR5 interact physically through hetero-oligomerization to create a novel receptor with enhanced functional activity. Our results provide evidence that receptors from different G protein (heterotrimeric guanine nucleotide binding protein)-coupled receptor families interact through oligomerization. Such direct intramembrane association defines a new level of molecular crosstalk between related G protein-coupled receptor subfamilies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rocheville, M -- Lange, D C -- Kumar, U -- Patel, S C -- Patel, R C -- Patel, Y C -- NS32160-05/NS/NINDS NIH HHS/ -- NS34339/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2000 Apr 7;288(5463):154-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fraser Laboratories, Department of Medicine, McGill University and Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10753124" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Cell Membrane/metabolism ; Cerebral Cortex/metabolism ; Colforsin/pharmacology ; Corpus Striatum/metabolism ; Cricetinae ; Cyclic AMP/metabolism ; Dimerization ; Dopamine D2 Receptor Antagonists ; Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology ; Heterotrimeric GTP-Binding Proteins/metabolism ; Humans ; Ligands ; Male ; Neurons/metabolism ; Pyramidal Cells/metabolism ; Quinpirole/pharmacology ; Rats ; *Receptor Cross-Talk ; Receptors, Dopamine D2/agonists/genetics/*metabolism ; Receptors, Somatostatin/agonists/antagonists & inhibitors/genetics/*metabolism ; Somatostatin/metabolism/pharmacology ; Spiperone/pharmacology ; Sulpiride/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chi, T H -- Crabtree, G R -- New York, N.Y. -- Science. 2000 Mar 17;287(5460):1937-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Stanford University Medical School, Stanford, Ca 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10755944" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/metabolism ; Cell Nucleus/*metabolism ; DNA-Binding Proteins/metabolism ; Fungal Proteins/metabolism ; *Gene Expression Regulation, Fungal ; Inositol Phosphates/*metabolism ; Minichromosome Maintenance 1 Protein ; Nuclear Envelope/metabolism ; Phosphotransferases (Alcohol Group Acceptor)/genetics/*metabolism ; Phytic Acid/metabolism ; RNA, Fungal/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; Saccharomyces cerevisiae/*genetics/metabolism ; Signal Transduction ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malakoff, D -- New York, N.Y. -- Science. 2000 Oct 13;290(5490):243-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11183366" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Welfare/*legislation & jurisprudence ; Animals ; *Animals, Laboratory ; Birds ; Mice ; Rats ; Research/*legislation & jurisprudence/standards ; United States ; United States Department of Agriculture/legislation & jurisprudence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-07
    Description: Basement membranes can help determine pathways of migrating axons. Although members of the nidogen (entactin) protein family are structural components of basement membranes, we find that nidogen is not required for basement membrane assembly in the nematode Caenorhabditis elegans. Nidogen is localized to body wall basement membranes and is required to direct longitudinal nerves dorsoventrally and to direct axons at the midlines. By examining migration of a single axon in vivo, we show that nidogen is required for the axon to switch from circumferential to longitudinal migration. Specialized basement membranes may thus regulate nerve position.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, S -- Wadsworth, W G -- New York, N.Y. -- Science. 2000 Apr 7;288(5463):150-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10753123" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Animals, Genetically Modified ; Axons/*physiology ; Basement Membrane/*physiology ; Body Patterning ; Caenorhabditis elegans/anatomy & histology/embryology/genetics/*growth & ; development ; *Caenorhabditis elegans Proteins ; Cell Adhesion Molecules/genetics/physiology ; Cell Movement ; Cloning, Molecular ; Gene Expression ; Genes, Helminth ; In Situ Hybridization ; Intestines/cytology/metabolism ; Membrane Glycoproteins/analysis/chemistry/genetics/*physiology ; Motor Neurons/physiology/ultrastructure ; Muscles/metabolism ; Nervous System/anatomy & histology/embryology/growth & development/ultrastructure ; Neurons/metabolism ; Phenotype ; Protein Structure, Tertiary ; Receptors, Cell Surface/genetics/physiology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-07-14
    Description: The immune system provides very effective host defense against infectious agents. Although many details are known about the cells and molecules involved, a broader "systems engineering" view of this complex system is just beginning to emerge. Here the argument is put forward that stochastic events, potent amplification mechanisms, feedback controls, and heterogeneity arising from spatially dispersed cell interactions give rise to many of the gross properties of the immune system. A better appreciation of these underlying features will not only add to our basic understanding of how immunity develops or goes awry, but also illuminate new directions for manipulating the system in prophylactic and therapeutic settings.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Germain, R N -- New York, N.Y. -- Science. 2001 Jul 13;293(5528):240-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA. rgermain@nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11452112" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; Autoimmunity ; Feedback ; Gene Expression ; Humans ; Immune System/*physiology ; Immunity/genetics/physiology ; Lymphocytes/immunology ; Signal Transduction ; Stochastic Processes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2001-08-18
    Description: The B cell activating factor BAFF (BlyS/TALL-1/zTNF4) is a tumor necrosis factor (TNF)-related ligand that promotes B cell survival and binds to three receptors (BCMA, TACI, and the recently described BAFF-R). Here we report an absolute requirement for BAFF in normal B cell development. Examination of secondary lymphoid organs from BAFF-deficient mice revealed an almost complete loss of follicular and marginal zone B lymphocytes. In contrast, mice lacking BCMA had normal-appearing B lymphocyte compartments. BAFF therefore plays a crucial role in B cell development and can function through receptors other than BCMA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schiemann, B -- Gommerman, J L -- Vora, K -- Cachero, T G -- Shulga-Morskaya, S -- Dobles, M -- Frew, E -- Scott, M L -- New York, N.Y. -- Science. 2001 Sep 14;293(5537):2111-4. Epub 2001 Aug 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biogen, 14 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509691" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/analysis ; B-Cell Activating Factor ; B-Cell Maturation Antigen ; B-Lymphocyte Subsets/cytology/immunology/physiology ; B-Lymphocytes/cytology/immunology/*physiology ; Bone Marrow Cells/cytology ; Cell Separation ; Cell Survival ; Flow Cytometry ; Immunoglobulins/blood ; Leukopoiesis ; Lymph Nodes/cytology/immunology ; Lymphocyte Count ; Lymphoid Tissue/cytology/immunology ; Membrane Proteins/deficiency/genetics/*physiology ; Mice ; Mice, Inbred A ; Mice, Knockout ; Phenotype ; Receptors, Tumor Necrosis Factor/deficiency/genetics/*physiology ; Signal Transduction ; Spleen/cytology/immunology ; Thymus Gland/cytology/immunology ; Tumor Necrosis Factor-alpha/deficiency/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2001-09-22
    Description: Output from the circadian clock controls rhythmic behavior through poorly understood mechanisms. In Drosophila, null mutations of the neurofibromatosis-1 (Nf1) gene produce abnormalities of circadian rhythms in locomotor activity. Mutant flies show normal oscillations of the clock genes period (per) and timeless (tim) and of their corresponding proteins, but altered oscillations and levels of a clock-controlled reporter. Mitogen-activated protein kinase (MAPK) activity is increased in Nf1 mutants, and the circadian phenotype is rescued by loss-of-function mutations in the Ras/MAPK pathway. Thus, Nf1 signals through Ras/MAPK in Drosophila. Immunohistochemical staining revealed a circadian oscillation of phospho-MAPK in the vicinity of nerve terminals containing pigment-dispersing factor (PDF), a secreted output from clock cells, suggesting a coupling of PDF to Ras/MAPK signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, J A -- Su, H S -- Bernards, A -- Field, J -- Sehgal, A -- New York, N.Y. -- Science. 2001 Sep 21;293(5538):2251-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Center for Sleep and Respiratory Neurobiology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11567138" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Biological Clocks ; Brain/metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/*metabolism ; *Circadian Rhythm ; Cyclic AMP Response Element-Binding Protein/genetics/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Drosophila/genetics/*physiology ; *Drosophila Proteins ; *Extracellular Signal-Regulated MAP Kinases ; Genes, Insect ; Genes, Neurofibromatosis 1 ; Insect Proteins/*genetics/metabolism/*physiology ; MAP Kinase Signaling System ; Male ; Motor Activity ; Mutation ; Nerve Endings/metabolism ; Nerve Tissue Proteins/*genetics/*physiology ; Neuropeptides/genetics/metabolism ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; Phosphorylation ; Signal Transduction ; Transgenes ; *ras GTPase-Activating Proteins ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2001-08-11
    Description: Hypertension is a major public health problem of largely unknown cause. Here, we identify two genes causing pseudohypoaldosteronism type II, a Mendelian trait featuring hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Both genes encode members of the WNK family of serine-threonine kinases. Disease-causing mutations in WNK1 are large intronic deletions that increase WNK1 expression. The mutations in WNK4 are missense, which cluster in a short, highly conserved segment of the encoded protein. Both proteins localize to the distal nephron, a kidney segment involved in salt, K+, and pH homeostasis. WNK1 is cytoplasmic, whereas WNK4 localizes to tight junctions. The WNK kinases and their associated signaling pathway(s) may offer new targets for the development of antihypertensive drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, F H -- Disse-Nicodeme, S -- Choate, K A -- Ishikawa, K -- Nelson-Williams, C -- Desitter, I -- Gunel, M -- Milford, D V -- Lipkin, G W -- Achard, J M -- Feely, M P -- Dussol, B -- Berland, Y -- Unwin, R J -- Mayan, H -- Simon, D B -- Farfel, Z -- Jeunemaitre, X -- Lifton, R P -- New York, N.Y. -- Science. 2001 Aug 10;293(5532):1107-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute; Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06510 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11498583" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Chromosome Mapping ; Chromosomes, Human, Pair 12/genetics ; Chromosomes, Human, Pair 17/genetics ; Cytoplasm/enzymology ; Female ; Gene Expression Regulation, Enzymologic ; Genetic Linkage ; Humans ; Hypertension/enzymology/*genetics/physiopathology ; Intercellular Junctions/enzymology ; Intracellular Signaling Peptides and Proteins ; Introns ; Kidney Tubules, Collecting/enzymology/ultrastructure ; Kidney Tubules, Distal/enzymology/ultrastructure ; Male ; Membrane Proteins/metabolism ; Microscopy, Fluorescence ; Molecular Sequence Data ; *Mutation ; Mutation, Missense ; Pedigree ; Phosphoproteins/metabolism ; Protein-Serine-Threonine Kinases/chemistry/*genetics/metabolism ; Pseudohypoaldosteronism/enzymology/*genetics/physiopathology ; Sequence Deletion ; Signal Transduction ; Zonula Occludens-1 Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strauss, E -- New York, N.Y. -- Science. 2001 Mar 2;291(5509):1689-90.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11253187" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*cytology ; Cell Differentiation ; Dopamine/biosynthesis ; Embryo, Mammalian/*cytology ; Humans ; Mice ; Neurons/*cytology/enzymology ; Parkinson Disease/therapy ; Rats ; *Stem Cell Transplantation ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-22
    Description: Cellular DNA is subjected to continual attack, both by reactive species inside cells and by environmental agents. Toxic and mutagenic consequences are minimized by distinct pathways of repair, and 130 known human DNA repair genes are described here. Notable features presently include four enzymes that can remove uracil from DNA, seven recombination genes related to RAD51, and many recently discovered DNA polymerases that bypass damage, but only one system to remove the main DNA lesions induced by ultraviolet light. More human DNA repair genes will be found by comparison with model organisms and as common folds in three-dimensional protein structures are determined. Modulation of DNA repair should lead to clinical applications including improvement of radiotherapy and treatment with anticancer drugs and an advanced understanding of the cellular aging process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, R D -- Mitchell, M -- Sgouros, J -- Lindahl, T -- New York, N.Y. -- Science. 2001 Feb 16;291(5507):1284-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Imperial Cancer Research Fund, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11181991" target="_blank"〉PubMed〈/a〉
    Keywords: DNA/metabolism ; DNA Damage ; DNA Repair/*genetics ; DNA-Binding Proteins/genetics/metabolism ; DNA-Directed DNA Polymerase/genetics/metabolism ; Databases, Factual ; Deoxyribonucleases/genetics/metabolism ; Gene Expression ; Gene Expression Profiling ; *Genes ; *Genome, Human ; Humans ; N-Glycosyl Hydrolases/genetics/metabolism ; Polymorphism, Genetic ; Rad51 Recombinase ; Recombination, Genetic ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-07-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwartzberg, P L -- New York, N.Y. -- Science. 2001 Jul 13;293(5528):228-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA. pams@nhgri.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11452106" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Presenting Cells/immunology ; Apoptosis ; Autoimmune Diseases/enzymology/*immunology ; Cell Division ; Immune System/*physiology ; *Intercellular Signaling Peptides and Proteins ; Ligands ; Lymphocyte Activation ; Lymphocytes/immunology ; Mice ; Neural Cell Adhesion Molecules/deficiency/metabolism ; Oncogene Proteins/deficiency/metabolism ; Protein S/metabolism ; Proteins/metabolism ; *Proto-Oncogene Proteins ; Receptor Protein-Tyrosine Kinases/deficiency/*immunology/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wuethrich, B -- New York, N.Y. -- Science. 2001 Mar 16;291(5511):2077-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11256400" target="_blank"〉PubMed〈/a〉
    Keywords: Alcoholism/*complications/metabolism/pathology ; Animals ; Brain/metabolism/*pathology ; Brain Damage, Chronic/*etiology/metabolism/pathology ; Cerebrospinal Fluid ; Ethanol/*adverse effects/pharmacology ; Female ; Humans ; Hydrocortisone/metabolism ; Magnetic Resonance Imaging ; Male ; Neurons/metabolism/pathology ; Rats ; Receptors, GABA-A/metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; *Sex Characteristics ; Spermidine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2001-10-27
    Description: Skeletal muscle adapts to decreases in activity and load by undergoing atrophy. To identify candidate molecular mediators of muscle atrophy, we performed transcript profiling. Although many genes were up-regulated in a single rat model of atrophy, only a small subset was universal in all atrophy models. Two of these genes encode ubiquitin ligases: Muscle RING Finger 1 (MuRF1), and a gene we designate Muscle Atrophy F-box (MAFbx), the latter being a member of the SCF family of E3 ubiquitin ligases. Overexpression of MAFbx in myotubes produced atrophy, whereas mice deficient in either MAFbx or MuRF1 were found to be resistant to atrophy. These proteins are potential drug targets for the treatment of muscle atrophy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bodine, S C -- Latres, E -- Baumhueter, S -- Lai, V K -- Nunez, L -- Clarke, B A -- Poueymirou, W T -- Panaro, F J -- Na, E -- Dharmarajan, K -- Pan, Z Q -- Valenzuela, D M -- DeChiara, T M -- Stitt, T N -- Yancopoulos, G D -- Glass, D J -- New York, N.Y. -- Science. 2001 Nov 23;294(5547):1704-8. Epub 2001 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591-6707, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11679633" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cloning, Molecular ; Creatine Kinase/genetics ; Creatine Kinase, MM Form ; *DNA-Binding Proteins ; Gene Deletion ; *Gene Expression Profiling ; Hindlimb Suspension ; Humans ; Immobilization ; Isoenzymes/genetics ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Muscle Denervation ; Muscle Proteins/genetics ; Muscle, Skeletal/growth & development/*metabolism/pathology/physiopathology ; Muscular Atrophy/*genetics/pathology/physiopathology ; MyoD Protein/genetics ; Myogenic Regulatory Factor 5 ; Myogenin/genetics ; Peptide Synthases/chemistry/deficiency/genetics/*metabolism ; Phenotype ; Protein Binding ; RNA, Messenger/analysis/genetics ; Rats ; Rats, Sprague-Dawley ; SKP Cullin F-Box Protein Ligases ; *Trans-Activators ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2001-12-01
    Description: Neurotrophins are growth factors that promote cell survival, differentiation, and cell death. They are synthesized as proforms that can be cleaved intracellularly to release mature, secreted ligands. Although proneurotrophins have been considered inactive precursors, we show here that the proforms of nerve growth factor (NGF) and the proforms of brain derived neurotrophic factor (BDNF) are secreted and cleaved extracellularly by the serine protease plasmin and by selective matrix metalloproteinases (MMPs). ProNGF is a high-affinity ligand for p75(NTR) with high affinity and induced p75NTR-dependent apoptosis in cultured neurons with minimal activation of TrkA-mediated differentiation or survival. The biological action of neurotrophins is thus regulated by proteolytic cleavage, with proforms preferentially activating p75NTR to mediate apoptosis and mature forms activating Trk receptors to promote survival.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, R -- Kermani, P -- Teng, K K -- Hempstead, B L -- NS30687/NS/NINDS NIH HHS/ -- T32 EY07138/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2001 Nov 30;294(5548):1945-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology, Department of Medicine, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11729324" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/drug effects ; Brain-Derived Neurotrophic Factor/chemistry/metabolism/pharmacology/secretion ; Cell Death/drug effects ; Cell Differentiation/drug effects ; Cell Line ; *Cell Survival/drug effects ; Fibrinolysin/metabolism ; Furin ; Humans ; Inhibitory Concentration 50 ; Matrix Metalloproteinases/metabolism ; Mice ; Nerve Growth Factor/chemistry/metabolism/pharmacology/secretion ; Nerve Growth Factors/chemistry/*metabolism/pharmacology/*secretion ; Neurons/cytology/drug effects ; Phosphorylation/drug effects ; Protein Precursors/chemistry/*metabolism/pharmacology/*secretion ; Protein Processing, Post-Translational ; Rats ; Receptor, Nerve Growth Factor ; Receptor, trkA/metabolism ; Receptors, Nerve Growth Factor/metabolism ; Subtilisins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2001-03-17
    Description: Caenorhabditis elegans oocytes, like those of most animals, arrest during meiotic prophase. Sperm promote the resumption of meiosis (maturation) and contraction of smooth muscle-like gonadal sheath cells, which are required for ovulation. We show that the major sperm cytoskeletal protein (MSP) is a bipartite signal for oocyte maturation and sheath contraction. MSP also functions in sperm locomotion, playing a role analogous to actin. Thus, during evolution, MSP has acquired extracellular signaling and intracellular cytoskeletal functions for reproduction. Proteins with MSP-like domains are found in plants, fungi, and other animals, suggesting that related signaling functions may exist in other phyla.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, M A -- Nguyen, V Q -- Lee, M H -- Kosinski, M -- Schedl, T -- Caprioli, R M -- Greenstein, D -- CA09592/CA/NCI NIH HHS/ -- GM57173/GM/NIGMS NIH HHS/ -- GM58008/GM/NIGMS NIH HHS/ -- HD07043/HD/NICHD NIH HHS/ -- HD25614/HD/NICHD NIH HHS/ -- R01 GM057173/GM/NIGMS NIH HHS/ -- R01 HD025614/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 16;291(5511):2144-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11251118" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Caenorhabditis elegans/*physiology ; Carrier Proteins/chemistry/physiology ; Cytoskeleton/chemistry/physiology ; Disorders of Sex Development ; Enzyme Activation ; Evolution, Molecular ; Female ; Gonads/cytology/physiology ; Helminth Proteins/chemistry/immunology/pharmacology/*physiology ; MAP Kinase Signaling System ; Male ; *Meiosis ; Membrane Proteins/chemistry/physiology ; Microinjections ; Mitogen-Activated Protein Kinases/metabolism ; Molecular Sequence Data ; Oocytes/*physiology ; Ovulation ; Phylogeny ; Protein Folding ; Protein Structure, Tertiary ; Pseudopodia/physiology ; Recombinant Proteins/pharmacology ; Signal Transduction ; Sperm Motility ; Spermatozoa/chemistry/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Helmuth, L -- New York, N.Y. -- Science. 2001 Jun 22;292(5525):2233.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423630" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; In Vitro Techniques ; Interneurons/*physiology ; Neocortex/cytology/*physiology ; Nerve Net/*physiology ; Pyramidal Cells/*physiology ; Rats ; Synapses/physiology ; Synaptic Transmission ; Time Factors ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2001-08-11
    Description: The temporal resolution of neuronal integration depends on the time window within which excitatory inputs summate to reach the threshold for spike generation. Here, we show that in rat hippocampal pyramidal cells this window is very narrow (less than 2 milliseconds). This narrowness results from the short delay with which disynaptic feed-forward inhibition follows monosynaptic excitation. Simultaneous somatic and dendritic recordings indicate that feed-forward inhibition is much stronger in the soma than in the dendrites, resulting in a broader integration window in the latter compartment. Thus, the subcellular partitioning of feed-forward inhibition enforces precise coincidence detection in the soma, while allowing dendrites to sum incoming activity over broader time windows.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pouille, F -- Scanziani, M -- New York, N.Y. -- Science. 2001 Aug 10;293(5532):1159-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11498596" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Axons/physiology ; Bicuculline/pharmacology ; Dendrites/physiology ; Electric Stimulation ; Evoked Potentials ; *Excitatory Postsynaptic Potentials ; GABA Antagonists/pharmacology ; GABA-A Receptor Antagonists ; Hippocampus/cytology/*physiology ; In Vitro Techniques ; Interneurons/physiology ; *Neural Inhibition ; Patch-Clamp Techniques ; Pyramidal Cells/*physiology ; Pyridazines/pharmacology ; Rats ; Rats, Wistar ; Receptors, GABA-A/metabolism ; *Synaptic Transmission ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2001-07-14
    Description: We report an atomic-resolution structure for a sensory member of the microbial rhodopsin family, the phototaxis receptor sensory rhodopsin II (NpSRII), which mediates blue-light avoidance by the haloarchaeon Natronobacterium pharaonis. The 2.4 angstrom structure reveals features responsible for the 70- to 80-nanometer blue shift of its absorption maximum relative to those of haloarchaeal transport rhodopsins, as well as structural differences due to its sensory, as opposed to transport, function. Multiple factors appear to account for the spectral tuning difference with respect to bacteriorhodopsin: (i) repositioning of the guanidinium group of arginine 72, a residue that interacts with the counterion to the retinylidene protonated Schiff base; (ii) rearrangement of the protein near the retinal ring; and (iii) changes in tilt and slant of the retinal polyene chain. Inspection of the surface topography reveals an exposed polar residue, tyrosine 199, not present in bacteriorhodopsin, in the middle of the membrane bilayer. We propose that this residue interacts with the adjacent helices of the cognate NpSRII transducer NpHtrII.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luecke, H -- Schobert, B -- Lanyi, J K -- Spudich, E N -- Spudich, J L -- R01-GM27750/GM/NIGMS NIH HHS/ -- R01-GM29498/GM/NIGMS NIH HHS/ -- R01-GM59970/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1499-503. Epub 2001 Jul 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA. hudel@uci.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11452084" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeal Proteins/chemistry/metabolism ; Arginine/chemistry ; Bacteriorhodopsins/*chemistry/metabolism ; Binding Sites ; *Carotenoids ; Color ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Hydrogen Bonding ; Ion Transport ; Light ; Models, Molecular ; Natronobacterium/*chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protons ; Retinaldehyde/chemistry/metabolism ; Schiff Bases ; Signal Transduction ; Tyrosine/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2001-06-09
    Description: How cytokines control differentiation of helper T (TH) cells is controversial. We show that T-bet, without apparent assistance from interleukin 12 (IL-12)/STAT4, specifies TH1 effector fate by targeting chromatin remodeling to individual interferon-gamma (IFN-gamma) alleles and by inducing IL-12 receptor beta2 expression. Subsequently, it appears that IL-12/STAT4 serves two essential functions in the development of TH1 cells: as growth signal, inducing survival and cell division; and as trans-activator, prolonging IFN-gamma synthesis through a genetic interaction with the coactivator, CREB-binding protein. These results suggest that a cytokine does not simply induce TH fate choice but instead may act as an essential secondary stimulus that mediates selective survival of a lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mullen, A C -- High, F A -- Hutchins, A S -- Lee, H W -- Villarino, A V -- Livingston, D M -- Kung, A L -- Cereb, N -- Yao, T P -- Yang, S Y -- Reiner, S L -- AI-42370/AI/NIAID NIH HHS/ -- EY-07131/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 8;292(5523):1907-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abramson Family Cancer Research Institute and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11397944" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; CREB-Binding Protein ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cells, Cultured ; DNA-Binding Proteins/metabolism ; Gene Expression Regulation ; Histones/metabolism ; Interferon-gamma/*biosynthesis/genetics ; Interleukin-12/*metabolism ; Lymphocyte Activation ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Nuclear Proteins/metabolism ; RNA, Messenger/genetics/metabolism ; Receptors, Interleukin/metabolism ; Receptors, Interleukin-12 ; STAT4 Transcription Factor ; Signal Transduction ; T-Box Domain Proteins ; Th1 Cells/cytology/*immunology/metabolism ; Trans-Activators/metabolism ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2001-05-12
    Description: T cell activation is dependent on both a primary signal delivered through the T cell receptor and a secondary costimulatory signal mediated by coreceptors. Although controversial, costimulation is thought to act through the specific redistribution and clustering of membrane and intracellular kinase-rich lipid raft microdomains at the contact site between T cells and antigen-presenting cells. This site has been termed the immunological synapse. Endogenous mediators of raft clustering in lymphocytes have not been identified, although they are essential for T cell activation. We now demonstrate that agrin, an aggregating protein crucial for formation of the neuromuscular junction, is also expressed in lymphocytes and is important in reorganization of membrane lipid microdomains and setting the threshold for T cell signaling. Our data show that agrin induces the aggregation of signaling proteins and the creation of signaling domains in both immune and nervous systems through a common lipid raft pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khan, A A -- Bose, C -- Yam, L S -- Soloski, M J -- Rupp, F -- R01AI20922/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 1;292(5522):1681-6. Epub 2001 May 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Outer Banks Neuroscience, Baltimore, MD 21218, USA. outerbanksneuro@yahoo.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11349136" target="_blank"〉PubMed〈/a〉
    Keywords: Agrin/genetics/metabolism/*physiology ; Alternative Splicing ; Animals ; Antigen-Presenting Cells/immunology/*physiology ; B-Lymphocytes/metabolism ; Glycosylation ; *Lymphocyte Activation ; Male ; Membrane Microdomains/*physiology ; Mice ; Neuromuscular Junction/physiology ; Neurons/physiology ; Rats ; Rats, Sprague-Dawley ; Receptor Aggregation ; Receptors, Antigen, T-Cell/physiology ; Receptors, Cholinergic/physiology ; Signal Transduction ; T-Lymphocyte Subsets/metabolism ; T-Lymphocytes/immunology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2001-03-07
    Description: EDG-1 is a heterotrimeric guanine nucleotide binding protein-coupled receptor (GPCR) for sphingosine-1-phosphate (SPP). Cell migration toward platelet-derived growth factor (PDGF), which stimulates sphingosine kinase and increases intracellular SPP, was dependent on expression of EDG-1. Deletion of edg-1 or inhibition of sphingosine kinase suppressed chemotaxis toward PDGF and also activation of the small guanosine triphosphatase Rac, which is essential for protrusion of lamellipodia and forward movement. Moreover, PDGF activated EDG-1, as measured by translocation of beta-arrestin and phosphorylation of EDG-1. Our results reveal a role for receptor cross-communication in which activation of a GPCR by a receptor tyrosine kinase is critical for cell motility.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hobson, J P -- Rosenfeldt, H M -- Barak, L S -- Olivera, A -- Poulton, S -- Caron, M G -- Milstien, S -- Spiegel, S -- CA61774/CA/NCI NIH HHS/ -- GM43880/GM/NIGMS NIH HHS/ -- HL-61365/HL/NHLBI NIH HHS/ -- NS19576/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 2;291(5509):1800-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20007, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11230698" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/metabolism ; Cell Line ; Cell Membrane/metabolism ; Cells, Cultured ; *Chemotaxis/drug effects ; Gene Deletion ; Humans ; Immediate-Early Proteins/genetics/*metabolism ; *Lysophospholipids ; Mice ; Muscle, Smooth, Vascular/cytology/metabolism ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors/metabolism ; Platelet-Derived Growth Factor/metabolism/*pharmacology ; Proto-Oncogene Proteins c-sis ; Receptor Cross-Talk ; *Receptors, Cell Surface ; *Receptors, G-Protein-Coupled ; Receptors, Lysophospholipid ; Receptors, Platelet-Derived Growth Factor/metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Sphingosine/*analogs & derivatives/*metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cantley, L C -- New York, N.Y. -- Science. 2001 Jun 15;292(5524):2019-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA. cantley@helix.mgh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11408644" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Adaptor Proteins, Signal Transducing ; Animals ; Calcium/metabolism ; Cell Membrane/*metabolism ; Cell Nucleus/*metabolism ; GTP-Binding Protein alpha Subunits, Gq-G11 ; Heterotrimeric GTP-Binding Proteins/metabolism ; Hydrolysis ; Isoenzymes/*metabolism ; Membrane Lipids/metabolism ; Mice ; Obesity/genetics/metabolism ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphatidylinositol Phosphates/metabolism ; Phospholipase C beta ; Phosphorylation ; Protein Structure, Tertiary ; Proteins/chemistry/genetics/*metabolism ; Receptor, Serotonin, 5-HT2C ; Receptors, Serotonin/metabolism ; Signal Transduction ; Transcription Factors/chemistry/genetics/*metabolism ; Type C Phospholipases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, C -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):980-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691967" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior, Addictive/physiopathology/psychology ; Brain/*physiology ; Brain Mapping ; Compulsive Behavior/physiopathology/psychology ; Feeding and Eating Disorders/physiopathology/psychology ; Female ; Gambling/psychology ; Humans ; Internet ; Magnetic Resonance Imaging ; Male ; Rats ; *Reward ; Sexual Behavior/physiology/psychology ; Substance-Related Disorders/physiopathology/psychology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2001-11-03
    Description: Cytokinins are a class of phytohormones involved in various physiological events of plants. The Arabidopsis sensor histidine kinase CRE1 was recently reported to be a cytokinin receptor. We used a steroid-inducible system to show that the transcription factor-type response regulator ARR1 directs transcriptional activation of the ARR6 gene, which responds to cytokinins without de novo protein synthesis. This fact, together with characteristics of ARR1-overexpressing plants and arr1 mutant plants, indicates that the phosphorelay to ARR1, probably from CRE1, constitutes an intracellular signal transduction occurring immediately after cytokinin perception.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sakai, H -- Honma, T -- Aoyama, T -- Sato, S -- Kato, T -- Tabata, S -- Oka, A -- New York, N.Y. -- Science. 2001 Nov 16;294(5546):1519-21. Epub 2001 Nov 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691951" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/*analogs & derivatives/*metabolism/pharmacology ; Arabidopsis/cytology/*genetics/growth & development/metabolism ; *Arabidopsis Proteins ; Blotting, Northern ; Cell Division/drug effects ; Cycloheximide/pharmacology ; Cytokinins/*metabolism/pharmacology ; DNA-Binding Proteins/*metabolism ; Dexamethasone/pharmacology ; Gene Expression Regulation, Plant ; *Genes, Plant ; Kinetin ; Phenotype ; Plant Proteins/metabolism ; Plant Roots/drug effects/growth & development ; Plant Shoots/drug effects/growth & development ; Plants, Genetically Modified ; Protein Kinases/metabolism ; Protein Synthesis Inhibitors/pharmacology ; Receptors, Cell Surface/metabolism ; Signal Transduction ; Transcription Factors/*metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2001-06-26
    Description: The temporal pattern and relative timing of action potentials among neocortical neurons may carry important information. However, how cortical circuits detect or generate coherent activity remains unclear. Using paired recordings in rat neocortical slices, we found that the firing of fast-spiking cells can reflect the spiking pattern of single-axon pyramidal inputs. Moreover, this property allowed groups of fast-spiking cells interconnected by electrical and gamma-aminobutyric acid (GABA)-releasing (GABAergic) synapses to detect the relative timing of their excitatory inputs. These results indicate that networks of fast-spiking cells may play a role in the detection and promotion of synchronous activity within the neocortex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galarreta, M -- Hestrin, S -- EY09120/EY/NEI NIH HHS/ -- EY12114/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 22;292(5525):2295-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Comparative Medicine, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA. galarreta@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423653" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Axons/physiology ; Excitatory Postsynaptic Potentials ; Female ; In Vitro Techniques ; Interneurons/*physiology ; Kinetics ; Male ; Neocortex/cytology/*physiology ; Nerve Net/*physiology ; Pyramidal Cells/*physiology ; Rats ; Rats, Sprague-Dawley ; Synapses/physiology ; *Synaptic Transmission ; Time Factors ; gamma-Aminobutyric Acid/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2001-03-10
    Description: Axonal growth cones that cross the nervous system midline change their responsiveness to midline guidance cues: They become repelled by the repellent Slit and simultaneously lose responsiveness to the attractant netrin. These mutually reinforcing changes help to expel growth cones from the midline by making a once-attractive environment appear repulsive. Here, we provide evidence that these two changes are causally linked: In the growth cones of embryonic Xenopus spinal axons, activation of the Slit receptor Roundabout (Robo) silences the attractive effect of netrin-1, but not its growth-stimulatory effect, through direct binding of the cytoplasmic domain of Robo to that of the netrin receptor DCC. Biologically, this hierarchical silencing mechanism helps to prevent a tug-of-war between attractive and repulsive signals in the growth cone that might cause confusion. Molecularly, silencing is enabled by a modular and interlocking design of the cytoplasmic domains of these potentially antagonistic receptors that predetermines the outcome of their simultaneous activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stein, E -- Tessier-Lavigne, M -- New York, N.Y. -- Science. 2001 Mar 9;291(5510):1928-38. Epub 2001 Feb 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11239147" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Cell Adhesion Molecules/chemistry/genetics/*metabolism ; Cell Movement ; Cells, Cultured ; Cytoplasm/chemistry ; Embryo, Nonmammalian/cytology ; Growth Cones/*physiology ; Hepatocyte Growth Factor/metabolism/pharmacology ; Intercellular Signaling Peptides and Proteins ; Ligands ; Mutation ; Nerve Growth Factors/metabolism/pharmacology/*physiology ; Nerve Tissue Proteins/metabolism/pharmacology/*physiology ; Precipitin Tests ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Receptors, Immunologic/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transfection ; *Tumor Suppressor Proteins ; Xenopus/embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2001-03-10
    Description: Netrins stimulate and orient axon growth through a mechanism requiring receptors of the DCC family. It has been unclear, however, whether DCC proteins are involved directly in signaling or are mere accessory proteins in a receptor complex. Further, although netrins bind cells expressing DCC, direct binding to DCC has not been demonstrated. Here we show that netrin-1 binds DCC and that the DCC cytoplasmic domain fused to a heterologous receptor ectodomain can mediate guidance through a mechanism involving derepression of cytoplasmic domain multimerization. Activation of the adenosine A2B receptor, proposed to contribute to netrin effects on axons, is not required for rat commissural axon outgrowth or Xenopus spinal axon attraction to netrin-1. Thus, DCC plays a central role in netrin signaling of axon growth and guidance independent of A2B receptor activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stein, E -- Zou, Y -- Poo , M -- Tessier-Lavigne, M -- New York, N.Y. -- Science. 2001 Mar 9;291(5510):1976-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143-0452, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11239160" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Cell Adhesion Molecules/chemistry/genetics/*metabolism ; Cell Line ; Cell Movement ; Cells, Cultured ; Culture Techniques ; Embryo, Nonmammalian ; Growth Cones/physiology ; Hepatocyte Growth Factor/metabolism/pharmacology ; Ligands ; Nerve Growth Factors/*metabolism/pharmacology ; Neurons/metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Purinergic P1 Receptor Agonists ; Purinergic P1 Receptor Antagonists ; Rats ; Receptor, Adenosine A2B ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Receptors, Purinergic P1/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Spinal Cord/cytology/metabolism ; *Tumor Suppressor Proteins ; Xanthines/pharmacology ; Xenopus/embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-05-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gallo, V -- Chittajallu, R -- New York, N.Y. -- Science. 2001 May 4;292(5518):872-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular and Synaptic Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4495, USA. vgallo@helix.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11341285" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/*physiology ; Calcium/metabolism ; Calcium Signaling ; Cerebellar Cortex/physiology ; Excitatory Postsynaptic Potentials ; Glutamic Acid/metabolism ; Neurons/*physiology ; Purkinje Cells/physiology ; Rats ; Receptors, AMPA/physiology ; Receptors, Metabotropic Glutamate/metabolism ; Supraoptic Nucleus/physiology ; Synapses/*physiology ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2001-05-08
    Description: Analysis of excitatory synaptic transmission in the rat hypothalamic supraoptic nucleus revealed that glutamate clearance and, as a consequence, glutamate concentration and diffusion in the extracellular space, is associated with the degree of astrocytic coverage of its neurons. Reduction in glutamate clearance, whether induced pharmacologically or associated with a relative decrease of glial coverage in the vicinity of synapses, affected transmitter release through modulation of presynaptic metabotropic glutamate receptors. Astrocytic wrapping of neurons, therefore, contributes to the regulation of synaptic efficacy in the central nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oliet, S H -- Piet, R -- Poulain, D A -- New York, N.Y. -- Science. 2001 May 4;292(5518):923-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INSERM U.378, Universite Victor Segalen-Bordeaux 2, 33077 Bordeaux, France. stephane.oliet@bordeaux.inserm.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11340204" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/antagonists & inhibitors/metabolism ; Amino Acid Transport System X-AG ; Aminobutyrates/pharmacology ; Animals ; Astrocytes/*physiology ; Dicarboxylic Acids/pharmacology ; Excitatory Amino Acid Agonists/pharmacology ; Excitatory Amino Acid Antagonists/pharmacology ; Excitatory Postsynaptic Potentials ; Female ; Glutamic Acid/*metabolism ; In Vitro Techniques ; Lactation ; Neurons/*physiology ; Neurotransmitter Uptake Inhibitors/pharmacology ; Pyrrolidines/pharmacology ; Rats ; Rats, Wistar ; Receptors, AMPA/antagonists & inhibitors/metabolism ; Receptors, Metabotropic Glutamate/metabolism ; Supraoptic Nucleus/cytology/*physiology ; Synapses/*physiology ; *Synaptic Transmission/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2001-08-04
    Description: Most striatal and cortical interneurons arise from the basal telencephalon, later segregating to their respective targets. Here, we show that migrating cortical interneurons avoid entering the striatum because of a chemorepulsive signal composed at least in part of semaphorin 3A and semaphorin 3F. Migrating interneurons expressing neuropilins, receptors for semaphorins, are directed to the cortex; those lacking them go to the striatum. Loss of neuropilin function increases the number of interneurons that migrate into the striatum. These observations reveal a mechanism by which neuropilins mediate sorting of distinct neuronal populations into different brain structures, and provide evidence that, in addition to guiding axons, these receptors also control neuronal migration in the central nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marin, O -- Yaron, A -- Bagri, A -- Tessier-Lavigne, M -- Rubenstein, J L -- K02MH01046-01/MH/NIMH NIH HHS/ -- R01DA12462/DA/NIDA NIH HHS/ -- R01MH49428-01/MH/NIMH NIH HHS/ -- R01MH51561-01A1/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):872-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, Langley Porter Psychiatric Institute, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11486090" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basal Ganglia/*cytology/embryology/metabolism ; COS Cells ; Cell Movement ; Cerebral Cortex/*cytology/embryology/metabolism ; Corpus Striatum/*cytology/embryology/metabolism ; Culture Techniques ; Glycoproteins/*metabolism ; Green Fluorescent Proteins ; Interneurons/metabolism/*physiology ; Ligands ; Luminescent Proteins/metabolism ; Membrane Proteins/*metabolism ; Mice ; Mice, Transgenic ; Mutation ; Nerve Tissue Proteins/genetics/*metabolism ; Neuropilin-1 ; Recombinant Proteins/metabolism ; Semaphorin-3A ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2001-06-26
    Description: Outer hair cells (OHCs) of the mammalian cochlea actively change their cell length in response to changes in membrane potential. This electromotility, thought to be the basis of cochlear amplification, is mediated by a voltage-sensitive motor molecule recently identified as the membrane protein prestin. Here, we show that voltage sensitivity is conferred to prestin by the intracellular anions chloride and bicarbonate. Removal of these anions abolished fast voltage-dependent motility, as well as the characteristic nonlinear charge movement ("gating currents") driving the underlying structural rearrangements of the protein. The results support a model in which anions act as extrinsic voltage sensors, which bind to the prestin molecule and thus trigger the conformational changes required for motility of OHCs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oliver, D -- He, D Z -- Klocker, N -- Ludwig, J -- Schulte, U -- Waldegger, S -- Ruppersberg, J P -- Dallos, P -- Fakler, B -- DC00089/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 22;292(5525):2340-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology II, University of Tubingen, 72074 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423665" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Anion Transport Proteins ; Anions/pharmacology ; Bicarbonates/*metabolism/pharmacology ; CHO Cells ; Cations/pharmacology ; Cell Membrane/metabolism ; Chlorides/*metabolism/pharmacology ; Cricetinae ; Electric Conductivity ; Electrophysiology ; Hair Cells, Auditory, Outer/*physiology ; Models, Biological ; Mutation ; Patch-Clamp Techniques ; Protein Conformation ; Proteins/chemistry/genetics/*metabolism ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carr, A M -- New York, N.Y. -- Science. 2000 Mar 10;287(5459):1765-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Cell Mutation Unit, Sussex University, Falmer, Brighton BN1 9RR, UK. a.m.carr@sussex.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10755928" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins ; Checkpoint Kinase 2 ; *DNA Damage ; DNA-Binding Proteins ; G1 Phase ; G2 Phase ; Genes, Tumor Suppressor ; Humans ; *Interphase ; Mice ; Neoplasms/etiology ; Phosphorylation ; Phosphoserine/metabolism ; *Protein Kinases ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Signal Transduction ; Transcription, Genetic ; Tumor Suppressor Protein p53/*metabolism ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: Faced with conflicting results from studies of the effects of small amounts of hormonelike chemicals in the environment, the Environmental Protection Agency enlisted the help of an expert panel, which met earlier this month to conduct an extensive review of the data. The panel concluded that estrogenic chemicals can cause biological effects in lab animals at levels below those normally found to be safe--which runs counter to the conventional wisdom in toxicology. But the implications for human health are unclear.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, J -- New York, N.Y. -- Science. 2000 Oct 27;290(5492):695-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11184192" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzhydryl Compounds ; Diethylstilbestrol/administration & dosage/*toxicity ; Endocrine System/*drug effects ; Estrogens, Non-Steroidal/administration & dosage/*toxicity ; Humans ; Male ; Mice ; National Institutes of Health (U.S.) ; Phenols/administration & dosage/*toxicity ; Prostate/drug effects/embryology ; Rats ; Reproducibility of Results ; Species Specificity ; Toxicity Tests ; United States ; United States Environmental Protection Agency
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2001-04-28
    Description: Slit is secreted by cells at the midline of the central nervous system, where it binds to Roundabout (Robo) receptors and functions as a potent repellent. We found that migrating mesodermal cells in vivo respond to Slit as both an attractant and a repellent and that Robo receptors are required for both functions. Mesoderm cells expressing Robo receptors initially migrate away from Slit at the midline. A few hours after migration, these same cells change their behavior and require Robo to extend toward Slit-expressing muscle attachment sites. Thus, Slit functions as a chemoattractant to provide specificity for muscle patterning.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kramer, S G -- Kidd, T -- Simpson, J H -- Goodman, C S -- NS18366/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2001 Apr 27;292(5517):737-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular and Cell Biology, 519 Life Sciences Addition, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11326102" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; Cell Fusion ; Cell Movement ; Drosophila/embryology/genetics ; *Drosophila Proteins ; Embryo, Nonmammalian/cytology/metabolism ; Epidermis/embryology/metabolism ; Mesoderm/*cytology/metabolism ; Microscopy, Confocal ; Muscles/*cytology/embryology/metabolism ; Mutation ; Nerve Tissue Proteins/genetics/*metabolism ; Receptors, Immunologic/genetics/*metabolism ; Signal Transduction ; Stem Cells/metabolism/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...