ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1991-05-17
    Description: The development of orderly connections in the mammalian visual system depends on action potentials in the optic nerve fibers, even before the retina receives visual input. In particular, it has been suggested that correlated firing of retinal ganglion cells in the same eye directs the segregation of their synaptic terminals into eye-specific layers within the lateral geniculate nucleus. Such correlations in electrical activity were found by simultaneous recording of the extracellular action potentials of up to 100 ganglion cells in the isolated retina of the newborn ferret and the fetal cat. These neurons fired spikes in nearly synchronous bursts lasting a few seconds and separated by 1 to 2 minutes of silence. Individual bursts consisted of a wave of excitation, several hundred micrometers wide, sweeping across the retina at about 100 micrometers per second. These concerted firing patterns have the appropriate spatial and temporal properties to guide the refinement of connections between the retina and the lateral geniculate nucleus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meister, M -- Wong, R O -- Baylor, D A -- Shatz, C J -- EY 05750/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1991 May 17;252(5008):939-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2035024" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/drug effects ; Aging ; Animals ; Animals, Newborn ; Calcium/pharmacology ; Cats ; Electrophysiology/methods ; Ferrets ; In Vitro Techniques ; Retina/*growth & development ; Retinal Ganglion Cells/drug effects/*physiology ; Vision, Ocular
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meister, M -- New York, N.Y. -- Science. 1994 Aug 19;265(5175):1018; author reply 1019-20.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8066437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/metabolism ; *Cell Communication ; Diffusion ; Gap Junctions/*metabolism/ultrastructure ; Oligodendroglia/metabolism ; Rabbits
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-11-17
    Description: To analyze the rules that govern communication between eye and brain, visual responses were recorded from an intact salamander retina. Parallel observation of many retinal ganglion cells with a microelectrode array showed that nearby neurons often fired synchronously, with spike delays of less than 10 milliseconds. The frequency of such synchronous spikes exceeded the correlation expected from a shared visual stimulus up to 20-fold. Synchronous firing persisted under a variety of visual stimuli and accounted for the majority of action potentials recorded. Analysis of receptive fields showed that concerted spikes encoded information not carried by individual cells; they may represent symbols in a multineuronal code for vision.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meister, M -- Lagnado, L -- Baylor, D A -- EY01543/EY/NEI NIH HHS/ -- EY05750/EY/NEI NIH HHS/ -- EY10020/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1995 Nov 17;270(5239):1207-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7502047" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; In Vitro Techniques ; Microelectrodes ; Photic Stimulation ; Retinal Ganglion Cells/*physiology ; Signal Transduction ; Urodela ; Vision, Ocular/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-09-01
    Description: The vomeronasal organ (VNO) of mammals plays an essential role in the detection of pheromones. We obtained simultaneous recordings of action potentials from large subsets of VNO neurons. These cells responded to components of urine by increasing their firing rate. This chemosensory activation required phospholipase C function. Unlike most other sensory neurons, VNO neurons did not adapt under prolonged stimulus exposure. The full time course of the VNO spiking response is captured by a simple quantitative model of ligand binding. Many individual VNO neurons were strongly selective for either male or female mouse urine, with the effective concentrations differing as much as a thousandfold. These results establish a framework for understanding sensory coding in the vomeronasal system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holy, T E -- Dulac, C -- Meister, M -- New York, N.Y. -- Science. 2000 Sep 1;289(5484):1569-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA. timholy@mcb.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10968796" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Chemoreceptor Cells/metabolism ; Female ; Kinetics ; Ligands ; Male ; Mice ; Mice, Inbred DBA ; Models, Biological ; Neurons, Afferent/*physiology ; Pheromones/physiology/*urine ; Potassium/pharmacology ; Signal Transduction ; Type C Phospholipases/antagonists & inhibitors/metabolism ; Urine ; Vomeronasal Organ/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-02-23
    Description: Natural vision is a highly dynamic process. Frequent body, head, and eye movements constantly bring new images onto the retina for brief periods, challenging our understanding of the neural code for vision. We report that certain retinal ganglion cells encode the spatial structure of a briefly presented image in the relative timing of their first spikes. This code is found to be largely invariant to stimulus contrast and robust to noisy fluctuations in response latencies. Mechanistically, the observed response characteristics result from different kinetics in two retinal pathways ("ON" and "OFF") that converge onto ganglion cells. This mechanism allows the retina to rapidly and reliably transmit new spatial information with the very first spikes emitted by a neural population.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gollisch, Tim -- Meister, Markus -- R01 EY014737/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2008 Feb 22;319(5866):1108-11. doi: 10.1126/science.1149639.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18292344" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Ambystoma ; Animals ; Kinetics ; Models, Neurological ; Photic Stimulation ; Reaction Time ; Retinal Bipolar Cells/physiology ; Retinal Ganglion Cells/*physiology ; Saccades ; Synapses/physiology ; Vision, Ocular/*physiology ; Visual Pathways/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-08-01
    Description: Targeting gene disruptions in complex genomes relies on imprecise repair by the non-homologous end-joining DNA pathway, creating mutagenic insertions or deletions (indels) at the break point. DNA end-processing enzymes are often co-expressed with genome-editing nucleases to enhance the frequency of indels, as the compatible cohesive ends generated by the nucleases can be precisely repaired, leading to a cycle of cleavage and non-mutagenic repair. Here, we present an alternative strategy to bias repair toward gene disruption by fusing two different nuclease active sites from I-TevI (a GIY-YIG enzyme) and I-OnuI E2 (an engineered meganuclease) into a single polypeptide chain. In vitro , the MegaTev enzyme generates two double-strand breaks to excise an intervening 30-bp fragment. In HEK 293 cells, we observe a high frequency of gene disruption without co-expression of DNA end-processing enzymes. Deep sequencing of disrupted target sites revealed minimal processing, consistent with the MegaTev sequestering the double-strand breaks from the DNA repair machinery. Off-target profiling revealed no detectable cleavage at sites where the I-TevI CNNNG cleavage motif is not appropriately spaced from the I-OnuI binding site. The MegaTev enzyme represents a small, programmable nuclease platform for extremely specific genome-engineering applications.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1971-01-01
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1972-01-01
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: 〈p〉We report the reproductive strategy of the nematode 〈i〉Mesorhabditis belari〈/i〉. This species produces only 9% males, whose sperm is necessary to fertilize and activate the eggs. However, most of the fertilized eggs develop without using the sperm DNA and produce female individuals. Only in 9% of eggs is the male DNA utilized, producing sons. We found that mixing of parental genomes only gives rise to males because the Y-bearing sperm of males are much more competent than the X-bearing sperm for penetrating the eggs. In this previously unrecognized strategy, asexual females produce few sexual males whose genes never reenter the female pool. Here, production of males is of interest only if sons are more likely to mate with their sisters. Using game theory, we show that in this context, the production of 9% males by 〈i〉M. belari〈/i〉 females is an evolutionary stable strategy.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2002-02-02
    Description: The mouse vomeronasal organ (VNO) is thought to mediate social behaviors and neuroendocrine changes elicited by pheromonal cues. The molecular mechanisms underlying the sensory response to pheromones and the behavioral repertoire induced through the VNO are not fully characterized. Using the tools of mouse genetics and multielectrode recording, we demonstrate that the sensory activation of VNO neurons requires TRP2, a putative ion channel of the transient receptor potential family that is expressed exclusively in these neurons. Moreover, we show that male mice deficient in TRP2 expression fail to display male-male aggression, and they initiate sexual and courtship behaviors toward both males and females. Our study suggests that, in the mouse, sensory activation of the VNO is essential for sex discrimination of conspecifics and thus ensures gender-specific behavior.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stowers, Lisa -- Holy, Timothy E -- Meister, Markus -- Dulac, Catherine -- Koentges, Georgy -- DC03903/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 22;295(5559):1493-500. Epub 2002 Jan 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11823606" target="_blank"〉PubMed〈/a〉
    Keywords: *Aggression ; Animals ; Chemoreceptor Cells/*physiology ; Crosses, Genetic ; Cues ; Electrophysiology ; Electroporation ; Female ; Gene Targeting ; Male ; Maternal Behavior ; Membrane Proteins/*genetics/*physiology ; Mice ; Mice, Inbred C57BL ; Mutation ; Neurons, Afferent/*physiology ; Odors ; Olfactory Bulb/physiology ; Olfactory Mucosa/physiology ; Pheromones/*physiology/urine ; Sex Characteristics ; *Sexual Behavior, Animal ; Signal Transduction ; TRPC Cation Channels ; Video Recording ; Vomeronasal Organ/*innervation/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...