ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Press
  • International Union of Crystallography (IUCr)
  • Wiley
  • 2020-2024  (147)
  • 1965-1969
  • 2022  (147)
  • 1
    Publication Date: 2023-01-04
    Description: Plankton is a massive and phylogenetically diverse group of thousands of prokaryotes, protists (unicellular eukaryotic organisms), and metazoans (multicellular eukaryotic organisms; Fig. 1). Plankton functional diversity is at the core of various ecological processes, including productivity, carbon cycling and sequestration, nutrient cycling (Falkowski 2012), interspecies interactions, and food web dynamics and structure (D'Alelio et al. 2016). Through these functions, plankton play a critical role in the health of the coastal and open ocean and provide essential ecosystem services. Yet, at present, our understanding of plankton dynamics is insufficient to project how climate change and other human-driven impacts affect the functional diversity of plankton. That limits our ability to predict how critical ecosystem services will change in the future and develop strategies to adapt to these changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-04
    Description: This study investigates the mesoscale dynamics involved in the 8–11 October 2008 unseasonably strong African dust episode, during which dust was transported to the Iberian Peninsula (IP). We employ observational datasets and a high-resolution Weather Research and Forecasting model coupled with Chemistry simulations. The analysis shows that during 0900–1200 UTC 9 October, a mesoscale convective system developed over the Atlas Mountains and resulted in a southwestward propagating convective cold pool outflow on the southern foothills of the Anti-Atlas, which lifted dust from the source region. Between 1200 and 1800 UTC 9 October, new moist convection was enhanced over the Atlas Mountains due to intensifying confluence among a heat low, moist southwesterly Atlantic sea-breeze front, and northeasterly flow associated with the convective cold pool near western Algeria. This new moist convection intensified the strength of the convective cold pool outflow and haboob, both of which continued propagating southwestward. At 1200 UTC 10 October, the low-pressure system migrated poleward on the southern slopes of the Anti-Atlas Mountains in association with a mountain-plains solenoidal circulation due to the daytime differential heating between the southern slopes of the Anti-Atlas and nearby atmosphere. The deepening low-pressure and strengthening Atlantic sea-breeze redirected an equatorward advancing dust plume into the poleward direction. The dust plume ultimately crossed the Saharan Atlas Mountains on 11 October and finally impacted the IP. Key Points: - WRF-Chem simulation of an unseasonably strong haboob on the southern slopes of the Atlas Mountains - The equatorward-advancing dust plume was recirculated in the poleward direction by an Atlantic sea-breeze front - The Atlantic sea-breeze front and an intensified upper-level cutoff vortex are instrumental for dust transport over the Iberian Peninsula
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-24
    Description: Despite the implication of aerosols for the radiation budget, there are persistent differences in data for the aerosol optical depth (τ) for 1998–2019. This study presents a comprehensive evaluation of the large-scale spatio-temporal patterns of mid-visible τ from modern data sets. In total, we assessed 94 different global data sets from eight satellite retrievals, four aerosol-climate model ensembles, one operational ensemble product, two reanalyses, one climatology and one merged satellite product. We include the new satellite data SLSTR and aerosol-climate simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and the Aerosol Comparisons between Observations and Models Phase 3 (AeroCom-III). Our intercomparison highlights model differences and observational uncertainty. Spatial mean τ for 60°N – 60°S ranges from 0.124 to 0.164 for individual satellites, with a mean of 0.14. Averaged τ from aerosol-climate model ensembles fall within this satellite range, but individual models do not. Our assessment suggests no systematic improvement compared to CMIP5 and AeroCom-I. Although some regional biases have been reduced, τ from both CMIP6 and AeroCom-III are for instance substantially larger along extra-tropical storm tracks compared to the satellite products. The considerable uncertainty in observed τ implies that a model evaluation based on a single satellite product might draw biased conclusions. This underlines the need for continued efforts to improve both model and satellite estimates of τ, for example, through measurement campaigns in areas of particularly uncertain satellite estimates identified in this study, to facilitate a better understanding of aerosol effects in the Earth system. Key Points: - Present-day patterns in aerosol optical depth differ substantially between 94 modern global data sets - The range in spatial means from individual satellites is −11% to +17% of the multi-satellite mean - Spatial means from climate model intercomparison projects fall within the satellite range but strong regional differences are identified
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-24
    Description: Solar radiation received at the Earth's surface (Rs) is comprised of two components, the direct radiation (Rd) and the diffuse radiation (Rf). Rd, the direct beam from the sun, is essential for concentrated solar power generation. Rf, scattered by atmospheric molecules, aerosols, or cloud droplets, has a fertilization effect on plant photosynthesis. But how Rd and Rf change diurnally is largely unknown owing to the lack of long-term measurements. Taking advantage of 22 years of homogeneous hourly surface observations over China, this study documents the climatological means and evolutions in the diurnal cycles of Rd and Rf since 1993, with an emphasis on their implications for solar power and agricultural production. Over the solar energy resource region, we observe a loss of Rd which is relatively large near sunrise and sunset at low solar elevation angles when the sunrays pass through the atmosphere on a longer pathway. However, the concentrated Rd energy covering an average 10-hr period around noon during a day is relatively unaffected. Over the agricultural crop resource region, the large amounts of clouds and aerosols scattering more of the incoming light result in Rf taking the main proportion of Rs during the whole day. Rf resources and their fertilization effect in the main crop region of China further enhances since 1993 over almost all hours of the day. Key Points: - The loss of direct radiation over China since 1993 is relatively large at sunrise and sunset with little effect on solar power generation - The diffuse component dominates solar radiation normally near sunrise and sunset, but for the whole day over the main sown area of China - The diffuse fraction is further enhanced in the main sown area of China over almost all hours of the day since 1993
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-11-20
    Description: Key Points High-resolution reflection seismic data reveals that the internal architecture of the Kolumbo Volcanic Chain The Kolumbo Volcanic Chain evolved during two episodes along NE-SW striking normal faults A prominent volcanic ridge connects the Kolumbo Volcanic Chain with Santorini highlighting a former connection between both systems Abstract The Christiana-Santorini-Kolumbo volcanic field in the southern Aegean Sea is one of the most hazardous volcanic regions in the world. Forming the northeastern part of this volcanic field, the Kolumbo Volcanic Chain (KVC) comprises more than submarine volcanic cones. However, due to their inaccessibility, little is known about the spatio-temporal evolution and tectonic control of these submarine volcanoes and their link to the volcanic plumbing system of Santorini. In this study, we use multichannel reflection seismic imaging to study the internal architecture of the KVC and its link to Santorini. We show that the KVC evolved during two episodes, which initiated at ~1 Ma with the formation of mainly effusive volcanic edifices along a NE-SW trending zone. The cones of the second episode were formed mainly by submarine explosive eruptions between 0.7 and 0.3 Ma and partly developed on top of volcanic edifices from the first episode. We identify two prominent normal faults that underlie and continue the two main trends of the KVC, indicating a direct link between tectonics and volcanism. In addition, we reveal several buried volcanic centers and a distinct volcanic ridge connecting the KVC with Santorini, suggesting a connection between the two volcanic centers in the past. This connection was interrupted by a major tectonic event and, as a result, the two volcanic systems now have separate, largely independent plumbing systems despite their proximity
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-08
    Description: Metabolic interactions between auxotrophs and prototrophs in microbial communities are understudied. Yu et al. showed how intracellular as well as intercellular metabolism affects community fitness in the absence and presence of abiotic stress, that is, drugs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: In the marine realm, microorganisms are responsible for the bulk of primary production, thereby sustaining marine life across all trophic levels. Longhurst provinces have distinct microbial fingerprints; however, little is known about how microbial diversity and primary productivity change at finer spatial scales. Here, we sampled the Atlantic Ocean from south to north (~50°S–50°N), every ~0.5° latitude. We conducted measurements of primary productivity, chlorophyll-a and relative abundance of 16S and 18S rRNA genes, alongside analyses of the physicochemical and hydrographic environment. We analysed the diversity of autotrophs, mixotrophs and heterotrophs, and noted distinct patterns among these guilds across provinces with high and low chlorophyll-a conditions. Eukaryotic autotrophs and prokaryotic heterotrophs showed a shared inter-province diversity pattern, distinct from the diversity pattern shared by mixotrophs, cyanobacteria and eukaryotic heterotrophs. Additionally, we calculated samplewise productivity-specific length scales, the potential horizontal displacement of microbial communities by surface currents to an intrinsic biological rate (here, specific primary productivity). This scale provides key context for our trophically disaggregated diversity analysis that we could relate to underlying oceanographic features. We integrate this element to provide more nuanced insights into the mosaic-like nature of microbial provincialism, linking diversity patterns to oceanographic transport through primary production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Arctic sea ice cover has been steeply declining since the onset of satellite observations in the late 1970s. However, the available annually resolved sea ice data prior to this time are limited. Here, we evaluated the suitability of annual trace element (Mg/Ca) ratios and growth increments from the long-lived annual increment-forming benthic coralline red alga, Clathromorphum compactum, as high-resolution sea ice cover archive. It has previously been shown that growth of C. compactum is strongly light controlled and therefore greatly limited during polar night and underneath sea ice cover. We compare algal data from 11 sites collected throughout the Canadian Arctic, Greenland and Svalbard, with satellite sea ice data. Our results suggested that algal growth anomalies most often produced better correlations to sea ice concentration than Mg/Ca ratios or when averaging growth and Mg/Ca anomalies. High Arctic regions with persistently higher sea ice concentrations and shorter ice-free seasons showed strongest correlations between algal growth anomalies and satellite sea ice concentration over the study period (1979-2015). At sites where ice breakup took place prior to the return of sufficient solar irradiance, algal growth was most strongly tied to a combination of solar irradiance and other factors such as temperature, suspended sediments, phytoplankton blooms and cloud cover. These data are the only annually resolved in situ marine proxy data known to date and are of utmost importance to gain a better understanding of the sea ice system and to project future sea ice conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: When organic matter from thawed permafrost is released, the sources and sinks of greenhouse gases (GHGs), like carbon dioxide (CO2) and methane (CH4) in Arctic rivers will be influenced in the future. However, the temporal variation, environmental controls, and magnitude of the Arctic riverine GHGs are largely unknown. We measured in situ high temporal resolution concentrations of CO2, CH4, and oxygen (O2) in the Ambolikha River in northeast Siberia between late June and early August 2019. During this period, the largely supersaturated riverine CO2 and CH4 concentrations decreased steadily by 90% and 78%, respectively, while the O2 concentrations increased by 22% and were driven by the decreasing water temperature. Estimated gas fluxes indicate that during late June 2019, significant emissions of CO2 and CH4 were sustained, possibly by external terrestrial sources during flooding, or due to lateral exchange with gas-rich downstream-flowing water. In July and early August, the river reversed its flow constantly and limited the water exchange at the site. The composition of dissolved organic matter and microbial communities analyzed in discrete samples also revealed a temporal shift. Furthermore, the cumulative total riverine CO2 emissions (36.8 gC-CO2 m−2) were nearly five times lower than the CO2 uptake at the adjacent floodplain. Emissions of riverine CH4 (0.21 gC-CH4 m−2) were 16 times lower than the floodplain CH4 emissions. Our study revealed that the hydraulic connectivity with the land in the late freshet, and reversing flow directions in Arctic streams in summer, regulate riverine carbon replenishment and emissions.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Although submarine landslides have been studied for decades, a persistent challenge is the integration of diverse geoscientific datasets to characterise failure processes. We present a core-log-seismic integration study of the Tuaheni Landslide Complex to investigate intact sediments beneath the undeformed seafloor as well as post-failure landslide deposits. Beneath the undeformed seafloor are coherent reflections underlain by a weakly-reflective and chaotic seismic unit. This chaotic unit is characterised by variable shear strength that correlates with density fluctuations. The basal shear zone of the Tuaheni landslide likely exploited one (or more) of the low shear strength intervals. Within landslide deposits is a widespread “Intra-debris Reflector”, previously interpreted as the landslide’s basal shear zone. This reflector is a subtle impedance drop around the boundary between upper and lower landslide units. However, there is no pronounced shear strength change across this horizon. Rather, there is a pronounced reduction in shear strength ∼10-15 m above the Intra-debris Reflector that presumably represents an induced weak layer that developed during failure. Free gas accumulates beneath some regions of the landslide and is widespread deeper in the sedimentary sequence, suggesting that free gas may have played a role in pre-conditioning the slope to failure. Additional pre-conditioning or failure triggers could have been seismic shaking and associated transient fluid pressure. Our study underscores the importance of detailed core-log-seismic integration approaches for investigating basal shear zone development in submarine landslides.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-02-07
    Description: Phytoplankton stand at the base of the marine food-web, and play a major role in global carbon cycling. Rising CO2 levels and temperatures are expected to enhance growth and alter carbon:nutrient stoichiometry of marine phytoplankton, with possible consequences for the functioning of marine food-webs and the oceanic carbon pump. To date, however, the consistency of phytoplankton stoichiometric responses remains unclear. We therefore performed a meta-analysis on data from experimental studies on stoichiometric responses of marine phytoplankton to elevated pCO2 and 3–5° warming under nutrient replete and limited conditions. Our results demonstrate that elevated pCO2 increased overall phytoplankton C:N (by 4%) and C:P (by 9%) molar ratios under nutrient replete conditions, as well as phytoplankton growth rates (by 6%). Nutrient limitation amplified the CO2 effect on C:N and C:P ratios, with increases to 27% and 17%, respectively. In contrast to elevated pCO2, warming did not consistently alter phytoplankton elemental composition. This could be attributed to species- and study-specific increases and decreases in stoichiometry in response to warming. While our observed moderate CO2-driven changes in stoichiometry are not likely to drive marked changes in food web functioning, they are in the same order of magnitude as current and projected estimations of oceanic carbon export. Therefore, our results may indicate a stoichiometric compensation mechanism for reduced oceanic carbon export due to declining primary production in the near future
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-02-07
    Description: In this study, we used stable isotopes of oxygen (δ18O), deuterium (δD), and dissolved inorganic carbon (δ13CDIC) in combination with temperature, salinity, oxygen and nutrient concentrations to characterize the coastal (71-78 °W) and an oceanic (82-98 °W) water masses (SAAW-Subantarctic Surface Water; STW-Subtropical Water; ESSW-Equatorial Subsurface water; AAIW-Antarctic Intermediate Water; PDW-Pacific Deep Water) of the Southeast Pacific (SEP). The results show that δ18O and δD can be used to differentiate between SAAW-STW, SAAW-ESSW and ESSW-AAIW. δ13CDIC signatures can be used to differentiate between STW-ESSW (oceanic section), SAAW-ESSW, ESSW-AAIW and AAIW-PDW. Compared with the oceanic section, our new coastal section highlights differences in both the chemistry and geometry of water masses above 1000 m. Previous paleoceanographic studies using marine sediments from the SEP continental margin used the present-day hydrological oceanic transect to compare against, as the coastal section was not sufficiently characterized. We suggest that our new results of the coastal section should be used for past characterizations of the SEP water masses that are usually based on continental margin sediment samples.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-02-07
    Description: Whereas fungal symbionts of terrestrial plants are among the most widespread and well-studied symbioses, relatively little is known about fungi that are associated with macroalgae. To fill the gap in marine fungal taxonomy, we combined simple culture methods with amplicon sequencing to characterize the fungal communities associated with three brown (Sargassum muticum, Pelvetia canaliculata, Himanthalia elongata) and two red (Mastocarpus stellatus, Chondrus crispus) macroalgae from one intertidal zone. In addition to characterizing novel fungal diversity, we tested three hypotheses: fungal diversity and community composition vary (i) among species distributed at different tidal heights, (ii) among tissue types (apices, mid-thallus, and stipe), and (iii) among ‘isomorphic’ C. crispus life cycle stages. Almost 70% of our reads were classified as Ascomycota, 29% as Basidiomycota, and 1% that could not be classified to phylum. Thirty fungal isolates were obtained, 18 of which were also detected with amplicon sequencing. Fungal communities differed by host and tissue type. Interestingly, P. canaliculata, a fucoid at the extreme high intertidal, did not show differences in fungal diversity across the thallus. As found in filamentous algal endophytes, fungal diversity varied among the three life cycle stages in C. crispus. Female gametophytes were also compositionally more dispersed as compared to the less variable tetrasporophytes and male gametophytes. We demonstrate the power of combining relatively simple cultivation and sequencing approaches to characterize and study macroalgal-fungal associations and highlight the need to understand the role of fungi in near-shore marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-02-07
    Description: Abrupt fluid emissions from shallow marine sediments pose a threat to seafloor installations like wind farms and offshore cables. Quantifying such fluid emissions and linking pockmarks, the seafloor manifestations of fluid escape, to flow in the sub-seafloor remains notoriously difficult due to an incomplete understanding of the underlying physical processes. Here, using a compositional multi-phase flow model, we test plausible gas sources for pockmarks in the south-eastern North Sea, which recent observations suggest have formed in response to major storms. We find that the mobilization of pre-existing gas pockets is unlikely because free gas, due to its high compressibility, damps the propagation of storm-induced pressure changes deeper into the subsurface. Rather, our results point to spontaneous appearance of a free gas phase via storm-induced gas exsolution from pore fluids. This mechanism is primarily driven by the pressure-sensitivity of gas solubility, and the appearance of free gas is largely confined to sediments in the vicinity of the seafloor. We show that in highly permeable sediments containing gas-rich pore fluids, wave-induced pressure changes result in the appearance of a persistent gas phase. This suggests that seafloor fluid escape structures are not always proxies for overpressured shallow gas and that periodic seafloor pressure changes can induce persistent free gas phase to spontaneously appear. Key Points - Storm-induced pressure changes can lead to spontaneous appearance of free gas phase near the seafloor - This process is driven by pressure-sensitive phase instabilities - This mechanism could help explain elusive gas sources in recently observed pockmarks in the North Sea
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-02-07
    Description: Controls on the deformation pattern (shortening mode and tectonic style) of orogenic forelands during lithospheric shortening remain poorly understood. Here, we use high-resolution 2D thermomechanical models to demonstrate that orogenic crustal thickness and foreland lithospheric thickness significantly control the shortening mode in the foreland. Pure-shear shortening occurs when the orogenic crust is not thicker than the foreland crust or thick, but the foreland lithosphere is thin (〈70–80 km, as in the Puna foreland case). Conversely, simple-shear shortening, characterized by foreland underthrusting beneath the orogen, arises when the orogenic crust is much thicker. This thickened crust results in high gravitational potential energy in the orogen, which triggers the migration of deformation to the foreland under further shortening. Our models present fully thick-skinned, fully thin-skinned, and intermediate tectonic styles in the foreland. The first tectonics forms in a pure-shear shortening mode whereas the others require a simple-shear mode and the presence of thick (〉∼4 km) sediments that are mechanically weak (friction coefficient 〈∼0.05) or weakened rapidly during deformation. The formation of fully thin-skinned tectonics in thick and weak foreland sediments, as in the Subandean Ranges, requires the strength of the orogenic upper lithosphere to be less than one-third as strong as that of the foreland upper lithosphere. Our models successfully reproduce foreland deformation patterns in the Central and Southern Andes and the Laramide province.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-02-07
    Description: Germany 2050: For the first time Germany reached a balance between its sources of anthropogenic CO2 to the atmosphere and newly created anthropogenic sinks. This backcasting study presents a fictional future in which this goal was achieved by avoiding (∼645 Mt CO2), reducing (∼50 Mt CO2) and removing (∼60 Mt CO2) carbon emissions. This meant substantial transformation of the energy system, increasing energy efficiency, sector coupling, and electrification, energy storage solutions including synthetic energy carriers, sector-specific solutions for industry, transport, and agriculture, as well as natural-sink enhancement and technological carbon dioxide options. All of the above was necessary to achieve a net-zero CO2 system for Germany by 2050.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-02-07
    Description: Understanding how marine microbial food webs and their ecosystem functions are changing is crucial for projections of the future ocean. Often, simplified food web models are employed and their solutions are only evaluated against available observations of plankton biomass. With such an approach, it remains unclear how different underlying trophic interactions affect interpretations of plankton dynamics and functioning. Here, we quantitatively compare four hypothetical food webs to data from an existing mesocosm experiment using a refined version of the Minimum Microbial Food Web model. Food web representations range from separated food chains to complex food webs featuring additional trophic links including intraguild predation (IGP). Optimization against observations and taking into account model complexity ensures a fair comparison of the different food webs. Although the different optimized model food webs capture the observations similarly well, projected ecosystem functions differ depending on the underlying food web structure and the presence or absence of IGP. Mesh-like food webs dominated by the microbial loop yield higher recycling and net primary production (NPP) than models dominated by the classical diatom-copepod food chain. A high degree of microzooplankton IGP increases NPP and organic matter recycling, but decreases trophic transfer efficiency (TTE) to copepods. Copepod production, the trophic role of copepods, and TTE are more sensitive to initial biomass changes in chain-like than in complex food webs. Measurements resolving trophic interactions, in particular those quantifying IGP, remain essential to reduce model uncertainty and allow sound conclusions for ecosystem functioning in plankton ecosystems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-02-07
    Description: High-resolution velocity models developed using full-waveform inversion (FWI) can image fine details of the nature and structure of the subsurface. Using a 3D FWI velocity model of hyper-thinned crust at the Deep Galicia Margin (DGM) west of Iberia, we constrain the nature of the crust at this margin by comparing its velocity structure with those in other similar tectonic settings. Velocities representative of both the upper and lower continental crust are present, but there is no clear evidence for distinct upper and lower crustal layers within the hyper-thinned crust. Our velocity model supports exhumation of the lower crust under the footwalls of fault blocks to accommodate the extension. We used our model to generate a serpentinization map for the uppermost mantle at the DGM, at a depth of 100 ms (∼340 m) below the S-reflector, a low-angle detachment that marks the base of the crust at this margin. We find a good alignment between serpentinized areas and the overlying major block bounding faults on our map, suggesting that those faults played an important role in transporting water to the upper mantle. Further, we observe a weak correlation between fault heaves and serpentinization beneath the hanging-wall blocks, indicating that serpentinization was controlled by complex faulting during rifting. A good match between topographic highs of the S and local highly serpentinized areas of the mantle suggests that the morphology of the S was affected by the volume-increasing process of serpentinization and deformation of the overlying crust. Key Points Exhumation of the lower crust under the footwall of the normal faults to accommodate extension Overlying faults in the crust control water transport to the mantle Topography of the S-reflector is affected by the serpentinization process and deformations of the overlying crust
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-02-07
    Description: Carbon cycling by Antarctic microbial plankton is poorly understood but it plays a major role in CO2 sequestration in the Southern Ocean. We investigated the summer bacterioplankton community in the largely understudied Weddell Sea, applying Illumina amplicon sequencing, measurements of bacterial production and chemical analyses of organic matter. The results revealed that the patchy distribution of productive coastal polynyas and less productive, mostly ice-covered sites was the major driver of the spatial changes in the taxonomic composition and activity of bacterioplankton. Gradients in organic matter availability induced by phytoplankton blooms were reflected in the concentrations and composition of dissolved carbohydrates and proteins. Bacterial production at bloom stations was, on average, 2.7 times higher than at less productive sites. Abundant bloom-responsive lineages were predominately affiliated with ubiquitous marine taxa, including Polaribacter, Yoonia-Loktanella, Sulfitobacter, the SAR92 clade, and Ulvibacter, suggesting a widespread genetic potential for adaptation to sub-zero seawater temperatures. A co-occurrence network analysis showed that dominant taxa at stations with low phytoplankton productivity were highly connected, indicating beneficial interactions. Overall, our study demonstrates that heterotrophic bacterial communities along Weddell Sea ice shelves were primarily constrained by the availability of labile organic matter rather than low seawater temperature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-02-07
    Description: Porewater dissolved silicic acid (DSi) concentrations and stable Si isotope compositions (δ30Si) together with biogenic silica (bSiO2) contents of sediments in five sediment cores collected from the southern Mariana Trench are presented. These data suggest the occurrence of bSiO2 dissolution and concomitant authigenic clay formation in three bSiO2-bearing cores. A reaction-transport model constrained by the measured geochemical data was applied to quantify the rates of Si turnover. Model results predicted the greatest rates of both bSiO2 dissolution and authigenic clay formation at the trench axis core that displayed low bSiO2 contents and abundant detrital materials, suggesting that detrital materials may be a limiting factor for bSiO2 diagenesis. Model results further predicted that ∼40%–70% of DSi generated by bSiO2 dissolution is consumed by authigenic clay formation. This is the first study that demonstrates active silica diagenesis in the hadal realm and has implications for understanding benthic Si cycling in deep-sea settings. Key Points - Biogenic silica diagenesis was examined for the first time in hadal trench sediments - Availability of detrital materials may be a limiting factor for biogenic silica (bSiO2) diagenesis in bSiO2-rich sediments of the Mariana Trench - ∼40%–80% of dissolved silicic acid generated by bSiO2 dissolution is fixed by authigenic silicate formation
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-02-07
    Description: Early Pleistocene Marine Isotope Stage (MIS)-31 (1.081–1.062 Ma) is a unique interval of extreme global warming, including evidence of a West Antarctic Ice Sheet (WAIS) collapse. Here we present a new 1,000-year resolution, spanning 1.110–1.030 Ma, diatom-based reconstruction of primary productivity, relative sea surface temperature changes, sea-ice proximity/open ocean conditions and diatom species absolute abundances during MIS-31, from the Scotia Sea (59°S) using deep-sea sediments collected during International Ocean Discovery Program (IODP) Expedition 382. The lower Jaramillo magnetic reversal (base of C1r.1n, 1.071 Ma) provides a robust and independent time-stratigraphic marker to correlate records from other drill cores in the Antarctic Zone of the Southern Ocean (AZSO). An increase in open ocean species Fragilariopsis kerguelensis in early MIS-31 at 53°S (Ocean Drilling Program Site 1,094) correlates with increased obliquity forcing, whereas at 59°S (IODP Site U1537; this study) three progressively increasing, successive peaks in the relative abundance of F. kerguelensis correlate with Southern Hemisphere-phased precession pacing. These observations reveal a complex pattern of ocean temperature change and sustained sea surface temperature increase lasting longer than a precession cycle within the Atlantic sector of the AZSO. Timing of an inferred WAIS collapse is consistent with delayed warmth (possibly driven by sea-ice dynamics) in the southern AZSO, supporting models that indicate WAIS sensitivity to local sub-ice shelf melting. Anthropogenically enhanced impingement of relatively warm water beneath the ice shelves today highlights the importance of understanding dynamic responses of the WAIS during MIS-31, a warmer than Holocene interglacia
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-02-07
    Description: Along ultraslow spreading ridges melt is distributed unequally, but melt focusing guides melt away from amagmatic segments toward volcanic centers. An interplay of tectonism and magmatism is thought to control melt ascent, but the detailed process of melt extraction is not yet understood. We present a detailed image of the seismic velocity structure of the Logachev volcanic center and adjacent region along the Knipovich Ridge. With travel times of P- and S-waves of 3,959 earthquakes we performed a local earthquake tomography. We simultaneously inverted for source locations, velocity structure and the Vp/Vs-ratio. An extensive low velocity anomaly coincident with high Vp/Vs-ratios 〉1.9 lies underneath the volcanic center at depths of 10 km below sea level in an aseismic area. More shallow, tightly clustered earthquake swarms connect the anomaly to a shallow anomaly with high Vp/Vs-ratio beneath the basaltic seafloor. We consider the deep low-velocity anomaly to represent an area of partial melt from which melts ascent vertically to the surface and northwards into the adjacent segment. By comparing tomographic studies of the Logachev and Southwest Indian Ridge Segment-8 volcano we conclude that volcanic centers of ultraslow spreading ridges host spatially confined, circular partial melt areas below 10 km depth, in contrast to the shallow extended melt lenses along fast spreading ridges. Lateral feeding over distances of 35 km is possible at orthogonal spreading segments, but limited at the obliquely spreading Knipovich Ridge. Key Points - Active volcanic centers at ultraslow spreading ridges host deeper and more confined partial melt areas than faster spreading ridges - Earthquake swarms delineate melt ascent paths from the partial melt area to the surface - Lateral feeding at shallow depths into subordinate segments is prevented by ridge obliquity
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-02-07
    Description: Closure of the Central American Seaway (CAS) and hydrology of the Caribbean Sea triggered Northern Hemisphere Glaciation and played an important role in the Pliocene to modern-day climate re-establishing the deep and surface ocean currents. New data on Mn/Ca obtained with femtosecond laser ablation inductively coupled plasma mass spectrometry on well-preserved tests of the epibenthic foraminifer Cibicidoides wuellerstorfi and infaunal C. mundulus contribute to the interpretation of paleoenvironmental conditions of the Caribbean Sea between 5.2 and 2.2 Ma (million years) across the closure of the CAS. Hydrothermal activity at the Lesser Antilles may be a primary source of Mn in the well-oxygenated Plio-Pleistocene Caribbean Sea. Incorporation of Mn in the benthic foraminifer shell carbonate is assumed to be affected by surface ocean nutrient cycling, and may hence be an indicator of paleoproductivity. Key Points - Femtosecond-laser ablation inductively coupled plasma mass spectrometry provides a new approach on distinguishing Mn of the ontogenetic shell calcite from Mn of the authigenic coatings - Ontogenetic Mn within the foraminifer shell calcite may result from the regional nutrient cycle - Mn in the deep eastern Caribbean Sea may mainly derive from hydrothermal sources along the Antilles Island Arc
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2024-02-07
    Description: Future precipitation levels remain uncertain because climate models have struggled to reproduce observed variations in temperature-precipitation correlations. Our analyses of Holocene proxy-based temperature-precipitation correlations and hydrological sensitivities from 2237 Northern Hemisphere extratropical pollen records reveal a significant latitudinal dependence and temporal variations among the early, middle, and late Holocene. These proxy-based variations are largely consistent with patterns obtained from transient climate simulations (TraCE21k). While high latitudes and subtropical monsoon areas show mainly stable positive correlations throughout the Holocene, the mid-latitude pattern is temporally and spatially more variable. In particular, we identified a reversal from positive to negative temperature-precipitation correlations in the eastern North American and European mid-latitudes from the early to mid-Holocene that mainly related to slowed down westerlies and a switch to moisture-limited convection under a warm climate. Our palaeoevidence of past temperature-precipitation correlation shifts identifies those regions where simulating past and future precipitation levels might be particularly challenging.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-02-07
    Description: Concentrations of the toxic element lead (Pb) are elevated in seawater due to historical emissions. While anthropogenic atmospheric emissions are the dominant source of dissolved Pb (dPb) to the Atlantic Ocean, evidence is emerging of a natural source associated with subglacial discharge into the ocean but this has yet to be constrained around Greenland. Here, we show subglacial discharge from the cavity underneath Nioghalvfjerdsbræ floating ice tongue, is a previously unrecognized source of dPb to the NE Greenland Shelf. Contrasting cavity-inflowing and cavity-outflowing waters, we constrain the associated net-dPb flux as 2.2 ± 1.4 Mg·yr−1, of which ∼90% originates from dissolution of glacial bedrock and cavity sediments. We propose that the retreat of the floating ice tongue, the ongoing retreat of many glaciers on Greenland, associated shifts in sediment dynamics, and enhanced meltwater discharges into shelf waters may result in pronounced changes, possibly increases, in net-dPb fluxes to coastal waters. Key Points - Helium and neon show strong evidence for a subglacial source of Pb discharging onto the NE Greenland Shelf - Contrasting inflowing and outflowing waters beneath the floating ice tongue of Nioghalvfjerdsbræ shows a 2-3-fold dPb enrichment - The dissolved Pb flux from Nioghalvfjerdsbræ (2.2 ± 1.4 Mg·yr−1) is comparable to small Arctic rivers, with ∼90% of a sedimentary origin
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2024-02-07
    Description: We present high-resolution profiles of dissolved, labile and total particulate trace metals (TMs) on the Northeast Greenland shelf from GEOTRACES cruise GN05 in August 2016. Combined with radium isotopes, stable oxygen isotopes, and noble gas measurements, elemental distributions suggest that TM dynamics were mainly regulated by the mixing between North Atlantic-derived Intermediate Water, enriched in labile particulate TMs (LpTMs), and Arctic surface waters, enriched in Siberian shelf-derived dissolved TMs (dTMs; Co, Cu, Fe, Mn, and Ni) carried by the Transpolar Drift. These two distinct sources were delineated by salinity-dependent variations of dTM and LpTM concentrations and the proportion of dTMs relative to the total dissolved and labile particulate ratios. Locally produced meltwater from the Nioghalvfjerdsbræ (79NG) glacier cavity, distinguished from other freshwater sources using helium excess, contributed a large pool of dTMs to the shelf inventory. Localized peaks in labile and total particulate Cd, Co, Fe, Mn, Ni, Cu, Al, V, and Ti in the cavity outflow, however, were not directly contributed by submarine melting. Instead, these particulate TMs were mainly supplied by the re-suspension of cavity sediment particles. Currently, Arctic Ocean outflows are the most important source of dFe, dCu and dNi on the shelf, while LpTMs and up to 60% of dMn and dCo are mainly supplied by subglacial discharge from the 79NG cavity. Therefore, changes in the cavity-overturning dynamics of 79NG induced by glacial retreat, and alterations in the transport of Siberian shelf-derived materials with the Transport Drift may shift the shelf dTM-LpTM stoichiometry in the future. Key Points The overall dissolved and particulate trace metal dynamics were mainly regulated by the mixing with Arctic surface waters Resuspension of cavity sediments is a major localized source of labile and total particulate Cd, Co, Fe, Mn, Ni, Cu, Al, V, and Ti Whilst dissolved and particulate trace metals are mostly coupled on the Greenland shelf, cavity outflow decouples both phases
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2024-02-07
    Description: Reactive iron (Fe) oxides in marine sediments may represent a source of bioavailable Fe to the ocean via reductive dissolution and sedimentary Fe release or can promote organic carbon preservation and long-term burial. Furthermore, enrichments of reactive Fe (sum of Fe oxides, carbonates and sulfides normalized to total Fe) in ancient sediments are utilized as a paleo-proxy for anoxic conditions. Considering the general importance of reactive Fe oxides in marine biogeochemistry, it is important to quantify their terrestrial sources and fate at the land-ocean interface. We applied sequential Fe extractions to sediments from the Amazon shelf to investigate the transformation of river-derived Fe oxides during early diagenesis. We found that ∼22 % of the Amazon River-derived Fe oxides are converted to Fe-containing clay minerals in Amazon shelf sediments. The incorporation of reactive Fe into authigenic clay minerals (commonly referred to as reverse weathering) is substantiated by the relationship between Fe oxide loss and potassium (K) uptake from sedimentary pore waters, which is in agreement with the previously reported Fe/K stoichiometry of authigenic clay minerals. Mass balance calculations suggest that widely applied sequential extractions do not separate Fe-rich authigenic clay minerals from reactive Fe oxides and carbonates. We conclude that the balance between terrestrial supply of reactive Fe and reverse weathering in continental margin sediments has to be taken into account in the interpretation of sedimentary Fe speciation data. Key Points - Reactive Fe is transferred from river-derived Fe oxides into Fe-containing silicate minerals during early diagenesis - Standard sequential extraction schemes do not separate Fe oxides and carbonates from authigenic silicate minerals in Amazon shelf sediments - Terrigenous supply of reactive Fe and reverse weathering need to be considered in the interpretation of sedimentary Fe speciation
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-02-07
    Description: The VP/VS ratio is an important property for understanding magmatic and tectonic processes at passive continental margins as it is an indicator of the crustal composition. To classify the dominant lithologies in the Zhongsha Block, South China Sea (SCS), we present a detailed VP/VS crustal model based on the independent tomographic inversion of P wave and S wave data. The average VP/VS in the crust of the Zhongsha Block is ∼1.77, indicating an overall felsic to intermediate composition lacking remnant magmatic intrusive rocks. The VP-density relationship from gravity modeling suggests that the lower crust of the extended continental domain contains more greenschist and hence may have experienced metamorphism resulting from an elevated geotherm in the Northwest Sub-basin either during the syn-spreading or postspreading stage. The variability of the VP/VS ratio in the continental block is larger than that in the oceanic basin, showing distinct crustal properties. Several low VP/VS ratio anomalies (VP/VS 〈 1.7) were found near tectonic boundaries and are interpreted to either result from felsic metamorphism during an interval of rifting, or during the migration of magma along faults and cracks in the postrift period. VP/VS ratios occurring in concert with high VP anomalies in the continent-ocean transition zone support a mafic composition of metapelitic granulite, which was either formed by magmatic intrusions or contact with mantle melting that stem from the upwelling of the asthenospheric mantle during the initial break-up and onset of the seafloor spreading stage in the SCS.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-02-07
    Description: The Arctic Ocean is considered a source of micronutrients to the Nordic Seas and the North Atlantic Ocean through the gateway of Fram Strait. However, there is a paucity of trace element data from across the Arctic Ocean gateways, and so it remains unclear how Arctic and North Atlantic exchange shapes micronutrient availability in the two ocean basins. In 2015 and 2016, GEOTRACES cruises sampled the Barents Sea Opening (GN04, 2015) and Fram Strait (GN05, 2016) for dissolved iron (dFe), manganese (dMn), cobalt (dCo), nickel (dNi), copper (dCu) and zinc (dZn). Together with the most recent synopsis of Arctic-Atlantic volume fluxes, the observed trace element distributions suggest that Fram Strait is the most important gateway for Arctic-Atlantic dissolved micronutrient exchange as a consequence of Intermediate and Deep Water transport. Combining fluxes from Fram Strait and the Barents Sea Opening with estimates for Davis Strait (GN02, 2015) suggests an annual net southward flux of 2.7 ± 2.4 Gg·a-1 dFe, 0.3 ± 0.3 Gg·a-1 dCo, 15.0 ± 12.5 Gg·a-1 dNi and 14.2 ± 6.9 Gg·a-1 dCu from the Arctic towards the North Atlantic Ocean. Arctic-Atlantic exchange of dMn and dZn were more balanced, with a net southbound flux of 2.8 ± 4.7 Gg·a-1 dMn and a net northbound flux of 3.0 ± 7.3 Gg·a-1 dZn. Our results suggest that ongoing changes to shelf inputs and sea ice dynamics in the Arctic, especially in Siberian shelf regions, affect micronutrient availability in Fram Strait and the high latitude North Atlantic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2024-02-07
    Description: Among mechanisms accounting for atmospheric pCO2 drawdown during glacial periods, processes operating in the North Atlantic (NA) and Southern Ocean (SO) have been proposed to be critical. Their individual and synergic effects during a course of glaciation, however, remain enigmatic. We conducted simulations to examine these effects at idealized glacial stages. Under early-glacial-like conditions, cooling in the SO can trigger an initial pCO2 drawdown while the associated sea ice expansion has little impact on air-sea gas exchange. Under later glacial-like conditions, further cooling in the NA enhances ocean carbon uptake due to a stronger solubility pump, and the SO-induced stronger deep stratification prevents carbon exchange between the deep and upper ocean. Meanwhile, strengthened dust deposition increases the SO contribution to the global biological pump, and CO2 outgassing is suppressed by fully extended sea ice cover. More carbon is then stored in the deep Pacific, acting as a passive reservoir.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2024-02-07
    Description: Shifts in microbial communities and their functioning in response to environmental change result from contemporary interspecific and intraspecific diversity changes. Interspecific changes are driven by ecological shifts in species composition, while intraspecific changes are here assumed to be dominated by evolutionary shifts in genotype frequency. Quantifying the relative contributions of interspecific and intraspecific diversity shifts to community change thus addresses the essential, yet understudied question as to how important ecological and evolutionary contributions are to total community changes. This debate is to date practically constrained by (a) a lack of studies integrating across organizational levels and (b) a mismatch between data requirements of existing partitioning metrics and the feasibility to collect such data, especially in microscopic organisms like phytoplankton. We experimentally assessed the relative ecological and evolutionary contributions to total phytoplankton community changes using a new design and validated its functionality by comparisons to established partitioning metrics. We used a community of coexisting Emiliania huxleyi and Chaetoceros affinis with initially nine genotypes each. First, we exposed the community to elevated CO2 concentration for 80 days (~50 generations) to induce interspecific and intraspecific diversity changes and a total abundance change. Second, we independently manipulated the induced interspecific and intraspecific diversity changes in an assay to quantify the corresponding ecological and evolutionary contributions to the total change. Third, we applied existing partitioning metrics to our experimental data and compared the outcomes. Total phytoplankton abundance declined to one-fifth in the high CO2 exposed community compared to ambient conditions. Consistently across all applied partitioning metrics, the abundance decline could predominantly be explained by ecological shifts and to a low extent by evolutionary changes. We discuss potential consequences of the observed community changes on ecosystem functioning. Furthermore, we explain that the low evolutionary contributions likely resulted of intraspecific diversity changes that occurred irrespectively of CO2. We discuss how the assay could be upscaled to more realistic settings, including more species and drivers. Overall, the presented calculations of eco-evolutionary contributions to phytoplankton community changes constitute another important step towards understanding future phytoplankton shifts, and eco-evolutionary dynamics in general.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2024-02-07
    Description: Seismic event detection and phase picking are the base of many seismological workflows. In recent years, several publications demonstrated that deep learning approaches significantly outperform classical approaches and even achieve human-like performance under certain circumstances. However, as most studies differ in the datasets and exact evaluation tasks studied, it is yet unclear how the different approaches compare to each other. Furthermore, there are no systematic studies how the models perform in a cross-domain scenario, i.e., when applied to data with different characteristics. Here, we address these questions by conducting a large-scale benchmark study. We compare six previously published deep learning models on eight datasets covering local to teleseismic distances and on three tasks: event detection, phase identification and onset time picking. Furthermore, we compare the results to a classical Baer-Kradolfer picker. Overall, we observe the best performance for EQTransformer, GPD and PhaseNet, with EQTransformer having a small advantage for teleseismic data. Furthermore, we conduct a cross-domain study, in which we analyze model performance on datasets they were not trained on. We show that trained models can be transferred between regions with only mild performance degradation, but not from regional to teleseismic data or vice versa. As deep learning for detection and picking is a rapidly evolving field, we ensured extensibility of our benchmark by building our code on standardized frameworks and making it openly accessible. This allows model developers to easily compare new models or evaluate performance on new datasets, beyond those presented here. Furthermore, we make all trained models available through the SeisBench framework, giving end-users an easy way to apply these models in seismological analysis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2024-02-07
    Description: The ongoing development of the Global Carbon Project (GCP) global methane (CH4) budget shows a continuation of increasing CH4 emissions and CH4 accumulation in the atmosphere during 2000–2017. Here, we decompose the global budget into 19 regions (18 land and 1 oceanic) and five key source sectors to spatially attribute the observed global trends. A comparison of top-down (TD) (atmospheric and transport model-based) and bottom-up (BU) (inventory- and process model-based) CH4 emission estimates demonstrates robust temporal trends with CH4 emissions increasing in 16 of the 19 regions. Five regions—China, Southeast Asia, USA, South Asia, and Brazil—account for 〉40% of the global total emissions (their anthropogenic and natural sources together totaling 〉270 Tg CH4 yr−1 in 2008–2017). Two of these regions, China and South Asia, emit predominantly anthropogenic emissions (〉75%) and together emit more than 25% of global anthropogenic emissions. China and the Middle East show the largest increases in total emission rates over the 2000 to 2017 period with regional emissions increasing by 〉20%. In contrast, Europe and Korea and Japan show a steady decline in CH4 emission rates, with total emissions decreasing by ~10% between 2000 and 2017. Coal mining, waste (predominantly solid waste disposal) and livestock (especially enteric fermentation) are dominant drivers of observed emissions increases while declines appear driven by a combination of waste and fossil emission reductions. As such, together these sectors present the greatest risks of further increasing the atmospheric CH4 burden and the greatest opportunities for greenhouse gas abatement.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2024-02-07
    Description: The seasonal variation in concentration of transparent exopolymer particles (TEPs), particulate organic carbon (POC) and particulate organic nitrogen (PON) were investigated together with floc size and the concentration of suspended particulate matter (SPM) along the cross-shore gradient, from the high turbid nearshore toward the low-turbid offshore waters in the Southern Bight of the North Sea. Our data demonstrate that biophysical flocculation cannot be explained by these heterogeneous parameters, but requires a distinction between a more reactive labile (“fresh”) and a less reactive refractory (“mineral-associated”) fraction. Based on all data, we separated the labile and mineral-associated POC, PON, and TEP using a semi-empirical model approach. The model's estimates of fresh and mineral-associated organic matter (OM) show that great parts of the POC, PON, and TEP are associated with suspended minerals, which are present in the water column throughout the year, whereas the occurrence of fresh TEP, POC, and PON is restricted to spring and summer months. In spite of a constantly high abundance of total TEP throughout the entire year, it is its fresh fraction that promotes the formation of larger and faster sinking biomineral flocs, thereby contributing to reducing the SPM concentration in the water column over spring and summer. Our results show that the different components of the SPM, such as minerals, extracellular OM and living organisms, form an integrated dynamic system with direct interactions and feedback controls.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2024-02-07
    Description: Key points: Models performing similarly with respect to global NO3, PO4, and O2 distributions yield diverse responses in marine N2 fixation to warming • Marine N2 fixation trends are sensitive to whether iron limits primary production in upwelling regions, for example, the Eastern Tropical Pacific Biological nitrogen fixation is an important oceanic nitrogen source, potentially stabilizing marine fertility in an increasingly stratified and nutrient-depleted ocean. Iron limitation of low latitude primary producers has been previously demonstrated to affect simulated regional ecosystem responses to climate warming or nitrogen cycle perturbation. Here we use three biogeochemical models that vary in their representation of the iron cycle to estimate change in the marine nitrogen cycle under a high CO2 emissions future scenario (RCP8.5). The first model neglects explicit iron effects on biology (NoFe), the second utilizes prescribed, seasonally-cyclic iron concentrations and associated limitation factors (FeMask), and the third contains a fully dynamic iron cycle (FeDyn). Models were calibrated using observed fields to produce near-equivalent nutrient and oxygen fits, with productivity ranging from 49 to 75 Pg C yr−1. Global marine nitrogen fixation increases by 71.1% with respect to the preindustrial value by the year 2100 in NoFe, while it remains stable (0.7% decrease in FeMask and 0.3% increase in FeDyn) in explicit iron models. The mitigation of global nitrogen fixation trend in the models that include a representation of iron originates in the Eastern boundary upwelling zones, where the bottom-up control of iron limitation reduces export production with warming, which shrinks the oxygen deficient volume, and reduces denitrification. Warming-induced trends in the oxygen deficient volume in the upwelling zones have a cascading effect on the global nitrogen cycle, just as they have previously been shown to affect tropical net primary production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2024-02-07
    Description: Since it is currently not understood how changes in 14C production rate (Q), and in the carbon cycle, can be combined to explain the reconstructed atmospheric Δ14C record, we discuss possible reasons for this knowledge gap. Reviewing the literature, we exclude that changes in the content of atoms in the atmosphere, which produce cosmogenic 14C after being hit by galactic cosmic rays, might be responsible for parts of the observed differences. When combining Q with carbon cycle changes, one needs to understand the changes in the atmospheric 14C inventory, which are partially counterintuitive. For example, during the Last Glacial Maximum, Δ14C was ∼400‰ higher compared with preindustrial times, but the 14C inventory was 10% smaller. Some pronounced changes in atmospheric Δ14C do not correspond to any significant changes in the atmospheric 14C inventory, since CO2 was changing simultaneously. Using two conceptually different models (BICYCLE-SE and LSG-OGCM), we derive hypothetical Qs by forcing the models with identical atmospheric CO2 and Δ14C data. Results are compared with the most recent data-based estimates of Q derived from cosmogenic isotopes. Millennial-scale climate change connected to the bipolar seesaw is missing in the applied models, which might explain some, but probably not all, of the apparent model-data disagreement in Q. Furthermore, Q based on either data from marine sediments or ice cores contains offsets, suggesting an interpretation deficit in the current data-based approaches.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2024-02-07
    Description: Oceanic gabbros are the most abundant rocks close to Earth’s surface. Here we present new data from a consistent profile through the paleocrust of the Samail ophiolite (Oman), which is thought to provide the best analogue for modern fast-spreading oceanic crust. Incompatible trace elements of co-existing plagioclase and clinopyroxene fractionate from the mineral core to rim and up section from layered to foliated to varitextured gabbros. Layered gabbro parental melts correspond to mid-ocean-ridge basalts (MORB), and plagioclase Ca# shows a pronounced inverse zonation. Likely, they crystallized in situ from hydrous melts, compositionally buffered by replenishment at equilibrium to MORB and near steady-state boundary conditions. Further upsection, the compositional variability increases. Foliated gabbro rim and core compositions indicate increased fractionation and disequilibrium to MORB, triggered by open-system fractional crystallization within a heterogeneous magma plumbing structure, characterized by magma mixing, varying ambient water activities, and boundary conditions. Varitextured gabbros are chemically diverse with parental melts partially more primitive than MORB, suggesting that primitive melts directly reach the axial melt lens (AML). REE-in-plagioclase-clinopyroxene thermometry compared to and supported by anorthite-in-plagioclase thermometry reveals a relationship of urn:x-wiley:21699313:media:jgrb55525:jgrb55525-math-0001 [°C]=6.1±0.2*An+706±19. Crystallization temperatures of the layered gabbros cover a narrow range of 1216±14°C. Considerable temperature variability of 1077-1231°C is observed further upsection, featuring a thermal minimum within the foliated gabbros. This minimum is assumed to represent a zone where the fractionated descending crystal mushes originating from the AML meet with evolved liquids expelled from deeper crustal levels. Our findings suggest hybrid accretion of fast-spread crust.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-02-07
    Description: Recent studies, including many from the GEOTRACES program, have expanded our knowledge of trace metals in the Arctic Ocean, an isolated ocean dominated by continental shelf and riverine inputs. Here, we report a unique, pan-Arctic linear relationship between dissolved copper (Cu) and nickel (Ni) present north of 60°N that is absent in other oceans. The correlation is driven primarily by high Cu and Ni concentrations in the low salinity, river-influenced surface Arctic and low, homogeneous concentrations in Arctic deep waters, opposing their typical global distributions. Rivers are a major source of both metals, which is most evident within the central Arctic's Transpolar Drift. Local decoupling of the linear Cu-Ni relationship along the Chukchi Shelf and within the Canada Basin upper halocline reveals that Ni is additionally modified by biological cycling and shelf sediment processes, while Cu is mostly sourced from riverine inputs and influenced by mixing. This observation highlights differences in their chemistries: Cu is more prone to complexation with organic ligands, stabilizing its riverine source fluxes into the Arctic, while Ni is more labile and is dominated by biological processes. Within the Canadian Arctic Archipelago, an important source of Arctic water to the Atlantic Ocean, contributions of Cu and Ni from meteoric waters and the halocline are attenuated during transit to the Atlantic. Additionally, Cu and Ni in deep waters diminish with age due to isolation from surface sources, with higher concentrations in the younger Eastern Arctic basins and lower concentrations in the older Western Arctic basins.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2024-02-07
    Description: The Humboldt Upwelling System is of global interest due to its importance to fisheries, though the origin of its high productivity remains elusive. In regional physical-biogeochemical model simulations, the seasonal amplitude of mesozooplankton net production exceeds that of phytoplankton, indicating “seasonal trophic amplification.” An analytical approach identifies amplification to be driven by a seasonally varying trophic transfer efficiency due to mixed layer variations. The latter alters the vertical distribution of phytoplankton and thus the zooplankton and phytoplankton encounters, with lower encounters occurring in a deeper mixed layer where phytoplankton are diluted. In global model simulations, mixed layer depth appears to affect trophic transfer similarly in other productive regions. Our results highlight the importance of mixed layer depth for trophodynamics on a seasonal scale with potential significant implications, given mixed layer depth changes projected under climate change.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2024-02-07
    Description: 1. Biological invasions, especially invasive alien aquatic plants, are a major and growing ecological and socioeconomic problem worldwide. Freshwater systems are particularly vulnerable to invasion, where impacts of invasive alien species can damage ecological structure and function. Identifying abiotic and biotic factors that mediate successful invasions is a management priority. Our aim was to determine the environmental correlates of Elodea nuttallii; a globally significant invasive aquatic species. 2. Elodea nuttallii presence/absence (occurrence), extent (patch area) and percentage cover (density) was visually assessed from a boat throughout Lough Erne (approximately 144 km2), County Fermanagh, Northern Ireland during the active summer growth season (July–September). In addition, substrate type and zebra mussel Dreissena polymorpha occurrence was recorded. Fourteen water chemistry variables were collected monthly from 12 recording stations throughout the lake during the 9 years before the survey to spatially interpolate values and establish temporal trajectories in their change. Shoreline land use was derived from CORINE land cover maps. Environmental associations between E. nuttallii, substrate, D. polymorpha, water chemistry and land use were assessed. 3. Elodea nuttallii occurrence was positively associated with water conductivity, alkalinity, suspended solids, phosphorus (both total and soluble) and chlorophyll-a concentrations, but negatively associated with pH and total oxidised nitrogen. E. nuttallii patch extent and proportional cover were positively associated, to varying degrees, with the presence of D. polymorpha, biological oxygen demand, water clarity and soft substrate, but negatively associated with urban development and ammonium. 4. Elodea nuttallii displayed high levels of phenotypic plasticity in response to environmental variation, allowing it to adapt to a wide range of conditions and potentially gain competitive advantage over native or other invasive macrophytes. 5. It is evident that multiple abiotic and biotic factors, including facilitation by co-occurring invasive dreissenid mussels, interact to influence the distribution and abundance of E. nuttallii. Thus, it is necessary to consider a more comprehensive environmental context when planning Elodea management strategies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2024-02-07
    Description: With increasing pressure for climate action, commitments to setting scientifically supported emissions targets have become more common among firms. The target-setting methods currently endorsed by the Science Based Targets Initiative (SBTi) use emission pathways that are aligned with 1.5°C and well-below 2°C long-term temperature goals to inform near-term corporate targets. However, most of these scenarios lead to a temperature overshoot, followed by a return to the temperature goal achieved via net-negative emissions in the second half of this century. When used to inform near-term (e.g., 2030) corporate targets, the result is a set of targets that are aligned with an overshoot of a temperature target, with no explicit long-term commitment to using negative emissions technologies to reverse this. To decrease the risk of this misalignment with the long-term temperature goal, we propose an alternative approach that derives corporate targets directly from the remaining global cumulative carbon budget. We illustrate this approach using global Scope 1 emissions disclosed by public firms in 2019 to estimate corporate carbon budgets and construct idealized emissions-reduction pathways that are consistent with the remaining global carbon budget for 1.5°C and well-below 2°C. While firms, or their sectors, may choose varying mitigation pathways aligned with either global temperature limit, consistency with remaining carbon budgets requires that any delayed mitigation action in the near term is followed by more rapid emissions reductions in subsequent years. This study emphasizes the need for a more precautionary and robust approach to corporate target setting.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2024-02-07
    Description: The Formosa Ridge cold seep is among the first documented active seeps on the northern South China Sea passive margin slope. Although this system has been the focus of scientific studies for decades, the geological factors controlling gas release are not well understood due to a lack of constraints of the subsurface structure and seepage history. Here, we use high-resolution 3D seismic data to image stratigraphic and structural relationships associated with fluid expulsion, which provide spatio-temporal constraints on the gas hydrate system at depth and methane seepage at modern and paleo seafloors. Gas has accumulated beneath the base of gas hydrate stability to a critical thickness, causing hydraulic fracturing, propagation of a vertical gas conduit, and morphological features (mounds) at paleo-seafloor horizons. These mounds record multiple distinct gas migration episodes between 300,000 and 127,000 years ago, separated by periods of dormancy. Episodic seepage still seems to occur at the present day, as evidenced by two separate fronts of ascending gas imaged within the conduit. We propose that episodic seepage is associated with enhanced seafloor sedimentation. The increasing overburden leads to an increase in effective horizontal stress that exceeds the gas pressure at the top of the gas reservoir. As a result, the conduit closes off until the gas reservoir is replenished to a new (greater) critical thickness to reopen hydraulic fractures. Our results provide intricate detail of long-term methane flux through sub-seabed seep systems, which is important for assessing its impact on seafloor and ocean biogeochemistry. Key Points - Gas has accumulated beneath the base of gas hydrate stability, causing vertical gas conduit formation and seabed mounds - Mounds imaged within the conduit record episodic seepage between 300 and 127 kyrs ago - Quiescence may be associated with enhanced seafloor sedimentation that increases effective stress at the top of the gas reservoir
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2024-02-07
    Description: A regime shift in the formation mechanisms of the North Pacific subtropical mode water (NPSTMW) and its causes were investigated using a 2,000-year-long pre-industrial control simulation of a fully coupled atmosphere-ocean-sea ice model. The volume budget analysis revealed that the air-sea flux and ocean dynamics (OD) were the two primary driving mechanisms for NPSTMW formation, but their relative importance has periodically alternated in multidecadal timescales of approximately 50–70 years. The regime shift of the NPSTMW formation was closely related to the meridional (50 years) and zonal (70 years) movements of the Aleutian Low (AL). When AL shifted to the south or east, it induces the sea surface height anomalies propagating westward from the central North Pacific and preconditions the NPSTMW formation, thus the OD become relatively more important. Key Points: - Driving mechanisms for the North Pacific subtropical mode water formation exhibit a regime shift with a periodicity of about 50–70 years - Multidecadal regime shifts are associated with meridional and zonal shifts in the Aleutian Low (AL) - Position shift of the AL affects the variability of the local air-sea flux and remotely driven oceanic dynamics
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2024-02-07
    Description: Ridging South Atlantic Anticyclones contribute an important amount of precipitation over South Africa. Here, we use a global coupled climate model and the ERA5 reanalysis to separate for the first time ridging highs (RHs) based on whether they occur together with Rossby wave breaking (RWB) or not. We show that the former type of RHs are associated with more precipitation than the latter type. The mean sea level pressure anomalies caused by the two types of RHs are characterized by distinct patterns, leading to differences in the flow of moisture-laden air onto land. We additionally find that RWB mediates the effect of climate change on RHs during the twenty-first century. Consequently, RHs occurring without RWB exhibit little change, while those occurring with RWB contribute more precipitation over the southern and less precipitation over the northeastern South Africa in the future. Key Points: - Ridging South Atlantic Anticyclones are accompanied by Rossby wave breaking (RWB) aloft in 44% of the cases - Ridging highs that are accompanied by RWB lead to more precipitation over South Africa than those that are not - Ridging highs bring more precipitation over the southern and less precipitation over the northeastern part of South Africa in the future
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2024-02-07
    Description: Located on the Hellenic Arc, the Christiana-Santorini-Kolumbo (CSK) rift zone represents one of the most active and hazardous volcano-tectonic systems in the Mediterranean. Although this rift zone has been intensively studied, its tectonic evolution and the interplay of volcanism and tectonism are still poorly understood. In this study, we use high-resolution reflection seismic imagery to reconstruct the opening of the rift basins. For the first time, we relate the activity of individual faults with the activity of specific volcanic centers in space and time. Our analysis shows a pre-volcanic NNE-SSW-oriented paleo basin underneath the CSK volcanoes, representing a transfer zone between Pliocene ESE-WNW-oriented basins, which was overprinted by a NE-SW-oriented tectonic regime hosting Late Pliocene volcanism that initiated at the Christiana Volcano. All subsequent volcanoes evolved parallel to this trend. Two major Pleistocene tectonic pulses preceded fundamental changes in the volcanism of the CSK rift including the occurrence of widespread small-scale volcanic centers followed by focusing of activity at Santorini with increasing explosivity. The observed correlation between changes in the tectonic system and the magmatism of the CSK volcanoes suggests a deep-seated tectonic control of the volcanic plumbing system. In turn, our analysis reveals the absence of large-scale faults in basin segments affected by volcanism indicating a secondary feedback mechanism on the tectonic system. A comparison with the evolution of the neighboring Kos-Nisyros-Yali volcanic field zone and Rhodos highlights concurrent regional volcano-tectonic changes, suggesting a potential arc-wide scale of the observed volcano-tectonic interplay. Key Points We reconstruct the volcano-tectonic evolution of the Christiana-Santorini-Kolumbo rift zone using multichannel seismic data The overprint of a Pleistocene NE-SW striking fault system on a Pliocene E-W oriented system initiated the emergence of volcanism Regional tectonics had a primary control on the volcanic plumbing system, while magmatism had a secondary influence on the tectonic system
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2024-02-07
    Description: While forced ocean hindcast simulations are useful for a wide range of applications, a key limitation is their inability to simulate ocean-atmosphere feedbacks. As a consequence, they need to rely on artificial choices such as sea surface salinity restoring and other corrections affecting the surface freshwater fluxes. Fully coupled models overcome these limitations, but lack the correct timing of variability due to weaker observational constraints. This leads to a mismatch between forced and coupled models on interannual to decadal timescales. A possibility to combine the advantages of both modelling strategies is to apply a partial coupling (PCPL), i.e. replacing the surface winds stress in the ocean component by wind stress derived from reanalysis. To identify the capabilities, limitations and possible use cases of partial coupling, we perform a fully coupled, two partially coupled and an ocean-only experiment using an all-Atlantic nested ocean configuration at eddying resolution in a global climate model. We show that the correct timing of Atlantic Meridional Overturning Circulation (AMOC) variability in PCPL experiments is robust on timescales below 5 years. Mid-latitude wind stress curl changes contribute to decadal AMOC variability, but North Atlantic buoyancy fluxes are not significantly altered by incorporating reanalysed wind stress anomalies, limiting the success of PCPL on this timescale. Long term trends of the AMOC in PCPL mode are consistent with fully coupled model experiments under historic atmospheric boundary conditions, suggesting that a partially coupled model is still able to simulate the important ocean-atmosphere feedbacks necessary to maintain a stable AMOC.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2024-02-07
    Description: Seasonal variations in day length and temperature, in combination with dynamic factors such as advection from the North Atlantic, influence primary production and the microbial loop in the Fram Strait. Here, we investigated the seasonal variability of biopolymers, microbial abundance, and microbial composition within the upper 100 m during summer and fall. Flow cytometry revealed a shift in the autotrophic community from picoeukaryotes dominating in summer to a 34-fold increase of Synechococcus by fall. Furthermore, a significant decline in biopolymers concentrations covaried with increasing microbial diversity based on 16S rRNA gene sequencing along with a community shift towards fewer polymer-degrading genera in fall. The seasonal succession in the biopolymer pool and microbes indicates distinct metabolic regimes, with a higher relative abundance of polysaccharide-degrading genera in summer and a higher relative abundance of common taxa in fall. The parallel analysis of DOM and microbial diversity provides an important baseline for microbe-substrate relationships over the seasonal cycle in the Arctic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2024-02-07
    Description: Fossil fuel combustion, land use change and other human activities have increased the atmospheric carbon dioxide (CO2) abundance by about 50% since the beginning of the industrial age. The atmospheric CO2 growth rates would have been much larger if natural sinks in the land biosphere and ocean had not removed over half of this anthropogenic CO2. As these CO2 emissions grew, uptake by the ocean increased in response to increases in atmospheric CO2 partial pressure (pCO(2)). On land, gross primary production also increased, but the dynamics of other key aspects of the land carbon cycle varied regionally. Over the past three decades, CO2 uptake by intact tropical humid forests declined, but these changes are offset by increased uptake across mid- and high-latitudes. While there have been substantial improvements in our ability to study the carbon cycle, measurement and modeling gaps still limit our understanding of the processes driving its evolution. Continued ship-based observations combined with expanded deployments of autonomous platforms are needed to quantify ocean-atmosphere fluxes and interior ocean carbon storage on policy-relevant spatial and temporal scales. There is also an urgent need for more comprehensive measurements of stocks, fluxes and atmospheric CO2 in humid tropical forests and across the Arctic and boreal regions, which are experiencing rapid change. Here, we review our understanding of the atmosphere, ocean, and land carbon cycles and their interactions, identify emerging measurement and modeling capabilities and gaps and the need for a sustainable, operational framework to ensure a scientific basis for carbon management.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2024-02-07
    Description: By-catch is the most significant direct threat marine megafauna face at the global scale. However, the magnitude and spatial patterns of megafauna by-catch are still poorly understood, especially in regions with very limited monitoring and expanding fisheries. The Indian Ocean is a globally important region for megafauna biodiversity and for tuna fisheries, but has limited by-catch data. Anecdotal and scattered information indicates high by-catch could be a major threat. Here, we adapt a Productivity Susceptibility Analysis tool designed for data-poor contexts to present the first spatially explicit estimates of by-catch risk of sea turtles, elasmobranchs, and cetaceans in the three major tuna fishing gears (purse seines, longlines, and drift gill nets). Our assessment highlights a potential opportunity for multi-taxa conservation benefits by concentrating management efforts in particular coastal regions. Most coastal waters in the northern Indian Ocean, including countries that have had a minimal engagement with regional management bodies, stand out as high risk for fisheries interactions. In addition to species known to occur in tuna gears, we find high vulnerability to multiple gear types for many poorly known elasmobranchs that do not fall under any existing conservation and management measures. Our results indicate that current by-catch mitigation measures, which focus on safe-release practices, are unlikely to adequately reduce the substantial cumulative fishing impacts on vulnerable species. Preventative solutions that reduce interactions with non-target species (such as closed areas or seasons, or modifications to gear and fishing tactics) are crucial for alleviating risks to megafauna from fisheries.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2024-02-07
    Description: Seafloor heat flow provides information about the thermal evolution of the lithosphere, the magnitude and timing of volcanic activity, and hydrothermal circulation patterns. In the central Gulf of California, the Guaymas Basin is part of a young marginal spreading rift system that experiences high sedimentation (1–5 km/Myr) and widespread magmatic intrusions in the axial troughs and the off-axis regions. Heat flow variations record magmatic and sedimentary processes affecting the thermal evolution of the basin. Here, we present new seismic evidence of a widespread bottom-simulating reflection (BSR) in the northwestern Guaymas Basin. Using the BSR depths and thermal conductivity measurements, we determine geothermal gradient and surface heat flow variations. The BSR-derived heat flow values are less than the conductive lithospheric heat flow predictions for mid-oceanic ridges. They suggest that high sedimentation (0.3–1 km/Myr) suppresses the lithospheric heat flow. In the central and southeastern regions of the basin, the BSR-derived geothermal gradient increases as the intruded magmatic units reach shallower subsurface depths. Thermal modeling shows that recent (〈5000 years) igneous intrusions (〈500 m below the seafloor) and associated fluid flow elevate the surface heat flow up to five times. BSR-derived geothermal gradients correlate little with the depth of the shallowest magmatic emplacements to the north, where the intrusions have already cooled for some time, and the associated hydrothermal activity is about to shut down. Key Points - A regional bottom-simulating reflection (BSR) in the Guaymas Basin indicates a widespread occurrence of gas hydrates - The BSR derived thermal gradients show wavy patterns farther away from the spreading centre, indicating strong lateral heat flow variations - High sedimentation suppresses heat flow, while recent magmatic intrusion and fluid advection increase heat flow
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2024-02-07
    Description: Physiological sensitivity of cold-water corals to ocean change is far less understood than of tropical corals and very little is known about the impacts of ocean acidification and warming on degradative processes of dead coral framework. In a 13-month laboratory experiment, we examined the interactive effects of gradually increasing temperature and pCO2 levels on survival, growth, and respiration of two prominent color morphotypes (colormorphs) of the framework-forming cold-water coral Lophelia pertusa, as well as bioerosion and dissolution of dead framework. Calcification rates tended to increase with warming, showing temperature optima at ~ 14°C (white colormorph) and 10–12°C (orange colormorph) and decreased with increasing pCO2. Net dissolution occurred at aragonite undersaturation (ΩAr 〈 1) at ~ 1000 μatm pCO2. Under combined warming and acidification, the negative effects of acidification on growth were initially mitigated, but at ~ 1600 μatm dissolution prevailed. Respiration rates increased with warming, more strongly in orange corals, while acidification slightly suppressed respiration. Calcification and respiration rates as well as polyp mortality were consistently higher in orange corals. Mortality increased considerably at 14–15°C in both colormorphs. Bioerosion/dissolution of dead framework was not affected by warming alone but was significantly enhanced by acidification. While live corals may cope with intermediate levels of elevated pCO2 and temperature, long-term impacts beyond levels projected for the end of this century will likely lead to skeletal dissolution and increased mortality. Our findings further suggest that acidification causes accelerated degradation of dead framework even at aragonite saturated conditions, which will eventually compromise the structural integrity of cold-water coral reefs.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2024-02-07
    Description: During the Miocene (23.0 to 5.3 Ma) North Africa experienced both humid and arid intervals, but the underlying cause of these transitions is unknown. Earth’s climate was characterised by a unipolar icehouse with a dynamic Antarctic ice sheet, which may have influenced regional hydrology through atmospheric teleconnections. However, the Miocene also witnessed the restriction of the Mesopotamian Seaway, which may have had significant climatic impacts. The Maltese il-Blata section (Central Mediterranean) comprises Late Oligocene to Early Miocene marine deposits previously used to constrain the timing of the Mesopotamian Seaway restriction using the εNd tracer. The location of this section also makes it sensitive to climatic changes in the North African region, and biogeochemical changes in the central Mediterranean. Here, we present lithological and geochemical records of the il-Blata section. We find a marked shift in lithology and an increase in sedimentation rate coeval with the Early Miocene (∼19 to 20 Ma) restriction of the Mesopotamian Seaway. Concomitant changes in bulk sediment CaCO3, Sr/Ca, K/Al, Ti/Al, Zr/Al, and Si/Ti support a major humid climate transition and associated intensification of river systems over western North Africa. We propose that these changes in North African hydroclimate reflect either a tipping point effect in a gradually warming global climate, or are the result of the initial restriction of the Mesopotamian Seaway, perhaps through consequent changes in Atlantic Meridional Overturning Circulation and the West African Monsoon. We also suggest the restriction of the Mesopotamian Seaway inhibited phosphorite deposition at low latitudes. Key Points - The climate over the central Mediterranean shifted from a cool-arid to a humid regime during the Early Miocene around 19.0 Ma - The transition to more humid conditions may have been a consequence of the first Miocene restriction of the Mesopotamian Seaway (MSR-1) - Circulation changes in the proto-Mediterranean coupled with changes in the sedimentation may have terminated regional phosphorite episodes
    Type: Article , PeerReviewed
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2024-02-07
    Description: Realistic prediction of the near-future response of Arctic Ocean primary productivity to ongoing warming and sea ice loss requires a mechanistic understanding of the processes controlling nutrient bioavailability. To evaluate continental nutrient inputs, biological utilization and the influence of mixing and winter processes in the Laptev Sea, the major source region of the Transpolar Drift, we compare observed with preformed concentrations of dissolved inorganic nitrogen (DIN), phosphorus (DIP), silicic acid (DSi) and silicon isotope compositions of DSi (δ30SiDSi) obtained for two summers (2013, 2014) and one winter (2012). In summer, preformed nutrient concentrations persisted in the surface layer of the southeastern Laptev Sea, while diatom-dominated utilization caused intense northward drawdown and a pronounced shift in δ30SiDSi from +0.91 to +3.82 ‰. The modeled Si isotope fractionation suggests that DSi in the northern Laptev Sea originated from the Lena River during the spring freshet, while in the southeastern Laptev Sea it was continuously supplied by it during the summer. Primary productivity fueled by river-borne nutrients was enhanced by admixture of DIN- and DIP-rich Atlantic-sourced waters to the surface, either by convective mixing during the previous winter or by occasional storm-induced stratification breakdowns in late summer. Substantial enrichments of DSi (+240 %) and DIP (+90 %) beneath the Lena River plume were caused by sea ice-driven redistribution and remineralization. Predicted weaker stratification on the outer Laptev shelf will enhance DSi utilization and removal through greater vertical DIN supply, which will limit DSi export and reduce diatom-dominated primary productivity in the Transpolar Drift. Key Points - Surface DIN, DIP, DSi and Si isotope dynamics are controlled by marine and riverine inputs and uptake by phytoplankton - Strong DIP and DSi enrichments beneath the Lena River plume are due to sea ice-driven nutrient redistribution and remineralization - Enhanced DSi utilization in the Laptev Sea will lead to a reduced diatom-dominated primary productivity in the Transpolar Drift
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2024-02-07
    Description: The wind-driven part of the South Atlantic Ocean is primarily ventilated through central and intermediate water formation. Through the water mass formation processes, anthropogenic carbon (C-ant) is introduced into the ocean's interior which in turn makes the South Atlantic region vulnerable to ocean acidification. C-ant and the accompanying acidification effects have been estimated for individual sections in the region since the 1980s but a comprehensive synthesis for the entire basin is still lacking. Here, we quantified the C-ant accumulation rates and examined the changes in the carbonate system properties for the South Atlantic using a modified extended multiple linear regression method applied to five hydrographic sections and data from the GLODAPv2.2021 product. From 1989 to 2019, a mean C-ant column inventory change of 0.94 +/- 0.39 mol C m(-2) yr(-1) was found. C-ant accumulation rates of 0.89 +/- 0.33 mu mol kg(-1) yr(-1) and 0.30 +/- 0.29 mu mol kg(-1) yr(-1) were observed in central and intermediate waters, accompanied by acidification rates of -0.0020 +/- 0.0007 pH units yr(-1) and -0.0009 +/- 0.0009 pH units yr(-1), respectively. Furthermore, increased remineralization was observed in intermediate waters, amplifying the acidification of this water mass, especially at the African coast along 25 degrees S. This increase in remineralization is likely related to circulation changes and increased biological activity nearshore. Assuming no changes in the observed trends, South Atlantic intermediate waters will become unsaturated with respect to aragonite in similar to 30 years, while the central water of the eastern margins will become unsaturated in similar to 10 years.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2024-02-07
    Description: Marine sponges are known for their complex and stable microbiomes. However, the lack of a gnotobiotic sponge-model and experimental methods to manipulate both the host and the microbial symbionts currently limit our mechanistic understanding of sponge-microbial symbioses. We have used the North Atlantic sponge species Halichondria panicea to evaluate the use of antibiotics to generate gnotobiotic sponges. We further asked whether the microbiome can be reestablished via recolonization with the natural microbiome. Experiments were performed in marine gnotobiotic facilities equipped with a custom-made, sterile, flow-through aquarium system. Bacterial abundance dynamics were monitored qualitatively and quantitatively by 16 S rRNA gene amplicon sequencing and qPCR, respectively. Antibiotics induced dysbiosis by favouring an increase of opportunistic, antibiotic-resistant bacteria, resulting in more complex, but less specific bacteria-bacteria interactions than in untreated sponges. The abundance of the dominant symbiont, Candidatus Halichondribacter symbioticus, remained overall unchanged, reflecting its obligately symbiotic nature. Recolonization with the natural microbiome could not reverse antibiotic-induced dysbiosis. However, single bacterial taxa that were transferred, successfully recolonized the sponge and affected bacteria-bacteria interactions. By experimentally manipulating microbiome composition, we could show the stability of a sponge-symbiont clade despite microbiome dysbiosis. This study contributes to understanding both host-bacteria and bacteria-bacteria interactions in the sponge holobiont.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2024-02-07
    Description: Present estimates of the biogeochemical cycles of calcium, strontium and potassium in the ocean reveal large imbalances between known input and output fluxes. Using pore fluid, incubation and solid sediment data from North Pacific multi-corer cores we show that, contrary to the common paradigm, the top centimetres of abyssal sediments can be an active site of authigenic precipitation of clay minerals. In this region, clay authigenesis is the dominant sink for potassium and strontium and consumes nearly all calcium released from benthic dissolution of calcium carbonates. These observations support the idea that clay authigenesis occurring over broad regions of the world ocean may be a major buffer for ocean chemistry on the time scale of the ocean overturning circulation, and key to the long-term stability of Earth’s climate. Key Points North Pacific red clay sediments are a sink for marine calcium, strontium and potassium Authigenic formation of clay minerals is prevalent in pelagic sediments throughout the North Pacific The main mechanism for clay formation is recrystallisation of aluminosilicates, neoformation can occur in biogenic silica rich sediments
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2024-02-07
    Description: Tropical Instability Waves (TIWs) are the dominant source of intraseasonal variability in the central equatorial Atlantic and play an important role in the redistribution of heat in the upper ocean. Here we use multidecadal records of sea surface temperature, sea level anomaly, sea surface salinity, and near-surface currents constructed from in situ and satellite observations to reveal a long-term intensification of the intraseasonal variability of these variables due to an increase of TIW activity. Enhanced barotropic energy conversion from increased covariance of horizontal current fluctuations, rather than low-frequency changes of the mean zonal currents, drives the TIW intensification. As a consequence, boreal summer cooling of tropical North Atlantic surface waters through horizontal eddy temperature advection increased by 0.03°C month−1 decade−1 during 1993–2021, a change of 74% ± 53% relative to the long-term mean. The presented multidecadal TIW trends are strongly modulated by interannual variations like the 2021 Atlantic Niño. Key Points: - In situ and satellite observations show a long-term intensification of Tropical Instability Waves (TIWs) in the tropical North Atlantic - Enhanced TIW activity is mainly due to increased barotropic instability associated with increased covariance of velocity fluctuations - As a result, TIW-driven sea surface cooling north of the equator due to eddy temperature advection has increased by 74% from 1993 to 2021
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2024-02-07
    Description: The formation of the Central Andes dates back to ∼50 Ma, but its most pronounced episode, including the growth of the Altiplano-Puna Plateau and pulsatile tectonic shortening phases, occurred within the last 25 Ma. The reason for this evolution remains unexplained. Using geodynamic numerical modeling we infer that the primary cause of the pulses of tectonic shortening and growth of the Central Andes is the changing geometry of the subducted Nazca plate, and particularly the steepening of the mid-mantle slab segment which results in a slowing down of the trench retreat and subsequent increase in shortening of the advancing South America plate. This steepening first happens after the end of the flat slab episode at ∼25 Ma, and later during the buckling and stagnation of the slab in the mantle transition zone. Processes that mechanically weaken the lithosphere of the South America plate, as suggested in previous studies, enhance the intensity of the shortening events. These processes include delamination of the mantle lithosphere and weakening of foreland sediments. Our new modeling results are consistent with the timing and amplitude of the deformation from geological data in the Central Andes at the Altiplano latitude. Key Points The steepening of the slab due to slab buckling hinders the trench retreating and explains the main pulsatile phases of the deformation during the last 25 Ma The absolute motion of the overriding plate controls the regime of subduction dynamics Flat slab and eclogitization are required to weaken and then shorten the overriding plate when the slab steepens and the trench is hindered
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2024-02-07
    Description: Natural forcing from solar and volcanic activity contributes significantly to climate variability. The post-eruption cooling of strong volcanic eruptions was hypothesized to have led to millennial-scale variability during Glacials. Cooling induced by volcanic eruption is potentially weaker in the warmer climate. The underlying question is whether the climatic response to natural forcing is state-dependent. Here, we quantify the response to natural forcing under Last Glacial and Pre-Industrial conditions in an ensemble of climate model simulations. We evaluate internal and forced variability on annual to multicentennial scales. The global temperature response reveals no state dependency. Small local differences result mainly from state-dependent sea ice changes. Variability in forced simulations matches paleoclimate reconstructions significantly better than in unforced scenarios. Considering natural forcing is therefore important for model-data comparison and future projections. Key Points We present Glacial/Interglacial climate simulations and quantify effects of time-varying volcanic and solar forcing on climate variability The mean global and local response to these forcings is similar in Glacial and Interglacial climate, suggesting low state dependency In both climate states, modeled temperature variance agrees better with palaeoclimate data when volcanic and solar forcing is included
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2024-02-07
    Description: Ocean tide loading (OTL) and ocean tide dynamics (OTD) are known to be affected by Earth's internal structures, with the latter being affected by the self-attraction and loading (SAL) potential. Combining the 3D earth models Lyon and LITHO1.0, we construct a hybrid model to quantify the coupled effect of sediments, oceanic and continental lithosphere, and anelastic upper mantle on OTL and OTD. Compared to PREM, this more realistic 3D model produces significantly larger vertical OTL displacement by up to 3.9, 2.6, and 0.1 mm for the M2, K1, and Mf OTL, respectively. Moreover, it shows a smaller vector difference of 0.1 mm and a smaller amplitude difference of 0.2 mm than PREM with OTL observations at 663 Global Navigation Satellite System stations, a confirmation of the cumulative effect due to these earth features. On the other hand, we find a resonant impact of wider extent and larger magnitude on OTD, especially for the M2 and K1 tides. Specifically, this impact is concentrated in the ranges 0–6 mm and 0–1.5 mm for M2 and K1, respectively, which is considerably larger than the impact on SAL (mostly in the ranges 0–2 mm and 0–1.0 mm, respectively). Since the effect on vertical displacement is at a similar level compared to the accuracy of modern data-constrained ocean tide models that require correction of the geocentric tide by loading induced vertical displacements, we regard its consideration to be potentially beneficial in OTD modeling. Key Points The effects of 3D sediments, lithosphere, upper mantle (anelastic) on ocean tide loading and ocean tide dynamics have been studied here The inclusion of these 3D earth features leads to an improvement of predicted vertical M2 displacements as confirmed with Global Navigation Satellite System observations The potential impact of changes in displacement on tidal systems is amplified, especially for semidiurnal tides (e.g., 6 mm for M2)
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2024-02-07
    Description: Information about the dietary composition of a species is crucial to understanding their position and role in the food web. Increasingly, molecular approaches such as DNA metabarcoding are used in studying trophic relationships, not least because they may alleviate problems such as low taxonomic resolution or underestimation of digestible taxa in the diet. Here, we used DNA metabarcoding with universal primers for cytochrome c oxidase I (COI) to study the diet composition of the northern shrimp (Pandalus borealis), an Arctic keystone species with large socio-economic importance. Across locations, jellyfish and chaetognaths were the most important components in the diet of P. borealis, jointly accounting for 40%–60% of the total read abundance. This dietary importance of gelatinous zooplankton contrasts sharply with published results based on stomach content analysis. At the same time, diet composition differed between fjord and shelf locations, pointing to different food webs supporting P. borealis in these two systems. Our study underlines the potential of molecular approaches to provide new insights into the diet of marine invertebrates that are difficult to obtain with traditional methods, and calls for a revision of the role of gelatinous zooplankton in the diet of the key Arctic species P. borealis, and in extension, Arctic food webs.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2024-02-07
    Description: Nutrients limiting phytoplankton growth in the ocean are a critical control on ocean productivity and can underpin predicted responses to climate change. The extensive western subtropical North Pacific is assumed to be under strong nitrogen limitation, but this is not well supported by experimental evidence. Here, we report the results of 14 factorial nitrogen–phosphorus–iron addition experiments through the Philippine Sea, which demonstrate a gradient from nitrogen limitation in the north to nitrogen–iron co-limitation in the south. While nitrogen limited sites responded weakly to nutrient supply, co-limited sites bloomed with up to ~60-fold increases in chlorophyll a biomass that was dominated by initially undetectable diatoms. The transition in limiting nutrients and phytoplankton growth capacity was driven by a gradient in deep water nutrient supply, which was undetectable in surface concentration fields. We hypothesize that this large-scale phytoplankton response gradient is both climate sensitive and potentially important for regulating the distribution of predatory fish.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2024-02-07
    Description: Aim: To assess spatio-temporal and taxonomic patterns of available information on the costs of invasive freshwater bivalves, as well as to identify knowledge gaps. Location: Global. Time period: 1980–2020. Taxon studied: Bivalvia. Methods: We synthesize published global economic costs of impacts from freshwater bivalves using the InvaCost database and associated R package, explicitly considering the reliability of estimation methodologies, cost types, economic sectors and impacted regions. Results: Cumulative total global costs of invasive macrofouling bivalves were $ 63.7 billion (2017 US$) across all regions and socio-economic sectors between 1980 and 2020. Costs were heavily biased taxonomically and spatially, dominated by two families, Dreissenidae and Cyrenidae (Corbiculidae), and largely reported in North America. The greatest share of reported costs ($ 31.5 billion) did not make the distinction between damage and management. However, of those that did, damages and resource losses were one order of magnitude higher ($ 30.5 billion) than control or preventative measures ($ 1.7 billion). Moreover, although many impacted socio-economic sectors lacked specification, the largest shares of costs were incurred by authorities and stakeholders ($ 27.7 billion, e.g., public and private sector interventions) and through impacts on public and social welfare ($ 10.1 billion, e.g., via power/drinking water plant and irrigation system damage) in North America. Average cost estimates over the entire period amounted to approximately $ 1.6 billion per year, most of which was incurred in North America. Main conclusions: Our results highlight the burgeoning economic threat caused by invasive freshwater bivalves, offering a strong economic incentive to invest in preventative management such as biosecurity and rapid response eradications. Even if the damages and resource losses are severely understated because economic impacts are lacking for most invaded countries and invasive bivalve species, these impacts are substantial and likely growing
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2024-02-07
    Description: The Atlantic Subtropical Cells (STCs) consist of poleward Ekman transport in the surface layer, subduction in the subtropics, and equatorward transport in the thermocline layer that largely compensates the surface Ekman divergence and closes the STCs via equatorial upwelling. As a result, the STCs play an important role in connecting the tropical and subtropical Atlantic Ocean, in terms of heat, freshwater, oxygen, and nutrients exchange. However, their representation in state-of-the-art coupled models has not been systematically evaluated. In this study, we investigate the performance of the Coupled Model Intercomparison Project Phase 6 climate models in simulating the Atlantic STCs. Comparing model results with observations, we first present the simulated mean state with respect to ensembles of the key components participating in the STC loop, that is, the meridional Ekman and geostrophic flow across 10°N and 10°S, and the Equatorial Undercurrent (EUC) at 23°W. We find that the model ensemble reveals biases toward weak Southern Hemisphere Ekman transport and interior geostrophic transports, as well as a weak EUC. We then investigate the large inter-model spread of these key components and find that models with strong Ekman divergence between 10°N and 10°S tend to have strong mixed layer and thermocline interior convergence and strong EUC. The inter-model spread of the EUC strength is primarily associated with the intensity of the southeasterly trade winds in the models. Since the trade-wind-induced poleward Ekman transports are regarded as the drivers of the STCs, our results highlight the necessity to improve skills of coupled models to simulate the Southern Hemisphere atmospheric forcing.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2024-02-07
    Description: Subsurface flows, particularly hyporheic exchange fluxes, driven by streambed topography, permeability, channel gradient and dynamic flow conditions provide prominent ecological services such as nitrate removal from streams and aquifers. Stream flow dynamics cause strongly nonlinear and often episodic contributions of nutrient concentrations in river-aquifer systems. Using a fully coupled transient flow and reactive transport model, we investigated the denitrification potential of hyporheic zones during peak-flow events. The effects of streambed permeability, channel gradient and bedform amplitude on the spatio-temporal distribution of nitrate and dissolved organic carbon in streambeds and the associated denitrification potential were explored. Distinct peak-flow events with different intensity, duration and hydrograph shape were selected to represent a wide range of peak-flow scenarios. Our results indicated that the specific hydrodynamic characteristics of individual flow events largely determine the average positive or negative nitrate removal capacity of hyporheic zones, however the magnitude of this capacity is controlled by geomorphological settings (i.e. channel slope, streambed permeability and bedform amplitude). Specifically, events with longer duration and higher intensity were shown to promote higher nitrate removal efficiency with higher magnitude of removal efficiency in the scenarios with higher slope and permeability values. These results are essential for better assessment of the subsurface nitrate removal capacity under the influence of flow dynamics and particularly peak-flow events in order to provide tailored solutions for effective restoration of interconnected river-aquifer systems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2024-02-07
    Description: In nature, insects concurrently face multiple environmental stressors, a scenario likely increasing with climate change. Integrated stress resistance (ISR) thus often improves fitness and could drive invasiveness, but how physiological mechanisms influence invasion has lacked examination. Here, we investigated cross tolerance to abiotic stress factors which may influence range limits in the South American tomato pinworm – a global invader that is an ecologically and socially damaging crop pest. Specifically, we tested the effects of prior rapid cold- and heat-hardening (RCH and RHH), fasting and desiccation on cold and heat tolerance traits, as well as starvation and desiccation survivability between T. absoluta life stages. Acclimation effects on critical thermal minima (CTmin) and maxima (CTmax) were inconsistent, showing significantly deleterious effects of RCH on adult CTmax and CTmin and, conversely, beneficial acclimation effects of RCH on larval CTmin. While no beneficial effects of desiccation acclimation were recorded for desiccation tolerance, fasted individuals had significantly higher survival in adults, whereas fasting negatively affected larval tolerances. Furthermore, fasted and desiccation acclimated adults had significantly higher starvation tolerance, showing strong evidence for cross-tolerance. Our results show context-dependent ISR traits that may promote T. absoluta fitness and competitiveness. Given the frequent overlapping occurrence of these divergent stressors, ISR reported here may thus partly elucidate the observed rapid global spread of T. absoluta into more stressful environments than expected. This information is vital in determining the underpinnings of multi-stressor responses, which are fundamental in forecasting species responses to changing environments and management responses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2024-02-07
    Description: Shallow seabed depressions attributed to focused fluid seepage, known as pockmarks, have been documented in all continental margins. In this study we demonstrate how pockmark formation can be the result of a combination of multiple factors – fluid type, overpressures, seafloor sediment type, stratigraphy, and bottom currents. We integrate multibeam echosounder and seismic reflection data, sediment cores and pore water samples, with numerical models of groundwater and gas hydrates, from the Canterbury Margin (off New Zealand). More than 6800 surface pockmarks, reaching densities of 100 per km2, and an undefined number of buried pockmarks, are identified in the middle to outer shelf and lower continental slope. Fluid conduits across the shelf and slope include shallow to deep chimneys/pipes. Methane with a biogenic and/or thermogenic origin is the main fluid forming flow and escape features, although saline and freshened groundwaters may also be seeping across the slope. The main drivers of fluid flow and seepage are overpressure across the slope generated by sediment loading and thin sediment overburden above the overpressured interval in the outer shelf. Other processes (e.g. methane generation and flow, a reduction in hydrostatic pressure due to sea-level lowering) may also account for fluid flow and seepage features, particularly across the shelf. Pockmark occurrence coincides with muddy sediments at the seafloor, whereas their planform is elongated by bottom currents.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2024-02-07
    Description: Storstrømmen and L. Bistrup Bræ are 20- and 10-km wide, surge type glaciers in North Greenland in quiescent phase that terminate in the southernmost floating ice tongue in East Greenland. Novel multi-beam echo sounding data collected in August 2020 indicate a seabed at 350–400 m depth along a relatively uniform ice shelf front, 100 m deeper than expected, but surrounded by shallower terrain (〈100 m) over a 30-km wide region that blocks the access of warm, salty, subsurface Atlantic Intermediate Water (AIW) at +1.6°C. Conductivity temperature depth data reveal waters in front of the glaciers at −1.8°C not connected to AIW in the outer fjord, Dove Bugt. The recent grounding line retreat of the glaciers is attributed to glacier thinning at its ablation rate, with little influence of ocean waters, which illustrates the fundamental importance of knowing the bathymetry of glacial fjords.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2024-02-07
    Description: Marine coastal zones are highly productive, and dominated by engineer species (e.g. macrophytes, molluscs, corals) that modify the chemistry of their surrounding seawater via their metabolism, causing substantial fluctuations in oxygen, dissolved inorganic carbon, pH, and nutrients. The magnitude of these biologically driven chemical fluctuations is regulated by hydrodynamics, can exceed values predicted for the future open ocean, and creates chemical patchiness in subtidal areas at various spatial (µm to meters) and temporal (minutes to months) scales. Although the role of hydrodynamics is well explored for planktonic communities, its influence as a crucial driver of benthic organism and community functioning is poorly addressed, particularly in the context of ocean global change. Hydrodynamics can directly modulate organismal physiological activity or indirectly influence an organism's performance by modifying its habitat. This review addresses recent developments in (i) the influence of hydrodynamics on the biological activity of engineer species, (ii) the description of chemical habitats resulting from the interaction between hydrodynamics and biological activity, (iii) the role of these chemical habitat as refugia against ocean acidification and deoxygenation, and (iv) how species living in such chemical habitats may respond to ocean global change. Recommendations are provided to integrate the effect of hydrodynamics and environmental fluctuations in future research, to better predict the responses of coastal benthic ecosystems to ongoing ocean global change.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2024-02-07
    Description: Multiyear turbulence measurements from oceanographic moorings in equatorial Atlantic and Pacific cold tongues reveal similarities in deep cycle turbulence (DCT) beneath the mixed layer (ML) and above the Equatorial Undercurrent (EUC) core. Diurnal composites of turbulence kinetic energy dissipation rate, ϵ, clearly show the diurnal cycles of turbulence beneath the ML in both cold tongues. Despite differences in surface forcing, EUC strength and core depth DCT occurs, and is consistent in amplitude and timing, at all three sites. Time-mean values of ϵ at 30 m depth are nearly identical at all three sites. Variations of averaged values of ϵ in the deep cycle layer below 30 m range to a factor of 10 between sites. A proposed scaling in depth that isolates the deep cycle layers and of ϵ by the product of wind stress and current shear collapses vertical profiles at all sites to within a factor of 2.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2024-02-07
    Description: A new matrix-matched reference material has been developed – NFHS-2-NP (NIOZ Foraminifera House Standard-2-Nano-Pellet) – with element mass fractions, and isotope ratios resembling that of natural foraminiferal calcium carbonate. A 180–355 µm size fraction of planktic foraminifera was milled to nano-particles and pressed to pellets. We report reference and information values for mass fractions of forty-six elements measured by six laboratories as well as for 87Sr/86Sr (three laboratories), δ13C, δ18O (five laboratories), and 206,207,208Pb/204Pb isotope ratios (one laboratory) determined by ICP-MS, ICP-OES, MC-ICP-MS, IRMS, WD-XRF and TIMS. Inter- and intra-pellet elemental homogeneity was tested using multiple LA-ICP-MS analyses in two laboratories applying spot sizes of 60 and 70 µm. The LA-ICP-MS results for most of the elements relevant as proxies for palaeoclimate research show RSD values 〈 3%, demonstrating a satisfactory homogeneous composition. Homogeneity of 87Sr/86Sr ratios of the pellet was verified by repeated LA-MC-ICP-MS by two laboratories. Information values are reported for Pb isotope ratios and δ13C, δ18O values. The homogeneity for these isotope systems remains to be tested by LA-MC-ICP-MS and SIMS. Overall, our results confirm the suitability of NFHS-2-NP for calibration or monitoring the quality of in situ geochemical techniques.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2024-02-07
    Description: The Amazon forests are one of the largest ecosystem carbon pools on Earth. Although more frequent and prolonged future droughts have been predicted, the impacts have remained largely uncertain, as most land surface models (LSMs) fail to capture the vegetation drought responses. In this study, the ability of the LSM JSBACH to simulate the drought responses of leaf area index (LAI) and leaf litter production in the Amazon forests is evaluated against artificial drought experiments. Based on the evaluation, improvements are implemented, including a dependency of leaf growth on leaf carbon allocation and a better representation of drought-dependent leaf shedding. The modified JSBACH is shown to capture the drought responses at two sites and across different regions of the basin. It is then coupled with an atmospheric model to simulate the carbon and biogeophysical feedbacks of drought under future climate. We separate the drought impacts into (a) the direct effect, resulting from drier soil and stomatal closure, which does not involve a change in canopy structure, and (b) the LAI effect, resulting from leaf shedding and involving canopy response. We show that the latter accounts for 35% of reduced land carbon uptake (9 ± 10 vs. 26 ± 7 g/m2/yr; mean ± 1 sd) and 12% of surface warming (0.09 ± 0.03 vs. 0.7 ± 0.07 K) during the late 21st century. A north-south dipole of precipitation change is found, which is largely attributable to the direct effect. The results highlight the importance of incorporating drought deciduousness of tropical rainforests in LSMs to better simulate land-atmosphere interactions in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2024-02-07
    Description: Blue-green light is known to maximize the degree of fatty acid (FA) unsaturation in microalgae. However, knowledge on the particular waveband responsible for this stimulation of FA desaturation and its impact on the pigment composition in microalgae remains limited. In this study, Acutodesmus obliquus was cultivated for 96 h at 15 degrees C with different light spectra (380-700 nm, 470-700 nm, 520-700 nm, 600-700 nm, and dark controls). Growth was monitored daily, and qualitative characterization of the microalgal FA composition was achieved via gas chromatography coupled with electron impact ionization mass spectrometry (GC-EI/MS). Additionally, a quantitative analysis of microalgal pigments was performed using high-performance liquid chromatography with diode array detection (HPLC-DAD). Spectra that included wavelengths between 470 and 520 nm led to a significantly higher percentage of the polyunsaturated fatty acids (PUFA) 18:3 and 16:4, compared to all other light conditions. However, no significant differences between the red light cultivations and the heterotrophic dark controls were observed for the FA 18:3 and 16:4. These results indicate, that exclusively the blue-green light waveband between 470 and 520 nm is responsible for a maximized FA unsaturation in A. obliquus. Furthermore, the growth and production of pigments were impaired if blue-green light (380-520 nm) was absent in the light spectrum. This knowledge can contribute to achieving a suitable microalgal pigment and FA composition for industrial purposes and must be considered in spectrally selective microalgae cultivation systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2024-02-07
    Description: Supercritical flow bedforms are important elements of sedimentary environments, but their internal three-dimensional structure has been elusive due to seismic imaging limitations. Here, we present high-resolution 3D seismic reflection data from Formosa Ridge - a ridge between two canyons that incise into the northeastern South China Sea margin. The ridge consists of 300 m-thick submarine deposits including sediment waves that are manifested as crescentic depressions surrounded by elevated walls on the paleo-seafloor. Cross-sectional profiles show scour fills that turn into step-like sediment waves further downstream. These bedforms are 470–1,370 m long and 30–140 m high. The 3D seismic data clearly show the step-like bedforms that may be misinterpreted as faults or slumps on data with lower resolution. Despite exhibiting negative paleo-seafloor relief, they are overall depositional structures and have constructed at least part of Formosa Ridge. The bedforms’ morphology and upslope migration suggest that they are the continuum of partially depositional to fully depositional cyclic steps formed by bottom currents travelling, based on a series of simple calculations, at least 2 m/s. These currents are able to transport sediments with grain sizes up to coarse sand and such dynamic processes might impact seafloor infrastructure safety, oil and gas reservoir systems, and the functioning of benthic ecosystems in similar settings.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2024-02-07
    Description: Given the accelerating rate of biodiversity loss, the need to prioritize marine areas for protection represents a major conservation challenge. The three-dimensionality of marine life and ecosystems is an inherent element of complexity for setting spatial conservation plans. Yet, the confidence of any recommendation largely depends on shifting climate, which triggers a global redistribution of biodiversity, suggesting the inclusion of time as a fourth dimension. Here, we developed a depth-specific prioritization analysis to inform the design of protected areas, further including metrics of climate-driven changes in the ocean. Climate change was captured in this analysis by considering the projected future distribution of 〉2000 benthic and pelagic species inhabiting the Mediterranean Sea, combined with climatic stability and heterogeneity metrics of the seascape. We identified important areas based on both biological and climatic criteria, where conservation focus should be given in priority when designing a three-dimensional, climate-smart protected area network. We detected spatially concise, conservation priority areas, distributed around the basin, that protected marine areas almost equally across all depth zones. Our approach highlights the importance of deep sea zones as priority areas to meet conservation targets for future marine biodiversity, while suggesting that spatial prioritization schemes, that focus on a static two-dimensional distribution of biodiversity data, might fail to englobe both the vertical properties of species distributions and the fine and larger-scale impacts associated with climate change.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2024-02-07
    Description: Biological invasions are a major driver of biodiversity loss and socioeconomic burden globally. As invasion rates accelerate worldwide, understanding past invasion dynamics is essential to inform predictions of future invaders and impacts. Owing to a high diversity of pathways and current biosecurity gaps, aquatic systems near urban centres are especially susceptible to alien species establishments. Here, we compiled and compared alien species lists for three different aquatic recipient regions spanning the North Atlantic: Chesapeake Bay, Great Lakes-St. Lawrence River and North and Baltic Seas. Each system is a major trade centre, with a history of invasions, and characterised by a strong natural salinity gradient. Our goal was to compare the alien species across systems, to test for similarities in the taxonomic composition and geographic origin as well as species overlap among the three regions. We selected specific macroinvertebrate, algae and fish taxa for analysis, to control for uneven taxonomic and biogeographic resolution across regions. Cumulatively, we identified 326 individual alien species established in these aquatic systems, with the North and Baltic Seas most invaded overall (163), followed by Great Lakes-St. Lawrence River (84) and Chesapeake Bay (79). Most invasions were from Ponto-Caspian, Eurasian, Northwest Pacific, Northwest Atlantic and North American origins, and mostly comprised Arthropoda, Chordata, Mollusca and Annelida. However, origins and taxonomies differed significantly among destinations, with Ponto-Caspian species particularly successful invaders to the North and Baltic Seas then Great Lakes-St. Lawrence River, but less so to Chesapeake Bay. Nevertheless, approximately eight tenths of invaders established in only one region, indicating disparate invasion patterns and a high potential for future aliens to accrue from increasingly diverse source pools and pathways. These results support biosecurity strategies that consider a broad range of geographic origins and taxonomic groups to limit the translocation, arrival and spread of alien species worldwide.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2024-02-07
    Description: Seagrass meadows are one of the most important benthic habitats in the Baltic Sea. Nevertheless, spatially continuous mapping data of Zostera marina, the predominant seagrass species in the Baltic Sea, are lacking in the shallow coastal waters. Sentinel-2 turned out to be valuable for mapping coastal benthic habitats in clear waters, whereas knowledge in turbid waters is rare. Here, we transfer a clear water mapping approach to turbid waters to assess how Sentinel-2 can contribute to seagrass mapping in the Western Baltic Sea. Sentinel-2 data were atmospherically corrected using ACOLITE and subsequently corrected for water column effects. To generate a data basis for training and validating random forest classification models, we developed an upscaling approach using video transect data and aerial imagery. We were able to map five coastal benthic habitats: bare sand (25 km²), sand dominated (16 km²), seagrass dominated (7 km²), dense seagrass (25 km²) and mixed substrates with red/ brown algae (3.5 km²) in a study area along the northern German coastline. Validation with independent data pointed out that water column correction does not significantly improve classification results compared to solely atmospherically corrected data (balanced overall accuracies ˜0.92). Within optically shallow waters (0–4 m), per class and overall balanced accuracies (〉0.82) differed marginally depending on the water depth. Overall balanced accuracy became worse (〈0.8) approaching the border to optically deep water (˜ 5 m). The spatial resolution of Sentinel-2 (10–20 m) allowed delineating detailed spatial patterns of seagrass habitats, which may serve as a basis to retrieve spatially continuous data for ecologically relevant metrics such as patchiness. Thus, Sentinel-2 can contribute unprecedented information for seagrass mapping between 0 and around 5 m water depths in the Western Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2024-02-07
    Description: The benthic boundary layer plays a crucial role in the exchange of trace metals between surface sediments and the water column. So far it has been difficult to study dissolved–particulate interactions of trace metals in this highly reactive interface layer due to the lack of suitable sampling methods. We developed a new device, called Benthic Trace Profiler (BTP), which enables simultaneous sampling of near-bottom water and suspended particles in high depth resolution within the first 3 m above the seafloor. The device was tested successfully in the Baltic Sea. The concentrations of several trace metals (Co, Ni, Cu, Zn, and Cd) in the collected bottom waters overlapped with concentrations in water column samples above collected with conventional methods. This observation indicates that the sampling device and method is trace metal clean. The trace metals Fe and Mn showed concentration gradients within the benthic boundary layer indicating an upward diffusive flux. This observation is consistent with a diffusive benthic flux of these trace metals across the sediment–water interface, which was independently verified using pore-water profiles. Suspended particles can be used to study precipitation processes and to determine the carrier phases of trace metals. The BTP fulfilled all the intended requirements as it allowed a simultaneous, uncontaminating and oxygen-free sampling of seawater and suspended particles to gather high-resolution profiles of dissolved and particulate trace metal concentrations above the seafloor. The device closes the gap between water column and sediment sampling and helps researchers to better understand trace metal exchange processes across the ocean's lower boundary.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2024-02-07
    Description: Ocean mesoscale eddies have been identified as drivers of localized extremely low dissolved oxygen concentration ([O2]) conditions in the subsurface. We employ a global physical-biogeochemical ocean model at eddy-permitting resolution to conduct a census of open-ocean eddies near Eastern Boundary Upwelling Systems adjacent to tropical Oxygen Minimum Zones (OMZs). We track cyclonic and anticyclonic eddies with a surface signature over the period 1992–2018 and isolate their subsurface oxygen characteristics. We identify strongly deoxygenating eddies and quantify their contribution to low [O2] extreme events. Our results show that model simulated low [O2] extreme event frequency is 2–7 times higher in eddies versus non-eddying locations, with regionally more than half of low [O2] extreme events outside of the permanent OMZs being associated with eddies. Our study highlights the need for further work to investigate the drivers, characteristics and potential ecosystem impacts of low [O2] extreme events.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2024-02-07
    Description: In the past 20 years, the exploration of deep ocean trenches has led to spectacular new insights. Even in the deepest canyons, an unusual variety of life and unexpectedly high benthic oxygen consumption rates have been detected while microbial processes below the surface of the hadal seafloor remains largely unknown. The information that exist comes from geophysical measurements, especially related to seismic research, and specific component analyses to estimate the carbon export. In contrast, no information is available on metabolic activities in deeper buried sediments of hadal environment. Here we present the first pore water profiles from 15 up to 11 m long sediment cores recovered during three expeditions to two hadal zones, the Japan Trench and the Atacama Trench. Despite low levels of organic debris, our data reveal that rates of microbial carbon turnover along the trench axes can be similar to those encountered in much shallower and more productive oceanic regions. The extreme sedimentation dynamics, characterized by frequent mass wasting of slope sediments into the trenches, result in effective burial of reactive, microbially available, organic material. Our results document the fueling of the deep hadal biosphere with bioavailable material and thus provide important understanding on the function of deep-sea trenches and the hadal carbon cycle. Key Points Hadal subseafloor pore water profiles from the Japan Trench and Atacama Trench document unexpectedly high microbial turnover rates Frequent alternations between hemipelagic sedimentation and mass wasting lead to high burial efficiency of reactive organic carbon Microbial activities in deep-sea trenches may be similar to those at the edge of high-production areas
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2024-02-07
    Description: This study traces dissolved organic matter (DOM) in different water masses of the Arctic Ocean and its effect on the distributions of trace elements (TEs; Fe, Cu, Mn, Ni, Zn, Cd) using fluorescent properties of DOM and the terrigenous biomarker lignin. The Nansen, Amundsen, and Makarov Basins were characterized by the influence of Atlantic water and the fluvial discharge of the Siberian rivers with high concentrations of terrigenous DOM (tDOM). The Canada Basin and the Chukchi Sea were characterized by Pacific water, modified through contact with productive shelf sediments with elevated levels of marine DOM. Within the surface layer of the Beaufort Gyre, meteoric water (river water and precipitation) was characterized by low concentrations of lignin and terrigenous DOM fluorescence proxies as DOM is removed during freezing. High-resolution in situ fluorescence profiles revealed that DOM distribution closely followed isopycnals, indicating the strong influence of sea-ice formation and melt, which was also reflected in strong correlations between DOM fluorescence and brine contributions. The relationship of DOM and hydrography to TEs showed that terrigenous and marine DOM were likely carriers of dissolved Fe, Ni, Cu from the Eurasian shelves into the central Arctic Ocean. Chukchi shelf sediments were important sources of dCd, dZn, and dNi, as well as marine ligands that bind and carry these TEs offshore within the upper halocline (UHC) in the Canada Basin. Our data suggest that tDOM components represent stronger ligands relative to marine DOM components, potentially facilitating the long-range transport of TE to the North Atlantic. Key Points Dissolved Organic Matter (DOM) distribution in the Arctic Ocean is largely controlled by sea ice formation and melt processes DOM distribution in the Arctic Ocean reveals its potential as a tracer for halocline formation and freshwater source assignments Terrigenous and marine DOM are carriers of trace elements from shelves to the open Arctic Ocean, but terrigenous DOM represent stronger ligands
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2024-02-07
    Description: Based on velocity data from a long-term moored observatory located at 0°N, 23°W we present evidence of a vertical asymmetry during the intraseasonal maxima of northward and southward upper-ocean flow in the equatorial Atlantic Ocean. Periods of northward flow are characterized by a meridional velocity maximum close to the surface, while southward phases show a subsurface velocity maximum at about 40 m. We show that the observed asymmetry is caused by the local winds. Southerly wind stress at the equator drives northward flow near the surface and southward flow below that is superimposed on the Tropical Instability Wave (TIW) velocity field. This wind-driven overturning cell, known as the Equatorial Roll, shows a distinct seasonal cycle linked to the seasonality of the meridional component of the south-easterly trade winds. The superposition of vertical shear of the Equatorial Roll and TIWs causes asymmetric mixing during northward and southward TIW phases. Key Points: - Composites of Tropical Instability Waves at 0°N, 23°W show a surface (subsurface) velocity maximum during northward (southward) phases - Meridional wind stress forces a seasonally-varying, shallow cross-equatorial overturning cell-the Equatorial Roll - The superposition of Tropical Instability Waves and Equatorial Roll causes asymmetric mixing during north- and southward phases
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2024-02-07
    Description: We present labile (L-pTM) and refractory (R-pTM) particulate trace metal distributions of Fe, Mn, Al, Ti, Co, Zn, Cd, Ni, Pb, Cu, and P for a transect along the southwest African shelf and an off-shore section at 3°S of the GEOTRACES GA08 section cruise. Particle sources and biogeochemical cycling processes are inferred using particle-type proxies and elemental ratios. Enhanced concentrations of bio-essential L-pTMs (Zn, Cu, Ni, Cd, Co, and P) were observed in the Benguela upwelling region, attributed to enhanced primary production. Bio-essential pTM stoichiometric ratios (normalized to pP) were consistent with phytoplankton biomass across the transect, except for Fe and Mn, which included adsorbed and labile oxide phases. Low pP lability (∼41%) suggests a potential refractory biogenic source on the Benguela shelf. Variable labilities observed between stations along the transect indicated potentially different biogenic pP labilities among different plankton groups. Benthic resuspension was prevalent in (near-)bottom waters along the transect and formed an important source of Fe and Mn oxides. Lithogenic particles along the entire shelf were Mn deficient and particles on the Benguela shelf were enriched in Fe, consistent with regional sediment compositions. Enhanced available-Fe (dissolved + labile particulate Fe) concentrations (up to 39.6 nM) were observed in oxygen-deficient (near-)bottom waters of the Benguela shelf coinciding with low L-pMn. This was attributed to the faster oxidation kinetics of Fe, allowing Fe-oxide precipitation and retention on the shelf, while Mn oxidation was slower. Enhanced L-pFe in the Congo River plume, which comprised as much as 93% of the available-Fe pool, was attributed to increased scavenging and formation of Fe oxides. Increased scavenging of other particle-reactive trace metals (TMs) (Mn, Al, and Pb) was also apparent in Congo-influenced waters. However, particles did not play a significant role in transporting TMs off-shelf within Congo plume waters. Key Points: • Different oxidation kinetics lead to decoupled Fe and Mn oxide redox cycling within oxygen-depleted waters on the Benguela Shelf • Lower lability of particulate phosphorus (∼41%) indicate potential refractory biogenic source on Benguela shelf • Nepheloid particles formed important sources of Fe and Mn oxides that adsorb trace metals (TMs), and serve as potential TM sources from shelf to open ocean
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2024-02-07
    Description: Oceanic mesoscale eddies constitute ephemeral hotspots for marine life and are pivotal for the lateral transport of nutrients and organic matter. Here, we use a high-resolution coupled physical-biogeochemical model to study the processes sustaining biological production and export in long-living cyclonic (CE) and anticyclonic (AE) eddies of the northern Canary Upwelling System (CanUS). We track the eddies for 18 months as they propagate offshore, and study their composite properties in time in a Lagrangian manner. Our model shows that long-living CEs sustain their production with the nitrogen that they initially trap in the nearshore nutrient-rich waters and keep isolated in their cores. The vertical input of nitrate from below tends to be comparatively small, and is mostly driven by mixing. In contrast, AEs tend to start with low nutrient concentrations in their core as they do not trap coastal waters, but have elevated concentrations at their periphery. In AEs, stirring is responsible for both the building up of the positive nitrate anomaly at depth and the enhanced lateral input of organic nitrogen in the near-surface. Compared to CEs, the input of nitrate into the euphotic zone by vertical mixing is substantially more important. Though regenerated production dominates in both types of eddies, new production is higher than the regional average in CE cores and at the rim of AEs, partially compensating for the intense losses due to sinking. Both cyclonic trapping and transport and anticyclonic stirring shape the regional pattern of organic matter and nutrients in the northern CanUS.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2024-02-07
    Description: Abundant volcanic activity occurs in the back-arc region of the northern Tofua island arc where the Northeast Lau Spreading Centre (NELSC) propagates southwards into older crust causing the formation of numerous seamounts at the propagating rift tip. An off-axis volcanic diagonal ridge (DR) occurs at the eastern flank of the NELSC, linking the large rear-arc volcano Niuatahi with the NELSC. New geochemical data from the NELSC, the southern propagator seamounts, and DR reveal that the NELSC lavas are tholeiitic basalts whereas the rear-arc volcanoes typically erupt lavas with boninitic composition. The sharp geochemical boundary probably reflects the viscosity contrast between off-axis hydrous harzburgitic mantle and dry fertile mantle beneath the NELSC. The new data do not indicate an inflow of Samoa plume mantle into the NELSC, confirming previously published He isotope data. The NELSC magmas form by mixing of an enriched and a depleted Indian Ocean-type upper mantle end-member implying a highly heterogeneous upper mantle composition in this area. Most NELSC lavas are little affected by a slab component implying that melting is adiabatic beneath the spreading center. The DR lavas show the influence of a component from the subducted Louisville Seamount Chain, which was previously thought to be restricted to the nearby arc volcanoes Niuatoputapu and Tafahi. This signature is rarely detected along the NELSC implying little mixing of melts from the low-viscosity hydrous portion of the mantle wedge beneath the rear-arc volcanoes into the melting region of the dry mantle beneath the NELSC.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2024-02-07
    Description: Arc volcanoes are underlain by complex systems of molten-rock reservoirs ranging from melt-poor mush zones to melt-rich magma chambers. Petrological and satellite data indicate that eruptible magma chambers form in the topmost few kilometres of the crust. However, very few chambers have ever been definitively located, suggesting that most are too short-lived or too small to be imaged, which has direct implications for hazard assessment and modelling of magma differentiation. Here we use a high-resolution technology based on inverting full seismic waveforms to image a small, high-melt-fraction magma chamber that was not detected with standard seismic tomography. The melt reservoir extends from ∼2 to at least 4 km below sea level (b.s.l.) at Kolumbo – a submarine volcano near Santorini, Greece. The chamber coincides with the termination point of the recent earthquake swarms and may be a missing link between a deeper melt reservoir and the high-temperature hydrothermal system venting at the crater floor. The chamber poses a serious hazard as it could produce a highly explosive, tsunamigenic eruption in the near future. Our results suggest that similar reservoirs (relatively small but high-melt-fraction) may have gone undetected at other active volcanoes, challenging the existing eruption forecasts and reactive-flow models of magma differentiation. Key Points A shallow, very strong negative Vp anomaly imaged under the explosive, submarine Kolumbo volcano, Greece, using full-waveform inversion The high-fidelity image and petrologic data indicate the anomaly is a small (∼0.6-km wide, ∼2-km deep), magma chamber with ∼42% of melt The chamber was missed by travel-time tomography indicating similar reservoirs may have gone undetected at other volcanoes
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2024-02-07
    Description: Traditional or “bulk” viral enrichment and amplification methods used in viral metagenomics introduce unavoidable bias in viral diversity. This bias is due to shortcomings in existing viral enrichment methods and overshadowing by the more abundant viral populations. To reduce the complexity and improve the resolution of viral diversity, we developed a strategy coupling fluorescence-activated cell sorting (FACS) with random amplification and compared this to bulk metagenomics. This strategy was validated on both influent and effluent samples from a municipal wastewater treatment plant using the Modified Ludzack–Ettinger (MLE) process as the treatment method. We found that DNA and RNA communities generated using bulk samples were mostly different from those derived following FACS for both treatments before and after MLE. Before MLE treatment, FACS identified five viral families and 512 viral annotated contigs. Up to 43% of mapped reads were not detected in bulk samples. Nucleo-cytoplasmic large DNA viral families were enriched to a greater extent in the FACS-coupled subpopulations compared with bulk samples. FACS-coupled viromes captured a single-contig viral genome associated with Anabaena phage, which was not observed in bulk samples or in FACS-sorted samples after MLE. These short metagenomic reads, which were assembled into a high-quality draft genome of 46 kbp, were found to be highly dominant in one of the pre-MLE FACS annotated virome fractions (57.4%). Using bulk metagenomics, we identified that between Primary Settling Tank and Secondary Settling Tank viromes, Virgaviridae, Astroviridae, Parvoviridae, Picobirnaviridae, Nodaviridae, and Iridoviridae were susceptible to MLE treatment. In all, bulk and FACS-coupled metagenomics are complementary approaches that enable a more thorough understanding of the community structure of DNA and RNA viruses in complex environmental samples, of which the latter is critical for increasing the sensitivity of detection of viral signatures that would otherwise be lost through bulk viral metagenomics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2024-02-07
    Description: Extracellular vesicles are small (~50–200 nm diameter) membrane-bound structures released by cells from all domains of life. While vesicles are abundant in the oceans, their functions, both for cells themselves and the emergent ecosystem, remain a mystery. To better characterize these particles – a prerequisite for determining function – we analysed the lipid, protein, and metabolite content of vesicles produced by the marine cyanobacterium Prochlorococcus. We show that Prochlorococcus exports a diverse array of cellular compounds into the surrounding seawater enclosed within discrete vesicles. Vesicles produced by two different strains contain some materials in common, but also display numerous strain-specific differences, reflecting functional complexity within vesicle populations. The vesicles contain active enzymes, indicating that they can mediate extracellular biogeochemical reactions in the ocean. We further demonstrate that vesicles from Prochlorococcus and other bacteria associate with diverse microbes including the most abundant marine bacterium, Pelagibacter. Together, our data point toward hypotheses concerning the functional roles of vesicles in marine ecosystems including, but not limited to, possibly mediating energy and nutrient transfers, catalysing extracellular biochemical reactions, and mitigating toxicity of reactive oxygen species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2024-02-07
    Description: Lithium has limited biological activity and can readily replace aluminium, magnesium and iron ions in aluminosilicates, making it a proxy for the inorganic silicate cycle and its potential link to the carbon cycle. Data from the North Pacific Ocean, tropical Indian Ocean, Southern Ocean and Red Sea suggest that salinity normalized dissolved lithium concentrations vary by up to 2%–3% in the Indo-Pacific Ocean. The highest lithium concentrations were measured in surface waters of remote North Pacific and Indian Ocean stations that receive relatively high fluxes of dust. The lowest dissolved lithium concentrations were measured just below the surface mixed layer of the stations with highest surface water concentrations, consistent with removal into freshly forming aluminium rich phases and manganese oxides. In the North Pacific, water from depths 〉2,000 m is slightly depleted in lithium compared to the initial composition of Antarctic Bottom Water, likely due to uptake of lithium by authigenically forming aluminosilicates. The results of this study suggest that the residence time of lithium in the ocean may be significantly shorter than calculated from riverine and hydrothermal fluxes. Key Points Li/Na ratios vary by up to 2%–3% in the Indian and Pacific Oceans Authigenic formation of aluminosilicates slightly deplete deep-water lithium concentrations in the North Pacific The residence time of lithium in the ocean is 240,000 ± 70,000 years, based on removal from North Pacific deep-water
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: other
    Format: other
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2024-02-07
    Description: Valdivia Bank is an oceanic plateau in the South Atlantic formed by hot spot magmatism at the Mid-Atlantic Ridge during the Late Cretaceous. It is part of the Walvis Ridge, an aseismic ridge and seamount chain widely considered to be formed by age-progressive volcanism from the Tristan-Gough plume. To better understand the formation and history of this edifice, we developed a bathymetric map of Valdivia Bank by merging available multibeam echosounder data sets with a bathymetry grid based mainly on satellite altimetry (SRTM15+). The bathymetric map reveals previously unresolved features including extensive rift grabens, volcanic mounds and knolls, and large-scale sediment transport systems. After Valdivia Bank was emplaced and probably eroded at sea level, it underwent a period of rifting, followed by a secondary magmatic pulse that caused regional uplift to sea-level, followed by subsidence to current depths. Shallow banks at depths of ∼1,000 m are the result of a thick sediment pile atop uplifted volcanic crust. Several shallower mounds (∼1,000–520 m) and a guyot (∼220 m) likely resulted from coral reef growth atop one or more volcanic pedestals formed during the younger Cenozoic magmatic event. As sediments accumulated on the shallow platforms, sediment transport systems developed as gullies, channels and mass transport deposits carved valleys and troughs, shedding sediment into abyssal fans at the plateau base. The new bathymetric map demonstrates that oceanic plateaus are geologically active long after initial emplacement. Key Points - A bathymetry map was constructed for Valdivia Bank from multibeam data merged with satellite altimetry-predicted depths - Valdivia Bank experienced extension, forming rifts, and secondary volcanism, uplift, and exposure, then was capped by carbonate sediments - Valdivia Bank shows evidence of mass wasting, partly triggered by Cenozoic uplift and erosion, but also owing to sediment cap instability
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2024-02-07
    Description: Deep-seabed polymetallic nodule mining can have multiple adverse effects on benthic communities, such as permanent loss of habitat by removal of nodules and habitat modification of sediments. One tool to manage biodiversity risks is the mitigation hierarchy, including avoidance, minimization of impacts, rehabilitation and/or restoration, and offset. We initiated long-term restoration experiments at sites in polymetallic nodule exploration contract areas in the Clarion-Clipperton Zone that were (i) cleared of nodules by a preprototype mining vehicle, (ii) disturbed by dredge or sledge, (iii) undisturbed, and (iv) naturally devoid of nodules. To accommodate for habitat loss, we deployed 〉2000 artificial ceramic nodules to study the possible effect of substrate provision on the recovery of biota and its impact on sediment biogeochemistry. Seventy-five nodules were recovered after eight weeks and had not been colonized by any sessile epifauna. All other nodules will remain on the seafloor for several years before recovery. Furthermore, to account for habitat modification of the top sediment layer, sediment in an epibenthic sledge track was loosened by a metal rake to test the feasibility of sediment decompaction to facilitate soft-sediment recovery. Analyses of granulometry and nutrients one month after sediment decompaction revealed that sand fractions are proportionally lower within the decompacted samples, whereas total organic carbon values are higher. Considering the slow natural recovery rates of deep-sea communities, these experiments represent the beginning of a ~30-year study during which we expect to gain insights into the nature and timing of the development of hard-substrate communities and the influence of nodules on the recovery of disturbed sediment communities. Results will help us understand adverse long-term effects of nodule removal, providing an evidence base for setting criteria for the definition of “serious harm” to the environment. Furthermore, accompanying research is needed to define a robust ecosystem baseline in order to effectively identify restoration success.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2024-02-07
    Description: During pelagic video transects off Santo Antão, Cabo Verde, we encountered the midwater scorpionfish Ectreposebastes imus in midwater between 300 and 800 m over a bottom depth of about 1000 m. The fish were typically positioned vertically with their heads pointing upwards. These first midwater observations of E. imus suggest migratory (potentially feeding) behaviour into the pelagic realm and hence a possible role of this species in the trophic coupling between the pelagic and benthic habitats in the deep seas of Cabo Verde and elsewhere in its global distribution.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2024-02-07
    Description: A growing literature demonstrates the impact of helminths on their host gut microbiome. We investigated whether the stickleback host microbiome depends on ecoevolutionary variables by testing the impact of exposure to the cestode parasite Schistocephalus solidus with respect to infection success, host genotype, parasite genotype, and parasite microbiome composition. We observed constitutive differences in the microbiome of sticklebacks of different origin, and those differences increased when sticklebacks exposed to the parasite resisted infection. In contrast, the microbiome of successfully infected sticklebacks varied with parasite genotype. More specifically, we revealed that the association between microbiome and immune gene expression increased in infected individuals and varied with parasite genotype. In addition, we showed that S. solidus hosts a complex endomicrobiome and that bacterial abundance in the parasite correlates with expression of host immune genes. Within this comprehensive analysis we demonstrated that (i) parasites contribute to modulating the host microbiome through both successful and unsuccessful infection, (ii) when infection is successful, the host microbiome varies with parasite genotype due to genotype-dependent variation in parasite immunomodulation, and (iii) the parasite-associated microbiome is distinct from its host and impacts the host immune response to infection
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2024-02-07
    Description: Oceanic transform faults (OTFs) are an inherent part of seafloor spreading and plate tectonics, whereas the process controlling their morphology remains enigmatic. Here, we systematically quantify variations in transform morphology and their dependence on spreading rate and age-offset, based on a compilation of shipborne bathymetric data from 94 OTFs at ultraslow- to intermediate-spreading ridges. In general, the length, width and depth of OTFs scale systematically better with age-offset rather than spreading rate. This observation supports recent geodynamic models proposing that cross-transform extension scaling with age-offset, is a key process of transform dynamics. On the global scale, OTFs with larger age-offsets tend to have longer, wider, and deeper valleys. However, at small age-offsets (〈5 Myr), scatters in the depth and width of OTFs increase, indicating that small age-offset OTFs with weak lithospheric strength are easily affected by secondary tectonic processes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2024-02-07
    Description: Key Points: • Observed Atlantic western boundary mean transport of the upper 1,200 m at 11°S is realistically reproduced from high-resolution Argo data • Diapycnal transport estimates from high-resolution Argo data show upwelling of ∼2 Sv into the tropical Atlantic thermocline layer • By combining shipboard measurements with Argo data, we provide an overview of the individual water mass pathways within the Atlantic Meridional Overturning Circulation return flow Abstract: The upper-ocean circulation of the tropical Atlantic is a complex superposition of thermohaline and wind-driven flow components. The resulting zonally and vertically integrated upper-ocean meridional flow is referred to as the upper branch of the Atlantic Meridional Overturning Circulation (AMOC)—a major component and potential tipping element of the global climate system. Here, we investigate the tropical part of the northward AMOC branch, that is, the return flow covering the upper 1,200 m, based on Argo data and repeated shipboard velocity measurements. The western boundary mean circulation at 11°S is realistically reproduced from high-resolution Argo data showing a remarkably good representation of the volume transport of the return flow water mass layers when compared to results from direct velocity measurements along a repeated ship section. The AMOC return flow through the inner tropics (11°S–10°N) is found to be associated with a diapycnal upwelling of lower central water into the thermocline layer of ∼2 Sv. This is less than half the magnitude of previous estimates, likely due to improved horizontal resolution. The total AMOC return flow at 11°S and 10°N is derived to be similar in strength with 16–17 Sv. At 11°S, northward transport is concentrated at the western boundary, where the AMOC return flow enters the inner tropics at all vertical levels above 1,200 m. At 10°N, northward transport is observed both at the western boundary and in the interior predominantly in the surface and intermediate layer indicating recirculation and transformation of thermocline and lower central water within the inner tropics.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2024-02-07
    Description: In recent decades, the increase in terrestrial inputs to freshwater and coastal ecosystems, especially occurring at northern latitudes, has led to a process of water color darkening known as “brownification.” To assess how brownification affects plankton community composition and functioning in northern coastal areas, an in situ mesocosm experiment using a highly colored humic substance to simulate a brownification event was performed in a North Atlantic bay (Hopavågen, Norway) in August 2019. Manual sampling for analyses of nutrient concentrations, phytoplankton pigments and zooplankton abundances was combined with high-frequency (every 15 min) monitoring of key environmental variables to investigate the response of the plankton community in terms of oxygen metabolism and community composition. In response to brownification, the oxygen gross primary production (GPP) and community respiration (R) slowed down significantly, by almost one-third. However, GPP and R both decreased to the same extent; thus, the oxygen metabolic balance was not affected. Moreover, the chlorophyll-a concentration significantly decreased under brownification, by 9% on average, and the chemotaxonomic pigment composition of the phytoplankton changed, indicating their acclimation to the reduced light availability. In addition, brownification seemed to favor appendicularians, the dominant mesozooplankton group in the mesocosms, which potentially contributed to lowering the phytoplankton biomass. In conclusion, the results of this in situ mesocosm experiment suggest that brownification could induce significant changes in phytoplankton and zooplankton community composition and significantly alter the overall oxygen metabolism of plankton communities in a northern Atlantic bay.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2024-02-07
    Description: Climate change is especially strong in the region of the Arctic Ocean, and will have an important impact on its thermo-haline structure. We analyze the results of a hindcast simulation of a new 3D ocean model of the Arctic and North Atlantic oceans for the period 1970–2019. We compared the time period 1970–1999 with the time period 2010–2019. The comparison showed that there is a decrease of stratification between the two periods over most of the shallow Arctic shelf seas and in the core of the Transpolar Ice Drift. Fresh water inputs to the ocean surface decline, and inputs of momentum to the ocean increase, which can explain the decrease in stratification. The comparison also showed that the mixed layer becomes deeper during winter, in response to the weakened stratification owing to increased vertical mixing. The comparison of summer mixed layer depths between the two time periods follows a deepening pattern that is less evident. Regional exceptions include the Nansen Basin and the part of the Canadian Basin bordering the Canadian Archipelago, where the mixed layer shoals. Trends of freshwater fluxes imply that the changes of haline stratification in these regions are also influenced by other processes, for example, horizontal advection of fresh water, increased mixing and changes in the underlaying water masses. Runoff increase toward the Arctic Ocean can locally decrease but also increase salinity, and has an impact on stratification which can be explained by coastal dynamics. The results emphasize the non-linear nature of Arctic Ocean dynamics.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2024-02-07
    Description: The last deglaciation was characterized by drastic climate changes, most prominently melting ice sheets. Melting ice sheets have a significant impact on the atmospheric and oceanic circulation, due to changes in the topography and meltwater release into the ocean. In a set of transient simulations of the last deglaciation with the Max Planck Institute for Meteorology Earth System Model we explore differences in the climate response that arise from different boundary conditions and implementations suggested within the Paleoclimate Modeling Intercomparison Project - Phase 4 (PMIP4) deglaciation protocol. The underlying ice-sheet reconstruction dominates the simulated deglacial millennial-scale climate variability in terms of timing and occurrence of observed climate events. Sensitivity experiments indicate that the location and timing of meltwater release from the ice sheets into the ocean are crucial for the ocean response. The results will allow a better interpretation of inter-model differences that arise from different implementations proposed within the PMIP4 protocol.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2024-02-07
    Description: The Kolumbo submarine volcano in the southern Aegean (Greece) is associated with repeated seismic unrest since at least two decades and the causes of this unrest are poorly understood. We present a ten-month long microseismicity data set for the period 2006–2007. The majority of earthquakes cluster in a cone-shaped portion of the crust below Kolumbo. The tip of this cone coincides with a low Vp-anomaly at 2–4 km depth, which is interpreted as a crustal melt reservoir. Our data set includes several earthquake swarms, of which we analyze the four with the highest events numbers in detail. Together the swarms form a zone of fracturing elongated in the SW-NE direction, parallel to major regional faults. All four swarms show a general upward migration of hypocenters and the cracking front propagates unusually fast, compared to swarms in other volcanic areas. We conclude that the swarm seismicity is most likely triggered by a combination of pore-pressure perturbations and the re-distribution of elastic stresses. Fluid pressure perturbations are induced likely by obstructions in the melt conduits in a rheologically strong layer between 6 and 9 km depth. We conclude that the zone of fractures below Kolumbo is exploited by melts ascending from the mantle and filling the crustal melt reservoir. Together with the recurring seismic unrest, our study suggests that a future eruption is probable and monitoring of the Kolumbo volcanic system is highly advisable. Key Points Seismicity is clustered in a cone-shaped volume beneath Kolumbo; the cone's tip coincides with a melt reservoir at 2–4 km depth Seismicity swarms occupy nearby, yet different portions of the crust, ruling out an origin on a single fault Swarms were likely triggered by a combination of fluid pressure perturbations and redistribution of elastic stresses
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2024-02-07
    Description: The carbon isotope 13C is commonly used to attribute the last deglacial atmospheric CO2 rise to various processes. Here we show that the growth of the world's largest reef system, the Great Barrier Reef (GBR), is marked by a pronounced decrease in δ13C in absolutely dated fossil coral skeletons between 12.8 and 11.7 ka, which coincides with a prominent minimum in atmospheric δ13CO2 and the Younger Dryas. The event follows the flooding of a large shelf platform and initiation of an extensive barrier reef system at 13 ka. Carbon cycle simulations show the coral δ13C decrease was mainly caused by the combination of isotopic fractionation during reef carbonate production and the decomposition of organic land carbon on the newly flooded shallow-water platform. The impacts of these processes on atmospheric CO2 and δ13CO2, however, are marginal. Thus, the GBR was not contributing to the last deglacial δ13CO2 minimum at ∼12.4 ka.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...