ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Signal Transduction  (192)
  • American Association for the Advancement of Science (AAAS)  (192)
  • American Institute of Physics (AIP)
  • American Physical Society (APS)
  • Springer
  • 2005-2009  (57)
  • 1995-1999  (135)
  • 2006  (57)
  • 1998  (96)
  • 1995  (39)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (192)
  • American Institute of Physics (AIP)
  • American Physical Society (APS)
  • Springer
Years
  • 2005-2009  (57)
  • 1995-1999  (135)
Year
  • 101
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-01-07
    Description: Dorsoventral patterning of vertebrate and Drosophila embryos requires bone morphogenetic proteins (BMPs) and antagonists of BMP activity. The Drosophila gene tolloid encodes a metalloprotease similar to BMP-1 that interacts genetically with decapentaplegic, the Drosophila homolog of vertebrate BMP-2/4. Zebrafish embryos overexpressing a zebrafish homolog of tolloid were shown to resemble loss-of-function mutations in chordino, the zebrafish homolog of the Xenopus BMP-4 antagonist Chordin. Furthermore, Chordin was degraded by COS cells expressing Tolloid. These data suggest that Tolloid antagonizes Chordin activity by proteolytically cleaving Chordin. A conserved function for zebrafish and Drosophila Tolloid during embryogenesis is proposed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blader, P -- Rastegar, S -- Fischer, N -- Strahle, U -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1937-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, C.U. de Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9395394" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; Bone Morphogenetic Protein 4 ; Bone Morphogenetic Protein Receptors ; Bone Morphogenetic Proteins/antagonists & inhibitors/*metabolism ; COS Cells ; Cell Lineage ; *Drosophila Proteins ; Embryo, Nonmammalian/metabolism ; Gene Expression Regulation, Developmental ; Glycoproteins/*metabolism ; Insect Proteins/genetics/*metabolism ; *Intercellular Signaling Peptides and Proteins ; RNA, Messenger/genetics/metabolism ; Receptors, Cell Surface/metabolism ; *Receptors, Growth Factor ; Signal Transduction ; Tolloid-Like Metalloproteinases ; Transfection ; Xenopus Proteins ; Zebrafish/*embryology/genetics/metabolism ; Zebrafish Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 1998-03-07
    Description: STATs (signal transducers and activators of transcription) are a family of transcription factors that are specifically activated to regulate gene transcription when cells encounter cytokines and growth factors. The crystal structure of an NH2-terminal conserved domain (N-domain) comprising the first 123 residues of STAT-4 was determined at 1.45 angstroms. The domain consists of eight helices that are assembled into a hook-like structure. The N-domain has been implicated in several protein-protein interactions affecting transcription, and it enables dimerized STAT molecules to polymerize and to bind DNA cooperatively. The structure shows that N-domains can interact through an extensive interface formed by polar interactions across one face of the hook. Mutagenesis of an invariant tryptophan residue at the heart of this interface abolished cooperative DNA binding by the full-length protein in vitro and reduced the transcriptional response after cytokine stimulation in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vinkemeier, U -- Moarefi, I -- Darnell, J E Jr -- Kuriyan, J -- AI32489/AI/NIAID NIH HHS/ -- AI34420/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):1048-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Cell Biology and Laboratories of Molecular Biophysics, The Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9461439" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; DNA/metabolism ; DNA-Binding Proteins/*chemistry/genetics/metabolism ; Humans ; Hydrogen Bonding ; Interferon-gamma/pharmacology ; Models, Molecular ; Molecular Sequence Data ; Oligodeoxyribonucleotides/metabolism ; *Protein Conformation ; Protein Structure, Tertiary ; STAT1 Transcription Factor ; STAT4 Transcription Factor ; Signal Transduction ; Trans-Activators/*chemistry/genetics/metabolism ; Transcription, Genetic ; Transfection ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 1998-12-16
    Description: The c-Jun NH2-terminal kinase (JNK) signaling pathway has been implicated in the immune response that is mediated by the activation and differentiation of CD4 helper T (TH) cells into TH1 and TH2 effector cells. JNK activity observed in wild-type activated TH cells was severely reduced in TH cells from Jnk1-/- mice. The Jnk1-/- T cells hyperproliferated, exhibited decreased activation-induced cell death, and preferentially differentiated to TH2 cells. The enhanced production of TH2 cytokines by Jnk1-/- cells was associated with increased nuclear accumulation of the transcription factor NFATc. Thus, the JNK1 signaling pathway plays a key role in T cell receptor-initiated TH cell proliferation, apoptosis, and differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, C -- Yang, D D -- Wysk, M -- Whitmarsh, A J -- Davis, R J -- Flavell, R A -- CA65861/CA/NCI NIH HHS/ -- CA72009/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):2092-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9851932" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/*metabolism ; Cell Differentiation ; Cell Division ; DNA-Binding Proteins/metabolism ; Female ; Gene Targeting ; Hemocyanin/immunology ; Interferon-gamma/biosynthesis ; Interleukins/biosynthesis ; JNK Mitogen-Activated Protein Kinases ; *Lymphocyte Activation ; Male ; Mice ; Mice, Knockout ; *Mitogen-Activated Protein Kinases ; NFATC Transcription Factors ; *Nuclear Proteins ; Signal Transduction ; T-Lymphocytes, Helper-Inducer/cytology/*immunology/metabolism ; Th1 Cells/cytology/immunology ; Th2 Cells/cytology/immunology ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 1998-06-20
    Description: The spatial relation between mitochondria and endoplasmic reticulum (ER) in living HeLa cells was analyzed at high resolution in three dimensions with two differently colored, specifically targeted green fluorescent proteins. Numerous close contacts were observed between these organelles, and mitochondria in situ formed a largely interconnected, dynamic network. A Ca2+-sensitive photoprotein targeted to the outer face of the inner mitochondrial membrane showed that, upon opening of the inositol 1,4,5-triphosphate (IP3)-gated channels of the ER, the mitochondrial surface was exposed to a higher concentration of Ca2+ than was the bulk cytosol. These results emphasize the importance of cell architecture and the distribution of organelles in regulation of Ca2+ signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rizzuto, R -- Pinton, P -- Carrington, W -- Fay, F S -- Fogarty, K E -- Lifshitz, L M -- Tuft, R A -- Pozzan, T -- 845/Telethon/Italy -- 850/Telethon/Italy -- HL14523/HL/NHLBI NIH HHS/ -- RR09799/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 12;280(5370):1763-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomedical Sciences and the National Research Council Center for the Study of Biomembranes, University of Padova, Via Colombo 3, 35121 Padova, Italy. rizzuto@civ.bio.unipd.it〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9624056" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/pharmacology ; Aequorin/metabolism ; Calcium/*metabolism ; Calcium Channels/metabolism ; Cell Compartmentation ; Cytosol/metabolism ; Endoplasmic Reticulum/*metabolism/ultrastructure ; Green Fluorescent Proteins ; HeLa Cells ; Histamine/pharmacology ; Humans ; Inositol 1,4,5-Trisphosphate/metabolism ; Intracellular Membranes/metabolism ; Ion Channel Gating ; Luminescent Proteins/metabolism ; Mitochondria/*metabolism/ultrastructure ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-08-07
    Description: The two lineages of T cells, alphabeta and gammadelta, differ in their developmental requirements: only alphabeta T cells require major histocompatibility complex recognition, a process known as positive selection. The alphabeta T cell receptor (TCR), but not its gammadelta counterpart, contains a motif within the alpha-chain connecting peptide domain (alpha-CPM) that has been conserved over the last 500 million years. In transgenic mice expressing an alphabeta TCR lacking the alpha-CPM, thymocytes were blocked in positive selection but could undergo negative selection. Thus, the alpha-CPM seems to participate in the generation of signals required for positive selection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Backstrom, B T -- Muller, U -- Hausmann, B -- Palmer, E -- New York, N.Y. -- Science. 1998 Aug 7;281(5378):835-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Basel Institute for Immunology, CH-4005 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9694657" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigen-Presenting Cells/immunology ; Antigens, CD3/analysis ; CD4-Positive T-Lymphocytes/immunology ; Cell Lineage ; Cells, Cultured ; Histocompatibility Antigens Class II/immunology ; Ligands ; Lymphocyte Count ; Membrane Proteins/analysis ; Mice ; Mice, Inbred C57BL ; Mice, Nude ; Mice, Transgenic ; Molecular Sequence Data ; Mutation ; Receptor-CD3 Complex, Antigen, T-Cell/immunology/metabolism ; Receptors, Antigen, T-Cell/analysis ; Receptors, Antigen, T-Cell, alpha-beta/*chemistry/genetics/*immunology ; Signal Transduction ; T-Lymphocyte Subsets/*immunology ; Thymus Gland/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 1998-12-16
    Description: The trophoblast cell lineage is essential for the survival of the mammalian embryo in utero. This lineage is specified before implantation into the uterus and is restricted to form the fetal portion of the placenta. A culture of mouse blastocysts or early postimplantation trophoblasts in the presence of fibroblast growth factor 4 (FGF4) permitted the isolation of permanent trophoblast stem cell lines. These cell lines differentiated to other trophoblast subtypes in vitro in the absence of FGF4 and exclusively contributed to the trophoblast lineage in vivo in chimeras.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanaka, S -- Kunath, T -- Hadjantonakis, A K -- Nagy, A -- Rossant, J -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):2072-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9851926" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/cytology ; Cell Differentiation ; Cell Division ; Cell Line ; Cell Lineage ; Chimera ; Culture Media, Conditioned ; Embryo, Mammalian/cytology ; Female ; Fibroblast Growth Factor 4 ; Fibroblast Growth Factors/*pharmacology/physiology ; Fibroblasts/cytology ; Gene Expression Regulation, Developmental ; Genetic Markers ; Karyotyping ; Male ; Mice ; Models, Biological ; Proto-Oncogene Proteins/*pharmacology/physiology ; Signal Transduction ; Stem Cells/*cytology/metabolism ; Trophoblasts/*cytology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 1998-09-11
    Description: Tumor necrosis factor alpha (TNF-alpha) binding to the TNF receptor (TNFR) potentially initiates apoptosis and activates the transcription factor nuclear factor kappa B (NF-kappaB), which suppresses apoptosis by an unknown mechanism. The activation of NF-kappaB was found to block the activation of caspase-8. TRAF1 (TNFR-associated factor 1), TRAF2, and the inhibitor-of-apoptosis (IAP) proteins c-IAP1 and c-IAP2 were identified as gene targets of NF-kappaB transcriptional activity. In cells in which NF-kappaB was inactive, all of these proteins were required to fully suppress TNF-induced apoptosis, whereas c-IAP1 and c-IAP2 were sufficient to suppress etoposide-induced apoptosis. Thus, NF-kappaB activates a group of gene products that function cooperatively at the earliest checkpoint to suppress TNF-alpha-mediated apoptosis and that function more distally to suppress genotoxic agent-mediated apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, C Y -- Mayo, M W -- Korneluk, R G -- Goeddel, D V -- Baldwin, A S Jr -- AI35098/AI/NIAID NIH HHS/ -- CA 75080/CA/NCI NIH HHS/ -- CA73756/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1680-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Endodontics, School of Dentistry, Lineberger Comprehensive Cancer Center, and Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733516" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Caspase 3 ; Caspase 8 ; Caspase 9 ; *Caspases ; Cysteine Endopeptidases/*metabolism ; Cytochrome c Group/metabolism ; Enzyme Activation ; Etoposide/pharmacology ; Gene Expression Regulation ; Humans ; Inhibitor of Apoptosis Proteins ; Mitochondria/metabolism ; NF-kappa B/*metabolism ; Proteins/*genetics/physiology ; Signal Transduction ; TNF Receptor-Associated Factor 1 ; TNF Receptor-Associated Factor 2 ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha/pharmacology ; Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jorgensen, R A -- Atkinson, R G -- Forster, R L -- Lucas, W J -- New York, N.Y. -- Science. 1998 Mar 6;279(5356):1486-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9508725" target="_blank"〉PubMed〈/a〉
    Keywords: Gene Expression Regulation, Plant ; Plant Diseases/virology ; Plant Proteins/metabolism ; Plant Viruses/genetics/physiology ; Plants/*genetics/metabolism/virology ; Plants, Genetically Modified/*genetics/metabolism ; RNA Replicase/metabolism ; RNA, Complementary/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Plant/*genetics/metabolism ; Ribonucleoproteins/metabolism ; Signal Transduction ; *Suppression, Genetic ; Templates, Genetic ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-07
    Description: The tetrodotoxin-sensitive sodium ion (Na+) channel is opened by cellular depolarization and favors the passage of Na+ over other ions. Activation of the beta-adrenergic receptor or protein kinase A in rat heart cells transformed this Na+ channel into one that is promiscuous with respect to ion selectivity, permitting calcium ions (Ca2+) to permeate as readily as Na+. Similarly, nanomolar concentrations of cardiotonic steroids such as ouabain and digoxin switched the ion selectivity of the Na+ channel to this state of promiscuous permeability called slip-mode conductance. Slip-mode conductance of the Na+ channel can contribute significantly to local and global cardiac Ca2+ signaling and may be a general signaling mechanism in excitable cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santana, L F -- Gomez, A M -- Lederer, W J -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):1027-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Medical Biotechnology Center and School of Medicine, University of Maryland, 725 West Lombard Street, Baltimore, MD 21201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9461434" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Calcium/*metabolism ; Cardiotonic Agents/pharmacology ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Digoxin/pharmacology ; Enzyme Activation ; In Vitro Techniques ; Ion Channel Gating ; Isoproterenol/pharmacology ; Myocardial Contraction/*physiology ; Myocardium/cytology/*metabolism ; Ouabain/pharmacology ; Patch-Clamp Techniques ; Rats ; Receptors, Adrenergic, beta/physiology ; Ryanodine Receptor Calcium Release Channel/metabolism ; Sarcoplasmic Reticulum/*metabolism ; Signal Transduction ; Sodium/metabolism ; Sodium Channel Blockers ; Sodium Channels/drug effects/*metabolism ; Sodium-Calcium Exchanger/metabolism ; Tetrodotoxin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-02-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weinmaster, G -- New York, N.Y. -- Science. 1998 Jan 16;279(5349):336-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of California, Los Angeles, School of Medicine, Los Angeles, CA 90095-1737, USA. gweinmas@biochem.medsch.ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9454330" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; Bone Morphogenetic Proteins/metabolism ; Disintegrins/*metabolism ; Drosophila ; *Drosophila Proteins ; Embryo, Nonmammalian/metabolism ; *Embryonic Development ; Glycoproteins/metabolism ; Insect Proteins/*metabolism ; *Intercellular Signaling Peptides and Proteins ; Membrane Proteins/metabolism ; Metalloendopeptidases/*metabolism ; Receptors, Cell Surface/metabolism ; Receptors, Notch ; Signal Transduction ; Tolloid-Like Metalloproteinases ; Xenopus ; *Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 1998-06-25
    Description: Long-term potentiation (LTP) at the Schaffer collateral-CA1 synapse involves interacting signaling components, including calcium (Ca2+)/calmodulin-dependent protein kinase II (CaMKII) and cyclic adenosine monophosphate (cAMP) pathways. Postsynaptic injection of thiophosphorylated inhibitor-1 protein, a specific inhibitor of protein phosphatase-1 (PP1), substituted for cAMP pathway activation in LTP. Stimulation that induced LTP triggered cAMP-dependent phosphorylation of endogenous inhibitor-1 and a decrease in PP1 activity. This stimulation also increased phosphorylation of CaMKII at Thr286 and Ca2+-independent CaMKII activity in a cAMP-dependent manner. The blockade of LTP by a CaMKII inhibitor was not overcome by thiophosphorylated inhibitor-1. Thus, the cAMP pathway uses PP1 to gate CaMKII signaling in LTP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blitzer, R D -- Connor, J H -- Brown, G P -- Wong, T -- Shenolikar, S -- Iyengar, R -- Landau, E M -- DK52054/DK/NIDDK NIH HHS/ -- GM54508/GM/NIGMS NIH HHS/ -- NS33646/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 19;280(5371):1940-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bronx VA Medical Center and Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA. rb2@doc.mssm.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9632393" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors/*metabolism ; *Carrier Proteins ; Cyclic AMP/analogs & derivatives/*metabolism/pharmacology ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Electric Stimulation ; Enzyme Inhibitors/metabolism/pharmacology ; Hippocampus/*metabolism ; In Vitro Techniques ; *Intracellular Signaling Peptides and Proteins ; *Long-Term Potentiation ; Male ; Phosphoprotein Phosphatases/antagonists & inhibitors/*metabolism ; Phosphorylation ; Protein Phosphatase 1 ; RNA-Binding Proteins/metabolism/pharmacology ; Rats ; Rats, Sprague-Dawley ; Signal Transduction ; Synapses/*metabolism ; Thionucleotides/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 1998-05-09
    Description: Staphylococcus aureus causes pathologies ranging from minor skin infections to life-threatening diseases. Pathogenic effects are largely due to production of bacterial toxin, which is regulated by an RNA molecule, RNAIII. The S. aureus protein called RAP (RNAIII activating protein) activates RNAIII, and a peptide called RIP (RNAIII inhibiting peptide), produced by a nonpathogenic bacteria, inhibits RNAIII. Mice vaccinated with RAP or treated with purified or synthetic RIP were protected from S. aureus pathology. Thus, these two molecules may provide useful approaches for the prevention and treatment of diseases caused by S. aureus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balaban, N -- Goldkorn, T -- Nhan, R T -- Dang, L B -- Scott, S -- Ridgley, R M -- Rasooly, A -- Wright, S C -- Larrick, J W -- Rasooly, R -- Carlson, J R -- AI40830/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Apr 17;280(5362):438-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Pathology, University of California, Davis, CA 95616, USA. nbalaban@ucdavis.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9545222" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Bacterial/biosynthesis ; Bacterial Proteins/antagonists & inhibitors/*immunology/isolation & purification ; Bacterial Toxins/biosynthesis ; *Bacterial Vaccines ; Male ; Mice ; Mice, Hairless ; Oligopeptides/isolation & purification/*therapeutic use ; RNA, Antisense/genetics ; RNA, Bacterial/genetics ; Signal Transduction ; Staphylococcal Skin Infections/*drug therapy/immunology/*prevention & control ; Staphylococcus aureus/metabolism/*pathogenicity ; Vaccination ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 1998-08-28
    Description: Eps15 homology (EH) domains are eukaryotic signaling modules that recognize proteins containing Asn-Pro-Phe (NPF) sequences. The structure of the central EH domain of Eps15 has been solved by heteronuclear magnetic resonance spectroscopy. The fold consists of a pair of EF hand motifs, the second of which binds tightly to calcium. The NPF peptide is bound in a hydrophobic pocket between two alpha helices, and binding is mediated by a critical aromatic interaction as revealed by structure-based mutagenesis. The fold is predicted to be highly conserved among 30 identified EH domains and provides a structural basis for defining EH-mediated events in protein trafficking and growth factor signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Beer, T -- Carter, R E -- Lobel-Rice, K E -- Sorkin, A -- Overduin, M -- New York, N.Y. -- Science. 1998 Aug 28;281(5381):1357-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9721102" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Calcium/metabolism ; Calcium-Binding Proteins/*chemistry/metabolism ; Helix-Loop-Helix Motifs ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Oligopeptides/chemistry/*metabolism ; Phosphoproteins/*chemistry/metabolism ; Protein Binding ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 1998-10-09
    Description: Phosphoinositide 3-kinases (PI3Ks) activate protein kinase PKB (also termed Akt), and PI3Kgamma activated by heterotrimeric guanosine triphosphate-binding protein can stimulate mitogen-activated protein kinase (MAPK). Exchange of a putative lipid substrate-binding site generated PI3Kgamma proteins with altered or aborted lipid but retained protein kinase activity. Transiently expressed, PI3Kgamma hybrids exhibited wortmannin-sensitive activation of MAPK, whereas a catalytically inactive PI3Kgamma did not. Membrane-targeted PI3Kgamma constitutively produced phosphatidylinositol 3,4, 3,4,5-trisphosphate and activated PKB but not MAPK. Moreover, stimulation of MAPK in response to lysophosphatidic acid was blocked by catalytically inactive PI3Kgamma but not by hybrid PI3Kgammas. Thus, two major signals emerge from PI3Kgamma: phosphoinositides that target PKB and protein phosphorylation that activates MAPK.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bondeva, T -- Pirola, L -- Bulgarelli-Leva, G -- Rubio, I -- Wetzker, R -- Wymann, M P -- New York, N.Y. -- Science. 1998 Oct 9;282(5387):293-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Unit "Molecular Cell Biology," University of Jena, D-07747 Jena, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9765155" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Androstadienes/pharmacology ; Animals ; Binding Sites ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Membrane/enzymology ; Cercopithecus aethiops ; Enzyme Activation ; Lysophospholipids/pharmacology ; MAP Kinase Kinase 1 ; Mitogen-Activated Protein Kinase 1 ; *Mitogen-Activated Protein Kinase Kinases ; Molecular Sequence Data ; Myelin Basic Protein/metabolism ; Phosphatidylinositol 3-Kinases/genetics/*metabolism ; Phosphatidylinositol Phosphates/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Protein-Tyrosine Kinases/metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; Recombinant Proteins/metabolism ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 1998-12-18
    Description: FhuA, the receptor for ferrichrome-iron in Escherichia coli, is a member of a family of integral outer membrane proteins, which, together with the energy-transducing protein TonB, mediate the active transport of ferric siderophores across the outer membrane of Gram-negative bacteria. The three-dimensional structure of FhuA is presented here in two conformations: with and without ferrichrome-iron at resolutions of 2.7 and 2.5 angstroms, respectively. FhuA is a beta barrel composed of 22 antiparallel beta strands. In contrast to the typical trimeric arrangement found in porins, FhuA is monomeric. Located within the beta barrel is a structurally distinct domain, the "cork," which mainly consists of a four-stranded beta sheet and four short alpha helices. A single lipopolysaccharide molecule is noncovalently associated with the membrane-embedded region of the protein. Upon binding of ferrichrome-iron, conformational changes are transduced to the periplasmic pocket of FhuA, signaling the ligand-loaded status of the receptor. Sequence homologies and mutagenesis data are used to propose a structural mechanism for TonB-dependent siderophore-mediated transport across the outer membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferguson, A D -- Hofmann, E -- Coulton, J W -- Diederichs, K -- Welte, W -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2215-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec, Canada H3A 2B4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856937" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*chemistry/metabolism ; Bacterial Proteins/chemistry/metabolism ; Binding Sites ; Biological Transport, Active ; Cell Membrane/chemistry/metabolism ; Crystallography, X-Ray ; Diffusion ; Escherichia coli/*chemistry/metabolism ; *Escherichia coli Proteins ; Ferric Compounds/*metabolism ; Ferrichrome/*metabolism ; Hydrogen Bonding ; Ligands ; Lipopolysaccharides/*metabolism ; Membrane Proteins/chemistry/metabolism ; Models, Molecular ; *Protein Conformation ; Protein Structure, Secondary ; Receptors, Virus/*chemistry/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 1998-06-20
    Description: MAP kinase phosphatase-3 (MKP-3) dephosphorylates phosphotyrosine and phosphothreonine and inactivates selectively ERK family mitogen-activated protein (MAP) kinases. MKP-3 was activated by direct binding to purified ERK2. Activation was independent of protein kinase activity and required binding of ERK2 to the noncatalytic amino-terminus of MKP-3. Neither the gain-of-function Sevenmaker ERK2 mutant D319N nor c-Jun amino-terminal kinase-stress-activated protein kinase (JNK/SAPK) or p38 MAP kinases bound MKP-3 or caused its catalytic activation. These kinases were also resistant to enzymatic inactivation by MKP-3. Another homologous but nonselective phosphatase, MKP-4, bound and was activated by ERK2, JNK/SAPK, and p38 MAP kinases. Catalytic activation of MAP kinase phosphatases through substrate binding may regulate MAP kinase activation by a large number of receptor systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Camps, M -- Nichols, A -- Gillieron, C -- Antonsson, B -- Muda, M -- Chabert, C -- Boschert, U -- Arkinstall, S -- New York, N.Y. -- Science. 1998 May 22;280(5367):1262-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Geneva Biomedical Research Institute, Glaxo Wellcome Research and Development S.A., CH-1228 Plan-les-Ouates, Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9596579" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & ; inhibitors/genetics/*metabolism ; Catalysis ; Dual Specificity Phosphatase 6 ; Enzyme Activation ; Epidermal Growth Factor/pharmacology ; Mitogen-Activated Protein Kinase 1 ; Mitogen-Activated Protein Kinase 12 ; Mitogen-Activated Protein Kinase 9 ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Protein Kinases/metabolism ; Protein Tyrosine Phosphatases/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transfection ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 1998-04-29
    Description: Receptor tyrosine kinase-mediated activation of the Raf-1 protein kinase is coupled to the small guanosine triphosphate (GTP)-binding protein Ras. By contrast, protein kinase C (PKC)-mediated activation of Raf-1 is thought to be Ras independent. Nevertheless, stimulation of PKC in COS cells led to activation of Ras and formation of Ras-Raf-1 complexes containing active Raf-1. Raf-1 mutations that prevent its association with Ras blocked activation of Raf-1 by PKC. However, the activation of Raf-1 by PKC was not blocked by dominant negative Ras, indicating that PKC activates Ras by a mechanism distinct from that initiated by activation of receptor tyrosine kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marais, R -- Light, Y -- Mason, C -- Paterson, H -- Olson, M F -- Marshall, C J -- New York, N.Y. -- Science. 1998 Apr 3;280(5360):109-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CRC Centre for Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9525855" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cercopithecus aethiops ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Epidermal Growth Factor/pharmacology ; Guanosine Triphosphate/*metabolism ; Indoles/pharmacology ; Mutation ; Protein Kinase C/antagonists & inhibitors/*metabolism ; Proto-Oncogene Proteins c-raf/genetics/*metabolism ; Receptors, Muscarinic/metabolism ; Signal Transduction ; Tetradecanoylphorbol Acetate/pharmacology ; ras Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 1998-12-18
    Description: cAMP (3',5' cyclic adenosine monophosphate) is a second messenger that in eukaryotic cells induces physiological responses ranging from growth, differentiation, and gene expression to secretion and neurotransmission. Most of these effects have been attributed to the binding of cAMP to cAMP-dependent protein kinase A (PKA). Here, a family of cAMP-binding proteins that are differentially distributed in the mammalian brain and body organs and that exhibit both cAMP-binding and guanine nucleotide exchange factor (GEF) domains is reported. These cAMP-regulated GEFs (cAMP-GEFs) bind cAMP and selectively activate the Ras superfamily guanine nucleotide binding protein Rap1A in a cAMP-dependent but PKA-independent manner. Our findings suggest the need to reformulate concepts of cAMP-mediated signaling to include direct coupling to Ras superfamily signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawasaki, H -- Springett, G M -- Mochizuki, N -- Toki, S -- Nakaya, M -- Matsuda, M -- Housman, D E -- Graybiel, A M -- P01 CA42063/CA/NCI NIH HHS/ -- P01 HL41484/HL/NHLBI NIH HHS/ -- R01 HD28341/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2275-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856955" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Methyl-3-isobutylxanthine/pharmacology ; Adrenal Glands/metabolism ; Adult ; Amino Acid Sequence ; Animals ; Brain/metabolism ; Cell Line ; Colforsin/pharmacology ; Cyclic AMP/*metabolism ; Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors/metabolism ; Fetus/metabolism ; GTP-Binding Proteins/*metabolism ; Gene Expression ; Guanine Nucleotide Exchange Factors ; Humans ; In Situ Hybridization ; Molecular Sequence Data ; Phosphorylation ; Proteins/chemistry/genetics/*metabolism ; Rats ; Second Messenger Systems ; Sequence Deletion ; Signal Transduction ; rap GTP-Binding Proteins ; ras Guanine Nucleotide Exchange Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 1998-01-07
    Description: A Sonic hedgehog (Shh) response element was identified in the chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) promoter that binds to a factor distinct from Gli, a gene known to mediate Shh signaling. Although this binding activity is specifically stimulated by Shh-N (amino-terminal signaling domain), it can also be unmasked with protein phosphatase treatment in the mouse cell line P19, and induction by Shh-N can be blocked by phosphatase inhibitors. Thus, Shh-N signaling may result in dephosphorylation of a target factor that is required for activation of COUP-TFII-, Islet1-, and Gli response element-dependent gene expression. This finding identifies another step in the Shh-N signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krishnan, V -- Pereira, F A -- Qiu, Y -- Chen, C H -- Beachy, P A -- Tsai, S Y -- Tsai, M J -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1947-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9395397" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COUP Transcription Factor II ; COUP Transcription Factors ; Cell Line ; DNA/metabolism ; DNA-Binding Proteins/*genetics/metabolism ; Enzyme Inhibitors/pharmacology ; *Gene Expression Regulation ; Hedgehog Proteins ; Mice ; Okadaic Acid/pharmacology ; Oxazoles/pharmacology ; Phosphoprotein Phosphatases/antagonists & inhibitors/*metabolism ; Phosphorylation ; Promoter Regions, Genetic ; Proteins/*genetics/*metabolism ; *Receptors, Steroid ; Signal Transduction ; *Trans-Activators ; Transcription Factors/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 1998-06-06
    Description: Familial juvenile polyposis is an autosomal dominant disease characterized by a predisposition to hamartomatous polyps and gastrointestinal cancer. Here it is shown that a subset of juvenile polyposis families carry germ line mutations in the gene SMAD4 (also known as DPC4), located on chromosome 18q21.1, that encodes a critical cytoplasmic mediator in the transforming growth factor-beta signaling pathway. The mutant SMAD4 proteins are predicted to be truncated at the carboxyl-terminus and lack sequences required for normal function. These results confirm an important role for SMAD4 in the development of gastrointestinal tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Howe, J R -- Roth, S -- Ringold, J C -- Summers, R W -- Jarvinen, H J -- Sistonen, P -- Tomlinson, I P -- Houlston, R S -- Bevan, S -- Mitros, F A -- Stone, E M -- Aaltonen, L A -- New York, N.Y. -- Science. 1998 May 15;280(5366):1086-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, University of Iowa College of Medicine, Iowa City, IA 52242, USA. james-howe@uiowa.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9582123" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/metabolism ; Cell Nucleus/metabolism ; Chromosome Mapping ; Chromosomes, Human, Pair 18 ; Colorectal Neoplasms/*genetics ; *DNA-Binding Proteins ; Female ; Frameshift Mutation ; Gastrointestinal Neoplasms/*genetics ; Genes, DCC ; *Genes, Tumor Suppressor ; Genetic Predisposition to Disease ; Germ-Line Mutation ; Hamartoma Syndrome, Multiple/*genetics ; Humans ; Intestinal Polyps/*genetics ; Male ; Pedigree ; Polymerase Chain Reaction ; Sequence Deletion ; Signal Transduction ; Smad4 Protein ; Trans-Activators/chemistry/*genetics/metabolism ; Transforming Growth Factor beta/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, G -- New York, N.Y. -- Science. 1998 Sep 25;281(5385):1942-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9767036" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Drosophila Proteins ; Drosophila melanogaster/genetics/immunology ; *Genes, Insect ; Humans ; *Immunity, Innate ; Insect Proteins/*genetics/physiology ; Lipopolysaccharides/immunology ; Membrane Glycoproteins/*genetics/*physiology ; Receptors, Cell Surface/*physiology ; Signal Transduction ; Toll-Like Receptors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, G -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1235.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9867623" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chick Embryo ; Diptera ; Ear, Inner/*embryology/metabolism ; Gene Expression ; Hair Cells, Auditory/*cytology/embryology ; Humans ; Intracellular Signaling Peptides and Proteins ; Membrane Proteins/genetics/*metabolism ; Receptors, Cell Surface/*metabolism ; Receptors, Notch ; Sense Organs/cytology ; Signal Transduction ; Zebrafish
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-08-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bers, D M -- Fill, M -- New York, N.Y. -- Science. 1998 Aug 7;281(5378):790-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA. dbers@luc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9714684" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Calcium Channels/*metabolism ; Calcium Channels, L-Type ; Carrier Proteins/metabolism ; DNA-Binding Proteins/metabolism ; Heat-Shock Proteins/metabolism ; *Ion Channel Gating ; Muscle Contraction ; Muscle, Skeletal/metabolism ; Myocardium/metabolism ; Ryanodine Receptor Calcium Release Channel/*metabolism ; Sarcoplasmic Reticulum/*metabolism ; Signal Transduction ; Stochastic Processes ; Tacrolimus Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 1998-02-12
    Description: The NPH1 (nonphototropic hypocotyl 1) gene encodes an essential component acting very early in the signal-transduction chain for phototropism. Arabidopsis NPH1 contains a serine-threonine kinase domain and LOV1 and LOV2 repeats that share similarity (36 to 56 percent) with Halobacterium salinarium Bat, Azotobacter vinelandii NIFL, Neurospora crassa White Collar-1, Escherichia coli Aer, and the Eag family of potassium-channel proteins from Drosophila and mammals. Sequence similarity with a known (NIFL) and a suspected (Aer) flavoprotein suggests that NPH1 LOV1 and LOV2 may be flavin-binding domains that regulate kinase activity in response to blue light-induced redox changes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huala, E -- Oeller, P W -- Liscum, E -- Han, I S -- Larsen, E -- Briggs, W R -- New York, N.Y. -- Science. 1997 Dec 19;278(5346):2120-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution of Washington, 260 Panama Street, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9405347" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arabidopsis/*enzymology/physiology ; *Arabidopsis Proteins ; Bacterial Proteins/chemistry ; Cloning, Molecular ; Electrophysiology ; Humans ; Light ; Molecular Sequence Data ; Oxidation-Reduction ; Phosphoproteins/*chemistry/genetics/metabolism ; Phototropism ; Potassium Channels/chemistry ; Protein-Serine-Threonine Kinases/*chemistry/genetics/metabolism ; Sequence Alignment ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 1998-01-07
    Description: Plant disease resistance (R) genes confer an ability to resist infection by pathogens expressing specific corresponding avirulence genes. In Arabidopsis thaliana, resistance to both bacterial and fungal pathogens, mediated by several R gene products, requires the NDR1 gene. Positional cloning was used to isolate NDR1, which encodes a 660-base pair open reading frame. The predicted 219-amino acid sequence suggests that NDR1 may be associated with a membrane. NDR1 expression is induced in response to pathogen challenge and may function to integrate various pathogen recognition signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Century, K S -- Shapiro, A D -- Repetti, P P -- Dahlbeck, D -- Holub, E -- Staskawicz, B J -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1963-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9395402" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*genetics/*microbiology ; *Arabidopsis Proteins ; Chromosome Mapping ; Chromosomes, Artificial, Yeast ; Cloning, Molecular ; Cosmids ; Gene Expression Regulation, Plant ; Genes, Plant ; Immunity, Innate/genetics ; Membrane Proteins/chemistry ; Molecular Sequence Data ; Oomycetes/pathogenicity ; Open Reading Frames ; Plant Diseases/*genetics ; Plant Proteins/chemistry/*genetics/physiology ; Pseudomonas/pathogenicity ; Signal Transduction ; *Transcription Factors ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-01-07
    Description: The crystal structure of Gsalpha, the heterotrimeric G protein alpha subunit that stimulates adenylyl cyclase, was determined at 2.5 A in a complex with guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS). Gsalpha is the prototypic member of a family of GTP-binding proteins that regulate the activities of effectors in a hormone-dependent manner. Comparison of the structure of Gsalpha.GTPgammaS with that of Gialpha.GTPgammaS suggests that their effector specificity is primarily dictated by the shape of the binding surface formed by the switch II helix and the alpha3-beta5 loop, despite the high sequence homology of these elements. In contrast, sequence divergence explains the inability of regulators of G protein signaling to stimulate the GTPase activity of Gsalpha. The betagamma binding surface of Gsalpha is largely conserved in sequence and structure to that of Gialpha, whereas differences in the surface formed by the carboxyl-terminal helix and the alpha4-beta6 loop may mediate receptor specificity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sunahara, R K -- Tesmer, J J -- Gilman, A G -- Sprang, S R -- DK46371/DK/NIDDK NIH HHS/ -- GM34497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1943-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9041, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9395396" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/chemistry/*metabolism ; Amino Acid Sequence ; Binding Sites ; Conserved Sequence ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Enzyme Activation ; GTP Phosphohydrolases/metabolism ; GTP-Binding Protein alpha Subunits, Gi-Go/chemistry/metabolism ; GTP-Binding Protein alpha Subunits, Gs/*chemistry/metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/*chemistry/metabolism ; Guanosine Triphosphate/metabolism ; Hydrolysis ; Magnesium/metabolism ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Structure, Secondary ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hopkin, K -- New York, N.Y. -- Science. 1998 Nov 6;282(5391):1027,1029-30.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9841444" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; *Cell Division ; *Genes, Tumor Suppressor ; Humans ; Mice ; Mutation ; Neoplasms/metabolism/*pathology ; PTEN Phosphohydrolase ; Phosphatidylinositol Phosphates/*metabolism ; Phosphoric Monoester Hydrolases/chemistry/genetics/*metabolism ; Phosphorylation ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; Signal Transduction ; Tumor Cells, Cultured ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-02-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hurtley, S M -- New York, N.Y. -- Science. 1998 Jan 23;279(5350):459.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9454335" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Cell Movement ; Cell Size ; Cytoskeleton/chemistry/*physiology/ultrastructure ; Microtubule Proteins/genetics/physiology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 1998-10-30
    Description: Vascular endothelial growth factor (VEGF) is a key regulator of blood vessel development in embryos and angiogenesis in adult tissues. Unlike VEGF, the related VEGF-C stimulates the growth of lymphatic vessels through its specific lymphatic endothelial receptor VEGFR-3. Here it is shown that targeted inactivation of the gene encoding VEGFR-3 resulted in defective blood vessel development in early mouse embryos. Vasculogenesis and angiogenesis occurred, but large vessels became abnormally organized with defective lumens, leading to fluid accumulation in the pericardial cavity and cardiovascular failure at embryonic day 9.5. Thus, VEGFR-3 has an essential role in the development of the embryonic cardiovascular system before the emergence of the lymphatic vessels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dumont, D J -- Jussila, L -- Taipale, J -- Lymboussaki, A -- Mustonen, T -- Pajusola, K -- Breitman, M -- Alitalo, K -- New York, N.Y. -- Science. 1998 Oct 30;282(5390):946-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ontario Cancer Institute and Amgen Institute, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2C1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9794766" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD31/analysis ; Blood Vessels/chemistry/*embryology ; Cardiovascular System/chemistry/*embryology ; Embryo, Mammalian/blood supply/chemistry ; Embryonic and Fetal Development ; Endothelial Growth Factors/analysis ; Endothelium, Vascular/chemistry/*embryology ; Gene Targeting ; Hematopoiesis ; Heterozygote ; Homozygote ; Immunohistochemistry ; In Situ Hybridization ; Ligands ; Mice ; Neovascularization, Physiologic ; Receptor Protein-Tyrosine Kinases/analysis/genetics/*physiology ; Receptors, Cell Surface/analysis/genetics/*physiology ; Signal Transduction ; Vascular Endothelial Growth Factor C ; Vascular Endothelial Growth Factor Receptor-3
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1998 Apr 17;280(5362):383.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9575084" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/metabolism ; *Calcineurin Inhibitors ; Calcium/metabolism ; Cardiomegaly/etiology/metabolism ; Cells, Cultured ; Cyclosporine/*pharmacology/therapeutic use ; DNA-Binding Proteins/metabolism ; Enzyme Inhibitors/pharmacology ; GATA4 Transcription Factor ; Heart Failure/*drug therapy/etiology/metabolism ; Humans ; Mice ; Myocardium/*metabolism ; NFATC Transcription Factors ; *Nuclear Proteins ; Signal Transduction ; Tacrolimus/pharmacology ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 1998-05-23
    Description: Anthrax lethal toxin, produced by the bacterium Bacillus anthracis, is the major cause of death in animals infected with anthrax. One component of this toxin, lethal factor (LF), is suspected to be a metalloprotease, but no physiological substrates have been identified. Here it is shown that LF is a protease that cleaves the amino terminus of mitogen-activated protein kinase kinases 1 and 2 (MAPKK1 and MAPKK2) and that this cleavage inactivates MAPKK1 and inhibits the MAPK signal transduction pathway. The identification of a cleavage site for LF may facilitate the development of LF inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duesbery, N S -- Webb, C P -- Leppla, S H -- Gordon, V M -- Klimpel, K R -- Copeland, T D -- Ahn, N G -- Oskarsson, M K -- Fukasawa, K -- Paull, K D -- Vande Woude, G F -- New York, N.Y. -- Science. 1998 May 1;280(5364):734-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Advanced BioScience Laboratories-Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, Post Office Box B, Frederick, MD 21702.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9563949" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigens, Bacterial ; *Bacillus anthracis/enzymology ; Bacterial Toxins/metabolism/*toxicity ; Binding Sites ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors/metabolism ; Cell Line, Transformed ; Enzyme Activation ; Enzyme Inhibitors/toxicity ; Humans ; MAP Kinase Kinase 1 ; MAP Kinase Kinase 2 ; Metalloendopeptidases/metabolism/toxicity ; Mice ; *Mitogen-Activated Protein Kinase Kinases ; Myelin Basic Protein/metabolism ; Oocytes/physiology ; Phosphorylation ; Protein-Serine-Threonine Kinases/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Protein-Tyrosine Kinases/*antagonists & inhibitors/chemistry/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Deletion ; Signal Transduction ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 1998-05-23
    Description: Immature thymocytes express a pre-T cell receptor (pre-TCR) composed of the TCRbeta chain paired with pre-Talpha. Signals from this receptor are essential for passage of thymocytes through a key developmental checkpoint in the thymus. These signals were efficiently delivered in vivo by a truncated form of the murine pre-TCR that lacked all of its extracellular immunoglobulin domains. De novo expression of the truncated pre-TCR or an intact alphabetaTCR was sufficient to activate characteristic TCR signaling pathways in a T cell line. These findings support the view that recognition of an extracellular ligand is not required for pre-TCR function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Irving, B A -- Alt, F W -- Killeen, N -- New York, N.Y. -- Science. 1998 May 8;280(5365):905-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9572735" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/analysis ; Antigens, CD3/analysis/genetics ; DNA-Binding Proteins/genetics/metabolism ; Dimerization ; Gene Rearrangement, T-Lymphocyte ; Humans ; Immunoglobulins/chemistry ; Immunophenotyping ; Jurkat Cells ; Ligands ; Membrane Glycoproteins/chemistry/genetics/*physiology ; Mice ; Mice, Inbred Strains ; Mice, Transgenic ; NFATC Transcription Factors ; *Nuclear Proteins ; Receptors, Antigen, T-Cell, alpha-beta/chemistry/genetics/*physiology ; Signal Transduction ; T-Lymphocytes/cytology/*immunology/metabolism ; Transcription Factors/genetics/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 1998-05-09
    Description: Control of stability of beta-catenin is central in the wnt signaling pathway. Here, the protein conductin was found to form a complex with both beta-catenin and the tumor suppressor gene product adenomatous polyposis coli (APC). Conductin induced beta-catenin degradation, whereas mutants of conductin that were deficient in complex formation stabilized beta-catenin. Fragments of APC that contained a conductin-binding domain also blocked beta-catenin degradation. Thus, conductin is a component of the multiprotein complex that directs beta-catenin to degradation and is located downstream of APC. In Xenopus embryos, conductin interfered with wnt-induced axis formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Behrens, J -- Jerchow, B A -- Wurtele, M -- Grimm, J -- Asbrand, C -- Wirtz, R -- Kuhl, M -- Wedlich, D -- Birchmeier, W -- New York, N.Y. -- Science. 1998 Apr 24;280(5363):596-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Delbruck Center for Molecular Medicine, Robert-Rossle-Strasse 10, 13122 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9554852" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Amino Acid Sequence ; Animals ; Axin Protein ; Binding Sites ; Body Patterning ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cytoskeletal Proteins/chemistry/genetics/*metabolism ; Glycogen Synthase Kinase 3 ; Humans ; Mice ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Proteins/chemistry ; Proto-Oncogene Proteins/metabolism ; *Repressor Proteins ; Signal Transduction ; *Trans-Activators ; Tumor Cells, Cultured ; Xenopus/embryology ; Xenopus Proteins ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haselkorn, R -- New York, N.Y. -- Science. 1998 Oct 30;282(5390):891-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA. r-haselkorn@uchicago.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9841437" target="_blank"〉PubMed〈/a〉
    Keywords: Anabaena/cytology/genetics/*growth & development/metabolism ; Bacterial Proteins/chemistry/genetics/metabolism/*physiology ; DNA-Binding Proteins/metabolism ; Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Mutation ; Nitrogen Fixation ; Oligopeptides/metabolism/pharmacology ; Plant Proteins/genetics/metabolism ; Promoter Regions, Genetic ; Signal Transduction ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Epstein, E -- New York, N.Y. -- Science. 1998 Jun 19;280(5371):1906-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Land, Air and Water Resources-Soils and Biogeochemistry, Universsity of California at Davis 95616-8627, USA. eqepstein@ucdavis.e eqepstein@ucdavis.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9669949" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/metabolism ; *Arabidopsis Proteins ; Calcium/*metabolism ; Genes, Plant ; Ion Transport ; Mutation ; Plant Proteins/chemistry/*genetics/*metabolism ; Plants/genetics/*metabolism ; Potassium/metabolism ; Second Messenger Systems ; Signal Transduction ; Sodium/metabolism/*pharmacology ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-08-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malissen, B -- New York, N.Y. -- Science. 1998 Jul 24;281(5376):528-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, Marseille, France. bernardm@ciml.univ-mrs.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9705722" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/immunology ; Antigens, CD3/*metabolism ; Immunoglobulin E/metabolism ; Ligands ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/metabolism ; Rats ; Receptor Aggregation ; Receptor-CD3 Complex, Antigen, T-Cell/metabolism ; Receptors, Antigen, T-Cell/*metabolism ; Receptors, IgE/*metabolism ; Signal Transduction ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-02-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wickelgren, I -- New York, N.Y. -- Science. 1997 Oct 17;278(5337):389.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9381140" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Enzyme Induction ; Enzyme Inhibitors/metabolism ; Heme/chemistry/metabolism ; Humans ; Isoenzymes/antagonists & inhibitors/*chemistry/metabolism ; Models, Molecular ; Nitric Oxide/biosynthesis/physiology ; Nitric Oxide Synthase/antagonists & inhibitors/*chemistry/metabolism ; *Protein Conformation ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 1998-06-26
    Description: Signaling pathways that link extracellular factors to activation of the monomeric guanosine triphosphatase (GTPase) Rho control cytoskeletal rearrangements and cell growth. Heterotrimeric guanine nucleotide-binding proteins (G proteins) participate in several of these pathways, although their mechanisms are unclear. The GTPase activities of two G protein alpha subunits, Galpha12 and Galpha13, are stimulated by the Rho guanine nucleotide exchange factor p115 RhoGEF. Activated Galpha13 bound tightly to p115 RhoGEF and stimulated its capacity to catalyze nucleotide exchange on Rho. In contrast, activated Galpha12 inhibited stimulation by Galpha13. Thus, p115 RhoGEF can directly link heterotrimeric G protein alpha subunits to regulation of Rho.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hart, M J -- Jiang, X -- Kozasa, T -- Roscoe, W -- Singer, W D -- Gilman, A G -- Sternweis, P C -- Bollag, G -- GM 31954/GM/NIGMS NIH HHS/ -- GM34497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 26;280(5372):2112-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Onyx Pharmaceuticals, 3031 Research Drive, Richmond, CA 94806, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9641916" target="_blank"〉PubMed〈/a〉
    Keywords: Aluminum Compounds/pharmacology ; Animals ; COS Cells ; Fluorides/pharmacology ; GTP Phosphohydrolases/*metabolism ; GTP-Binding Protein alpha Subunits, G12-G13 ; GTP-Binding Proteins/*metabolism ; Guanine Nucleotide Exchange Factors ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Proteins/chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Recombinant Proteins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 1998-06-06
    Description: RasGRP, a guanyl nucleotide-releasing protein for the small guanosine triphosphatase Ras, was characterized. Besides the catalytic domain, RasGRP has an atypical pair of "EF hands" that bind calcium and a diacylglycerol (DAG)-binding domain. RasGRP activated Ras and caused transformation in fibroblasts. A DAG analog caused sustained activation of Ras-Erk signaling and changes in cell morphology. Signaling was associated with partitioning of RasGRP protein into the membrane fraction. Sustained ligand-induced signaling and membrane partitioning were absent when the DAG-binding domain was deleted. RasGRP is expressed in the nervous system, where it may couple changes in DAG and possibly calcium concentrations to Ras activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ebinu, J O -- Bottorff, D A -- Chan, E Y -- Stang, S L -- Dunn, R J -- Stone, J C -- New York, N.Y. -- Science. 1998 May 15;280(5366):1082-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9582122" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/*metabolism ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Catalysis ; Cell Cycle Proteins/genetics/metabolism ; Cell Line ; Cell Membrane/metabolism ; Cell Size ; Cell Transformation, Neoplastic ; Cloning, Molecular ; DNA, Complementary ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Diglycerides/metabolism ; Genes, ras ; *Guanine Nucleotide Exchange Factors ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Molecular Sequence Data ; Neurons/metabolism ; Phosphoprotein Phosphatases/genetics/metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; ras Proteins/*metabolism ; ras-GRF1
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-21
    Description: Transcription of the AUX/IAA family of genes is rapidly induced by the plant hormone auxin, but evidence that AUX/IAA genes mediate further responses to auxin has been elusive. Changes in diverse auxin responses result from mutations in the Arabidopsis AXR3 gene. AXR3 was shown to be a member of the AUX/IAA family, providing direct evidence that AUX/IAA genes are central in auxin signaling. Molecular characterization of axr3 gain-of-function and loss-of-function mutations established the functional importance of domains conserved among AUX/IAA proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rouse, D -- Mackay, P -- Stirnberg, P -- Estelle, M -- Leyser, O -- New York, N.Y. -- Science. 1998 Feb 27;279(5355):1371-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of York, York YO1 5YW, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9478901" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*genetics/physiology ; *Arabidopsis Proteins ; Chromosome Mapping ; Cloning, Molecular ; *Genes, Plant ; Indoleacetic Acids/*physiology ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/chemistry/*genetics/physiology ; Phenotype ; Plant Proteins/chemistry/*genetics/physiology ; Point Mutation ; RNA Splicing ; Signal Transduction ; Suppression, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 1998-09-04
    Description: The adenomatous polyposis coli gene (APC) is a tumor suppressor gene that is inactivated in most colorectal cancers. Mutations of APC cause aberrant accumulation of beta-catenin, which then binds T cell factor-4 (Tcf-4), causing increased transcriptional activation of unknown genes. Here, the c-MYC oncogene is identified as a target gene in this signaling pathway. Expression of c-MYC was shown to be repressed by wild-type APC and activated by beta-catenin, and these effects were mediated through Tcf-4 binding sites in the c-MYC promoter. These results provide a molecular framework for understanding the previously enigmatic overexpression of c-MYC in colorectal cancers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, T C -- Sparks, A B -- Rago, C -- Hermeking, H -- Zawel, L -- da Costa, L T -- Morin, P J -- Vogelstein, B -- Kinzler, K W -- CA57345/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- GM07309/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 4;281(5382):1509-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Johns Hopkins Oncology Center, 424 North Bond Street, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9727977" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Binding Sites ; Cell Line ; Colorectal Neoplasms/*genetics ; Cytoskeletal Proteins/genetics/metabolism ; *Gene Expression Regulation, Neoplastic ; *Genes, APC ; Genes, Reporter ; *Genes, myc ; HT29 Cells ; Humans ; Mutation ; Promoter Regions, Genetic ; Proto-Oncogene Proteins c-myc/metabolism ; Signal Transduction ; TCF Transcription Factors ; *Trans-Activators ; Transcription Factor 7-Like 2 Protein ; Transcription Factors/metabolism ; Transcription, Genetic ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 1998-06-20
    Description: The apical ectodermal ridge (AER) is an essential structure for vertebrate limb development. Wnt3a is expressed during the induction of the chick AER, and misexpression of Wnt3a induces ectopic expression of AER-specific genes in the limb ectoderm. The genes beta-catenin and Lef1 can mimic the effect of Wnt3a, and blocking the intrinsic Lef1 activity disrupts AER formation. Hence, Wnt3a functions in AER formation through the beta-catenin/LEF1 pathway. In contrast, neither beta-catenin nor Lef1 affects the Wnt7a-regulated dorsoventral polarity of the limb. Thus, two related Wnt genes elicit distinct responses in the same tissues by using different intracellular pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kengaku, M -- Capdevila, J -- Rodriguez-Esteban, C -- De La Pena, J -- Johnson, R L -- Izpisua Belmonte, J C -- Tabin, C J -- New York, N.Y. -- Science. 1998 May 22;280(5367):1274-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9596583" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Avian Proteins ; Base Sequence ; *Body Patterning ; Chick Embryo ; Cloning, Molecular ; Cytoskeletal Proteins/genetics/metabolism ; DNA-Binding Proteins/genetics/metabolism ; Ectoderm/*metabolism ; Fibroblast Growth Factor 4 ; Fibroblast Growth Factor 8 ; Fibroblast Growth Factors/biosynthesis/genetics ; *Gene Expression Regulation, Developmental ; Glucosyltransferases ; Growth Substances/biosynthesis/genetics ; Homeodomain Proteins/genetics ; Intercellular Signaling Peptides and Proteins ; Limb Buds/embryology/*metabolism ; Lymphoid Enhancer-Binding Factor 1 ; Mesoderm/metabolism ; Molecular Sequence Data ; Morphogenesis ; Protein Biosynthesis ; Proteins/*genetics/physiology ; Proto-Oncogene Proteins/biosynthesis/*genetics/physiology ; Signal Transduction ; *Trans-Activators ; Transcription Factors/genetics/metabolism ; Up-Regulation ; Wnt Proteins ; Wnt3 Protein ; Wnt3A Protein ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 1998-12-04
    Description: Cortical neurons communicate with various cortical and subcortical targets by way of stereotyped axon projections through the white matter. Slice overlay experiments indicate that the initial growth of cortical axons toward the white matter is regulated by a diffusible chemorepulsive signal localized near the marginal zone. Semaphorin III is a major component of this diffusible signal, and cortical neurons transduce this signal by way of the neuropilin-1 receptor. These observations indicate that semaphorin-neuropilin interactions play a critical role in the initial patterning of projections in the developing cortex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Polleux, F -- Giger, R J -- Ginty, D D -- Kolodkin, A L -- Ghosh, A -- NS35165/NS/NINDS NIH HHS/ -- NS36176/NS/NINDS NIH HHS/ -- NS534814/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 4;282(5395):1904-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9836643" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Cell Line ; Cerebral Cortex/*cytology/embryology ; Coculture Techniques ; Gene Targeting ; Glycoproteins/genetics/*physiology ; Humans ; Mice ; Nerve Growth Factors/*metabolism ; Nerve Tissue Proteins/*physiology ; Neurons, Efferent/cytology/*physiology ; Neuropilin-1 ; Rats ; Recombinant Proteins/metabolism ; Semaphorin-3A ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-06
    Description: Mammalian dentitions are highly patterned, with different types of teeth positioned in different regions of the jaws. BMP4 is an early oral epithelial protein signal that directs odontogenic gene expression in mesenchyme cells of the developing mandibular arch. BMP4 was shown to inhibit expression of the homeobox gene Barx-1 and to restrict expression to the proximal, presumptive molar mesenchyme of mouse embryos at embryonic day 10. The inhibition of BMP signaling early in mandible development by the action of exogenous Noggin protein resulted in ectopic Barx-1 expression in the distal, presumptive incisor mesenchyme and a transformation of tooth identity from incisor to molar.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tucker, A S -- Matthews, K L -- Sharpe, P T -- G9800001/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 1998 Nov 6;282(5391):1136-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Craniofacial Development, Guy's, King's, and St. Thomas' School of Dentistry, Guy's Hospital, London SE1 9RT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9804553" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning ; Bone Morphogenetic Protein 4 ; Bone Morphogenetic Proteins/*physiology ; Carrier Proteins ; Culture Techniques ; Gene Expression Regulation, Developmental ; *Genes, Homeobox ; Homeodomain Proteins/*genetics/physiology ; Incisor/*embryology ; MSX1 Transcription Factor ; Male ; Mandible/embryology ; Mesoderm/metabolism/transplantation ; Mice ; Molar/*embryology ; *Odontogenesis ; Oncogene Proteins/genetics ; Proteins/metabolism/pharmacology ; Signal Transduction ; Tooth Germ/embryology ; Transcription Factors/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Froehner, S C -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1277-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill NC 27599-7545, USA. froehner@med.unc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9867632" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Brain/cytology/physiology ; Carrier Proteins/genetics/*physiology ; *Coenzymes ; Gene Targeting ; Glycine/physiology ; Membrane Proteins/genetics/*physiology ; Metalloproteins/metabolism ; Mice ; Molybdenum/metabolism ; Muscle Proteins/physiology ; Nerve Tissue Proteins/physiology ; Neurons/physiology ; Presynaptic Terminals/physiology ; Pteridines/metabolism ; *Receptor Aggregation ; Receptors, Glycine/*physiology ; Receptors, Nicotinic/physiology ; Signal Transduction ; Spinal Cord/cytology/physiology ; Strychnine/pharmacology ; Synapses/*physiology ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-24
    Description: The T cell receptor (TCR) alphabeta heterodimer interacts with its ligands with high specificity, but surprisingly low affinity. The role of the zeta component of the murine TCR in contributing to the fidelity of antigen recognition was examined. With sequence-specific phosphotyrosine antibodies, it was found that zeta undergoes a series of ordered phosphorylation events upon TCR engagement. Completion of phosphorylation steps is dependent on the nature of the TCR ligand. Thus, the phosphorylation steps establish thresholds for T cell activation. This study documents the sophisticated molecular events that follow the engagement of a low-affinity receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kersh, E N -- Shaw, A S -- Allen, P M -- New York, N.Y. -- Science. 1998 Jul 24;281(5376):572-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Immunology and Department of Pathology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9677202" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Presenting Cells/immunology ; Antigens/immunology ; Antigens, CD3/immunology/*metabolism ; Ligands ; *Lymphocyte Activation ; Membrane Proteins/genetics/immunology/*metabolism ; Mice ; Mice, Transgenic ; Mutation ; Peptides/immunology ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/metabolism ; Receptors, Antigen, T-Cell/genetics/immunology/*metabolism ; Receptors, Antigen, T-Cell, alpha-beta/immunology ; Signal Transduction ; T-Lymphocytes/*immunology ; ZAP-70 Protein-Tyrosine Kinase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-24
    Description: The ratio of late to early events stimulated by the mast cell receptor for immunoglobulin E (IgE) correlated with the affinity of a ligand for the receptor-bound IgE. Because excess receptors clustered by a weakly binding ligand could hoard a critical initiating kinase, they prevented the outnumbered clusters engendered by the high-affinity ligands from launching the more complete cascade. A similar mechanism could explain the antagonistic action of some peptides on the activation of T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Torigoe, C -- Inman, J K -- Metzger, H -- New York, N.Y. -- Science. 1998 Jul 24;281(5376):568-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1820, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9677201" target="_blank"〉PubMed〈/a〉
    Keywords: 2,4-Dinitrophenol/immunology ; Adaptor Proteins, Signal Transducing ; Animals ; Antibody Affinity ; Antigen-Antibody Reactions ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Dansyl Compounds ; Enzyme Precursors/metabolism ; Focal Adhesion Kinase 2 ; Haptens/*immunology/metabolism ; Immunoglobulin E/immunology/*metabolism ; Intracellular Signaling Peptides and Proteins ; Ligands ; Mast Cells/*immunology ; Mitogen-Activated Protein Kinase 1 ; Oncogene Proteins/metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/metabolism ; Rats ; Receptor Aggregation ; Receptors, IgE/immunology/*metabolism ; Signal Transduction ; T-Lymphocytes/immunology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 1998-11-20
    Description: Heterotrimeric guanosine triphosphate (GTP)-binding proteins (G proteins) determine tissue and cell polarity in a variety of organisms. In yeast, cells orient polarized growth toward the mating partner along a pheromone gradient by a mechanism that requires Far1p and Cdc24p. Far1p bound Gbetagamma and interacted with polarity establishment proteins, which organize the actin cytoskeleton. Cells containing mutated Far1p unable to bind Gbetagamma or polarity establishment proteins were defective for orienting growth toward their mating partner. In response to pheromones, Far1p moves from the nucleus to the cytoplasm. Thus, Far1p functions as an adaptor that recruits polarity establishment proteins to the site of extracellular signaling marked by Gbetagamma to polarize assembly of the cytoskeleton in a morphogenetic gradient.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Butty, A C -- Pryciak, P M -- Huang, L S -- Herskowitz, I -- Peter, M -- F32 GM017494/GM/NIGMS NIH HHS/ -- GM48052/GM/NIGMS NIH HHS/ -- GM57769/GM/NIGMS NIH HHS/ -- R01 GM057769/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1511-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Institute for Experimental Cancer Research (ISREC), Chemin des Boveresses 155, 1066 Epalinges/VD, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9822386" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Binding Sites ; Carrier Proteins/metabolism ; Cell Cycle Proteins/metabolism ; Cell Membrane/metabolism ; Cell Nucleus/metabolism ; *Cell Polarity ; Cyclin-Dependent Kinase Inhibitor Proteins ; Cytoskeleton/physiology ; Fungal Proteins/chemistry/genetics/*metabolism ; *GTP-Binding Protein beta Subunits ; GTP-Binding Proteins/*metabolism ; *Guanine Nucleotide Exchange Factors ; *Heterotrimeric GTP-Binding Proteins ; Models, Biological ; Mutation ; Peptides/metabolism/pharmacology ; Pheromones/metabolism/pharmacology ; Proto-Oncogene Proteins/metabolism ; *Repressor Proteins ; Saccharomyces cerevisiae/cytology/*physiology ; *Saccharomyces cerevisiae Proteins ; Signal Transduction ; cdc42 GTP-Binding Protein, Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Demple, B -- New York, N.Y. -- Science. 1998 Mar 13;279(5357):1655-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Cell Biology, Harvard School of Public Health, Boston, MA 02115, USA. demple@mbcrr.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9518377" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Chlamydomonas reinhardtii/genetics/*metabolism ; Cysteine/metabolism ; *DNA-Binding Proteins ; Disulfides/metabolism ; Escherichia coli/genetics/*metabolism ; Escherichia coli Proteins ; Gene Expression Regulation ; Glutaredoxins ; Glutathione/metabolism ; Hydrogen Peroxide/metabolism ; Models, Biological ; Oxidation-Reduction ; *Oxidative Stress ; *Oxidoreductases ; Protein Disulfide-Isomerases/metabolism ; Proteins/metabolism ; RNA, Messenger/metabolism ; RNA-Binding Proteins/*metabolism ; Repressor Proteins/*metabolism ; Signal Transduction ; Sulfhydryl Compounds/metabolism ; Thioredoxins/metabolism ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 1998-09-11
    Description: Neuropeptides serve as important signaling molecules in the nervous system. The FMRFamide (Phe-Met-Arg-Phe-amide)-related neuropeptide gene family in the nematode Caenorhabditis elegans is composed of at least 18 genes that may encode 53 distinct FMRFamide-related peptides. Disruption of one of these genes, flp-1, causes numerous behavioral defects, including uncoordination, hyperactivity, and insensitivity to high osmolarity. Conversely, overexpression of flp-1 results in the reciprocal phenotypes. On the basis of epistasis analysis, flp-1 gene products appear to signal upstream of a G protein-coupled second messenger system. These results demonstrate that varying the levels of FLP-1 neuropeptides can profoundly affect behavior and that members of this large neuropeptide gene family are not functionally redundant in C. elegans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nelson, L S -- Rosoff, M L -- Li, C -- AG00708/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1686-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733518" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/genetics/*physiology ; *Caenorhabditis elegans Proteins ; FMRFamide ; GTP-Binding Proteins/genetics/physiology ; *Genes, Helminth ; Helminth Proteins/genetics/physiology ; Motor Activity ; Movement ; Mutation ; Neuropeptides/*genetics/*physiology ; Osmolar Concentration ; Phenotype ; Polymerase Chain Reaction ; Sequence Deletion ; Serotonin/pharmacology/physiology ; Signal Transduction ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-02
    Description: Mammals have evolved complex developmental pathways to generate a large repertoire of B and T lymphocytes capable of mounting effective immune responses. Analysis of natural and engineered immunodeficiencies constitutes a powerful approach to delineating these pathways and identifying the molecular sensors that couple the survival of developing lymphocytes to the achievement of successful gene rearrangements at the loci coding for B and T cell antigen receptors. Besides identifying cytokines, growth factors, and transcription factors involved in lymphocyte development, genetic analysis also makes it possible to organize most of these protagonists into gene networks that control critical events in the life of developing lymphocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fischer, A -- Malissen, B -- New York, N.Y. -- Science. 1998 Apr 10;280(5361):237-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite INSERM U.429, Hopital Necker-Enfants Malades 149, Rue de Sevres, 75743, Paris Cedex 15, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9535646" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/cytology/*immunology ; Cytokines/physiology ; Gene Rearrangement, T-Lymphocyte ; Gene Transfer Techniques ; Humans ; Immunologic Deficiency Syndromes/genetics/*immunology ; Mice ; Mutagenesis ; *Mutation ; Receptors, Antigen, B-Cell/genetics/immunology/metabolism ; Receptors, Antigen, T-Cell, alpha-beta/genetics/immunology/metabolism ; Signal Transduction ; T-Lymphocytes/cytology/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-09-22
    Description: Activity-independent and activity-dependent mechanisms work in concert to regulate neuronal growth, ensuring the formation of accurate synaptic connections. CPG15, a protein regulated by synaptic activity, functions as a cell-surface growth-promoting molecule in vivo. In Xenopus laevis, CPG15 enhanced dendritic arbor growth in projection neurons, with no effect on interneurons. CPG15 controlled growth of neighboring neurons through an intercellular signaling mechanism that requires its glycosylphosphatidylinositol link. CPG15 may represent a new class of activity-regulated, membrane-bound, growth-promoting proteins that permit exquisite spatial and temporal control of neuronal structure.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088013/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088013/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nedivi, E -- Wu, G Y -- Cline, H T -- R29 EY011894/EY/NEI NIH HHS/ -- R29 EY011894-04/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 18;281(5384):1863-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA. nedivi@cshl.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9743502" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dendrites/*physiology/ultrastructure ; Genetic Vectors ; Glycosylphosphatidylinositols/metabolism ; Image Processing, Computer-Assisted ; Interneurons/cytology/physiology ; Ligands ; Membrane Proteins/genetics/metabolism/*physiology ; Microscopy, Confocal ; *Nerve Tissue Proteins ; Neuronal Plasticity ; Neurons/cytology/physiology ; Recombinant Proteins ; Signal Transduction ; Superior Colliculi/cytology/metabolism ; Vaccinia virus/genetics/physiology ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 1998-06-26
    Description: Upon reaching the target region, neuronal growth cones transiently search through potential targets and form synaptic connections with only a subset of these. The capricious (caps) gene may regulate these processes in Drosophila. caps encodes a transmembrane protein with leucine-rich repeats (LRRs). During the formation of neuromuscular synapses, caps is expressed in a small number of synaptic partners, including muscle 12 and the motorneurons that innervate it. Loss-of-function and ectopic expression of caps alter the target specificity of muscle 12 motorneurons, indicating a role for caps in selective synapse formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shishido, E -- Takeichi, M -- Nose, A -- New York, N.Y. -- Science. 1998 Jun 26;280(5372):2118-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9641918" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cloning, Molecular ; *Drosophila Proteins ; Drosophila melanogaster ; Gene Expression ; Insect Proteins/chemistry/genetics/*physiology ; Membrane Proteins/chemistry/genetics/*physiology ; Molecular Sequence Data ; Motor Neurons/metabolism ; Muscles/innervation/metabolism ; Mutation ; Neuromuscular Junction/*metabolism ; Phenotype ; Signal Transduction ; Synapses/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 1995-07-07
    Description: Human T cell lymphotropic virus I (HTLV-I) is the etiological agent for adult T cell leukemia and tropical spastic paraparesis (also termed HTLV-I-associated myelopathy). HTLV-I-infected peripheral blood T cells exhibit an initial phase of interleukin-2 (IL-2)-dependent growth; over time, by an unknown mechanism, the cells become IL-2-independent. Whereas the Jak kinases Jak1 and Jak3 and the signal transducer and activator of transcription proteins Stat3 and Stat5 are activated in normal T cells in response to IL-2, this signaling pathway was constitutively activated in HTLV-I-transformed cells. In HTLV-I-infected cord blood lymphocytes, the transition from IL-2-dependent to IL-2-independent growth correlated with the acquisition of a constitutively activated Jak-STAT pathway, which suggests that this pathway participates in HTLV-I-mediated T cell transformation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Migone, T S -- Lin, J X -- Cereseto, A -- Mulloy, J C -- O'Shea, J J -- Franchini, G -- Leonard, W J -- New York, N.Y. -- Science. 1995 Jul 7;269(5220):79-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7604283" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Line, Transformed ; *Cell Transformation, Viral ; Cells, Cultured ; DNA-Binding Proteins/*metabolism ; Enzyme Activation ; Fetal Blood/cytology ; Human T-lymphotropic virus 1/*physiology ; Humans ; Interleukin-2/pharmacology ; Janus Kinase 1 ; Janus Kinase 3 ; *Milk Proteins ; Molecular Sequence Data ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Receptors, Interleukin-2/metabolism ; STAT3 Transcription Factor ; STAT5 Transcription Factor ; Signal Transduction ; T-Lymphocytes/metabolism/*virology ; Trans-Activators/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 1995-03-31
    Description: Members of the interleukin-6 family of cytokines bind to and activate receptors that contain a common subunit, gp130. This leads to the activation of Stat3 and Stat1, two cytoplasmic signal transducers and activators of transcription (STATs), by tyrosine phosphorylation. Serine phosphorylation of Stat3 was constitutive and was enhanced by signaling through gp130. In cells of lymphoid and neuronal origins, inhibition of serine phosphorylation prevented the formation of complexes of DNA with Stat3-Stat3 but not with Stat3-Stat1 or Stat1-Stat1 dimers. In vitro serine dephosphorylation of Stat3 also inhibited DNA binding of Stat3-Stat3. The requirement of serine phosphorylation for Stat3-Stat3.DNA complex formation was inversely correlated with the affinity of Stat3-Stat3 for the binding site. Thus, serine phosphorylation appears to enhance or to be required for the formation of stable Stat3-Stat3.DNA complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, X -- Blenis, J -- Li, H C -- Schindler, C -- Chen-Kiang, S -- CA46595/CA/NCI NIH HHS/ -- HL 21006/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1995 Mar 31;267(5206):1990-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7701321" target="_blank"〉PubMed〈/a〉
    Keywords: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Cell Nucleus/metabolism ; Ciliary Neurotrophic Factor ; Cytoplasm/metabolism ; DNA/metabolism ; DNA-Binding Proteins/*metabolism ; Humans ; Interleukin-6/metabolism/*pharmacology ; Isoquinolines/pharmacology ; Mice ; Molecular Sequence Data ; Nerve Tissue Proteins/pharmacology ; Phosphorylation ; Piperazines/pharmacology ; *Promoter Regions, Genetic ; STAT1 Transcription Factor ; STAT3 Transcription Factor ; Serine/*metabolism ; Signal Transduction ; Threonine/metabolism ; Trans-Activators/*metabolism ; Tumor Cells, Cultured ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 1995-11-17
    Description: In the yeast Saccharomyces cerevisiae, Ras regulates adenylate cyclase, which is essential for progression through the G1 phase of the cell cycle. However, even when the adenosine 3',5'-monophosphate (cAMP) pathway was bypassed, the double disruption of RAS1 and RAS2 resulted in defects in growth at both low and high temperatures. Furthermore, the simultaneous disruption of RAS1, RAS2, and the RAS-related gene RSR1 was lethal at any temperature. The triple-disrupted cells were arrested late in the mitotic (M) phase, which was accompanied by an accumulation of cells with divided chromosomes and sustained histone H1 kinase activity. The lethality of the triple disruption was suppressed by the multicopies of CDC5, CDC15, DBF2, SPO12, and TEM1, all of which function in the completion of the M phase. Mammalian ras also suppressed the lethality, which suggests that a similar signaling pathway exists in higher eukaryotes. These results demonstrate that S. cerevisiae Ras functions in the completion of the M phase in a manner independent of the Ras-cAMP pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morishita, T -- Mitsuzawa, H -- Nakafuku, M -- Nakamura, S -- Hattori, S -- Anraku, Y -- New York, N.Y. -- Science. 1995 Nov 17;270(5239):1213-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biochemistry and Cellular Biology, National Institute of Neuroscience, Tokyo, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7502049" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/genetics/metabolism ; Fungal Proteins/*genetics/physiology ; GTP Phosphohydrolases/genetics/physiology ; Genes, Fungal ; Genes, Suppressor ; *Genes, ras ; *Mitosis ; Mutation ; Phenotype ; Saccharomyces cerevisiae/*cytology/genetics/growth & development ; *Saccharomyces cerevisiae Proteins ; Signal Transduction ; Temperature ; *rab GTP-Binding Proteins ; ras Proteins/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-08-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roush, W -- New York, N.Y. -- Science. 1995 Aug 11;269(5225):753.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7638582" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/*genetics ; Cloning, Molecular ; *Drosophila Proteins ; Drosophila melanogaster/cytology/embryology/*genetics ; *Genes, Insect ; Peptides/genetics ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-07-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, J -- New York, N.Y. -- Science. 1995 Jul 14;269(5221):161.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7618076" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Interferon-gamma/*physiology ; Mice ; Receptors, Interferon/analysis ; Signal Transduction ; Th1 Cells/*immunology ; Th2 Cells/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 1995-04-21
    Description: Fibroblast growth factors (FGFs) require a polysaccharide cofactor, heparin or heparan sulfate (HS), for receptor binding and activation. To probe the molecular mechanism by which heparin or HS (heparin/HS) activates FGF, small nonsulfated oligosaccharides found within heparin/HS were assayed for activity. These synthetic and isomerically pure compounds can activate the FGF signaling pathway. The crystal structures of complexes between FGF and these heparin/HS oligosaccharides reveal several binding sites on FGF and constrain possible mechanisms by which heparin/HS can activate the FGF receptor. These studies establish a framework for the molecular design of compounds capable of modulating FGF activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ornitz, D M -- Herr, A B -- Nilsson, M -- Westman, J -- Svahn, C M -- Waksman, G -- CA60673/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1995 Apr 21;268(5209):432-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7536345" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Carbohydrate Sequence ; Cell Line ; Crystallization ; Fibroblast Growth Factor 1/chemistry/*metabolism ; Fibroblast Growth Factor 2/*metabolism ; Heparin/metabolism/*pharmacology ; Heparitin Sulfate/chemistry/*pharmacology ; Mitogens/pharmacology ; Molecular Sequence Data ; Oligosaccharides/chemistry/metabolism/*pharmacology ; Receptors, Fibroblast Growth Factor/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-09-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parton, R G -- Simons, K -- New York, N.Y. -- Science. 1995 Sep 8;269(5229):1398-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7660120" target="_blank"〉PubMed〈/a〉
    Keywords: Carrier Proteins/*chemistry/physiology ; Caveolin 1 ; *Caveolins ; Cell Membrane/chemistry/*ultrastructure ; Glycosphingolipids/*chemistry/physiology ; Glycosylphosphatidylinositols/chemistry/physiology ; Lymphocytes/ultrastructure ; Membrane Lipids/*chemistry/physiology ; Membrane Proteins/*chemistry/physiology ; Signal Transduction ; Solubility
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-08-04
    Description: Genetic networks with tens to hundreds of genes are difficult to analyze with currently available techniques. Because of the many parallels in the function of these biochemically based genetic circuits and electrical circuits, a hybrid modeling approach is proposed that integrates conventional biochemical kinetic modeling within the framework of a circuit simulation. The circuit diagram of the bacteriophage lambda lysislysogeny decision circuit represents connectivity in signal paths of the biochemical components. A key feature of the lambda genetic circuit is that operons function as active integrated logic components and introduce signal time delays essential for the in vivo behavior of phage lambda.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McAdams, H H -- Shapiro, L -- New York, N.Y. -- Science. 1995 Aug 4;269(5224):650-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Beckman Center, Stanford University School of Medicine 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7624793" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriolysis ; Bacteriophage lambda/*genetics/physiology ; *Computer Simulation ; DNA Nucleotidyltransferases/genetics/metabolism ; *DNA-Binding Proteins ; Feedback ; *Gene Expression Regulation, Viral ; Integrases ; Lysogeny/*genetics ; Mathematics ; *Models, Genetic ; *Operon ; Promoter Regions, Genetic ; RNA, Messenger/genetics/metabolism ; RNA, Viral/genetics/metabolism ; Repressor Proteins/genetics/metabolism ; Signal Transduction ; Software ; Terminator Regions, Genetic ; Transcription Factors/genetics/metabolism ; Transcription, Genetic ; Viral Proteins/genetics/metabolism ; Viral Regulatory and Accessory Proteins ; Virus Activation ; Virus Integration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-07-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hall, Z W -- New York, N.Y. -- Science. 1995 Jul 21;269(5222):362-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7618101" target="_blank"〉PubMed〈/a〉
    Keywords: Agrin/physiology ; Amino Acid Sequence ; Animals ; Basement Membrane/metabolism ; Laminin/*physiology ; Molecular Sequence Data ; Motor Neurons/*physiology ; Nerve Regeneration ; Neurites/physiology ; Neuromuscular Junction/*physiology ; Oligopeptides/physiology ; Receptors, Cholinergic/metabolism ; Signal Transduction ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-01-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J -- New York, N.Y. -- Science. 1995 Jan 27;267(5197):459-60.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7824945" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/immunology ; Autoimmune Diseases/immunology ; Graft Rejection ; Humans ; Ligands ; Lymphocyte Activation ; Membrane Proteins/metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Receptors, Antigen, T-Cell/chemistry/*immunology/metabolism ; Signal Transduction ; T-Lymphocytes/*immunology ; ZAP-70 Protein-Tyrosine Kinase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 1995-09-22
    Description: The N-methyl-D-aspartate (NMDA) receptor subserves synaptic glutamate-induced transmission and plasticity in central neurons. The yeast two-hybrid system was used to show that the cytoplasmic tails of NMDA receptor subunits interact with a prominent postsynaptic density protein PSD-95. The second PDZ domain in PSD-95 binds to the seven-amino acid, COOH-terminal domain containing the terminal tSXV motif (where S is serine, X is any amino acid, and V is valine) common to NR2 subunits and certain NR1 splice forms. Transcripts encoding PSD-95 are expressed in a pattern similar to that of NMDA receptors, and the NR2B subunit co-localizes with PSD-95 in cultured rat hippocampal neurons. The interaction of these proteins may affect the plasticity of excitatory synapses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kornau, H C -- Schenker, L T -- Kennedy, M B -- Seeburg, P H -- NS-28710/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1995 Sep 22;269(5231):1737-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology (ZMBH), University of Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7569905" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cells, Cultured ; Cytoplasm/chemistry ; Genes, Reporter ; Hippocampus/*metabolism ; Intracellular Signaling Peptides and Proteins ; Membrane Proteins ; Molecular Sequence Data ; Nerve Tissue Proteins/chemistry/genetics/*metabolism ; Neuronal Plasticity ; Neurons/*metabolism ; RNA Splicing ; Rats ; Receptors, N-Methyl-D-Aspartate/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 1995-08-25
    Description: Vulval induction during Caenorhabditis elegans development is mediated by LET-23, a homolog of the mammalian epidermal growth factor receptor tyrosine kinase. The sli-1 gene is a negative regulator of LET-23 and is shown here to encode a protein similar to c-Cbl, a mammalian proto-oncoprotein. SLI-1 and c-Cbl share approximately 55 percent amino acid identity over a stretch of 390 residues, which includes a C3HC4 zinc-binding motif known as the RING finger, and multiple consensus binding sites for Src homology 3 (SH3) domains. SLI-1 and c-Cbl may define a new class of proteins that modify receptor tyrosine kinase-mediated signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoon, C H -- Lee, J -- Jongeward, G D -- Sternberg, P W -- New York, N.Y. -- Science. 1995 Aug 25;269(5227):1102-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, California Institute of Technology, Pasadena 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7652556" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Caenorhabditis elegans/*genetics/growth & development ; *Caenorhabditis elegans Proteins ; Conserved Sequence ; DNA, Complementary/genetics ; Female ; *Genes, Helminth ; *Genes, Regulator ; Helminth Proteins/chemistry/*genetics/metabolism ; Humans ; Molecular Sequence Data ; Mutation ; Proto-Oncogene Proteins/chemistry/*genetics ; Proto-Oncogene Proteins c-cbl ; Receptor, Epidermal Growth Factor/metabolism ; Sequence Alignment ; Signal Transduction ; *Ubiquitin-Protein Ligases ; Vulva/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 1995-02-10
    Description: Integrin receptors mediate cell adhesion, signal transduction, and cytoskeletal organization. How a single transmembrane receptor can fulfill multiple functions was clarified by comparing roles of receptor occupancy and aggregation. Integrin occupancy by monovalent ligand induced receptor redistribution, but minimal tyrosine phosphorylation signaling or cytoskeletal protein redistribution. Aggregation of integrins by noninhibitory monoclonal antibodies on beads induced intracellular accumulations of pp125FAK and tensin, as well as phosphorylation, but no accumulation of other cytoskeletal proteins such as talin. Combining antibody-mediated clustering with monovalent ligand occupancy induced accumulation of seven cytoskeletal proteins, including alpha-actinin, talin, and F-actin, thereby mimicking multivalent interactions with fibronectin or polyvalent peptides. Integrins therefore mediate a complex repertoire of functions through the distinct effects of receptor aggregation, receptor occupancy, or both together.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyamoto, S -- Akiyama, S K -- Yamada, K M -- New York, N.Y. -- Science. 1995 Feb 10;267(5199):883-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Developmental Biology, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892-4370.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7846531" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal ; Cell Adhesion Molecules/metabolism ; Cell Membrane/*metabolism ; Cells, Cultured ; Cytoskeletal Proteins/*metabolism ; Focal Adhesion Kinase 1 ; Focal Adhesion Protein-Tyrosine Kinases ; Humans ; Integrins/*physiology ; Ligands ; Microfilament Proteins/metabolism ; Molecular Sequence Data ; Oligopeptides/metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Signal Transduction ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 1995-10-20
    Description: The Saccharomyces cerevisiae AXL1 gene product Axl1p shares homology with the insulin-degrading enzyme family of endoproteases. Yeast axl1 mutants showed a defect in a-factor pheromone secretion, and a probable site of processing by Axl1p was identified within the a-factor precursor. In addition, Axl1p appears to function as a morphogenetic determinant for axial bud site selection. Amino acid substitutions within the presumptive active site of Axl1p caused defects in propheromone processing but failed to perturb bud site selection. Thus, Axl1p has been shown to participate in the dual regulation of distinct signaling pathways, and a member of the insulinase family has been implicated in propeptide processing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adames, N -- Blundell, K -- Ashby, M N -- Boone, C -- New York, N.Y. -- Science. 1995 Oct 20;270(5235):464-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7569998" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Membrane/metabolism ; Cloning, Molecular ; Fungal Proteins/chemistry/genetics/metabolism/*physiology ; Genes, Fungal ; Insulysin/chemistry/genetics/*physiology ; Lipoproteins/genetics/*metabolism ; Metalloendopeptidases ; Molecular Sequence Data ; Morphogenesis ; Mutagenesis, Site-Directed ; Phenotype ; Pheromones/genetics/*metabolism ; Protein Precursors/genetics/*metabolism ; Protein Processing, Post-Translational ; Saccharomyces cerevisiae/cytology/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-04-21
    Description: Fas is a cell surface receptor that controls a poorly understood signal transduction pathway that leads to cell death by means of apoptosis. A protein tyrosine phosphatase, FAP-1, capable of interacting with the cytosolic domain of Fas, was identified. The carboxyl terminal 15 amino acids of Fas are necessary and sufficient for interaction with FAP-1. FAP-1 expression is highest in tissues and cell lines that are relatively resistant to Fas-mediated cytotoxicity. Gene transfer-mediated elevations in FAP-1 partially abolished Fas-induced apoptosis in a T cell line. These findings are consistent with an inhibitory effect of FAP-1 on Fas signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, T -- Irie, S -- Kitada, S -- Reed, J C -- New York, N.Y. -- Science. 1995 Apr 21;268(5209):411-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉La Jolla Cancer Research Foundation, Oncogene and Tumor Suppressor Gene Program, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7536343" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD95 ; Antigens, Surface/genetics/*metabolism ; Apoptosis ; Base Sequence ; Cell Line ; Cloning, Molecular ; DNA, Complementary/genetics ; Humans ; Mice ; Molecular Sequence Data ; Protein Tyrosine Phosphatases/genetics/*metabolism ; Receptors, Cell Surface/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; T-Lymphocytes/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 1995-09-22
    Description: Fertilization is initiated by the species-specific binding of sperm to the extracellular coat of the egg. One sperm receptor for the mouse egg is beta-1,4-galactosyltransferase (GalTase), which binds O-linked oligosaccharides on the egg coat glycoprotein ZP3. ZP3 binding induces acrosomal exocytosis through the activation of a pertussis toxin-sensitive heterotrimeric guanine nucleotide-binding protein (G protein). The cytoplasmic domain of sperm surface GalTase bound to and activated a heterotrimeric G protein complex that contained the Gi alpha subunit. Aggregation of GalTase by multivalent ligands elicited G protein activation. Sperm from transgenic mice that overexpressed GalTase had higher rates of G protein activation than did wild-type sperm, which rendered transgenic sperm hypersensitive to their ZP3 ligand. Thus, the cytoplasmic domain of cell surface GalTase appears to enable it to function as a signal-transducing receptor for extracellular oligosaccharide ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gong, X -- Dubois, D H -- Miller, D J -- Shur, B D -- R01 HD22590/HD/NICHD NIH HHS/ -- R01 HD23479/HD/NICHD NIH HHS/ -- T32 HD07324/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1995 Sep 22;269(5231):1718-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7569899" target="_blank"〉PubMed〈/a〉
    Keywords: Acrosome/physiology ; Adenosine Diphosphate Ribose/metabolism ; Amino Acid Sequence ; Animals ; Cell Membrane/enzymology/metabolism ; Egg Proteins/*metabolism ; GTP-Binding Proteins/*metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Ligands ; Male ; Membrane Glycoproteins/*metabolism ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; N-Acetyllactosamine Synthase/*metabolism ; Peptide Fragments/metabolism ; Pertussis Toxin ; *Receptors, Cell Surface ; Signal Transduction ; Spermatozoa/enzymology/*metabolism ; Virulence Factors, Bordetella/pharmacology ; Zona Pellucida/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 1995-07-14
    Description: CD22 is a membrane immunoglobulin (mIg)-associated protein of B cells. CD22 is tyrosine-phosphorylated when mIg is ligated. Tyrosine-phosphorylated CD22 binds and activates SHP, a protein tyrosine phosphatase known to negatively regulate signaling through mIg. Ligation of CD22 to prevent its coaggregation with mIg lowers the threshold at which mIg activates the B cell by a factor of 100. In secondary lymphoid organs, CD22 may be sequestered away from mIg through interactions with counterreceptors on T cells. Thus, CD22 is a molecular switch for SHP that may bias mIg signaling to anatomic sites rich in T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doody, G M -- Justement, L B -- Delibrias, C C -- Matthews, R J -- Lin, J -- Thomas, M L -- Fearon, D T -- GM-46524/GM/NIGMS NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1995 Jul 14;269(5221):242-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Immunology Unit, Department of Medicine, University of Cambridge, School of Clinical Medicine, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7618087" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD/*immunology/metabolism ; Antigens, Differentiation, B-Lymphocyte/*immunology/metabolism ; B-Lymphocytes/*immunology ; *Cell Adhesion Molecules ; Cells, Cultured ; Humans ; Immunoglobulin M/immunology ; Intracellular Signaling Peptides and Proteins ; *Lectins ; *Lymphocyte Activation ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 ; Protein Tyrosine Phosphatase, Non-Receptor Type 6 ; Protein Tyrosine Phosphatases/*metabolism ; Recombinant Proteins/metabolism ; Sialic Acid Binding Ig-like Lectin 2 ; Signal Transduction ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-11-17
    Description: To analyze the rules that govern communication between eye and brain, visual responses were recorded from an intact salamander retina. Parallel observation of many retinal ganglion cells with a microelectrode array showed that nearby neurons often fired synchronously, with spike delays of less than 10 milliseconds. The frequency of such synchronous spikes exceeded the correlation expected from a shared visual stimulus up to 20-fold. Synchronous firing persisted under a variety of visual stimuli and accounted for the majority of action potentials recorded. Analysis of receptive fields showed that concerted spikes encoded information not carried by individual cells; they may represent symbols in a multineuronal code for vision.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meister, M -- Lagnado, L -- Baylor, D A -- EY01543/EY/NEI NIH HHS/ -- EY05750/EY/NEI NIH HHS/ -- EY10020/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1995 Nov 17;270(5239):1207-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7502047" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; In Vitro Techniques ; Microelectrodes ; Photic Stimulation ; Retinal Ganglion Cells/*physiology ; Signal Transduction ; Urodela ; Vision, Ocular/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-12-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Theologis, A -- New York, N.Y. -- Science. 1995 Dec 15;270(5243):1774.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Gene Expression Center, Albany, CA 94710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8525365" target="_blank"〉PubMed〈/a〉
    Keywords: Ethylenes/*metabolism ; Plant Proteins/metabolism ; Plants/*metabolism ; Protein Kinases/metabolism ; Receptors, Cell Surface/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-02-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉ole-MoiYoi, O K -- New York, N.Y. -- Science. 1995 Feb 10;267(5199):834-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉International Livestock Research Institute (ILRI), Nairobi, Kenya.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7846527" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Casein Kinase II ; Cattle ; Cell Division ; Cell Transformation, Neoplastic ; Lymphocyte Activation ; Lymphoma/etiology ; Mice ; Mice, Transgenic ; Protein-Serine-Threonine Kinases/*metabolism ; Signal Transduction ; T-Lymphocytes/enzymology/*parasitology/physiology ; Theileria parva/enzymology/*physiology ; Theileriasis/*enzymology/parasitology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 1995-01-06
    Description: A biosensor system based on the response of living cells was demonstrated that can detect specific components of a complex mixture fractionated by a microcolumn separation technique. This system uses ligand-receptor binding and signal-transduction pathways to biochemically amplify the presence of an analyte after electrophoretic separation. The transduced signal was measured by means of two approaches: (i) fluorescence determination of intracellular calcium concentrations in one or more rat PC-12 cells and (ii) measurement of transmembrane current in a Xenopus laevis oocyte microinjected with messenger RNA that encodes a specific receptor. This analysis system has the potential to identify biologically active ligands present in a complex mixture with exceptional sensitivity and selectivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shear, J B -- Fishman, H A -- Allbritton, N L -- Garigan, D -- Zare, R N -- Scheller, R H -- MH45324-05/MH/NIMH NIH HHS/ -- MH45423-03/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1995 Jan 6;267(5194):74-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7809609" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/analysis/isolation & purification ; Adenosine Triphosphate/analysis/isolation & purification ; Animals ; *Biosensing Techniques ; Bradykinin/analysis/isolation & purification ; Calcium/analysis ; Chemistry Techniques, Analytical/*methods ; Electrophoresis ; Ligands ; Microscopy, Fluorescence ; Oocytes ; PC12 Cells ; Patch-Clamp Techniques ; Rats ; Reproducibility of Results ; Sensitivity and Specificity ; Serotonin/analysis/isolation & purification ; Signal Transduction ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 1995-03-31
    Description: The crystal structure of the extracellular portion of the beta chain of a murine T cell antigen receptor (TCR), determined at a resolution of 1.7 angstroms, shows structural homology to immunoglobulins. The structure of the first and second hypervariable loops suggested that, in general, they adopt more restricted sets of conformations in TCR beta chains than those found in immunoglobulins; the third hypervariable loop had certain structural characteristics in common with those of immunoglobulin heavy chain variable domains. The variable and constant domains were in close contact, presumably restricting the flexibility of the beta chain. This may facilitate signal transduction from the TCR to the associated CD3 molecules in the TCR-CD3 complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bentley, G A -- Boulot, G -- Karjalainen, K -- Mariuzza, R A -- New York, N.Y. -- Science. 1995 Mar 31;267(5206):1984-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite d'Immunologie Structurale (CNRS URA 359), Institut Pasteur, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7701320" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Computer Graphics ; Crystallography, X-Ray ; Immunoglobulin Variable Region/chemistry ; Mice ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Receptor-CD3 Complex, Antigen, T-Cell/chemistry ; Receptors, Antigen, T-Cell, alpha-beta/*chemistry ; Sequence Alignment ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 1995-06-09
    Description: A molecule isolated from the cerebrospinal fluid of sleep-deprived cats has been chemically characterized and identified as cis-9,10-octadecenoamide. Other fatty acid primary amides in addition to cis-9,10-octadecenoamide were identified as natural constituents of the cerebrospinal fluid of cat, rat, and human, indicating that these compounds compose a distinct family of brain lipids. Synthetic cis-9,10-octadecenoamide induced physiological sleep when injected into rats. Together, these results suggest that fatty acid primary amides may represent a previously unrecognized class of biological signaling molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cravatt, B F -- Prospero-Garcia, O -- Siuzdak, G -- Gilula, N B -- Henriksen, S J -- Boger, D L -- Lerner, R A -- 1 S10 RR07273-01/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1995 Jun 9;268(5216):1506-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Scripps Research Institute, La Jolla, CA 92307, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7770779" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Brain Chemistry ; Cats ; Cerebrosides/*cerebrospinal fluid/chemistry/pharmacology ; Humans ; Lipids/*cerebrospinal fluid/chemistry/pharmacology ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Molecular Weight ; Oleic Acids/*cerebrospinal fluid/chemistry/pharmacology ; Rats ; Signal Transduction ; *Sleep/drug effects ; Spectrometry, Mass, Fast Atom Bombardment ; Spectrophotometry, Infrared
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-04-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeFranco, A L -- Law, D A -- New York, N.Y. -- Science. 1995 Apr 14;268(5208):263-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California at San Francisco 94143-0552, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7716518" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibody Formation ; *Antigens, CD ; B-Lymphocytes/*immunology/metabolism ; Intracellular Signaling Peptides and Proteins ; Lymphocyte Activation ; Mice ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 ; Protein Tyrosine Phosphatase, Non-Receptor Type 6 ; Protein Tyrosine Phosphatases/*metabolism ; Receptors, Antigen, B-Cell/metabolism ; Receptors, IgG/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 1995-03-03
    Description: In response to specific ligands, various STAT proteins (signal transducers and activators of transcription) are phosphorylated on tyrosine by Jak protein kinases and translocated to the nucleus to direct gene transcription. Selection of a STAT at the interferon gamma receptor as well as specific STAT dimer formation depended on the presence of particular SH2 groups (phosphotyrosine-binding domains), whereas the amino acid sequence surrounding the phosphorylated tyrosine on the STAT could vary. Thus, SH2 groups in STAT proteins may play crucial roles in specificity at the receptor kinase complex and in subsequent dimerization, whereas the kinases are relatively nonspecific.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heim, M H -- Kerr, I M -- Stark, G R -- Darnell, J E Jr -- AI32489/AI/NIAID NIH HHS/ -- AI34420/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1995 Mar 3;267(5202):1347-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Cell Biology, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7871432" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; DNA-Binding Proteins/chemistry/*metabolism ; Interferon-alpha/*pharmacology ; Interferon-gamma/*pharmacology ; Janus Kinase 1 ; Janus Kinase 2 ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Proteins/metabolism ; *Proto-Oncogene Proteins ; Receptors, Interferon/metabolism ; Recombinant Fusion Proteins/metabolism ; STAT1 Transcription Factor ; Signal Transduction ; Trans-Activators/chemistry/*metabolism ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-05-05
    Description: Plant breeders have used disease resistance genes (R genes) to control plant disease since the turn of the century. Molecular cloning of R genes that enable plants to resist a diverse range of pathogens has revealed that the proteins encoded by these genes have several features in common. These findings suggest that plants may have evolved common signal transduction mechanisms for the expression of resistance to a wide range of unrelated pathogens. Characterization of the molecular signals involved in pathogen recognition and of the molecular events that specify the expression of resistance may lead to novel strategies for plant disease control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Staskawicz, B J -- Ausubel, F M -- Baker, B J -- Ellis, J G -- Jones, J D -- New York, N.Y. -- Science. 1995 May 5;268(5211):661-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, University of California, Berkeley 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7732374" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Genes, Plant ; Genetic Engineering ; Immunity, Innate/genetics ; Molecular Sequence Data ; Plant Diseases/*genetics/microbiology ; Signal Transduction ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 1995-06-09
    Description: In mice lacking the interleukin-2 receptor beta chain (IL-2R beta), T cells were shown to be spontaneously activated, resulting in exhaustive differentiation of B cells into plasma cells and the appearance of high serum concentrations of immunoglobulins G1 and E as well as autoantibodies that cause hemolytic anemia. Marked infiltrative granulocytopoiesis was also apparent, and the animals died after about 12 weeks. Depletion of CD4+ T cells in mutant mice rescued B cells without reversion of granulocyte abnormalities. T cells did not proliferate in response to polyclonal activators, nor could antigen-specific immune responses be elicited. Thus, IL-2R beta is required to keep the activation programs of T cells under control, to maintain homeostasis, and to prevent autoimmunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suzuki, H -- Kundig, T M -- Furlonger, C -- Wakeham, A -- Timms, E -- Matsuyama, T -- Schmits, R -- Simard, J J -- Ohashi, P S -- Griesser, H -- New York, N.Y. -- Science. 1995 Jun 9;268(5216):1472-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Amgen Institute, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7770771" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autoantibodies/blood ; *Autoimmunity ; B-Lymphocytes/immunology ; CD4-Positive T-Lymphocytes/immunology ; Female ; Heterozygote ; Homozygote ; Lymph Nodes/immunology ; *Lymphocyte Activation ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Nude ; Mutagenesis, Insertional ; Myeloproliferative Disorders/immunology ; Receptors, Interleukin-2/genetics/*physiology ; Signal Transduction ; T-Lymphocytes/*immunology ; T-Lymphocytes, Cytotoxic/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 1995-11-03
    Description: Males with X-linked severe combined immunodeficiency (XSCID) have defects in the common cytokine receptor gamma chain (gamma c) gene that encodes a shared, essential component of the receptors of interleukin-2 (IL-2), IL-4, IL-7, IL-9, and IL-15. The Janus family tyrosine kinase Jak3 is the only signaling molecule known to be associated with gamma c, so it was hypothesized that defects in Jak3 might cause an XSCID-like phenotype. A girl with immunological features indistinguishable from those of XSCID was therefore selected for analysis. An Epstein-Barr virus (EBV)-transformed cell line derived from her lymphocytes had normal gamma c expression but lacked Jak3 protein and had greatly diminished Jak3 messenger RNA. Sequencing revealed a different mutation on each allele: a single nucleotide insertion resulting in a frame shift and premature termination in the Jak3 JH4 domain and a nonsense mutation in the Jak3 JH2 domain. The lack of Jak3 expression correlated with impaired B cell signaling, as demonstrated by the inability of IL-4 to activate Stat6 in the EBV-transformed cell line from the patient. These observations indicate that the functions of gamma c are dependent on Jak3 and that Jak3 is essential for lymphoid development and signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Russell, S M -- Tayebi, N -- Nakajima, H -- Riedy, M C -- Roberts, J L -- Aman, M J -- Migone, T S -- Noguchi, M -- Markert, M L -- Buckley, R H -- O'Shea, J J -- Leonard, W J -- M01-RR30/RR/NCRR NIH HHS/ -- R37AI18613-13/AI/NIAID NIH HHS/ -- T32 CA09058/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1995 Nov 3;270(5237):797-800.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7481768" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Lymphocytes/*immunology ; Base Sequence ; Cell Line, Transformed ; Female ; Frameshift Mutation ; Genetic Linkage ; Humans ; Infant ; Interleukin-4/pharmacology ; Janus Kinase 3 ; Molecular Sequence Data ; Phenotype ; Point Mutation ; Protein-Tyrosine Kinases/deficiency/genetics/*physiology ; RNA, Messenger/genetics/metabolism ; Receptors, Interleukin/physiology ; STAT6 Transcription Factor ; Severe Combined Immunodeficiency/*enzymology/genetics/immunology ; Signal Transduction ; T-Lymphocytes/*immunology ; Trans-Activators/metabolism ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 1995-06-23
    Description: A gene, ATM, that is mutated in the autosomal recessive disorder ataxia telangiectasia (AT) was identified by positional cloning on chromosome 11q22-23. AT is characterized by cerebellar degeneration, immunodeficiency, chromosomal instability, cancer predisposition, radiation sensitivity, and cell cycle abnormalities. The disease is genetically heterogeneous, with four complementation groups that have been suspected to represent different genes. ATM, which has a transcript of 12 kilobases, was found to be mutated in AT patients from all complementation groups, indicating that it is probably the sole gene responsible for this disorder. A partial ATM complementary DNA clone of 5.9 kilobases encoded a putative protein that is similar to several yeast and mammalian phosphatidylinositol-3' kinases that are involved in mitogenic signal transduction, meiotic recombination, and cell cycle control. The discovery of ATM should enhance understanding of AT and related syndromes and may allow the identification of AT heterozygotes, who are at increased risk of cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Savitsky, K -- Bar-Shira, A -- Gilad, S -- Rotman, G -- Ziv, Y -- Vanagaite, L -- Tagle, D A -- Smith, S -- Uziel, T -- Sfez, S -- Ashkenazi, M -- Pecker, I -- Frydman, M -- Harnik, R -- Patanjali, S R -- Simmons, A -- Clines, G A -- Sartiel, A -- Gatti, R A -- Chessa, L -- Sanal, O -- Lavin, M F -- Jaspers, N G -- Taylor, A M -- Arlett, C F -- Miki, T -- Weissman, S M -- Lovett, M -- Collins, F S -- Shiloh, Y -- HG00882/HG/NHGRI NIH HHS/ -- NS31763/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1995 Jun 23;268(5218):1749-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7792600" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Ataxia Telangiectasia/*genetics ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle ; Cell Cycle Proteins ; Chromosome Mapping ; Chromosomes, Artificial, Yeast ; *Chromosomes, Human, Pair 11 ; Cloning, Molecular ; DNA, Complementary/genetics ; DNA-Binding Proteins ; Female ; Genetic Complementation Test ; Genetic Predisposition to Disease ; Heterozygote ; Humans ; Male ; Meiosis ; Molecular Sequence Data ; Neoplasms/genetics ; Nucleic Acid Hybridization ; Phosphatidylinositol 3-Kinases ; Phosphotransferases (Alcohol Group Acceptor)/chemistry/*genetics/physiology ; *Protein-Serine-Threonine Kinases ; Proteins/chemistry/*genetics/physiology ; Radiation Tolerance ; Sequence Deletion ; Signal Transduction ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 1995-11-03
    Description: The Janus tyrosine kinases (Jaks) play a central role in signaling through cytokine receptors. Although Jak1, Jak2, and Tyk2 are widely expressed, Jak3 is predominantly expressed in hematopoietic cells and is known to associate only with the common gamma (gamma c) chain of the interleukin (IL)-2, IL-4, IL-7, IL-9, and IL-15 receptors. Homozygous mutant mice in which the Jak3 gene had been disrupted were generated by gene targeting. Jak3-deficient mice had profound reductions in thymocytes and severe B cell and T cell lymphopenia similar to severe combined immunodeficiency disease (SCID), and the residual T cells and B cells were functionally deficient. Thus, Jak3 plays a critical role in gamma c signaling and lymphoid development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nosaka, T -- van Deursen, J M -- Tripp, R A -- Thierfelder, W E -- Witthuhn, B A -- McMickle, A P -- Doherty, P C -- Grosveld, G C -- Ihle, J N -- P01 HL53749/HL/NHLBI NIH HHS/ -- P30 CA21765/CA/NCI NIH HHS/ -- R01 DK/HL42932/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1995 Nov 3;270(5237):800-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7481769" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/immunology ; Animals ; Antigens, CD/metabolism ; B-Lymphocytes/*immunology ; Chimera ; Female ; Gene Targeting ; Interleukin-7/metabolism/pharmacology ; Janus Kinase 3 ; Lymphocyte Activation ; Lymphocyte Count ; Lymphocyte Subsets/immunology ; Lymphoid Tissue/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Phenotype ; Protein-Tyrosine Kinases/genetics/*physiology ; Receptors, Interleukin/metabolism ; Receptors, Interleukin-7 ; Signal Transduction ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 1995-09-08
    Description: In situ coating of the surface of endothelial cells in rat lung with cationic colloidal silica particles was used to separate caveolae from detergent-insoluble membranes rich in glycosyl phosphatidylinositol (GPI)-anchored proteins but devoid of caveolin. Immunogold electron microscopy showed that ganglioside GM1-enriched caveolae associated with an annular plasmalemmal domain enriched in GPI-anchored proteins. The purified caveolae contained molecular components required for regulated transport, including various lipid-anchored signaling molecules. Such specialized distinct microdomains may exist separately or together in the plasma membrane to organize signaling molecules and to process surface-bound ligands differentially.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schnitzer, J E -- McIntosh, D P -- Dvorak, A M -- Liu, J -- Oh, P -- AI33372/AI/NIAID NIH HHS/ -- HL43278/HL/NHLBI NIH HHS/ -- HL52766/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1995 Sep 8;269(5229):1435-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School, Beth Israel Hospital, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7660128" target="_blank"〉PubMed〈/a〉
    Keywords: 5'-Nucleotidase/analysis ; Animals ; Caveolin 1 ; *Caveolins ; Cell Fractionation ; Cell Membrane/*chemistry/*ultrastructure ; Colloids ; Detergents ; Endothelium, Vascular/ultrastructure ; Glycosylphosphatidylinositols/*analysis ; Membrane Proteins/*analysis ; Microscopy, Immunoelectron ; Rats ; Receptors, Cell Surface/analysis ; Receptors, Urokinase Plasminogen Activator ; Signal Transduction ; Silicon Dioxide ; Solubility
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 1995-04-28
    Description: The Son of sevenless (Sos) protein functions as a guanine nucleotide transfer factor for Ras and interacts with the receptor tyrosine kinase Sevenless through the protein Drk, a homolog of mammalian Grb2. In vivo structure-function analysis revealed that the amino terminus of Sos was essential for its function in flies. A molecule lacking the amino terminus was a potent dominant negative. In contrast, a Sos fragment lacking the Drk binding sites was functional and its activity was dependent on the presence of the Sevenless receptor. Furthermore, membrane localization of Sos was independent of Drk. A possible role for Drk as an activator of Sos is discussed and a Drk-independent interaction between Sos and Sevenless is proposed that is likely mediated by the pleckstrin homology domain within the amino terminus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlovich, C A -- Bonfini, L -- McCollam, L -- Rogge, R D -- Daga, A -- Czech, M P -- Banerjee, U -- GM-07104/GM/NIGMS NIH HHS/ -- GM-08375/GM/NIGMS NIH HHS/ -- R01EY08152-06/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1995 Apr 28;268(5210):576-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Molecular Biology Institute, University of California, Los Angeles 90024, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7725106" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Membrane/metabolism ; Drosophila ; *Drosophila Proteins ; Eye Proteins/*metabolism ; Guanine Nucleotide Exchange Factors ; Insect Hormones/physiology ; Membrane Glycoproteins/*metabolism ; Membrane Proteins/chemistry/*metabolism ; Photoreceptor Cells, Invertebrate/cytology/metabolism ; Proteins/*metabolism ; Receptor Protein-Tyrosine Kinases/*metabolism ; Signal Transduction ; Son of Sevenless Proteins ; ras Guanine Nucleotide Exchange Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-06-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nowak, R -- New York, N.Y. -- Science. 1995 Jun 23;268(5218):1700-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7792589" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia/*genetics ; Ataxia Telangiectasia Mutated Proteins ; Breast Neoplasms/*genetics ; Cell Cycle Proteins ; Cell Division ; Cloning, Molecular ; DNA Damage ; DNA Repair ; DNA-Binding Proteins ; Female ; Genetic Predisposition to Disease ; Genetic Testing ; Heterozygote ; Humans ; Mutation ; Phosphatidylinositol 3-Kinases ; Phosphotransferases (Alcohol Group Acceptor)/genetics/metabolism ; *Protein-Serine-Threonine Kinases ; Proteins/*genetics ; Radiation Tolerance ; Signal Transduction ; Tumor Suppressor Proteins ; X-Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 1995-01-27
    Description: Small changes in the peptide-major histocompatibility complex (MHC) molecule ligands recognized by antigen-specific T cell receptors (TCRs) can convert fully activating complexes into partially activating or even inhibitory ones. This study examined early TCR-dependent signals induced by such partial agonists or antagonists. In contrast to typical agonist ligands, both an antagonist and several partial agonists stimulated a distinct pattern of zeta chain phosphorylation and failed to activate associated ZAP-70 kinase. These results identify a specific step in the early tyrosine phosphorylation cascade that is altered after TCR engagement with modified peptide-MHC molecule complexes. This finding may explain the different biological responses to TCR occupancy by these variant ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Madrenas, J -- Wange, R L -- Wang, J L -- Isakov, N -- Samelson, L E -- Germain, R N -- New York, N.Y. -- Science. 1995 Jan 27;267(5197):515-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7824949" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Clone Cells ; Cytochrome c Group/pharmacology ; Enzyme Activation ; Histocompatibility Antigens Class II/genetics/immunology/*pharmacology ; Interleukin-2/biosynthesis ; L Cells (Cell Line) ; Ligands ; Lymphocyte Activation ; Membrane Proteins/*metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Peptide Fragments/pharmacology ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Receptors, Antigen, T-Cell/agonists/antagonists & inhibitors/*metabolism ; Signal Transduction ; T-Lymphocytes, Helper-Inducer/*immunology ; Tyrosine/metabolism ; ZAP-70 Protein-Tyrosine Kinase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-07-28
    Description: The role of mitogen-activated protein (MAP) kinase cascades in integrating distinct upstream signals was studied in yeast. Mutants that were not able to activate PBS2 MAP kinase kinase (MAPKK; Pbs2p) at high osmolarity were characterized. Pbs2p was activated by two independent signals that emanated from distinct cell-surface osmosensors. Pbs2p was activated by MAP kinase kinase kinases (MAPKKKs) Ssk2p and Ssk22p that are under the control of the SLN1-SSK1 two-component osmosensor. Alternatively, Pbs2p was activated by a mechanism that involves the binding of its amino terminal proline-rich motif to the Src homology 3 (SH3) domain of a putative transmembrane osmosensor Sho1p.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maeda, T -- Takekawa, M -- Saito, H -- New York, N.Y. -- Science. 1995 Jul 28;269(5223):554-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7624781" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cloning, Molecular ; Enzyme Activation ; Fungal Proteins/metabolism ; Genes, Fungal ; Intracellular Signaling Peptides and Proteins ; MAP Kinase Kinase Kinases ; Mitogen-Activated Protein Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Mutation ; Osmolar Concentration ; Phosphorylation ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; *Saccharomyces cerevisiae Proteins ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 1995-04-21
    Description: Lymphocytes express multicomponent receptor complexes that mediate diverse antigen-dependent and antigen-independent responses. Despite the central role of antigen-independent events in B cell development, little is known about the mechanisms by which they are initiated. The association between the membrane immunoglobulin (Ig) M heavy chair (micron) and the Ig alpha-Ig beta heterodimer is now shown to be essential in inducing both the transition from progenitor to precursor B cells and subsequent allelic exclusion in transgenic mice. The cytoplasmic domain of Ig beta is sufficient to induce these early antigen-independent events by a mechanism that requires conserved tyrosine residues in this protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Papavasiliou, F -- Misulovin, Z -- Suh, H -- Nussenzweig, M C -- AI33890/AI/NIAID NIH HHS/ -- AI37526/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1995 Apr 21;268(5209):408-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7716544" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; *Antigens, CD ; Antigens, CD79 ; B-Lymphocytes/cytology/*immunology ; Genes, Immunoglobulin ; Humans ; Immunoglobulin mu-Chains/metabolism ; Immunoglobulins/*metabolism ; Lymphocyte Activation ; Membrane Glycoproteins/*metabolism ; Mice ; Mice, Transgenic ; Receptors, Antigen, B-Cell/*metabolism ; Recombination, Genetic ; Signal Transduction ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 1995-03-10
    Description: I kappa B-alpha inhibits transcription factor NF-kappa B by retaining it in the cytoplasm. Various stimuli, typically those associated with stress or pathogens, rapidly inactivate I kappa B-alpha. This liberates NF-kappa B to translocate to the nucleus and initiate transcription of genes important for the defense of the organism. Activation of NF-kappa B correlates with phosphorylation of I kappa B-alpha and requires the proteolysis of this inhibitor. When either serine-32 or serine-36 of I kappa B-alpha was mutated, the protein did not undergo signal-induced phosphorylation or degradation, and NF-kappa B could not be activated. These results suggest that phosphorylation at one or both of these residues is critical for activation of NF-kappa B.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, K -- Gerstberger, S -- Carlson, L -- Franzoso, G -- Siebenlist, U -- New York, N.Y. -- Science. 1995 Mar 10;267(5203):1485-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1876.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7878466" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Humans ; *I-kappa B Proteins ; Ionomycin/pharmacology ; Mice ; Molecular Sequence Data ; Mutation ; NF-kappa B/*antagonists & inhibitors/metabolism ; Phosphorylation ; Point Mutation ; Signal Transduction ; T-Lymphocytes ; Tetradecanoylphorbol Acetate/pharmacology ; Transcriptional Activation ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 1995-09-15
    Description: Integrins regulate cell growth, differentiation, and behavior in many systems. Integrin beta 1C (beta 1S) is an alternatively spliced variant of integrin beta 1 with a specific cytoplasmic domain and is expressed in several human tissues. Human beta 1c transiently expressed in mouse 10T1/2 fibroblasts showed a diffuse pattern of cell surface staining, whereas beta1 localized to focal adhesions. Moderate concentrations of beta 1C had no effect on actin stress fibers or focal adhesions, but markedly inhibited DNA synthesis. Inhibition by beta 1C mapped to the late G1 phase of the cell cycle, near the G1-S boundary. Thus, alternative splicing of beta1 results in transmission of distinct signals that may regulate growth in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meredith, J Jr -- Takada, Y -- Fornaro, M -- Languino, L R -- Schwartz, M A -- P01 HL48728/HL/NHLBI NIH HHS/ -- R01 GM47214/GM/NIGMS NIH HHS/ -- R01GM47157/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1995 Sep 15;269(5230):1570-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Vascular Biology, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7545312" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Amino Acid Sequence ; Animals ; Antigens, CD29 ; Cell Adhesion ; Cell Division ; Cell Line ; Cell Size ; DNA/biosynthesis ; *G1 Phase ; Humans ; Integrins/chemistry/genetics/*physiology ; Ligands ; Mice ; Molecular Sequence Data ; Sequence Deletion ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-03-10
    Description: Apoptosis is a morphologically distinct form of programmed cell death that plays a major role during development, homeostasis, and in many diseases including cancer, acquired immunodeficiency syndrome, and neurodegenerative disorders. Apoptosis occurs through the activation of a cell-intrinsic suicide program. The basic machinery to carry out apoptosis appears to be present in essentially all mammalian cells at all times, but the activation of the suicide program is regulated by many different signals that originate from both the intracellular and the extracellular milieu. Genetic studies in the nematode Caenorhabditis elegans and in the fruit fly Drosophila melanogaster have led to the isolation of genes that are specifically required for the induction of programmed cell death. At least some components of the apoptotic program have been conserved among worms, insects, and vertebrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steller, H -- New York, N.Y. -- Science. 1995 Mar 10;267(5203):1445-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7878463" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis/genetics/physiology ; Caenorhabditis elegans/cytology/genetics ; Cysteine Endopeptidases/genetics/metabolism ; Drosophila/cytology/genetics ; *Drosophila Proteins ; Gene Expression Regulation ; *Genes, Helminth ; *Genes, Insect ; Peptides/genetics/physiology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...