ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-12-07
    Description: Based on velocity data from a long‐term moored observatory located at 0°N, 23°W we present evidence of a vertical asymmetry during the intraseasonal maxima of northward and southward upper‐ocean flow in the equatorial Atlantic Ocean. Periods of northward flow are characterized by a meridional velocity maximum close to the surface, while southward phases show a subsurface velocity maximum at about 40 m. We show that the observed asymmetry is caused by the local winds. Southerly wind stress at the equator drives northward flow near the surface and southward flow below that is superimposed on the Tropical Instability Wave (TIW) velocity field. This wind‐driven overturning cell, known as the Equatorial Roll, shows a distinct seasonal cycle linked to the seasonality of the meridional component of the south‐easterly trade winds. The superposition of vertical shear of the Equatorial Roll and TIWs causes asymmetric mixing during northward and southward TIW phases.
    Description: Plain Language Summary; Tropical Instability Waves (TIWs) are clear in satellite measurements of sea surface temperature as horizontal undulations with wavelength of the order of 1,000 km in equatorial regions of both Atlantic and Pacific Oceans. TIWs are characterized by their distinctive upper‐ocean meridional velocity structure. TIWs amplify vertical shear and thus contribute to the generation of turbulence which in turn leads to the mixing of heat and freshwater downward into the deeper ocean. In this study we show that the prevailing southerly winds in the central equatorial Atlantic drive near‐surface northward and subsurface southward flows, which are superposed on the meridional TIW velocity field. The strength of this wind driven cell is linked to the seasonal cycle of the northward component of the trade winds, peaking in boreal fall when TIWs reach their maximum amplitude. The overturning cell affects the vertical structure of the meridional velocity field and thus has impact on the generation of current shear and turbulence. We show that the overturning reduces/enhances shear during northward/southward TIW flow, an asymmetry that is consistent with independent measurements showing asymmetric mixing.
    Description: Key Points: Composites of Tropical Instability Waves at 0°N, 23°W show a surface (subsurface) velocity maximum during northward (southward) phases. Meridional wind stress forces a seasonally‐varying, shallow cross‐equatorial overturning cell‐the Equatorial Roll. The superposition of Tropical Instability Waves and Equatorial Roll causes asymmetric mixing during north‐ and southward phases.
    Description: EU H2020
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: US NSF
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: National Oceanic and Atmospheric Administration http://dx.doi.org/10.13039/100000192
    Description: National Academy of Sciences http://dx.doi.org/10.13039/100000209
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Description: https://doi.pangaea.de/10.1594/PANGAEA.941042
    Description: https://www.pmel.noaa.gov/tao/drupal/disdel/
    Keywords: ddc:551.5 ; tropical instability waves ; equatorial Atlantic ; equatorial roll ; moored velocity data ; ocean mixing ; ocean observations
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 12 (2000), S. 1343-1362 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Direct numerical simulations of turbulence resulting from Kelvin–Helmholtz instability in stably stratified shear flow are used to study sources of anisotropy in various spectral ranges. The set of simulations includes various values of the initial Richardson and Reynolds numbers, as well as Prandtl numbers ranging from 1 to 7. We demonstrate that small-scale anisotropy is determined almost entirely by the spectral separation between the small scales and the larger scales on which background shear and stratification act, as quantified by the buoyancy Reynolds number. Extrapolation of our results suggests that the dissipation range becomes isotropic at buoyancy Reynolds numbers of order 105, although we cannot rule out the possibility that small-scale anisotropy persists at arbitrarily high Reynolds numbers, as some investigators have suggested. Correlation-coefficient spectra reveal the existence of anisotropic flux reversals in the dissipation subrange whose magnitude decreases with increasing Reynolds number. The scalar concentration field tends to be more anisotropic than the velocity field. Estimates of the dissipation rates of kinetic energy and scalar variance based on the assumption of isotropy are shown to be accurate for buoyancy Reynolds numbers greater than O(102). Such estimates are therefore reliable for use in the interpretation of most geophysical turbulence data, but may give misleading results when applied to smaller-scale flows. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 12 (2000), S. 1327-1342 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Turbulence resulting from Kelvin–Helmholtz instability in layers of localized stratification and shear is studied by means of direct numerical simulation. Our objective is to present a comprehensive description of the turbulence evolution in terms of simple, conceptual pictures of shear–buoyancy interaction that have been developed previously based on assumptions of spatially uniform stratification and shear. To this end, we examine the evolution of various length scales that are commonly used to characterize the physical state of a turbulent flow. Evolving layer thicknesses and overturning scales are described, as are the Ozmidov, Corrsin, and Kolmogorov scales. These considerations enable us to provide an enhanced understanding of the relationships between uniform-gradient and localized-gradient models for sheared, stratified turbulence. We show that the ratio of the Ozmidov scale to the Thorpe scale provides a useful indicator of the age of a turbulent event resulting from Kelvin–Helmholtz instability. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 437 (2005), S. 400-403 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Satellite images have long revealed the surface expression of large amplitude internal waves that propagate along density interfaces beneath the sea surface. Internal waves are typically the most energetic high-frequency events in the coastal ocean, displacing water parcels by up to ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-06-01
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-02-01
    Description: The daily evolution of temperature, stratification, and turbulence in the diurnal warm layer is described from time series measurements at low to moderate winds and strong insolation in the equatorial Indian Ocean. At 2.0-m depth, turbulence dissipation rates (ε) decreased by two orders of magnitude over 1–2 h immediately after sunrise, initiated by stratification caused by penetrating solar radiation prior to the change in sign of net surface heat flux from cooling to warming. Decaying turbulence preceded a period of rapid growth, in which ε increased by two orders of magnitude over a few hours, and following which ε approached a daytime period of near-steady state. Decay and growth rates predicted by a simplified turbulence model are consistent with those observed. During the daytime period of near-steady state, asymmetric temperature ramps were associated with enhanced ε, supporting the interpretation that this period represents a balance between buoyancy and shear production associated with a shear-driven response to trapping of momentum within the diurnal warm layer.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-02-01
    Description: Two extremely sharp fronts with changes in sea surface temperature 〉0.4°C over lateral distances of ~1 m were observed in the equatorial Pacific at 0°, 140°W and at 0.75°N, 110°W. In both cases, layers of relatively warm and fresh water extending to ~30-m depth propagated to the southwest as gravity currents. Turbulent kinetic energy dissipation rates averaging 4.5 × 10−6 W kg−1 were measured with a microstructure profiler within the warm layer behind the leading edge of the fronts—1000 times greater than dissipation in the ambient water ahead of the fronts. From satellite images, these fronts were observed to propagate ahead of the trailing edge of a tropical instability wave (TIW) cold cusp. Results from an ocean model with 6-km grid resolution suggest that TIW fronts may release gravity currents through frontogenesis and loss of balance as the fronts approach the equator and the Coriolis parameter weakens. Sharp frontal features appear to be ubiquitous in the eastern tropical Pacific, have an influence on the distribution of biogeochemical tracers and organisms, and play a role in transferring energy out of the TIW field toward smaller scales and dissipation.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-25
    Description: Considerable effort has been made to parameterize turbulent kinetic energy (TKE) dissipation rate ε and mixing in buoyant plumes and stratified shear flows. Here, a parameterization based on Kunze et al. is examined, which estimates ε as the amount of energy contained in an unstable shear layer (Ri 〈 Ric) that must be dissipated to increase the Richardson number Ri = N2/S2 to a critical value Ric within a turbulent decay time scale. Observations from the tidal Columbia River plume are used to quantitatively assess the relevant parameters controlling ε over a range of tidal and river discharge forcings. Observed ε is found to be characterized by Kunze et al.’s form within a factor of 2, while exhibiting slightly decreased skill near Ri = Ric. Observed dissipation rates are compared to estimates from a constant interfacial drag formulation that neglects the direct effects of stratification. This is found to be appropriate in energetic regimes when the bulk-averaged Richardson number Rib is less than Ric/4. However, when Rib 〉 Ric/4, the effects of stratification must be included. Similarly, ε scaled by the bulk velocity and density differences over the plume displays a clear dependence on Rib, decreasing as Rib approaches Ric. The Kunze et al. ε parameterization is modified to form an expression for the nondimensional dissipation rate that is solely a function of Rib, displaying good agreement with the observations. It is suggested that this formulation is broadly applicable for unstable to marginally unstable stratified shear flows.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-01-01
    Description: The role of turbulent mixing in regulating the ocean’s response to the Madden–Julian oscillation (MJO) is assessed from measurements of surface forcing, acoustic, and microstructure profiles during October–early December 2011 at 0°, 80.5°E in the Indian Ocean. During the active phase of the MJO, the surface mixed layer was cooled from above by air–sea fluxes and from below by turbulent mixing, in roughly equal proportions. During the suppressed and disturbed phases, the mixed layer temperature increased, primarily because of the vertical divergence between net surface warming and turbulent cooling. Despite heavy precipitation during the active phase, subsurface mixing was sufficient to increase the mixed layer salinity by entraining salty Arabian Sea Water from the pycnocline. The turbulent salt flux across the mixed layer base was, on average, 2 times as large as the surface salt flux. Wind stress accelerated the Yoshida–Wyrtki jet, while the turbulent stress was primarily responsible for decelerating the jet through the active phase, during which the mean turbulent stress was roughly 65% of the mean surface wind stress. These turbulent processes may account for systematic errors in numerical models of MJO evolution.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-11-01
    Description: A scheme for significantly reducing data sampled on turbulence devices (χpods) deployed on remote oceanographic moorings is proposed. Each χpod is equipped with a pitot-static tube, two fast-response thermistors, a three-axis linear accelerometer, and a compass. In preprocessing, voltage means, variances, and amplitude of the subrange (inertial-convective subrange of the turbulence) of the voltage spectrum representing the temperature gradient are computed. Postprocessing converts voltages to engineering units, in particular mean flow speed (and velocity), temperature, temperature gradient, and the rate of destruction of the temperature variance χ from which other turbulence quantities, such as heat flux, are derived. On 10-min averages, this scheme reduces the data by a factor of roughly 24 000 with a small (5%) low bias compared to complete estimates using inertial-convective subrange scaling of calibrated temperature gradient spectra.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...