ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-09-22
    Description: Controls on the deformation pattern (shortening mode and tectonic style) of orogenic forelands during lithospheric shortening remain poorly understood. Here, we use high‐resolution 2D thermomechanical models to demonstrate that orogenic crustal thickness and foreland lithospheric thickness significantly control the shortening mode in the foreland. Pure‐shear shortening occurs when the orogenic crust is not thicker than the foreland crust or thick, but the foreland lithosphere is thin (〈70–80 km, as in the Puna foreland case). Conversely, simple‐shear shortening, characterized by foreland underthrusting beneath the orogen, arises when the orogenic crust is much thicker. This thickened crust results in high gravitational potential energy in the orogen, which triggers the migration of deformation to the foreland under further shortening. Our models present fully thick‐skinned, fully thin‐skinned, and intermediate tectonic styles in the foreland. The first tectonics forms in a pure‐shear shortening mode whereas the others require a simple‐shear mode and the presence of thick (〉∼4 km) sediments that are mechanically weak (friction coefficient 〈∼0.05) or weakened rapidly during deformation. The formation of fully thin‐skinned tectonics in thick and weak foreland sediments, as in the Subandean Ranges, requires the strength of the orogenic upper lithosphere to be less than one‐third as strong as that of the foreland upper lithosphere. Our models successfully reproduce foreland deformation patterns in the Central and Southern Andes and the Laramide province.
    Description: Key Points: Thicknesses of the orogenic crust and the foreland lithosphere control the foreland shortening mode (pure‐shear or simple‐shear). Foreland weak sediments and the upper lithosphere of the weaker orogen control the foreland tectonic style (thin‐skinned or thick‐skinned). High‐resolution geodynamic models successfully reproduce foreland deformation patterns in several natural orogen‐foreland shortening systems.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: https://bitbucket.org/bkaus/LaMEM
    Description: https://doi.org/10.5281/zenodo.5963016
    Keywords: ddc:551.8
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-05
    Description: The formation of the Central Andes dates back to ∼50 Ma, but its most pronounced episode, including the growth of the Altiplano‐Puna Plateau and pulsatile tectonic shortening phases, occurred within the last 25 Ma. The reason for this evolution remains unexplained. Using geodynamic numerical modeling we infer that the primary cause of the pulses of tectonic shortening and growth of the Central Andes is the changing geometry of the subducted Nazca plate, and particularly the steepening of the mid‐mantle slab segment which results in a slowing down of the trench retreat and subsequent increase in shortening of the advancing South America plate. This steepening first happens after the end of the flat slab episode at ∼25 Ma, and later during the buckling and stagnation of the slab in the mantle transition zone. Processes that mechanically weaken the lithosphere of the South America plate, as suggested in previous studies, enhance the intensity of the shortening events. These processes include delamination of the mantle lithosphere and weakening of foreland sediments. Our new modeling results are consistent with the timing and amplitude of the deformation from geological data in the Central Andes at the Altiplano latitude.
    Description: Plain Language Summary: The Central Andes is a subduction‐type orogeny that formed as a result of the interaction between the Nazca oceanic plate and the South American continental plate over the last 50 million years. Growth of the Andes is primarily the result of crustal shortening. Nevertheless, “geological” data compiled from previous studies have shown that phases of drastic pulsatile shortening occur at 15 and 5 Ma. In this study, we used high‐resolution 2D numerical geodynamic simulations to investigate the link between oceanic and continental plate dynamics and their interaction. We find that when the oceanic plate steepens in the mantle transition zone, the trench retreat is hindered. Coupled with the weakening of the continental plate through the slab flattening and subsequent delamination of the lithospheric mantle, this leads to pulsatile shortening phases of a magnitude equivalent to that suggested by the data.
    Description: Key Points: The steepening of the slab due to slab buckling hinders the trench retreating and explains the main pulsatile phases of the deformation during the last 25 Ma. The absolute motion of the overriding plate controls the regime of subduction dynamics. Flat slab and eclogitization are required to weaken and then shorten the overriding plate when the slab steepens and the trench is hindered.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: German Federal State of Brandenburg
    Description: ERC Synergy
    Description: North‐German Supercomputing Alliance
    Description: https://doi.org/10.5880/GFZ.2.5.2022.001
    Description: https://github.com/Minerallo/aspect/tree/Paper_slab_buckling_Andes
    Description: https://doi.org/10.5880/GFZ.2.5.2022.001
    Description: https://github.com/fastscape-lem/fastscapelib-fortran
    Keywords: ddc:551.8 ; Central Andes ; subduction dynamics ; geodynamics ; shortening ; steepening ; flat‐slab
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-01
    Description: Chemical Reviews DOI: 10.1021/acs.chemrev.6b00030
    Print ISSN: 0009-2665
    Electronic ISSN: 1520-6890
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-05-31
    Description: Article New Guinea highlands are highly diverse, yet the patterns of colonization and diversification in this area remain unclear. Here, Toussaint et al. show that the radiation of the diving beetles Exocelina, originated in emerging highlands of central New Guinea, from which other areas were recently colonized. Nature Communications doi: 10.1038/ncomms5001 Authors: Emmanuel F. A. Toussaint, Robert Hall, Michael T. Monaghan, Katayo Sagata, Sentiko Ibalim, Helena V. Shaverdo, Alfried P. Vogler, Joan Pons, Michael Balke
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-05
    Description: Abstract
    Description: The Central Andean orogen formed as a result of the subduction of the oceanic Nazca plate beneath the continental South-American plate. In the southern segment of the Central Andes (SCA, 29°S-39°S), the oceanic plate subducts beneath the continental plate with distinct dip angles from north to south. Subduction geometry, tectonic deformation, and seismicity at this plate boundary are closely related to lithospheric temperature distribution in the upper plate. Previous studies provided insights into the present-day thermal field with focus on the surface heat flow distribution in the orogen or through modelling of the seismic velocity distribution in restricted regions of the SCA as indirect proxy of the deep thermal field. Despite these recent advances, the information on the temperature distribution at depth of the SCA lithosphere remains scarcely constrained. To gain insight into the present-day thermal state of the lithosphere in the region, we derived the 3D lithospheric temperature distribution from inversion of S-wave velocity to temperature and calculations of the steady state thermal field. The configuration of the region – concerning both, the heterogeneity of the lithosphere and the slab dip – was accounted for by incorporating a 3D data-constrained structural and density model of the SCA into the workflow (Rodriguez Piceda et al. 2020a-b). The model consists on a continental plate with sediments, a two-layer crust and the lithospheric mantle being subducted by an oceanic plate. The model extension covers an area of 700 km x 1100 km, including the orogen (i.e. magmatic arc, main orogenic wedge), the forearc and the foreland, and it extents down to 200 km depth.
    Description: Methods
    Description: To predict the temperature distribution in the SCA, the model volume was subdivided into two domains: (1) a shallow domain, including the crust and uppermost mantle to a depth of ~50 km below mean sea level (bmsl), where the steady-state conductive thermal field was calculated using as input the 3D structural and density model of the area (Rodriguez Piceda et al., 2020a-b); (2) a deep domain between a depth of ~50 and 200 km bmsl, where temperatures were converted from S wave seismic velocities (Assumpção et al., 2013) using the approach by Goes et al. (2000) as implemented in the python tool VelocityConversion (Meeßen 2017). The 3D model of Rodriguez Piceda et al. (2020) consists of the following layers: (1) water; (2) oceanic sediments; (3) continental sediments; (4) upper continental crystalline crust; (5) lower continental crystalline crust; (6) continental lithospheric mantle (7) shallow oceanic crust; (8) deep oceanic crust; (9) oceanic lithospheric mantle; and (10) oceanic sub-lithospheric mantle. For the computation of temperatures in the shallow domain, three main modifications were made to the 3D model of Rodriguez Piceda et al. (2020a-b). First, we removed the water layer thus considering the topography/bathymetry as the top of the model. Second, the horizontal resolution was increased to 5 km and, third, the layers were vertically refined by a factor of 3 to 32. We assigned constant thermal properties (bulk conductivity λ and radiogenic heat production S) to each layer of the model according to each lithology (Alvarado et al. 2007, 2009; Ammirati et al. 2013, 2015, 2018; Araneda et al., 2003; Brocher, 2005; Čermák and Rybach, 1982; Contreras-Reyes et al., 2008; Christensen & Mooney, 1995; Gilbert et al., 2006; Hasterok & Chapman, 2011; He et al., 2008; Marot et al., 2014, Pesicek et al., 2012; Rodriguez Piceda et al., 2020; Scarfi & Barbieri, 2019; Vilà et al.,2010; Wagner et al., 2005; Xu et al., 2004). The steady-state conductive thermal field in the shallow domain was calculated applying the Finite Element Method as implemented in the software GOLEM (Cacace & Jacquey, 2017; Jacquey & Cacace, 2017). For the computation, we assigned fixed temperatures along the top and base of the model as thermal boundary conditions. The upper boundary condition was set at the topography/bathymetry and it is the temperature distribution from the ERA-5 land data base (Muñoz Sabater, 2019). The lower boundary condition was set at a constant depth of 50 km bmsl for areas where the Moho is shallower than 50 km bmsl and at the Moho depth proper where this interface is deeper than the abovementioned threshold. The temperature distribution at this boundary condition was calculated from the conversion of S-wave velocities to temperatures (Assumpção et al., 2013).
    Keywords: Lithosphere ; Andes ; Subduction ; Thermal Model ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 MOUNTAINS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 SUBDUCTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL TEMPERATURE ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL TEMPERATURE 〉 TEMPERATURE PROFILES ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-21
    Description: Abstract
    Description: The Central Andes (~21°S) is a subduction-type orogeny formed in the last ~50 Ma from the subduction of the Nazca oceanic plate beneath the South American continental plate. However, the most important phases of deformation occur in the last 20 Ma. Pulses of shortening have led to the sudden growth of the by the Altiplano-Puna plateau. Previous studies have provided insights on the importance of various mechanisms on the overall shortening such as the weakening of the overriding plate from crustal eclogitization and delamination, or the importance of a relatively high friction at the subduction interface, and weak sediments in foreland. However none of them has addressed the mechanism behind these shortening pulses yet. Therefore, we built a series of high resolution 2D visco-plastic subduction models using the ASPECT geodynamic code, in which the oceanic plate is buoyancy-driven and the velocity of the continent is prescribed. We have also implemented a realistic geometry for the south American plate at ~30 Ma. We propose a new plausible mechanism (buckling and steepening of the slab) as the cause of these pulses. The buckling leads to the blockage of the trench. Consequently, the difference of velocity between the South American plate and the trench is accommodated by shortening. The data presented here includes the parameters files, for the reference model (S1) and the following alternative simulations: models with variation of the friction at the subduction interface (S2a-c), a model without eclogitization of the lower crust (S3) and a model with higher thermal conductivity of the upper crust (S4). Additionally, this publication includes the initial composition and thermal state of the lithosphere used for the models and a Readme file that gives all the instructions to run them.
    Keywords: Andes ; geodynamics ; subduction ; Buckling ; Altiplano ; Puna ; shortening ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 PLATE BOUNDARIES ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
    Type: Model , Model
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-07-27
    Description: Abstract
    Description: In the southern Central Andes (~32°S), subduction of the Nazca oceanic plate beneath the South American continental plate becomes horizontal. The growth of the Altiplano-Puna Plateau is covalently related to the southward migration of the flat subduction, but the role of subduction geometry and the plate strength on current and long-term deformation of the Andes remains poorly explored. This study takes a data-driven approach of integrating the previous structural and thermal model of the lithosphere of the southern central Andes into a 3D geodynamic model to explore the different parameters contributing to the localization of deformation. We simulate visco-plastic deformation using the geodynamic code ASPECT. The repository includes parameter files and input files for the reference model (S1) and the following alternative simulations: a series of models with variation in friction at the subduction interface (S2a-d), a series of models with variation in sedimentary strength (S3a-d), a series that studies the effect of topography (S4), and a series that studies the effect of plate velocities. In addition, a readme file gives all the instructions to run them.
    Description: Methods
    Description: We have built a series of 3D data-driven geodynamic model using the finite element code ASPECT (Advanced Solver for Problems in Earth's ConvecTion, version 2.3.0-pre, Kronbichler et al., 2012; Heister et al., 2017; Rose et al., 2017; Bangerth et al., 2021) to simulate brittle and ductile deformation. We have incorporated present-day compositional thicknesses, densities, and temperature fields based on lithospheric-scale models of Rodriguez Piceda et al (2020, 2021a, 2021b, 2022) and ran the simulation for 250,000 years, prescribing plate velocities of 5 cm/yr to the oceanic plate and 1 cm/yr to the continental plate (Sdrolias et al., 2006; Becker et al., 2015), with open borders on the left and right of the asthenosphere.
    Keywords: Southern Andes ; Deformation ; subduction ; Geodynamic ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 PLATE BOUNDARIES ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
    Type: Model , Model
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Controls on the deformation pattern (shortening mode and tectonic style) of orogenic forelands during lithospheric shortening remain poorly understood. Here, we use high-resolution 2D thermomechanical models to demonstrate that orogenic crustal thickness and foreland lithospheric thickness significantly control the shortening mode in the foreland. Pure-shear shortening occurs when the orogenic crust is not thicker than the foreland crust or thick, but the foreland lithosphere is thin (〈70–80 km, as in the Puna foreland case). Conversely, simple-shear shortening, characterized by foreland underthrusting beneath the orogen, arises when the orogenic crust is much thicker. This thickened crust results in high gravitational potential energy in the orogen, which triggers the migration of deformation to the foreland under further shortening. Our models present fully thick-skinned, fully thin-skinned, and intermediate tectonic styles in the foreland. The first tectonics forms in a pure-shear shortening mode whereas the others require a simple-shear mode and the presence of thick (〉∼4 km) sediments that are mechanically weak (friction coefficient 〈∼0.05) or weakened rapidly during deformation. The formation of fully thin-skinned tectonics in thick and weak foreland sediments, as in the Subandean Ranges, requires the strength of the orogenic upper lithosphere to be less than one-third as strong as that of the foreland upper lithosphere. Our models successfully reproduce foreland deformation patterns in the Central and Southern Andes and the Laramide province.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: The formation of the Central Andes dates back to ∼50 Ma, but its most pronounced episode, including the growth of the Altiplano-Puna Plateau and pulsatile tectonic shortening phases, occurred within the last 25 Ma. The reason for this evolution remains unexplained. Using geodynamic numerical modeling we infer that the primary cause of the pulses of tectonic shortening and growth of the Central Andes is the changing geometry of the subducted Nazca plate, and particularly the steepening of the mid-mantle slab segment which results in a slowing down of the trench retreat and subsequent increase in shortening of the advancing South America plate. This steepening first happens after the end of the flat slab episode at ∼25 Ma, and later during the buckling and stagnation of the slab in the mantle transition zone. Processes that mechanically weaken the lithosphere of the South America plate, as suggested in previous studies, enhance the intensity of the shortening events. These processes include delamination of the mantle lithosphere and weakening of foreland sediments. Our new modeling results are consistent with the timing and amplitude of the deformation from geological data in the Central Andes at the Altiplano latitude. Key Points The steepening of the slab due to slab buckling hinders the trench retreating and explains the main pulsatile phases of the deformation during the last 25 Ma The absolute motion of the overriding plate controls the regime of subduction dynamics Flat slab and eclogitization are required to weaken and then shorten the overriding plate when the slab steepens and the trench is hindered
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...