ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Publication Date: 2024-03-15
    Description: Diatoms account for up to 40% of marine primary production and require silicic acid to grow and build their opal shell. On the physiological and ecological level, diatoms are thought to be resistant to, or even benefit from, ocean acidification. Yet, global-scale responses and implications for biogeochemical cycles in the future ocean remain largely unknown. Here we conducted five in situ mesocosm experiments with natural plankton communities in different biomes and find that ocean acidification increases the elemental ratio of silicon (Si) to nitrogen (N) of sinking biogenic matter by 17 ± 6 per cent under pCO2 conditions projected for the year 2100. This shift in Si:N seems to be caused by slower chemical dissolution of silica at decreasing seawater pH. We test this finding with global sediment trap data, which confirm a widespread influence of pH on Si:N in the oceanic water column. Earth system model simulations show that a future pH-driven decrease in silica dissolution of sinking material reduces the availability of silicic acid in the surface ocean, triggering a global decline of diatoms by 13–26 per cent due to ocean acidification by the year 2200. This outcome contrasts sharply with the conclusions of previous experimental studies, thereby illustrating how our current understanding of biological impacts of ocean change can be considerably altered at the global scale through unexpected feedback mechanisms in the Earth system.
    Keywords: Alkalinity, total; Aragonite saturation state; Arctic; Area/locality; Bicarbonate ion; Biogenic silica, flux per day; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, particulate, flux per day; Carbon/Nitrogen flux ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; DATE/TIME; Day of experiment; Elemental analyzer; Entire community; Event label; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gullmar Fjord, Skagerrak, Sweden; Kongsfjorden-mesocosm; KOSMOS_2011_Bergen; KOSMOS_2012_Tvaerminne; KOSMOS_2013_Sweden; KOSMOS_2014; KOSMOS_2014_GranCanaria; KOSMOS 2013; Measured spectrophotometrically after alkaline leaching of particulate matter; MESO; Mesocosm experiment; Mesocosm or benthocosm; Nitrogen, organic, particulate, flux per day; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Polar; Raunefjord; Salinity; Silicate; Silicon/Carbon flux ratio; Silicon/Nitrogen flux ratio; Svalbard; Temperate; Temperature, water; Treatment: partial pressure of carbon dioxide; Type
    Type: Dataset
    Format: text/tab-separated-values, 22257 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-17
    Description: Biological nitrogen fixation is an important oceanic nitrogen source, potentially stabilizing marine fertility in an increasingly stratified and nutrient‐depleted ocean. Iron limitation of low latitude primary producers has been previously demonstrated to affect simulated regional ecosystem responses to climate warming or nitrogen cycle perturbation. Here we use three biogeochemical models that vary in their representation of the iron cycle to estimate change in the marine nitrogen cycle under a high CO2 emissions future scenario (RCP8.5). The first model neglects explicit iron effects on biology (NoFe), the second utilizes prescribed, seasonally cyclic iron concentrations and associated limitation factors (FeMask), and the third contains a fully dynamic iron cycle (FeDyn). Models were calibrated using observed fields to produce near‐equivalent nutrient and oxygen fits, with productivity ranging from 49 to 75 Pg C yr−1. Global marine nitrogen fixation increases by 71.1% with respect to the preindustrial value by the year 2100 in NoFe, while it remains stable (0.7% decrease in FeMask and 0.3% increase in FeDyn) in explicit iron models. The mitigation of global nitrogen fixation trend in the models that include a representation of iron originates in the Eastern boundary upwelling zones, where the bottom‐up control of iron limitation reduces export production with warming, which shrinks the oxygen deficient volume, and reduces denitrification. Warming‐induced trends in the oxygen deficient volume in the upwelling zones have a cascading effect on the global nitrogen cycle, just as they have previously been shown to affect tropical net primary production.
    Description: Plain Language Summary: Phytoplankton need nutrients to grow. Two of those nutrients are nitrogen and iron. Climate change projections suggest that in the future there could be less nitrogen supplied to the surface ocean, which might reduce phytoplankton growth. Less phytoplankton growth could impact a wide range of ocean services, like fishing and fossil carbon draw‐down. However, some phytoplankton have the ability to add “new” nitrogen to the surface ocean directly from the atmosphere. In this study, we explore how this biological fixation of new nitrogen might change into the future using three models. These models differ in how iron is represented, but all do equally well in representing the observed nutrient and oxygen distribution. Biological nitrogen fixation slightly decreases with climate change in the very complex iron model and the moderately complex iron model, but it increases strongly (by more than 70% by the year 2100) in the model that does not include iron effects on biology. Our study addresses the importance of iron models and how they can change our view of how the ocean responds to climate change.
    Description: Key Points: Models performing similarly with respect to global NO3, PO4, and O2 distributions yield diverse responses in marine N2 fixation to warming. Marine N2 fixation trends are sensitive to whether iron limits primary production in upwelling regions, for example, the Eastern Tropical Pacific.
    Description: Helmholtz Research School for Ocean System Science and Technology
    Description: New Zealand Ministry of Business, Innovation and Employment
    Description: https://data.geomar.de/downloads/20.500.12085/673e7de0-20ab-4dd3-afe9-c4bfb00b1faf/
    Keywords: ddc:551.9
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-01-21
    Electronic ISSN: 2296-7745
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-12-18
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-25
    Description: Treatment of the underwater light field in ocean biogeochemical models has been attracting increasing interest, with some models moving towards more complex parameterisations. We conduct a simple sensitivity study of a typical, highly simplified parameterisation. In our study, we vary the phytoplankton light attenuation parameter over a range constrained by data during both pre-industrial equilibrated and future climate scenario RCP8.5. In equilibrium, lower light attenuation parameters (weaker self-shading) shift net primary production (NPP) towards the high latitudes, while higher values of light attenuation (stronger shelf-shading) shift NPP towards the low latitudes. Climate forcing magnifies this relationship through changes in the distribution of nutrients both within and between ocean regions. Where and how NPP responds to climate forcing can determine the magnitude and sign of global NPP trends in this high CO2 future scenario. Ocean oxygen is particularly sensitive to parameter choice. Under higher CO2 concentrations, two simulations establish a strong biogeochemical feedback between the Southern Ocean and low-latitude Pacific that highlights the potential for regional teleconnection. Our simulations serve as a reminder that shifts in fundamental properties (e.g. light attenuation by phytoplankton) over deep time have the potential to alter global biogeochemistry.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-13
    Description: Treatment of the underwater light field in ocean biogeochemical models has been attracting increasing interest, with some models moving towards more complex parameterisations. A simple test of the sensitivity of a typical, highly simplified parameterisation, to adjustment of the phytoplankton light attenuation parameter using both steady-state and future projections reveals a range of values to which the model primary production is relatively insensitive in steady-state but to which it becomes increasingly sensitive under climate forcing. Parameter value choice can determine the magnitude and sign of global net primary production trends in a high CO2 forcing scenario. Ocean oxygen is particularly sensitive to parameter choice. With climate forcing, two simulations establish a strong biogeochemical feedback between the Southern Ocean and low latitude Pacific that highlights the potential for regional teleconnection and serves as a reminder that shifts in fundamental properties (e.g., light attenuation by phytoplankton) over deep time have the potential to alter biogeochemical climate.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-02-06
    Description: Conventional integration of earth system and ocean models can accrue considerable computational expenses, particularly for marine biogeochemical applications. Offline numerical schemes in which only the biogeochemical tracers are time-stepped and transported using a pre-computed circulation field can substantially reduce the burden and are thus an attractive alternative. One such scheme is the transport matrix method (TMM), which represents tracer transport as a sequence of sparse matrix-vector products that can be performed efficiently on distributed-memory computers. While the TMM has been used for a variety of geochemical and biogeochemical studies, to date the resulting solutions have not been comprehensively assessed against their online counterparts. Here, we present a detailed comparison of the two. It is based on simulations of the state-of-the-art biogeochemical sub-model embedded within the widely-used University of Victoria Earth System Climate Model (UVic ESCM). Transport matrices were extracted for an equilibrium run of the physical model and subsequently used to integrate the biogeochemical model offline to equilibrium. The identical biogeochemical model was also run online. Our simulations show that offline integration introduces some bias to biogeochemical quantities through the omission of the polar filtering used in UVic ESCM, and in the offline application of time-dependent forcing fields, with high latitudes showing the largest differences with respect to the online model. Differences in other regions and in the seasonality of nutrients and phytoplankton distributions are found to be relatively minor, giving confidence that the TMM is a reliable tool for offline integration of complex biogeochemical models. Moreover, while UVic ESCM is a serial code, the TMM can be run on a parallel machine with no change to the underlying biogeochemical code, thus providing orders of magnitude speed-up over the online model.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-06-29
    Description: Conventional integration of Earth system and ocean models can accrue considerable computational expenses, particularly for marine biogeochemical applications. Offline numerical schemes in which only the biogeochemical tracers are time stepped and transported using a pre-computed circulation field can substantially reduce the burden and are thus an attractive alternative. One such scheme is the transport matrix method (TMM), which represents tracer transport as a sequence of sparse matrix–vector products that can be performed efficiently on distributed-memory computers. While the TMM has been used for a variety of geochemical and biogeochemical studies, to date the resulting solutions have not been comprehensively assessed against their online counterparts. Here, we present a detailed comparison of the two. It is based on simulations of the state-of-the-art biogeochemical sub-model embedded within the widely used coarse-resolution University of Victoria Earth System Climate Model (UVic ESCM). The default, non-linear advection scheme was first replaced with a linear, third-order upwind-biased advection scheme to satisfy the linearity requirement of the TMM. Transport matrices were extracted from an equilibrium run of the physical model and subsequently used to integrate the biogeochemical model offline to equilibrium. The identical biogeochemical model was also run online. Our simulations show that offline integration introduces some bias to biogeochemical quantities through the omission of the polar filtering used in UVic ESCM and in the offline application of time-dependent forcing fields, with high latitudes showing the largest differences with respect to the online model. Differences in other regions and in the seasonality of nutrients and phytoplankton distributions are found to be relatively minor, giving confidence that the TMM is a reliable tool for offline integration of complex biogeochemical models. Moreover, while UVic ESCM is a serial code, the TMM can be run on a parallel machine with no change to the underlying biogeochemical code, thus providing orders of magnitude speed-up over the online model.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-10-29
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-03-14
    Description: Phytoplankton calcifiers contribute to global carbon cycling through their dual formation of calcium carbonate and particulate organic carbon (POC). The carbonate might provide an efficient export pathway for the associated POC to the deep ocean, reducing the particles' exposure to biological degradation in the upper ocean and increasing the particle settling rate. Previous work has suggested ballasting of POC by carbonate might increase in a warming climate, in spite of increasing carbonate dissolution rates, because calcifiers benefit from the widespread nutrient limitation arising from stratification. We compare the biogeochemical responses of three models containing (1) a single mixed phytoplankton class, (2) additional explicit small phytoplankton and calcifiers, and (3) additional explicit small phytoplankton and calcifiers with a prognostic carbonate ballast model, to two rapid changes in atmospheric CO2. The first CO2 scenario represents a rapid (151-year) transition from a stable icehouse climate (283.9 ppm) into a greenhouse climate (1263 ppm); the second represents a symmetric rapid transition from a stable greenhouse climate into an icehouse climate. We identify a slope change in the global net primary production response with a transition point at about 3.5 ∘C global mean sea surface temperature change in all models, driven by a combination of physical and biological changes. We also find that in both warming and cooling scenarios, the application of a prognostic carbonate ballast model moderates changes in carbon export production, suboxic volume, and nitrate sources and sinks, reducing the long-term model response to about one-third that of the calcifier model without ballast. Explicit small phytoplankton and calcifiers, and carbonate ballasting, increase the physical separation of nitrate sources and sinks through a combination of phytoplankton competition and lengthened remineralization profile, resulting in a significantly higher global nitrate inventory in this model compared to the single phytoplankton type model (15 % and 32 % higher for icehouse and greenhouse climates). Higher nitrate inventory alleviates nitrate limitation, increasing phytoplankton sensitivity to changes in physical limitation factors (light and temperature). This larger sensitivity to physical forcing produces stronger shifts in ocean phosphate storage between icehouse and greenhouse climates. The greenhouse climate is found to hold phosphate and nitrate deeper in the ocean, despite a shorter remineralization length scale than the icehouse climate, because of the longer residence times of the deep water masses. We conclude the global biogeochemical impact of calcifiers extends beyond their role in global carbon cycling, and that the ecological composition of the global ocean can affect how ocean biogeochemistry responds to climate forcing.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...