ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (453)
  • Protein Structure, Tertiary  (236)
  • *Biodiversity  (217)
  • 2015-2019  (72)
  • 2010-2014  (381)
  • Computer Science  (453)
Collection
  • Articles  (453)
Keywords
Years
Year
Topic
  • 1
    Publication Date: 2010-05-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stroud, David A -- Meisinger, Chris -- Pfanner, Nikolaus -- Wiedemann, Nils -- New York, N.Y. -- Science. 2010 May 14;328(5980):831-2. doi: 10.1126/science.1190507.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Biochemie und Molekularbiologie, ZBMZ, Trinationales Graduiertenkolleg 1478, Fakultat fur Biologie, and Centre for Biological Signalling Studies, Universitat Freiburg, 79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20466908" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/chemistry/*metabolism ; Carrier Proteins/metabolism ; Cell Membrane/*metabolism ; Chloroplasts/metabolism ; Escherichia coli/*metabolism ; Escherichia coli Proteins/chemistry/*metabolism ; Intracellular Membranes/metabolism ; Liposomes ; Mitochondria/metabolism ; Molecular Chaperones/chemistry/metabolism ; Multiprotein Complexes/chemistry/metabolism ; Peptidylprolyl Isomerase/metabolism ; Protein Folding ; Protein Precursors/chemistry/metabolism ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tate, Christopher G -- New York, N.Y. -- Science. 2010 Jun 25;328(5986):1644-5. doi: 10.1126/science.1193065.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK. cgt@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20576878" target="_blank"〉PubMed〈/a〉
    Keywords: Antiporters/*chemistry/genetics/metabolism ; Cell Membrane/*chemistry/metabolism ; Escherichia coli/*chemistry/metabolism ; Escherichia coli Proteins/chemistry/genetics/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers ; Membrane Transport Proteins/chemistry/metabolism ; Multiprotein Complexes/chemistry/metabolism ; Mutant Proteins/chemistry/metabolism ; Protein Engineering ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-11-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Normile, Dennis -- New York, N.Y. -- Science. 2010 Nov 5;330(6005):742-3. doi: 10.1126/science.330.6005.742.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21051603" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Congresses as Topic ; Conservation of Natural Resources/economics ; Developing Countries ; Humans ; Intellectual Property ; *International Cooperation ; Policy ; Population Groups ; *United Nations
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-04-10
    Description: Arsenic, an ancient drug used in traditional Chinese medicine, has attracted worldwide interest because it shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Arsenic trioxide (As2O3) exerts its therapeutic effect by promoting degradation of an oncogenic protein that drives the growth of APL cells, PML-RARalpha (a fusion protein containing sequences from the PML zinc finger protein and retinoic acid receptor alpha). PML and PML-RARalpha degradation is triggered by their SUMOylation, but the mechanism by which As2O3 induces this posttranslational modification is unclear. Here we show that arsenic binds directly to cysteine residues in zinc fingers located within the RBCC domain of PML-RARalpha and PML. Arsenic binding induces PML oligomerization, which increases its interaction with the small ubiquitin-like protein modifier (SUMO)-conjugating enzyme UBC9, resulting in enhanced SUMOylation and degradation. The identification of PML as a direct target of As2O3 provides new insights into the drug's mechanism of action and its specificity for APL.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Xiao-Wei -- Yan, Xiao-Jing -- Zhou, Zi-Ren -- Yang, Fei-Fei -- Wu, Zi-Yu -- Sun, Hong-Bin -- Liang, Wen-Xue -- Song, Ai-Xin -- Lallemand-Breitenbach, Valerie -- Jeanne, Marion -- Zhang, Qun-Ye -- Yang, Huai-Yu -- Huang, Qiu-Hua -- Zhou, Guang-Biao -- Tong, Jian-Hua -- Zhang, Yan -- Wu, Ji-Hui -- Hu, Hong-Yu -- de The, Hugues -- Chen, Sai-Juan -- Chen, Zhu -- New York, N.Y. -- Science. 2010 Apr 9;328(5975):240-3. doi: 10.1126/science.1183424.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20378816" target="_blank"〉PubMed〈/a〉
    Keywords: Arsenic/*metabolism ; Arsenicals/*metabolism/*pharmacology ; Cell Line ; Humans ; Leukemia, Promyelocytic, Acute/drug therapy/genetics ; Mutant Proteins/chemistry/metabolism ; Mutation ; Nuclear Proteins/chemistry/genetics/*metabolism ; Oncogene Proteins, Fusion/chemistry/genetics/*metabolism ; Oxazines/metabolism ; Oxides/*metabolism/*pharmacology ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Retinoic Acid/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Small Ubiquitin-Related Modifier Proteins/metabolism ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Transcription Factors/chemistry/genetics/*metabolism ; Tumor Suppressor Proteins/chemistry/genetics/*metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-08-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beehler, Bruce M -- New York, N.Y. -- Science. 2010 Aug 20;329(5994):901. doi: 10.1126/science.329.5994.901-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20724618" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Animals, Wild ; *Biodiversity ; Indonesia ; Wit and Humor as Topic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-07-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gardenfors, Ulf -- New York, N.Y. -- Science. 2010 Jul 9;329(5988):140; author reply 141-2. doi: 10.1126/science.329.5988.140-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20616247" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Classification ; *Conservation of Natural Resources ; *Endangered Species ; Plants/*classification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-01-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Sebyung -- Douglas, Trevor -- New York, N.Y. -- Science. 2010 Jan 1;327(5961):42-3. doi: 10.1126/science.1184318.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry and Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044564" target="_blank"〉PubMed〈/a〉
    Keywords: Acetaldehyde/metabolism ; *Cell Compartmentation ; Crystallization ; Crystallography, X-Ray ; Cytosol/metabolism ; Escherichia coli/*chemistry/enzymology/*ultrastructure ; Escherichia coli Proteins/*chemistry/metabolism ; Ethanolamine/*metabolism ; Polyproteins/chemistry/metabolism ; Protein Folding ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-02-06
    Description: Vesicular stomatitis virus (VSV) is a bullet-shaped rhabdovirus and a model system of negative-strand RNA viruses. Through direct visualization by means of cryo-electron microscopy, we show that each virion contains two nested, left-handed helices: an outer helix of matrix protein M and an inner helix of nucleoprotein N and RNA. M has a hub domain with four contact sites that link to neighboring M and N subunits, providing rigidity by clamping adjacent turns of the nucleocapsid. Side-by-side interactions between neighboring N subunits are critical for the nucleocapsid to form a bullet shape, and structure-based mutagenesis results support this description. Together, our data suggest a mechanism of VSV assembly in which the nucleocapsid spirals from the tip to become the helical trunk, both subsequently framed and rigidified by the M layer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892700/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892700/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ge, Peng -- Tsao, Jun -- Schein, Stan -- Green, Todd J -- Luo, Ming -- Zhou, Z Hong -- AI050066/AI/NIAID NIH HHS/ -- AI069015/AI/NIAID NIH HHS/ -- GM071940/GM/NIGMS NIH HHS/ -- R01 AI050066/AI/NIAID NIH HHS/ -- R01 AI050066-08/AI/NIAID NIH HHS/ -- R01 AI069015/AI/NIAID NIH HHS/ -- R01 GM071940/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 5;327(5966):689-93. doi: 10.1126/science.1181766.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20133572" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; Crystallography, X-Ray ; Image Processing, Computer-Assisted ; Lipid Bilayers ; Models, Molecular ; Mutagenesis ; Nucleocapsid Proteins/*chemistry/genetics/ultrastructure ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; RNA, Viral/*chemistry/ultrastructure ; Vesiculovirus/*chemistry/physiology/*ultrastructure ; Viral Matrix Proteins/*chemistry/ultrastructure ; Virion/chemistry/ultrastructure ; Virus Assembly
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-04-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tirado, Reyes -- Johnston, Paul -- New York, N.Y. -- Science. 2010 Apr 9;328(5975):170-1. doi: 10.1126/science.328.5975.170-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20378798" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/methods ; *Biodiversity ; Crops, Agricultural/*genetics ; Food Supply ; *Plants, Genetically Modified
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-01-16
    Description: Integrins mediate cell adhesion to the extracellular matrix and transmit signals within the cell that stimulate cell spreading, retraction, migration, and proliferation. The mechanism of integrin outside-in signaling has been unclear. We found that the heterotrimeric guanine nucleotide-binding protein (G protein) Galpha13 directly bound to the integrin beta3 cytoplasmic domain and that Galpha13-integrin interaction was promoted by ligand binding to the integrin alphaIIbbeta3 and by guanosine triphosphate (GTP) loading of Galpha13. Interference of Galpha13 expression or a myristoylated fragment of Galpha13 that inhibited interaction of alphaIIbbeta3 with Galpha13 diminished activation of protein kinase c-Src and stimulated the small guanosine triphosphatase RhoA, consequently inhibiting cell spreading and accelerating cell retraction. We conclude that integrins are noncanonical Galpha13-coupled receptors that provide a mechanism for dynamic regulation of RhoA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842917/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842917/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gong, Haixia -- Shen, Bo -- Flevaris, Panagiotis -- Chow, Christina -- Lam, Stephen C-T -- Voyno-Yasenetskaya, Tatyana A -- Kozasa, Tohru -- Du, Xiaoping -- GM061454/GM/NIGMS NIH HHS/ -- GM074001/GM/NIGMS NIH HHS/ -- HL062350/HL/NHLBI NIH HHS/ -- HL068819/HL/NHLBI NIH HHS/ -- HL080264/HL/NHLBI NIH HHS/ -- R01 GM061454/GM/NIGMS NIH HHS/ -- R01 GM061454-09/GM/NIGMS NIH HHS/ -- R01 GM074001/GM/NIGMS NIH HHS/ -- R01 GM074001-02/GM/NIGMS NIH HHS/ -- R01 HL062350/HL/NHLBI NIH HHS/ -- R01 HL062350-09/HL/NHLBI NIH HHS/ -- R01 HL068819/HL/NHLBI NIH HHS/ -- R01 HL068819-08/HL/NHLBI NIH HHS/ -- R01 HL080264/HL/NHLBI NIH HHS/ -- R01 HL080264-04/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 15;327(5963):340-3. doi: 10.1126/science.1174779.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Illinois at Chicago, 835 South Wolcott Avenue, Room E403, Chicago, IL 60612, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Blood Platelets/*physiology ; Clot Retraction ; Fibrinogen/metabolism ; GTP-Binding Protein alpha Subunits, G12-G13/genetics/*metabolism ; Humans ; Integrin beta3/*metabolism ; Ligands ; Mice ; Mice, Inbred C57BL ; Phosphorylation ; Platelet Adhesiveness ; Platelet Glycoprotein GPIIb-IIIa Complex/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Proto-Oncogene Proteins pp60(c-src)/metabolism ; RNA, Small Interfering ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; rhoA GTP-Binding Protein/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-10-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghazoul, Jaboury -- New York, N.Y. -- Science. 2010 Sep 24;329(5999):1598. doi: 10.1126/science.329.5999.1598-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929828" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; New Guinea ; Trees/*classification ; Tropical Climate
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-09-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marshall, Charles R -- New York, N.Y. -- Science. 2010 Sep 3;329(5996):1156-7. doi: 10.1126/science.1194924.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Biology, University of California Museum of Paleontology, University of California, Berkeley, Berkeley, CA 94720, USA. crmarshall@berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20813942" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Data Interpretation, Statistical ; *Databases, Factual ; *Ecosystem ; Extinction, Biological ; *Fossils ; Geography ; *Invertebrates ; Marine Biology ; Oceans and Seas ; *Paleontology ; Population Dynamics ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2010-05-29
    Description: The mechanism by which multispanning helix-bundle membrane proteins are inserted into their target membrane remains unclear. In both prokaryotic and eukaryotic cells, membrane proteins are inserted cotranslationally into the lipid bilayer. Positively charged residues flanking the transmembrane helices are important topological determinants, but it is not known whether they act strictly locally, affecting only the nearest transmembrane helices, or can act globally, affecting the topology of the entire protein. Here we found that the topology of an Escherichia coli inner membrane protein with four or five transmembrane helices could be controlled by a single positively charged residue placed in different locations throughout the protein, including the very C terminus. This observation points to an unanticipated plasticity in membrane protein insertion mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seppala, Susanna -- Slusky, Joanna S -- Lloris-Garcera, Pilar -- Rapp, Mikaela -- von Heijne, Gunnar -- 232648/European Research Council/International -- New York, N.Y. -- Science. 2010 Jun 25;328(5986):1698-700. doi: 10.1126/science.1188950. Epub 2010 May 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20508091" target="_blank"〉PubMed〈/a〉
    Keywords: Antiporters/*chemistry/genetics/metabolism ; Cell Membrane/*chemistry ; Drug Resistance, Bacterial ; Escherichia coli/*chemistry/drug effects/growth & development/metabolism ; Escherichia coli Proteins/*chemistry/genetics/metabolism ; Ethidium/pharmacology ; Lipid Bilayers ; Membrane Transport Proteins/chemistry/metabolism ; Mutagenesis, Site-Directed ; Mutant Proteins/chemistry/metabolism ; Protein Conformation ; Protein Engineering ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2010-11-13
    Description: CCA-adding enzymes [ATP(CTP):tRNA nucleotidyltransferases] add CCA onto the 3' end of transfer RNA (tRNA) precursors without using a nucleic acid template. Although the mechanism by which cytosine (C) is selected at position 75 of tRNA has been established, the mechanism by which adenine (A) is selected at position 76 remains elusive. Here, we report five cocrystal structures of the enzyme complexed with both a tRNA mimic and nucleoside triphosphates under catalytically active conditions. These structures suggest that adenosine 5'-monophosphate is incorporated onto the A76 position of the tRNA via a carboxylate-assisted, one-metal-ion mechanism with aspartate 110 functioning as a general base. The discrimination against incorporation of cytidine 5'-triphosphate (CTP) at position 76 arises from improper placement of the alpha phosphate of the incoming CTP, which results from the interaction of C with arginine 224 and prevents the nucleophilic attack by the 3' hydroxyl group of cytidine75.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087442/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087442/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, Baocheng -- Xiong, Yong -- Steitz, Thomas A -- GM57510/GM/NIGMS NIH HHS/ -- R01 GM057510/GM/NIGMS NIH HHS/ -- R01 GM057510-13/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Nov 12;330(6006):937-40. doi: 10.1126/science.1194985.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21071662" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/chemistry/*metabolism ; Adenosine Monophosphate/metabolism ; Adenosine Triphosphate/chemistry/metabolism ; Archaeoglobus fulgidus/*enzymology ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Cytidine Triphosphate/metabolism ; Cytosine/chemistry/*metabolism ; Hydrogen Bonding ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Tertiary ; RNA Nucleotidyltransferases/*chemistry/*metabolism ; RNA, Transfer/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-04-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bohannon, John -- New York, N.Y. -- Science. 2010 Apr 2;328(5974):23-5. doi: 10.1126/science.328.5974.23.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360072" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Commerce/legislation & jurisprudence ; *Conservation of Natural Resources/legislation & jurisprudence ; *Ecosystem ; Endangered Species ; Madagascar ; *Trees ; Wood
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2010-06-26
    Description: The factors determining species commonness and rarity are poorly understood, particularly in highly diverse communities. Theory predicts that interactions with neighbors of the same (conspecific) and other (heterospecific) species can influence a species' relative abundance, but empirical tests are lacking. By using a hierarchical model of survival for more than 30,000 seedlings of 180 tropical tree species on Barro Colorado Island, Panama, we tested whether species' sensitivity to neighboring individuals relates to their relative abundance in the community. We found wide variation among species in the effect of conspecific, but not heterospecific, neighbors on survival, and we found a significant relationship between the strength of conspecific neighbor effects and species abundance. Specifically, rare species suffered more from the presence of conspecific neighbors than common species did, suggesting that conspecific density dependence shapes species abundances in diverse communities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Comita, Liza S -- Muller-Landau, Helene C -- Aguilar, Salomon -- Hubbell, Stephen P -- New York, N.Y. -- Science. 2010 Jul 16;329(5989):330-2. doi: 10.1126/science.1190772. Epub 2010 Jun 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Ecological Analysis and Synthesis, 735 State Street, Suite 300, Santa Barbara, CA 93101, USA. comita@nceas.ucsb.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20576853" target="_blank"〉PubMed〈/a〉
    Keywords: Bayes Theorem ; *Biodiversity ; *Ecosystem ; Panama ; Population Density ; Seedlings/growth & development ; Species Specificity ; *Trees/growth & development ; *Tropical Climate
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-07-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉May, Robert M -- New York, N.Y. -- Science. 2010 Jul 2;329(5987):41-2. doi: 10.1126/science.1191058.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Zoology Department, University of Oxford, Oxford OX1 3PS, UK. robert.may@zoo.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20595603" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthropods/*classification ; Beetles/classification ; *Biodiversity ; Classification/methods ; Genetic Speciation ; Models, Statistical ; New Guinea ; Probability ; Trees/classification ; *Tropical Climate ; Uncertainty
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2010-10-23
    Description: The M2 protein from the influenza A virus, an acid-activated proton-selective channel, has been the subject of numerous conductance, structural, and computational studies. However, little is known at the atomic level about the heart of the functional mechanism for this tetrameric protein, a His(37)-Trp(41) cluster. We report the structure of the M2 conductance domain (residues 22 to 62) in a lipid bilayer, which displays the defining features of the native protein that have not been attainable from structures solubilized by detergents. We propose that the tetrameric His(37)-Trp(41) cluster guides protons through the channel by forming and breaking hydrogen bonds between adjacent pairs of histidines and through specific interactions of the histidines with the tryptophan gate. This mechanism explains the main observations on M2 proton conductance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384994/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384994/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sharma, Mukesh -- Yi, Myunggi -- Dong, Hao -- Qin, Huajun -- Peterson, Emily -- Busath, David D -- Zhou, Huan-Xiang -- Cross, Timothy A -- AI023007/AI/NIAID NIH HHS/ -- R01 AI023007/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 22;330(6003):509-12. doi: 10.1126/science.1191750.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20966252" target="_blank"〉PubMed〈/a〉
    Keywords: Histidine/chemistry ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Influenza A virus/*chemistry/physiology ; Ion Channels/*chemistry ; Ion Transport ; Lipid Bilayers ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; Protein Structure, Tertiary ; *Protons ; Tryptophan/chemistry ; Viral Matrix Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2010-10-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kettle, Chris J -- Ghazoul, Jaboury -- Ashton, Peter S -- Cannon, Charles H -- Chong, Lucy -- Diway, Bibia -- Faridah, Eny -- Harrison, Rhett -- Hector, Andrew -- Hollingsworth, Pete -- Koh, Lian Pin -- Khoo, Eyen -- Kitayama, Kanehiro -- Kartawinata, Kuswata -- Marshall, Andrew J -- Maycock, Colin R -- Nanami, Satoshi -- Paoli, Gary -- Potts, Matthew D -- Sheil, Douglas -- Tan, Sylvester -- Tomoaki, Ichie -- Webb, Campbell -- Yamakura, Takuo -- Burslem, David F R P -- New York, N.Y. -- Science. 2010 Oct 29;330(6004):584. doi: 10.1126/science.330.6004.584-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21030629" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Borneo ; *Conservation of Natural Resources/economics ; Endangered Species ; Financial Support ; *Seeds ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2010-06-26
    Description: The heme-copper oxidases (HCOs) accomplish the key event of aerobic respiration; they couple O2 reduction and transmembrane proton pumping. To gain new insights into the still enigmatic process, we structurally characterized a C-family HCO--essential for the pathogenicity of many bacteria--that differs from the two other HCO families, A and B, that have been structurally analyzed. The x-ray structure of the C-family cbb3 oxidase from Pseudomonas stutzeri at 3.2 angstrom resolution shows an electron supply system different from families A and B. Like family-B HCOs, C HCOs have only one pathway, which conducts protons via an alternative tyrosine-histidine cross-link. Structural differences around hemes b and b3 suggest a different redox-driven proton-pumping mechanism and provide clues to explain the higher activity of family-C HCOs at low oxygen concentrations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buschmann, Sabine -- Warkentin, Eberhard -- Xie, Hao -- Langer, Julian D -- Ermler, Ulrich -- Michel, Hartmut -- New York, N.Y. -- Science. 2010 Jul 16;329(5989):327-30. doi: 10.1126/science.1187303. Epub 2010 Jun 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biophysik, Max-von-Laue-Strasse 3, D-60438 Frankfurt/Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20576851" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Cytoplasm/metabolism ; Electron Transport ; Electron Transport Complex IV/*chemistry/*metabolism ; Heme/chemistry ; Histidine/chemistry ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Oxygen/metabolism ; Periplasm/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proton Pumps/*chemistry/*metabolism ; *Protons ; Pseudomonas stutzeri/*enzymology ; Tyrosine/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-10-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2010 Oct 1;330(6000):24. doi: 10.1126/science.330.6000.24.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929783" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Birds ; *Conservation of Natural Resources/statistics & numerical data ; *Endangered Species/statistics & numerical data ; *Plants ; Sample Size ; Sampling Studies
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2010-01-09
    Description: Large-scale biodiversity gradients among environments and habitats are usually attributed to a complex array of ecological and evolutionary factors. We tested the evolutionary component of such gradients by compiling the environments of the geologically oldest occurrences of marine genera and using sampling standardization to assess if originations tended to be clustered in particular environments. Shallow, tropical environments and carbonate substrates all tend to have harbored high origination rates. Diversity within these environments tended to be preferentially generated in reefs, probably because of their habitat complexity. Reefs were also prolific at exporting diversity to other environments, which might be a consequence of low-diversity habitats being more susceptible to invasions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kiessling, Wolfgang -- Simpson, Carl -- Foote, Michael -- New York, N.Y. -- Science. 2010 Jan 8;327(5962):196-8. doi: 10.1126/science.1182241.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Museum fur Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, 10115 Berlin, Germany. wolfgang.kiessling@mfn-berlin.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20056888" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Anthozoa ; *Biodiversity ; *Biological Evolution ; Calcium Carbonate ; *Ecosystem ; Environment ; Fishes ; *Fossils ; Geography ; *Invertebrates/classification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2010-07-22
    Description: A substantial proportion of eukaryotic transcripts are considered to be noncoding RNAs because they contain only short open reading frames (sORFs). Recent findings suggest, however, that some sORFs encode small bioactive peptides. Here, we show that peptides of 11 to 32 amino acids encoded by the polished rice (pri) sORF gene control epidermal differentiation in Drosophila by modifying the transcription factor Shavenbaby (Svb). Pri peptides trigger the amino-terminal truncation of the Svb protein, which converts Svb from a repressor to an activator. Our results demonstrate that during Drosophila embryogenesis, Pri sORF peptides provide a strict temporal control to the transcriptional program of epidermal morphogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kondo, T -- Plaza, S -- Zanet, J -- Benrabah, E -- Valenti, P -- Hashimoto, Y -- Kobayashi, S -- Payre, F -- Kageyama, Y -- New York, N.Y. -- Science. 2010 Jul 16;329(5989):336-9. doi: 10.1126/science.1188158.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences, 5-1 Myodaiji-Higashiyama, Okazaki 444-8787, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647469" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Nucleus/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/embryology/*genetics/metabolism ; Embryo, Nonmammalian/cytology/*metabolism ; Embryonic Development ; Epidermis/cytology/metabolism ; *Gene Expression Regulation, Developmental ; Genes, Insect ; Mutation ; Open Reading Frames ; Peptides/genetics/*metabolism ; Protein Isoforms/chemistry/genetics/metabolism ; Protein Processing, Post-Translational ; Protein Structure, Tertiary ; RNA, Untranslated/genetics ; Recombinant Fusion Proteins/metabolism ; Transcription Factors/chemistry/genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-09-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2010 Sep 10;329(5997):1274-7. doi: 10.1126/science.329.5997.1274.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829463" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Conservation of Natural Resources ; Databases, Factual ; Ecosystem ; *Endangered Species ; International Cooperation ; Plant Development ; *Plants/classification ; Seeds ; *Terminology as Topic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2010-11-06
    Description: Protein synthesis requires several guanosine triphosphatase (GTPase) factors, including elongation factor Tu (EF-Tu), which delivers aminoacyl-transfer RNAs (tRNAs) to the ribosome. To understand how the ribosome triggers GTP hydrolysis in translational GTPases, we have determined the crystal structure of EF-Tu and aminoacyl-tRNA bound to the ribosome with a GTP analog, to 3.2 angstrom resolution. EF-Tu is in its active conformation, the switch I loop is ordered, and the catalytic histidine is coordinating the nucleophilic water in position for inline attack on the gamma-phosphate of GTP. This activated conformation is due to a critical and conserved interaction of the histidine with A2662 of the sarcin-ricin loop of the 23S ribosomal RNA. The structure suggests a universal mechanism for GTPase activation and hydrolysis in translational GTPases on the ribosome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763471/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763471/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Voorhees, Rebecca M -- Schmeing, T Martin -- Kelley, Ann C -- Ramakrishnan, V -- 082086/Wellcome Trust/United Kingdom -- MC_U105184332/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2010 Nov 5;330(6005):835-8. doi: 10.1126/science.1194460.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21051640" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Guanosine Triphosphate/analogs & derivatives/*metabolism ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Nucleic Acid Conformation ; Paromomycin/metabolism ; Peptide Elongation Factor Tu/*chemistry/*metabolism ; Phosphates/metabolism ; Protein Structure, Tertiary ; RNA, Bacterial/chemistry/*metabolism ; RNA, Ribosomal, 23S/chemistry/metabolism ; RNA, Transfer, Amino Acyl/chemistry/*metabolism ; Ribosomes/*metabolism ; Thermus thermophilus/chemistry/*metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2010-05-08
    Description: Clathrin-mediated endocytosis, the major pathway for ligand internalization into eukaryotic cells, is thought to be initiated by the clustering of clathrin and adaptors around receptors destined for internalization. However, here we report that the membrane-sculpting F-BAR domain-containing Fer/Cip4 homology domain-only proteins 1 and 2 (FCHo1/2) were required for plasma membrane clathrin-coated vesicle (CCV) budding and marked sites of CCV formation. Changes in FCHo1/2 expression levels correlated directly with numbers of CCV budding events, ligand endocytosis, and synaptic vesicle marker recycling. FCHo1/2 proteins bound specifically to the plasma membrane and recruited the scaffold proteins eps15 and intersectin, which in turn engaged the adaptor complex AP2. The FCHo F-BAR membrane-bending activity was required, leading to the proposal that FCHo1/2 sculpt the initial bud site and recruit the clathrin machinery for CCV formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883440/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883440/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Henne, William Mike -- Boucrot, Emmanuel -- Meinecke, Michael -- Evergren, Emma -- Vallis, Yvonne -- Mittal, Rohit -- McMahon, Harvey T -- MC_U105178795/Medical Research Council/United Kingdom -- U.1051.02.007(78795)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Jun 4;328(5983):1281-4. doi: 10.1126/science.1188462. Epub 2010 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council, Laboratory of Molecular Biology (MRC-LMB), Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448150" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Protein Complex 2/metabolism ; Adaptor Proteins, Signal Transducing ; Adaptor Proteins, Vesicular Transport/metabolism ; Animals ; Calcium-Binding Proteins/metabolism ; Cell Line ; Cell Membrane/metabolism ; Cells, Cultured ; Clathrin/*metabolism ; Clathrin-Coated Vesicles/*metabolism ; *Endocytosis ; HeLa Cells ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; Membrane Proteins ; Mice ; Models, Molecular ; Neurons/cytology/metabolism ; Phosphoproteins/metabolism ; Protein Multimerization ; Protein Structure, Tertiary ; Proteins/chemistry/*metabolism ; RNA Interference ; Rats ; Rats, Sprague-Dawley ; Recombinant Fusion Proteins/metabolism ; Synaptic Vesicles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2010-10-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poiner, Ian -- New York, N.Y. -- Science. 2010 Oct 1;330(6000):25. doi: 10.1126/science.330.6000.25.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929784" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Biomass ; *Ecosystem ; Marine Biology ; Oceans and Seas
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2010-08-21
    Description: Multicellular organisms activate immunity upon recognition of pathogen-associated molecular patterns (PAMPs). Chitin is the major component of fungal cell walls, and chitin oligosaccharides act as PAMPs in plant and mammalian cells. Microbial pathogens deliver effector proteins to suppress PAMP-triggered host immunity and to establish infection. Here, we show that the LysM domain-containing effector protein Ecp6 of the fungal plant pathogen Cladosporium fulvum mediates virulence through perturbation of chitin-triggered host immunity. During infection, Ecp6 sequesters chitin oligosaccharides that are released from the cell walls of invading hyphae to prevent elicitation of host immunity. This may represent a common strategy of host immune suppression by fungal pathogens, because LysM effectors are widely conserved in the fungal kingdom.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Jonge, Ronnie -- van Esse, H Peter -- Kombrink, Anja -- Shinya, Tomonori -- Desaki, Yoshitake -- Bours, Ralph -- van der Krol, Sander -- Shibuya, Naoto -- Joosten, Matthieu H A J -- Thomma, Bart P H J -- New York, N.Y. -- Science. 2010 Aug 20;329(5994):953-5. doi: 10.1126/science.1190859.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20724636" target="_blank"〉PubMed〈/a〉
    Keywords: Chitin/metabolism ; Chitinase/metabolism ; Cladosporium/immunology/*pathogenicity ; Fungal Proteins/chemistry/immunology/*physiology ; Lycopersicon esculentum/*immunology/microbiology ; Plant Diseases/immunology/microbiology ; Protein Binding ; Protein Structure, Tertiary ; Trichoderma/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2010-10-30
    Description: Prions are an unusual form of epigenetics: Their stable inheritance and complex phenotypes come about through protein folding rather than nucleic acid-associated changes. With intimate ties to protein homeostasis and a remarkable sensitivity to stress, prions are a robust mechanism that links environmental extremes with the acquisition and inheritance of new traits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Halfmann, Randal -- Lindquist, Susan -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Oct 29;330(6004):629-32. doi: 10.1126/science.1191081.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21030648" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Biological Evolution ; *Epigenesis, Genetic ; Genetic Variation ; Homeostasis ; Peptide Termination Factors/chemistry/metabolism/physiology ; Phenotype ; Prions/*chemistry/metabolism/*physiology ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Saccharomyces cerevisiae/genetics/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism/physiology ; Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2010-02-13
    Description: Microorganisms can switch from a planktonic, free-swimming life-style to a sessile, colonial state, called a biofilm, which confers resistance to environmental stress. Conversion between the motile and biofilm life-styles has been attributed to increased levels of the prokaryotic second messenger cyclic di-guanosine monophosphate (c-di-GMP), yet the signaling mechanisms mediating such a global switch are poorly understood. Here we show that the transcriptional regulator VpsT from Vibrio cholerae directly senses c-di-GMP to inversely control extracellular matrix production and motility, which identifies VpsT as a master regulator for biofilm formation. Rather than being regulated by phosphorylation, VpsT undergoes a change in oligomerization on c-di-GMP binding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828054/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828054/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krasteva, Petya V -- Fong, Jiunn C N -- Shikuma, Nicholas J -- Beyhan, Sinem -- Navarro, Marcos V A S -- Yildiz, Fitnat H -- Sondermann, Holger -- 1R01GM081373/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 AI055987/AI/NIAID NIH HHS/ -- R01 AI055987-06A1/AI/NIAID NIH HHS/ -- R01 GM081373/GM/NIGMS NIH HHS/ -- R01 GM081373-03/GM/NIGMS NIH HHS/ -- R01AI055987/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):866-8. doi: 10.1126/science.1181185.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20150502" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Bacterial Proteins/chemistry/genetics/*metabolism ; Binding Sites ; Biofilms/*growth & development ; Crystallography, X-Ray ; Cyclic GMP/*analogs & derivatives/metabolism ; DNA, Bacterial/metabolism ; Dimerization ; Extracellular Matrix/*metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial ; Models, Molecular ; Movement ; Point Mutation ; Polysaccharides, Bacterial/genetics/metabolism ; Protein Folding ; Protein Multimerization ; Protein Structure, Tertiary ; Signal Transduction ; Transcription Factors/chemistry/genetics/*metabolism ; Transcription, Genetic ; Vibrio cholerae O1/cytology/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-08-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harrison, Stephen C -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Aug 27;329(5995):1026-7. doi: 10.1126/science.1194922.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Jack and Eileen Connors Laboratory of Structural Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA. harrison@crystal.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20798308" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviruses, Human/*chemistry/*ultrastructure ; Capsid Proteins/*chemistry/ultrastructure ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Image Processing, Computer-Assisted ; Protein Structure, Tertiary ; Virion/chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2010-10-28
    Description: Quantitative scenarios are coming of age as a tool for evaluating the impact of future socioeconomic development pathways on biodiversity and ecosystem services. We analyze global terrestrial, freshwater, and marine biodiversity scenarios using a range of measures including extinctions, changes in species abundance, habitat loss, and distribution shifts, as well as comparing model projections to observations. Scenarios consistently indicate that biodiversity will continue to decline over the 21st century. However, the range of projected changes is much broader than most studies suggest, partly because there are major opportunities to intervene through better policies, but also because of large uncertainties in projections.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pereira, Henrique M -- Leadley, Paul W -- Proenca, Vania -- Alkemade, Rob -- Scharlemann, Jorn P W -- Fernandez-Manjarres, Juan F -- Araujo, Miguel B -- Balvanera, Patricia -- Biggs, Reinette -- Cheung, William W L -- Chini, Louise -- Cooper, H David -- Gilman, Eric L -- Guenette, Sylvie -- Hurtt, George C -- Huntington, Henry P -- Mace, Georgina M -- Oberdorff, Thierry -- Revenga, Carmen -- Rodrigues, Patricia -- Scholes, Robert J -- Sumaila, Ussif Rashid -- Walpole, Matt -- New York, N.Y. -- Science. 2010 Dec 10;330(6010):1496-501. doi: 10.1126/science.1196624. Epub 2010 Oct 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centro de Biologia Ambiental, Faculdade de Ciencias da Universidade de Lisboa, 1749-016 Lisboa, Portugal. hpereira@fc.ul.pt〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20978282" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms ; *Biodiversity ; Conservation of Natural Resources ; *Ecosystem ; Extinction, Biological ; Forecasting ; Models, Biological ; Plants ; Policy ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2010-10-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perrings, C -- Naeem, S -- Ahrestani, F -- Bunker, D E -- Burkill, P -- Canziani, G -- Elmqvist, T -- Ferrati, R -- Fuhrman, J -- Jaksic, F -- Kawabata, Z -- Kinzig, A -- Mace, G M -- Milano, F -- Mooney, H -- Prieur-Richard, A-H -- Tschirhart, J -- Weisser, W -- New York, N.Y. -- Science. 2010 Oct 15;330(6002):323-4. doi: 10.1126/science.1196431.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Arizona State University, Tempe, AZ 85287, USA. Charles.Perrings@asu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20947748" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Conservation of Natural Resources/trends ; *Ecosystem ; Environment ; Forecasting ; International Cooperation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2010-09-11
    Description: Many bacteria and archaea contain clustered regularly interspaced short palindromic repeats (CRISPRs) that confer resistance to invasive genetic elements. Central to this immune system is the production of CRISPR-derived RNAs (crRNAs) after transcription of the CRISPR locus. Here, we identify the endoribonuclease (Csy4) responsible for CRISPR transcript (pre-crRNA) processing in Pseudomonas aeruginosa. A 1.8 angstrom crystal structure of Csy4 bound to its cognate RNA reveals that Csy4 makes sequence-specific interactions in the major groove of the crRNA repeat stem-loop. Together with electrostatic contacts to the phosphate backbone, these enable Csy4 to bind selectively and cleave pre-crRNAs using phylogenetically conserved serine and histidine residues in the active site. The RNA recognition mechanism identified here explains sequence- and structure-specific processing by a large family of CRISPR-specific endoribonucleases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133607/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133607/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haurwitz, Rachel E -- Jinek, Martin -- Wiedenheft, Blake -- Zhou, Kaihong -- Doudna, Jennifer A -- 5 T32 GM08295/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Sep 10;329(5997):1355-8. doi: 10.1126/science.1192272.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829488" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Bacterial Proteins/*chemistry/*metabolism ; Base Pairing ; Base Sequence ; CRISPR-Associated Proteins ; Crystallization ; Crystallography, X-Ray ; Endoribonucleases/*chemistry/*metabolism ; Genes, Bacterial ; Hydrogen Bonding ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Tertiary ; Pseudomonas aeruginosa/*enzymology/*genetics ; *RNA Processing, Post-Transcriptional ; RNA, Bacterial/chemistry/genetics/*metabolism ; *Repetitive Sequences, Nucleic Acid ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-07-31
    Description: Barton et al. (Reports, 19 March 2010, p. 1509) argued that stable conditions enable neutral coexistence of many phytoplankton species in the tropical oceans, whereas seasonal variation causes low biodiversity in subpolar oceans. However, their model prediction is not robust. A minor deviation from the neutrality assumption favors coexistence in fluctuating rather than stable environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huisman, Jef -- New York, N.Y. -- Science. 2010 Jul 30;329(5991):512; author reply 512. doi: 10.1126/science.1189880.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Post Office Box 94248, 1090 GE Amsterdam, Netherlands. j.huisman@uva.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20671171" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Ecosystem ; Environment ; Geography ; Models, Biological ; Oceans and Seas ; *Phytoplankton/growth & development/physiology ; Population Dynamics ; Seasons ; *Seawater
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2010-07-03
    Description: Proton-pumping respiratory complex I is one of the largest and most complicated membrane protein complexes. Its function is critical for efficient energy supply in aerobic cells, and malfunctions are implicated in many neurodegenerative disorders. Here, we report an x-ray crystallographic analysis of mitochondrial complex I. The positions of all iron-sulfur clusters relative to the membrane arm were determined in the complete enzyme complex. The ubiquinone reduction site resides close to 30 angstroms above the membrane domain. The arrangement of functional modules suggests conformational coupling of redox chemistry with proton pumping and essentially excludes direct mechanisms. We suggest that a approximately 60-angstrom-long helical transmission element is critical for transducing conformational energy to proton-pumping elements in the distal module of the membrane arm.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hunte, Carola -- Zickermann, Volker -- Brandt, Ulrich -- New York, N.Y. -- Science. 2010 Jul 23;329(5990):448-51. doi: 10.1126/science.1191046. Epub 2010 Jul 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biochemistry and Molecular Biology, Centre for Biological Signalling Studies (BIOSS), University of Freiburg, D-79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20595580" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Electron Transport Complex I/*chemistry/*metabolism ; Fungal Proteins/chemistry/metabolism ; Iron/chemistry ; Mitochondria/enzymology ; Mitochondrial Proteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Protons ; Sulfur/chemistry ; Ubiquinone/chemistry/metabolism ; Yarrowia/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2010-08-28
    Description: Rational development of adenovirus vectors for therapeutic gene transfer is hampered by the lack of accurate structural information. Here, we report the x-ray structure at 3.5 angstrom resolution of the 150-megadalton adenovirus capsid containing nearly 1 million amino acids. We describe interactions between the major capsid protein (hexon) and several accessory molecules that stabilize the capsid. The virus structure also reveals an altered association between the penton base and the trimeric fiber protein, perhaps reflecting an early event in cell entry. The high-resolution structure provides a substantial advance toward understanding the assembly and cell entry mechanisms of a large double-stranded DNA virus and provides new opportunities for improving adenovirus-mediated gene transfer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929978/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929978/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reddy, Vijay S -- Natchiar, S Kundhavai -- Stewart, Phoebe L -- Nemerow, Glen R -- AI042929/AI/NIAID NIH HHS/ -- EY011431/EY/NEI NIH HHS/ -- HL054352/HL/NHLBI NIH HHS/ -- R01 AI070771/AI/NIAID NIH HHS/ -- R01 AI070771-03/AI/NIAID NIH HHS/ -- R01 EY011431/EY/NEI NIH HHS/ -- R01 EY011431-13/EY/NEI NIH HHS/ -- R01 HL054352/HL/NHLBI NIH HHS/ -- R01 HL054352-17/HL/NHLBI NIH HHS/ -- R29 AI042929/AI/NIAID NIH HHS/ -- R29 AI042929-06/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Aug 27;329(5995):1071-5. doi: 10.1126/science.1187292.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. reddyv@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20798318" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviruses, Human/*chemistry/physiology/*ultrastructure ; Capsid/*chemistry/*ultrastructure ; Capsid Proteins/*chemistry/ultrastructure ; Crystallography, X-Ray ; Genetic Vectors ; Hydrogen Bonding ; Models, Molecular ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2010-09-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Regalado, Antonio -- New York, N.Y. -- Science. 2010 Sep 10;329(5997):1270-1. doi: 10.1126/science.329.5997.1270-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829459" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Brazil ; Conservation of Natural Resources/*statistics & numerical data
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2010-11-13
    Description: The Amazonian rainforest is arguably the most species-rich terrestrial ecosystem in the world, yet the timing of the origin and evolutionary causes of this diversity are a matter of debate. We review the geologic and phylogenetic evidence from Amazonia and compare it with uplift records from the Andes. This uplift and its effect on regional climate fundamentally changed the Amazonian landscape by reconfiguring drainage patterns and creating a vast influx of sediments into the basin. On this "Andean" substrate, a region-wide edaphic mosaic developed that became extremely rich in species, particularly in Western Amazonia. We show that Andean uplift was crucial for the evolution of Amazonian landscapes and ecosystems, and that current biodiversity patterns are rooted deep in the pre-Quaternary.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoorn, C -- Wesselingh, F P -- ter Steege, H -- Bermudez, M A -- Mora, A -- Sevink, J -- Sanmartin, I -- Sanchez-Meseguer, A -- Anderson, C L -- Figueiredo, J P -- Jaramillo, C -- Riff, D -- Negri, F R -- Hooghiemstra, H -- Lundberg, J -- Stadler, T -- Sarkinen, T -- Antonelli, A -- New York, N.Y. -- Science. 2010 Nov 12;330(6006):927-31. doi: 10.1126/science.1194585.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Paleoecology and Landscape Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands. carina.hoorn@milne.cc〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21071659" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Climate Change ; Ecosystem ; Fossils ; Geography ; *Geological Phenomena ; Phylogeny ; Rivers ; South America ; Time ; Trees ; Wetlands
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2010-11-27
    Description: The brain's circuitry is established by directed migration and synaptogenesis of neurons during development. Although neurons mature and migrate in specific patterns, little is known about how neurons exit their germinal zone niche. We found that cerebellar granule neuron germinal zone exit is regulated by proteasomal degradation of Pard3A by the Seven in Absentia homolog (Siah) E3 ubiquitin ligase. Pard3A gain of function and Siah loss of function induce precocious radial migration. Time-lapse imaging using a probe to measure neuronal cell contact reveals that Pard3A promotes adhesive interactions needed for germinal zone exit by recruiting the epithelial tight junction adhesion molecule C to the neuronal cell surface. Our findings define a Siah-Pard3A signaling pathway that controls adhesion-dependent exit of neuronal progenitors or immature neurons from a germinal zone niche.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065828/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065828/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Famulski, Jakub K -- Trivedi, Niraj -- Howell, Danielle -- Yang, Yuan -- Tong, Yiai -- Gilbertson, Richard -- Solecki, David J -- P01 CA096832/CA/NCI NIH HHS/ -- P01 CA096832-07/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- P30 CA021765-33/CA/NCI NIH HHS/ -- R01 CA129541/CA/NCI NIH HHS/ -- R01 CA129541-04/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Dec 24;330(6012):1834-8. doi: 10.1126/science.1198480. Epub 2010 Nov 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21109632" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Adhesion ; Cell Adhesion Molecules/chemistry/*metabolism ; Cell Line ; *Cell Movement ; Cell Polarity ; Cerebellum/*cytology/embryology/*metabolism ; Dogs ; Humans ; Immunoglobulins/chemistry/metabolism ; Mice ; Morphogenesis ; Neurons/cytology/*physiology ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; RNA Interference ; Signal Transduction ; Stem Cells/physiology ; Transfection ; Ubiquitin-Protein Ligases/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2010-09-11
    Description: The continued growth of human populations and of per capita consumption have resulted in unsustainable exploitation of Earth's biological diversity, exacerbated by climate change, ocean acidification, and other anthropogenic environmental impacts. We argue that effective conservation of biodiversity is essential for human survival and the maintenance of ecosystem processes. Despite some conservation successes (especially at local scales) and increasing public and government interest in living sustainably, biodiversity continues to decline. Moving beyond 2010, successful conservation approaches need to be reinforced and adequately financed. In addition, however, more radical changes are required that recognize biodiversity as a global public good, that integrate biodiversity conservation into policies and decision frameworks for resource production and consumption, and that focus on wider institutional and societal changes to enable more effective implementation of policy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rands, Michael R W -- Adams, William M -- Bennun, Leon -- Butchart, Stuart H M -- Clements, Andrew -- Coomes, David -- Entwistle, Abigail -- Hodge, Ian -- Kapos, Valerie -- Scharlemann, Jorn P W -- Sutherland, William J -- Vira, Bhaskar -- New York, N.Y. -- Science. 2010 Sep 10;329(5997):1298-303. doi: 10.1126/science.1189138.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cambridge Conservation Initiative, Judge Business School, University of Cambridge, Cambridge CB2 1AG, UK. mr494@cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829476" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Conservation of Natural Resources/trends ; Decision Making ; Ecosystem ; Environment ; Humans ; International Cooperation ; Plants ; Population Dynamics ; Public Policy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2010-03-27
    Description: Phosphoinositide 3-kinases (PI3Ks) are lipid kinases with diverse roles in health and disease. The primordial PI3K, Vps34, is present in all eukaryotes and has essential roles in autophagy, membrane trafficking, and cell signaling. We solved the crystal structure of Vps34 at 2.9 angstrom resolution, which revealed a constricted adenine-binding pocket, suggesting the reason that specific inhibitors of this class of PI3K have proven elusive. Both the phosphoinositide-binding loop and the carboxyl-terminal helix of Vps34 mediate catalysis on membranes and suppress futile adenosine triphosphatase cycles. Vps34 appears to alternate between a closed cytosolic form and an open form on the membrane. Structures of Vps34 complexes with a series of inhibitors reveal the reason that an autophagy inhibitor preferentially inhibits Vps34 and underpin the development of new potent and specific Vps34 inhibitors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860105/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860105/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Simon -- Tavshanjian, Brandon -- Oleksy, Arkadiusz -- Perisic, Olga -- Houseman, Benjamin T -- Shokat, Kevan M -- Williams, Roger L -- MC_U105184308/Medical Research Council/United Kingdom -- U.1051.03.014(78824)/Medical Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Mar 26;327(5973):1638-42. doi: 10.1126/science.1184429.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20339072" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/*analogs & derivatives/metabolism/pharmacology ; Adenosine Triphosphatases/metabolism ; Animals ; Autophagy/*drug effects ; Binding Sites ; Catalysis ; Catalytic Domain ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Drosophila Proteins/*antagonists & inhibitors/*chemistry/genetics/metabolism ; Drosophila melanogaster ; Enzyme Inhibitors/chemical synthesis/chemistry/*metabolism/pharmacology ; Furans/chemistry/metabolism/pharmacology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Phosphatidylinositol 3-Kinases/*antagonists & ; inhibitors/*chemistry/genetics/metabolism ; Phosphatidylinositols/metabolism ; Point Mutation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyridines/chemistry/metabolism/pharmacology ; Pyrimidines/chemistry/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-10-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mindell, Joseph A -- New York, N.Y. -- Science. 2010 Oct 29;330(6004):601-2. doi: 10.1126/science.1198306.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Membrane Transport Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA. mindellj@ninds.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21030639" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/*chemistry/metabolism ; Antiporters/*chemistry/metabolism ; Binding Sites ; Chloride Channels/*chemistry/metabolism ; Chlorides/*metabolism ; Crystallization ; Crystallography, X-Ray ; Cytoplasm/chemistry ; Eukaryota/*chemistry ; Glutamic Acid/metabolism ; Ion Channel Gating ; Ion Transport ; Models, Molecular ; Protein Structure, Tertiary ; Protons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-09-04
    Description: The fossil record demonstrates that each major taxonomic group has a consistent net rate of diversification and a limit to its species richness. It has been thought that long-term changes in the dominance of major taxonomic groups can be predicted from these characteristics. However, new analyses show that diversity limits may rise or fall in response to adaptive radiations or extinctions. These changes are idiosyncratic and occur at different times in each taxa. For example, the end-Permian mass extinction permanently reduced the diversity of important, previously dominant groups such as brachiopods and crinoids. The current global crisis may therefore permanently alter the biosphere's taxonomic composition by changing the rules of evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alroy, J -- New York, N.Y. -- Science. 2010 Sep 3;329(5996):1191-4. doi: 10.1126/science.1189910.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Paleobiology Database, University of California, 735 State Street, Santa Barbara, CA 93101, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20813951" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Biological ; Animals ; Anthozoa ; *Biodiversity ; Biological Evolution ; Data Interpretation, Statistical ; *Databases, Factual ; Extinction, Biological ; *Fossils ; *Invertebrates ; Marine Biology ; Models, Biological ; *Mollusca ; Oceans and Seas ; Paleontology ; Population Dynamics ; Statistics as Topic ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-08-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Haigen -- Ding, Hui -- Wu, Jun -- New York, N.Y. -- Science. 2010 Aug 20;329(5994):900; author reply 900-1. doi: 10.1126/science.329.5994.900-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20724616" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; China ; *Conservation of Natural Resources ; Environmental Pollution/prevention & control ; Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2010-05-29
    Description: High-conductance voltage- and Ca2+-activated K+ (BK) channels encode negative feedback regulation of membrane voltage and Ca2+ signaling, playing a central role in numerous physiological processes. We determined the x-ray structure of the human BK Ca2+ gating apparatus at a resolution of 3.0 angstroms and deduced its tetrameric assembly by solving a 6 angstrom resolution structure of a Na+-activated homolog. Two tandem C-terminal regulator of K+ conductance (RCK) domains from each of four channel subunits form a 350-kilodalton gating ring at the intracellular membrane surface. A sequence of aspartic amino acids that is known as the Ca2+ bowl, and is located within the second of the tandem RCK domains, creates four Ca2+ binding sites on the outer perimeter of the gating ring at the "assembly interface" between RCK domains. Functionally important mutations cluster near the Ca2+ bowl, near the "flexible interface" between RCK domains, and on the surface of the gating ring that faces the voltage sensors. The structure suggests that the Ca2+ gating ring, in addition to regulating the pore directly, may also modulate the voltage sensor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022345/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022345/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Peng -- Leonetti, Manuel D -- Pico, Alexander R -- Hsiung, Yichun -- MacKinnon, Roderick -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM043949/GM/NIGMS NIH HHS/ -- R01 GM043949-20/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jul 9;329(5988):182-6. doi: 10.1126/science.1190414. Epub 2010 May 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20508092" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Calcium/*metabolism ; Crystallography, X-Ray ; Humans ; *Ion Channel Gating ; Large-Conductance Calcium-Activated Potassium Channel alpha ; Subunits/*chemistry/genetics/*metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Patch-Clamp Techniques ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Sodium/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2010-10-12
    Description: CLC proteins transport chloride (Cl(-)) ions across cell membranes to control the electrical potential of muscle cells, transfer electrolytes across epithelia, and control the pH and electrolyte composition of intracellular organelles. Some members of this protein family are Cl(-) ion channels, whereas others are secondary active transporters that exchange Cl(-) ions and protons (H(+)) with a 2:1 stoichiometry. We have determined the structure of a eukaryotic CLC transporter at 3.5 angstrom resolution. Cytoplasmic cystathionine beta-synthase (CBS) domains are strategically positioned to regulate the ion-transport pathway, and many disease-causing mutations in human CLCs reside on the CBS-transmembrane interface. Comparison with prokaryotic CLC shows that a gating glutamate residue changes conformation and suggests a basis for 2:1 Cl(-)/H(+) exchange and a simple mechanistic connection between CLC channels and transporters.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079386/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079386/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, Liang -- Campbell, Ernest B -- Hsiung, Yichun -- MacKinnon, Roderick -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM043949/GM/NIGMS NIH HHS/ -- R01 GM043949-20/GM/NIGMS NIH HHS/ -- R01 GM043949-21/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Oct 29;330(6004):635-41. doi: 10.1126/science.1195230. Epub 2010 Sep 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929736" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/chemistry/metabolism ; Animals ; Antiporters/*chemistry/metabolism ; Binding Sites ; Cell Line ; Cell Membrane/chemistry ; Chloride Channels/*chemistry/metabolism ; Chlorides/*metabolism ; Crystallization ; Crystallography, X-Ray ; Cystathionine beta-Synthase/chemistry ; Cytoplasm/chemistry ; Glutamic Acid/metabolism ; Ion Channel Gating ; Ion Transport ; Models, Biological ; Models, Molecular ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Protons ; Rhodophyta/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-01-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Swing, Kelly -- New York, N.Y. -- Science. 2011 Jan 7;331(6013):29. doi: 10.1126/science.331.6013.29-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21212338" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Conservation of Natural Resources/*economics ; Ecuador ; Petroleum ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-01-29
    Description: Proper regulation of nuclear factor kappaB (NF-kappaB) transcriptional activity is required for normal lymphocyte function, and deregulated NF-kappaB signaling can facilitate lymphomagenesis. We demonstrate that the API2-MALT1 fusion oncoprotein created by the recurrent t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma induces proteolytic cleavage of NF-kappaB-inducing kinase (NIK) at arginine 325. NIK cleavage requires the concerted actions of both fusion partners and generates a C-terminal NIK fragment that retains kinase activity and is resistant to proteasomal degradation. The resulting deregulated NIK activity is associated with constitutive noncanonical NF-kappaB signaling, enhanced B cell adhesion, and apoptosis resistance. Our study reveals the gain-of-function proteolytic activity of a fusion oncoprotein and highlights the importance of the noncanonical NF-kappaB pathway in B lymphoproliferative disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124150/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124150/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosebeck, Shaun -- Madden, Lisa -- Jin, Xiaohong -- Gu, Shufang -- Apel, Ingrid J -- Appert, Alex -- Hamoudi, Rifat A -- Noels, Heidi -- Sagaert, Xavier -- Van Loo, Peter -- Baens, Mathijs -- Du, Ming-Qing -- Lucas, Peter C -- McAllister-Lucas, Linda M -- R01 CA124540/CA/NCI NIH HHS/ -- R01 CA124540-04/CA/NCI NIH HHS/ -- R01 HL082914/HL/NHLBI NIH HHS/ -- R01CA124540/CA/NCI NIH HHS/ -- T32-HD07513/HD/NICHD NIH HHS/ -- T32-HL007622-21A2/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):468-72. doi: 10.1126/science.1198946.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics and Communicable Diseases, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273489" target="_blank"〉PubMed〈/a〉
    Keywords: Apoptosis ; B-Lymphocytes/*metabolism ; Cell Adhesion ; Cell Line ; Cell Line, Tumor ; Gene Expression Regulation, Neoplastic ; Humans ; I-kappa B Kinase/metabolism ; Lymphoma, B-Cell, Marginal Zone/genetics/*metabolism ; NF-kappa B/*metabolism ; NF-kappa B p52 Subunit/metabolism ; Oncogene Proteins, Fusion/chemistry/genetics/*metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Proto-Oncogene Proteins/genetics/metabolism ; Signal Transduction ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-11-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fischer, Joern -- Batary, Peter -- Bawa, Kamaljit S -- Brussaard, Lijbert -- Chappell, M Jahi -- Clough, Yann -- Daily, Gretchen C -- Dorrough, Josh -- Hartel, Tibor -- Jackson, Louise E -- Klein, Alexandra M -- Kremen, Claire -- Kuemmerle, Tobias -- Lindenmayer, David B -- Mooney, Harold A -- Perfecto, Ivette -- Philpott, Stacy M -- Tscharntke, Teja -- Vandermeer, John -- Wanger, Thomas Cherico -- Von Wehrden, Henrik -- New York, N.Y. -- Science. 2011 Nov 4;334(6056):593; author reply 594-5. doi: 10.1126/science.334.6056.593-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22053026" target="_blank"〉PubMed〈/a〉
    Keywords: *Agriculture ; Animals ; *Biodiversity ; *Conservation of Natural Resources ; Crops, Agricultural/*growth & development ; *Ecosystem ; *Food
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-06-04
    Description: Two-dimensional (2D) vibrational echo spectroscopy has previously been applied to structural determination of small peptides. Here we extend the technique to a more complex, biologically important system: the homodimeric transmembrane dimer from the alpha chain of the integrin alpha(IIb)beta(3). We prepared micelle suspensions of the pair of 30-residue chains that span the membrane in the native structure, with varying levels of heavy ((13)C=(18)O) isotopes substituted in the backbone of the central 10th through 20th positions. The constraints derived from vibrational coupling of the precisely spaced heavy residues led to determination of an optimized structure from a range of model candidates: Glycine residues at the 12th, 15th, and 16th positions form a tertiary contact in parallel right-handed helix dimers with crossing angles of -58 degrees +/- 9 degrees and interhelical distances of 7.7 +/- 0.5 angstroms. The frequency correlation established the dynamical model used in the analysis, and it indicated the absence of mobile water associated with labeled residues. Delocalization of vibrational excitations between the helices was also quantitatively established.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295544/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295544/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Remorino, Amanda -- Korendovych, Ivan V -- Wu, Yibing -- DeGrado, William F -- Hochstrasser, Robin M -- GM12592/GM/NIGMS NIH HHS/ -- GM54616/GM/NIGMS NIH HHS/ -- GM56423/GM/NIGMS NIH HHS/ -- GM60610/GM/NIGMS NIH HHS/ -- P41 RR001348-29/RR/NCRR NIH HHS/ -- P41 RR001348-30/RR/NCRR NIH HHS/ -- R01 GM012592-48/GM/NIGMS NIH HHS/ -- R01 GM054616/GM/NIGMS NIH HHS/ -- R01 GM054616-08/GM/NIGMS NIH HHS/ -- R01 GM056423/GM/NIGMS NIH HHS/ -- R01 GM056423-12/GM/NIGMS NIH HHS/ -- RR01348/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2011 Jun 3;332(6034):1206-9. doi: 10.1126/science.1202997.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21636774" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Carbon Isotopes ; Cell Membrane/*chemistry ; Energy Transfer ; Micelles ; Models, Molecular ; Molecular Dynamics Simulation ; Oxygen Isotopes ; Peptides/*chemistry ; Platelet Membrane Glycoprotein IIb/*chemistry ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Spectrophotometry, Infrared ; Spectroscopy, Fourier Transform Infrared ; Vibration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-08-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hulme, Mike -- Mahony, Martin -- Beck, Silke -- Gorg, Christoph -- Hansjurgens, Bernd -- Hauck, Jennifer -- Nesshover, Carsten -- Paulsch, Axel -- Vandewalle, Marie -- Wittmer, Heidi -- Boschen, Stefan -- Bridgewater, Peter -- Diaw, Mariteuw Chimere -- Fabre, Pierre -- Figueroa, Aurelia -- Heong, Kong Luen -- Korn, Horst -- Leemans, Rik -- Lovbrand, Eva -- Hamid, Mohd Norowi -- Monfreda, Chad -- Pielke, Roger Jr -- Settele, Josef -- Winter, Marten -- Vadrot, Alice B M -- van den Hove, Sybille -- van der Sluijs, Jeroen P -- New York, N.Y. -- Science. 2011 Aug 5;333(6043):697-8. doi: 10.1126/science.333.6043.697.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21817033" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Ecosystem ; *Policy ; Policy Making
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-02-19
    Description: Dyneins are microtubule-based motor proteins that power ciliary beating, transport intracellular cargos, and help to construct the mitotic spindle. Evolved from ring-shaped hexameric AAA-family adenosine triphosphatases (ATPases), dynein's large size and complexity have posed challenges for understanding its structure and mechanism. Here, we present a 6 angstrom crystal structure of a functional dimer of two ~300-kilodalton motor domains of yeast cytoplasmic dynein. The structure reveals an unusual asymmetric arrangement of ATPase domains in the ring-shaped motor domain, the manner in which the mechanical element interacts with the ATPase ring, and an unexpected interaction between two coiled coils that create a base for the microtubule binding domain. The arrangement of these elements provides clues as to how adenosine triphosphate-driven conformational changes might be transmitted across the motor domain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169322/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169322/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carter, Andrew P -- Cho, Carol -- Jin, Lan -- Vale, Ronald D -- MC_UP_A025_1011/Medical Research Council/United Kingdom -- R01 GM097312/GM/NIGMS NIH HHS/ -- R01 GM097312-01/GM/NIGMS NIH HHS/ -- R01 GM097312-02/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1159-65. doi: 10.1126/science.1202393. Epub 2011 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California-San Francisco, 600 16th Street, San Francisco, CA 94158, USA. cartera@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21330489" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Allosteric Regulation ; Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Cytoplasmic Dyneins/*chemistry/*metabolism ; Methionine/chemistry ; Microtubules/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-01-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rull, Valenti -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):398-9; author reply 399-400. doi: 10.1126/science.331.6016.398-c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273468" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Extinction, Biological ; Genetic Speciation ; Phylogeny ; South America ; Tropical Climate
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-09-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Godfray, H Charles J -- New York, N.Y. -- Science. 2011 Sep 2;333(6047):1231-2. doi: 10.1126/science.1211815.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology and Oxford Martin School Institute of Biodiversity, University of Oxford, Oxford OX1 3PS, UK. charles.godfray@zoo.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21885765" target="_blank"〉PubMed〈/a〉
    Keywords: *Agriculture ; Animals ; *Biodiversity ; Birds ; *Conservation of Natural Resources ; Crops, Agricultural/*growth & development ; *Ecosystem ; *Food ; Ghana ; India ; Population Density ; Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-02-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Godley, Lucy A -- Mondragon, Alfonso -- New York, N.Y. -- Science. 2011 Feb 25;331(6020):1017-8. doi: 10.1126/science.1202090.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA. lgodley@medicine.bsd.uchicago.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21350155" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalytic Domain ; Crystallography, X-Ray ; Cysteine/chemistry ; DNA/*chemistry/metabolism ; DNA (Cytosine-5-)-Methyltransferase/*chemistry/*metabolism ; *DNA Methylation ; Dinucleoside Phosphates/chemistry/metabolism ; Humans ; Mice ; Models, Molecular ; Protein Structure, Tertiary ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2011-07-30
    Description: The initiation of transcription by RNA polymerase II is a multistage process. X-ray crystal structures of transcription complexes containing short RNAs reveal three structural states: one with 2- and 3-nucleotide RNAs, in which only the 3'-end of the RNA is detectable; a second state with 4- and 5-nucleotide RNAs, with an RNA-DNA hybrid in a grossly distorted conformation; and a third state with RNAs of 6 nucleotides and longer, essentially the same as a stable elongating complex. The transition from the first to the second state correlates with a markedly reduced frequency of abortive initiation. The transition from the second to the third state correlates with partial "bubble collapse" and promoter escape. Polymerase structure is permissive for abortive initiation, thereby setting a lower limit on polymerase-promoter complex lifetime and allowing the dissociation of nonspecific complexes. Abortive initiation may be viewed as promoter proofreading, and the structural transitions as checkpoints for promoter control.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179255/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179255/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Xin -- Bushnell, David A -- Silva, Daniel-Adriano -- Huang, Xuhui -- Kornberg, Roger D -- AI21144/AI/NIAID NIH HHS/ -- GM049985/GM/NIGMS NIH HHS/ -- R01 AI021144/AI/NIAID NIH HHS/ -- R01 AI021144-27/AI/NIAID NIH HHS/ -- R01 GM036659/GM/NIGMS NIH HHS/ -- R01 GM049985/GM/NIGMS NIH HHS/ -- R01 GM049985-19/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Jul 29;333(6042):633-7. doi: 10.1126/science.1206629.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21798951" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallization ; Crystallography, X-Ray ; Models, Molecular ; Molecular Dynamics Simulation ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; Oligoribonucleotides/chemistry/metabolism ; *Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Tertiary ; RNA Polymerase II/*chemistry/metabolism ; Saccharomyces cerevisiae/genetics ; Saccharomyces cerevisiae Proteins/*chemistry/metabolism ; Templates, Genetic ; Transcription Factor TFIIB/chemistry/metabolism ; Transcription Initiation Site ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2011-04-02
    Description: Heparan and chondroitin sulfate proteoglycans (HSPGs and CSPGs, respectively) regulate numerous cell surface signaling events, with typically opposite effects on cell function. CSPGs inhibit nerve regeneration through receptor protein tyrosine phosphatase sigma (RPTPsigma). Here we report that RPTPsigma acts bimodally in sensory neuron extension, mediating CSPG inhibition and HSPG growth promotion. Crystallographic analyses of a shared HSPG-CSPG binding site reveal a conformational plasticity that can accommodate diverse glycosaminoglycans with comparable affinities. Heparan sulfate and analogs induced RPTPsigma ectodomain oligomerization in solution, which was inhibited by chondroitin sulfate. RPTPsigma and HSPGs colocalize in puncta on sensory neurons in culture, whereas CSPGs occupy the extracellular matrix. These results lead to a model where proteoglycans can exert opposing effects on neuronal extension by competing to control the oligomerization of a common receptor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154093/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154093/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coles, Charlotte H -- Shen, Yingjie -- Tenney, Alan P -- Siebold, Christian -- Sutton, Geoffrey C -- Lu, Weixian -- Gallagher, John T -- Jones, E Yvonne -- Flanagan, John G -- Aricescu, A Radu -- 090532/Wellcome Trust/United Kingdom -- 10976/Cancer Research UK/United Kingdom -- EY11559/EY/NEI NIH HHS/ -- G0700232/Medical Research Council/United Kingdom -- G0900084/Medical Research Council/United Kingdom -- HD29417/HD/NICHD NIH HHS/ -- R01 EY011559/EY/NEI NIH HHS/ -- R01 EY011559-19/EY/NEI NIH HHS/ -- R37 HD029417/HD/NICHD NIH HHS/ -- R37 HD029417-20/HD/NICHD NIH HHS/ -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):484-8. doi: 10.1126/science.1200840. Epub 2011 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21454754" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Axons/*physiology ; Binding Sites ; Cell Membrane/metabolism ; Cells, Cultured ; Chondroitin Sulfate Proteoglycans/chemistry/*metabolism ; Chondroitin Sulfates/chemistry/metabolism ; Crystallography, X-Ray ; Extracellular Matrix ; Ganglia, Spinal ; Glypicans/metabolism ; Growth Cones/metabolism ; Heparan Sulfate Proteoglycans/chemistry/*metabolism ; Heparitin Sulfate/analogs & derivatives/chemistry/metabolism ; Humans ; Mice ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Neurites/physiology ; Neurocan/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; Receptor-Like Protein Tyrosine Phosphatases, Class 2/*chemistry/*metabolism ; Sensory Receptor Cells/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2011-08-13
    Description: When not transporting cargo, kinesin-1 is autoinhibited by binding of a tail region to the motor domains, but the mechanism of inhibition is unclear. We report the crystal structure of a motor domain dimer in complex with its tail domain at 2.2 angstroms and compare it with a structure of the motor domain alone at 2.7 angstroms. These structures indicate that neither an induced conformational change nor steric blocking is the cause of inhibition. Instead, the tail cross-links the motor domains at a second position, in addition to the coiled coil. This "double lockdown," by cross-linking at two positions, prevents the movement of the motor domains that is needed to undock the neck linker and release adenosine diphosphate. This autoinhibition mechanism could extend to some other kinesins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339660/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339660/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaan, Hung Yi Kristal -- Hackney, David D -- Kozielski, Frank -- NS058848/NS/NINDS NIH HHS/ -- R01 NS058848/NS/NINDS NIH HHS/ -- R01 NS058848-01A2/NS/NINDS NIH HHS/ -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2011 Aug 12;333(6044):883-5. doi: 10.1126/science.1204824.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21836017" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Amino Acid Sequence ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Drosophila Proteins/*antagonists & inhibitors/*chemistry/metabolism ; Hydrogen Bonding ; Kinesin/*antagonists & inhibitors/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2011-12-24
    Description: Proteins are synthesized by the ribosome and generally must fold to become functionally active. Although it is commonly assumed that the ribosome affects the folding process, this idea has been extremely difficult to demonstrate. We have developed an experimental system to investigate the folding of single ribosome-bound stalled nascent polypeptides with optical tweezers. In T4 lysozyme, synthesized in a reconstituted in vitro translation system, the ribosome slows the formation of stable tertiary interactions and the attainment of the native state relative to the free protein. Incomplete T4 lysozyme polypeptides misfold and aggregate when free in solution, but they remain folding-competent near the ribosomal surface. Altogether, our results suggest that the ribosome not only decodes the genetic information and synthesizes polypeptides, but also promotes efficient de novo attainment of the native state.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172366/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172366/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Christian M -- Goldman, Daniel H -- Chodera, John D -- Tinoco, Ignacio Jr -- Bustamante, Carlos -- 5K99 GM 086516/GM/NIGMS NIH HHS/ -- 5R01 GM 10840/GM/NIGMS NIH HHS/ -- 5R01 GM 32543/GM/NIGMS NIH HHS/ -- K99 GM086516/GM/NIGMS NIH HHS/ -- R01 GM010840/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Dec 23;334(6063):1723-7. doi: 10.1126/science.1209740.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Quantitative Biosciences , University of California-Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22194581" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage T4 ; Bayes Theorem ; Markov Chains ; Muramidase/biosynthesis/*chemistry/metabolism ; Optical Tweezers ; Protein Biosynthesis ; *Protein Folding ; Protein Structure, Tertiary ; Ribosomes/*metabolism ; Thermodynamics ; Viral Proteins/biosynthesis/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2011-11-19
    Description: Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae. One of these proteins, Sir3, interacts directly with the nucleosome to help generate silenced domains. We determined the crystal structure of a complex of the yeast Sir3 BAH (bromo-associated homology) domain and the nucleosome core particle at 3.0 angstrom resolution. We see multiple molecular interactions between the protein surfaces of the nucleosome and the BAH domain that explain numerous genetic mutations. These interactions are accompanied by structural rearrangements in both the nucleosome and the BAH domain. The structure explains how covalent modifications on H4K16 and H3K79 regulate formation of a silencing complex that contains the nucleosome as a central component.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098850/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098850/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Armache, Karim-Jean -- Garlick, Joseph D -- Canzio, Daniele -- Narlikar, Geeta J -- Kingston, Robert E -- GM043901/GM/NIGMS NIH HHS/ -- P41 RR012408/RR/NCRR NIH HHS/ -- R01 GM043901/GM/NIGMS NIH HHS/ -- R37 GM048405/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 18;334(6058):977-82. doi: 10.1126/science.1210915.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22096199" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; *Gene Silencing ; Histones/*chemistry/metabolism ; Hydrogen Bonding ; Methylation ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Mutant Proteins/chemistry/metabolism ; Nucleosomes/*chemistry/metabolism/ultrastructure ; Physicochemical Processes ; Protein Folding ; *Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Tertiary ; Saccharomyces cerevisiae/chemistry/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; Silent Information Regulator Proteins, Saccharomyces ; cerevisiae/*chemistry/genetics/metabolism ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2011-03-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arnaud-Haond, Sophie -- Arrieta, Jesus M -- Duarte, Carlos M -- New York, N.Y. -- Science. 2011 Mar 25;331(6024):1521-2. doi: 10.1126/science.1200783.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ifremer (French Research Institute for Exploration of the Sea) Centre de Brest; Department DEEP-LEP, Plouzane, France. sophie.arnaud@ifremer.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21436424" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/*genetics ; *Biodiversity ; *Genes ; International Cooperation ; Oceans and Seas ; *Patents as Topic ; United Nations
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-04-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uniyal, Sanjay Kumar -- New York, N.Y. -- Science. 2011 Apr 29;332(6029):536-7. doi: 10.1126/science.332.6029.536-c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21527695" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Classification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2011-02-19
    Description: Cotranslational targeting of membrane and secretory proteins is mediated by the universally conserved signal recognition particle (SRP). Together with its receptor (SR), SRP mediates the guanine triphosphate (GTP)-dependent delivery of translating ribosomes bearing signal sequences to translocons on the target membrane. Here, we present the crystal structure of the SRP:SR complex at 3.9 angstrom resolution and biochemical data revealing that the activated SRP:SR guanine triphosphatase (GTPase) complex binds the distal end of the SRP hairpin RNA where GTP hydrolysis is stimulated. Combined with previous findings, these results suggest that the SRP:SR GTPase complex initially assembles at the tetraloop end of the SRP RNA and then relocalizes to the opposite end of the RNA. This rearrangement provides a mechanism for coupling GTP hydrolysis to the handover of cargo to the translocon.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758919/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758919/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ataide, Sandro F -- Schmitz, Nikolaus -- Shen, Kuang -- Ke, Ailong -- Shan, Shu-ou -- Doudna, Jennifer A -- Ban, Nenad -- GM078024/GM/NIGMS NIH HHS/ -- R01 GM078024/GM/NIGMS NIH HHS/ -- R01 GM086766/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):881-6. doi: 10.1126/science.1196473.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, Eidgenossische Technische Hochschule Zurich (ETH Zurich), Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21330537" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Base Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Enzyme Activation ; Escherichia coli/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/metabolism ; GTP Phosphohydrolases/chemistry/metabolism ; Guanosine Triphosphate/analogs & derivatives/chemistry/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Biological ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; Protein Transport ; RNA, Bacterial/*chemistry/metabolism ; Receptors, Cytoplasmic and Nuclear/*chemistry/metabolism ; Ribosomal Proteins/chemistry/metabolism ; Ribosomes/metabolism ; Signal Recognition Particle/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2011-01-29
    Description: Centrioles are cylindrical, ninefold symmetrical structures with peripheral triplet microtubules strictly required to template cilia and flagella. The highly conserved protein SAS-6 constitutes the center of the cartwheel assembly that scaffolds centrioles early in their biogenesis. We determined the x-ray structure of the amino-terminal domain of SAS-6 from zebrafish, and we show that recombinant SAS-6 self-associates in vitro into assemblies that resemble cartwheel centers. Point mutations are consistent with the notion that centriole formation in vivo depends on the interactions that define the self-assemblies observed here. Thus, these interactions are probably essential to the structural organization of cartwheel centers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Breugel, Mark -- Hirono, Masafumi -- Andreeva, Antonina -- Yanagisawa, Haru-aki -- Yamaguchi, Shoko -- Nakazawa, Yuki -- Morgner, Nina -- Petrovich, Miriana -- Ebong, Ima-Obong -- Robinson, Carol V -- Johnson, Christopher M -- Veprintsev, Dmitry -- Zuber, Benoit -- MC_U105184294/Medical Research Council/United Kingdom -- MC_U105192716/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1196-9. doi: 10.1126/science.1199325. Epub 2011 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council-Laboratory of Molecular Biology (MRC-LMB), Hills Road, Cambridge, UK. vanbreug@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273447" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Cell Cycle Proteins/chemistry/metabolism ; Cell Line, Tumor ; Centrioles/*chemistry/metabolism/ultrastructure ; Centrosome/metabolism ; Chlamydomonas reinhardtii/chemistry/metabolism ; Chromosomal Proteins, Non-Histone/*chemistry/metabolism ; Crystallography, X-Ray ; Flagella/metabolism/ultrastructure ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Mutant Proteins/chemistry ; Point Mutation ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; Zebrafish ; Zebrafish Proteins/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-11-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ohlemuller, Ralf -- New York, N.Y. -- Science. 2011 Nov 4;334(6056):613-4. doi: 10.1126/science.1214215.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological and Biomedical Sciences, and Institute of Hazard, Risk and Resilience (IHRR), Durham University, Durham, DH1 3LE, UK. ralf.ohlemuller@durham.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22053039" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Climate Change ; *Ecosystem
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2011-04-30
    Description: The interaction of complement receptor 2 (CR2)--which is present on B cells and follicular dendritic cells--with its antigen-bound ligand C3d results in an enhanced antibody response, thus providing an important link between the innate and adaptive immune systems. Although a cocrystal structure of a complex between C3d and the ligand-binding domains of CR2 has been published, several aspects of this structure, including the position in C3d of the binding interface, remained controversial because of disagreement with biochemical data. We now report a cocrystal structure of a CR2(SCR1-2):C3d complex at 3.2 angstrom resolution in which the interaction interfaces differ markedly from the previously published structure and are consistent with the biochemical data. It is likely that, in the previous structure, the interaction was influenced by the presence of zinc acetate additive in the crystallization buffer, leading to a nonphysiological complex. Detailed knowledge of the binding interface now at hand gives the potential to exploit the interaction in vaccine design or in therapeutics directed against autoreactive B cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van den Elsen, Jean M H -- Isenman, David E -- New York, N.Y. -- Science. 2011 Apr 29;332(6029):608-11. doi: 10.1126/science.1201954.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK. bssjmhve@bath.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21527715" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Complement C3d/*chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Mutagenesis, Site-Directed ; Protein Binding ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Receptors, Complement 3d/*chemistry/genetics/metabolism ; Zinc Acetate
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2011-01-08
    Description: NifEN plays an essential role in the biosynthesis of the nitrogenase iron-molybdenum (FeMo) cofactor (M cluster). It is an alpha(2)beta(2) tetramer that is homologous to the catalytic molybdenum-iron (MoFe) protein (NifDK) component of nitrogenase. NifEN serves as a scaffold for the conversion of an iron-only precursor to a matured form of the M cluster before delivering the latter to its target location within NifDK. Here, we present the structure of the precursor-bound NifEN of Azotobacter vinelandii at 2.6 angstrom resolution. From a structural comparison of NifEN with des-M-cluster NifDK and holo NifDK, we propose similar pathways of cluster insertion for the homologous NifEN and NifDK proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138709/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138709/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Jens T -- Hu, Yilin -- Wiig, Jared A -- Rees, Douglas C -- Ribbe, Markus W -- GM-45162/GM/NIGMS NIH HHS/ -- GM-67626/GM/NIGMS NIH HHS/ -- R01 GM067626/GM/NIGMS NIH HHS/ -- R01 GM067626-09/GM/NIGMS NIH HHS/ -- R37 GM045162/GM/NIGMS NIH HHS/ -- R37 GM045162-22/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jan 7;331(6013):91-4. doi: 10.1126/science.1196954.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Mail Code 114-96, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21212358" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Azotobacter vinelandii/*chemistry/enzymology ; Bacterial Proteins/*chemistry/metabolism ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Molybdoferredoxin/*chemistry/metabolism ; Nitrogenase/*chemistry/metabolism ; Protein Multimerization ; Protein Precursors/chemistry/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2011-05-14
    Description: Adenosine triphosphate (ATP)-binding cassette (ABC) transporters convert chemical energy from ATP hydrolysis to mechanical work for substrate translocation. They function by alternating between two states, exposing the substrate-binding site to either side of the membrane. A key question that remains to be addressed is how substrates initiate the transport cycle. Using x-ray crystallography, we have captured the maltose transporter in an intermediate step between the inward- and outward-facing states. We show that interactions with substrate-loaded maltose-binding protein in the periplasm induce a partial closure of the MalK dimer in the cytoplasm. ATP binding to this conformation then promotes progression to the outward-facing state. These results, interpreted in light of biochemical and functional studies, provide a structural basis to understand allosteric communication in ABC transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oldham, Michael L -- Chen, Jue -- GM070515/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jun 3;332(6034):1202-5. doi: 10.1126/science.1200767. Epub 2011 May 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, Howard Hughes Medical Institute, West Lafayette, IN 47907, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21566157" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Binding Sites ; Biological Transport, Active ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/*chemistry/metabolism ; Escherichia coli Proteins/*chemistry/metabolism ; Hydrogen Bonding ; Maltose/metabolism ; Maltose-Binding Proteins/chemistry/metabolism ; Models, Biological ; Models, Molecular ; Monosaccharide Transport Proteins/*chemistry/metabolism ; Periplasm/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2011-09-03
    Description: Ionic flux mediates essential physiological and behavioral functions in defined cell populations. Cell type-specific activators of diverse ionic conductances are needed for probing these effects. We combined chemistry and protein engineering to enable the systematic creation of a toolbox of ligand-gated ion channels (LGICs) with orthogonal pharmacologic selectivity and divergent functional properties. The LGICs and their small-molecule effectors were able to activate a range of ionic conductances in genetically specified cell types. LGICs constructed for neuronal perturbation could be used to selectively manipulate neuron activity in mammalian brains in vivo. The diversity of ion channel tools accessible from this approach will be useful for examining the relationship between neuronal activity and animal behavior, as well as for cell biological and physiological applications requiring chemical control of ion conductance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210548/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210548/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Magnus, Christopher J -- Lee, Peter H -- Atasoy, Deniz -- Su, Helen H -- Looger, Loren L -- Sternson, Scott M -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 2;333(6047):1292-6. doi: 10.1126/science.1206606.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21885782" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzamides/chemistry/metabolism/pharmacology ; Bicyclo Compounds/chemistry/metabolism/pharmacology ; Brain/cytology/physiology ; Feeding Behavior ; Female ; HEK293 Cells ; Humans ; Ion Channel Gating ; Ligand-Gated Ion Channels/chemistry/*genetics/*metabolism ; Ligands ; Membrane Potentials ; Mice ; Mice, Inbred C57BL ; Mutagenesis ; Neurons/*physiology ; Patch-Clamp Techniques ; Protein Binding ; *Protein Engineering ; Protein Structure, Tertiary ; Quinuclidines/chemistry/metabolism/pharmacology ; Receptors, Glycine/genetics/metabolism ; Receptors, Nicotinic/chemistry/genetics/metabolism ; Receptors, Serotonin, 5-HT3/genetics/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Small Molecule Libraries ; Stereoisomerism ; alpha7 Nicotinic Acetylcholine Receptor
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2011-10-15
    Description: The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man(9) at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short beta-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificity. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280215/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280215/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pejchal, Robert -- Doores, Katie J -- Walker, Laura M -- Khayat, Reza -- Huang, Po-Ssu -- Wang, Sheng-Kai -- Stanfield, Robyn L -- Julien, Jean-Philippe -- Ramos, Alejandra -- Crispin, Max -- Depetris, Rafael -- Katpally, Umesh -- Marozsan, Andre -- Cupo, Albert -- Maloveste, Sebastien -- Liu, Yan -- McBride, Ryan -- Ito, Yukishige -- Sanders, Rogier W -- Ogohara, Cassandra -- Paulson, James C -- Feizi, Ten -- Scanlan, Christopher N -- Wong, Chi-Huey -- Moore, John P -- Olson, William C -- Ward, Andrew B -- Poignard, Pascal -- Schief, William R -- Burton, Dennis R -- Wilson, Ian A -- AI082362/AI/NIAID NIH HHS/ -- AI33292/AI/NIAID NIH HHS/ -- AI74372/AI/NIAID NIH HHS/ -- AI84817/AI/NIAID NIH HHS/ -- F32 AI074372-03/AI/NIAID NIH HHS/ -- HFE-224662/Canadian Institutes of Health Research/Canada -- P01 AI082362/AI/NIAID NIH HHS/ -- P01 AI082362-03/AI/NIAID NIH HHS/ -- P01 AI082362-04/AI/NIAID NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- R01 AI033292-14/AI/NIAID NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- R01 AI084817-04/AI/NIAID NIH HHS/ -- RR017573/RR/NCRR NIH HHS/ -- U01 CA128416/CA/NCI NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 25;334(6059):1097-103. doi: 10.1126/science.1213256. Epub 2011 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Skaggs Institute for Chemical Biology and International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, nhe Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21998254" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Neutralizing/chemistry/genetics/*immunology/metabolism ; Antibody Specificity ; Binding Sites, Antibody ; Carbohydrate Conformation ; Cell Line ; Crystallography, X-Ray ; Disaccharides/chemistry/metabolism ; Epitopes ; Glycosylation ; HIV Antibodies/chemistry/genetics/*immunology/*metabolism ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV-1/*immunology/physiology ; Humans ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/chemistry/immunology/metabolism ; Mannose/chemistry/immunology/metabolism ; Mannosides/chemistry/metabolism ; Models, Molecular ; Mutation ; Oligosaccharides/chemistry/*immunology/metabolism ; Polysaccharides/chemistry/*immunology/*metabolism ; Protein Conformation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2011-01-15
    Description: The synthesis of both proinflammatory leukotrienes and anti-inflammatory lipoxins requires the enzyme 5-lipoxygenase (5-LOX). 5-LOX activity is short-lived, apparently in part because of an intrinsic instability of the enzyme. We identified a 5-LOX-specific destabilizing sequence that is involved in orienting the carboxyl terminus, which binds the catalytic iron. Here, we report the crystal structure at 2.4 angstrom resolution of human 5-LOX stabilized by replacement of this sequence.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245680/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245680/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gilbert, Nathaniel C -- Bartlett, Sue G -- Waight, Maria T -- Neau, David B -- Boeglin, William E -- Brash, Alan R -- Newcomer, Marcia E -- GM-15431/GM/NIGMS NIH HHS/ -- P01 GM015431/GM/NIGMS NIH HHS/ -- P01 GM015431-44/GM/NIGMS NIH HHS/ -- R01 HL107887/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Jan 14;331(6014):217-9. doi: 10.1126/science.1197203.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21233389" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arachidonate 5-Lipoxygenase/*chemistry/genetics/metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Stability ; Humans ; Iron/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2011-12-24
    Description: Processive chromosomal replication relies on sliding DNA clamps, which are loaded onto DNA by pentameric clamp loader complexes belonging to the AAA+ family of adenosine triphosphatases (ATPases). We present structures for the ATP-bound state of the clamp loader complex from bacteriophage T4, bound to an open clamp and primer-template DNA. The clamp loader traps a spiral conformation of the open clamp so that both the loader and the clamp match the helical symmetry of DNA. One structure reveals that ATP has been hydrolyzed in one subunit and suggests that clamp closure and ejection of the loader involves disruption of the ATP-dependent match in symmetry. The structures explain how synergy among the loader, the clamp, and DNA can trigger ATP hydrolysis and release of the closed clamp on DNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281585/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281585/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kelch, Brian A -- Makino, Debora L -- O'Donnell, Mike -- Kuriyan, John -- F32 GM087888/GM/NIGMS NIH HHS/ -- F32 GM087888-02/GM/NIGMS NIH HHS/ -- F32-087888/PHS HHS/ -- R01 GM038839/GM/NIGMS NIH HHS/ -- R01 GM038839-26/GM/NIGMS NIH HHS/ -- R01 GM045547/GM/NIGMS NIH HHS/ -- R01 GM045547-20/GM/NIGMS NIH HHS/ -- R01-GM308839/GM/NIGMS NIH HHS/ -- R01-GM45547/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Dec 23;334(6063):1675-80. doi: 10.1126/science.1211884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22194570" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Bacteriophage T4 ; Binding Sites ; Crystallography, X-Ray ; DNA, A-Form/*chemistry/metabolism ; DNA, Viral/*chemistry/metabolism ; DNA-Directed DNA Polymerase/chemistry/*metabolism ; Hydrolysis ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Static Electricity ; Templates, Genetic ; Trans-Activators/*chemistry/metabolism ; Viral Proteins/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2011-09-10
    Description: Bacterial chromosomes are confined in submicrometer-sized nucleoids. Chromosome organization is facilitated by nucleoid-associated proteins (NAPs), but the mechanisms of action remain elusive. In this work, we used super-resolution fluorescence microscopy, in combination with a chromosome-conformation capture assay, to study the distributions of major NAPs in live Escherichia coli cells. Four NAPs--HU, Fis, IHF, and StpA--were largely scattered throughout the nucleoid. In contrast, H-NS, a global transcriptional silencer, formed two compact clusters per chromosome, driven by oligomerization of DNA-bound H-NS through interactions mediated by the amino-terminal domain of the protein. H-NS sequestered the regulated operons into these clusters and juxtaposed numerous DNA segments broadly distributed throughout the chromosome. Deleting H-NS led to substantial chromosome reorganization. These observations demonstrate that H-NS plays a key role in global chromosome organization in bacteria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329943/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329943/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Wenqin -- Li, Gene-Wei -- Chen, Chongyi -- Xie, X Sunney -- Zhuang, Xiaowei -- GM 096450/GM/NIGMS NIH HHS/ -- R01 GM096450/GM/NIGMS NIH HHS/ -- R01 GM096450-03/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 9;333(6048):1445-9. doi: 10.1126/science.1204697.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21903814" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Division ; Chromosomes, Bacterial/*metabolism/*ultrastructure ; DNA, Bacterial/chemistry/*metabolism ; DNA-Binding Proteins/metabolism ; Escherichia coli K12/genetics/metabolism/*ultrastructure ; Escherichia coli Proteins/chemistry/genetics/*metabolism ; Factor For Inversion Stimulation Protein/metabolism ; Fimbriae Proteins/chemistry/genetics/*metabolism ; Gene Expression Regulation, Bacterial ; Genetic Loci ; Genome, Bacterial ; Integration Host Factors/metabolism ; Molecular Chaperones/metabolism ; Nucleic Acid Conformation ; Operon ; Protein Multimerization ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-01-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kettle, Chris J -- New York, N.Y. -- Science. 2011 Jan 21;331(6015):282. doi: 10.1126/science.331.6015.282-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21252330" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Birds ; *Conservation of Natural Resources ; Endangered Species
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-11-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crampton, James -- New York, N.Y. -- Science. 2011 Nov 25;334(6059):1073-4. doi: 10.1126/science.1214829.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉GNS Science, Lower Hutt, New Zealand. j.crampton@gns.cri.nz〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22116873" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Aquatic Organisms ; *Biodiversity ; *Fossils ; *Geologic Sediments ; *Geological Phenomena ; *Seawater
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2011-11-19
    Description: The end-Permian mass extinction was the most severe biodiversity crisis in Earth history. To better constrain the timing, and ultimately the causes of this event, we collected a suite of geochronologic, isotopic, and biostratigraphic data on several well-preserved sedimentary sections in South China. High-precision U-Pb dating reveals that the extinction peak occurred just before 252.28 +/- 0.08 million years ago, after a decline of 2 per mil ( per thousand) in delta(13)C over 90,000 years, and coincided with a delta(13)C excursion of -5 per thousand that is estimated to have lasted 〈/=20,000 years. The extinction interval was less than 200,000 years and synchronous in marine and terrestrial realms; associated charcoal-rich and soot-bearing layers indicate widespread wildfires on land. A massive release of thermogenic carbon dioxide and/or methane may have caused the catastrophic extinction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, Shu-zhong -- Crowley, James L -- Wang, Yue -- Bowring, Samuel A -- Erwin, Douglas H -- Sadler, Peter M -- Cao, Chang-qun -- Rothman, Daniel H -- Henderson, Charles M -- Ramezani, Jahandar -- Zhang, Hua -- Shen, Yanan -- Wang, Xiang-dong -- Wang, Wei -- Mu, Lin -- Li, Wen-zhong -- Tang, Yue-gang -- Liu, Xiao-lei -- Liu, Lu-jun -- Zeng, Yong -- Jiang, Yao-fa -- Jin, Yu-gan -- New York, N.Y. -- Science. 2011 Dec 9;334(6061):1367-72. doi: 10.1126/science.1213454. Epub 2011 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Nanjing 210008, China. szshen@nigpas.ac.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22096103" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Carbon Dioxide ; Carbon Isotopes ; China ; *Ecosystem ; *Extinction, Biological ; Fires ; *Fossils ; Geologic Sediments ; Invertebrates/classification ; Isotopes ; Lead ; Mass Spectrometry ; Methane ; Oceans and Seas ; Plants/classification ; Radioisotope Dilution Technique ; Radiometric Dating ; Seawater/chemistry ; Time ; Uranium ; Vertebrates/classification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-05-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Fumin -- Lemmon, Mark A -- New York, N.Y. -- Science. 2011 May 27;332(6033):1043-4. doi: 10.1126/science.1208063.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, and Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, 422 Curie Boulevard, Philadelphia, PA 19104-6059, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617065" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Binding Sites ; Catalytic Domain ; Cell Membrane/enzymology ; Enzyme Activation ; Extracellular Signal-Regulated MAP Kinases/*metabolism ; Humans ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases/*metabolism ; Mutation ; Phosphorylation ; Protein Conformation ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proto-Oncogene Proteins B-raf/antagonists & inhibitors/*metabolism ; Proto-Oncogene Proteins c-raf/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2011-08-13
    Description: Pyrazinamide (PZA) is a first-line tuberculosis drug that plays a unique role in shortening the duration of tuberculosis chemotherapy. PZA is hydrolyzed intracellularly to pyrazinoic acid (POA) by pyrazinamidase (PZase, encoded by pncA), an enzyme frequently lost in PZA-resistant strains, but the target of POA in Mycobacterium tuberculosis has remained elusive. Here, we identify a previously unknown target of POA as the ribosomal protein S1 (RpsA), a vital protein involved in protein translation and the ribosome-sparing process of trans-translation. Three PZA-resistant clinical isolates without pncA mutation harbored RpsA mutations. RpsA overexpression conferred increased PZA resistance, and we confirmed that POA bound to RpsA (but not a clinically identified DeltaAla mutant) and subsequently inhibited trans-translation rather than canonical translation. Trans-translation is essential for freeing scarce ribosomes in nonreplicating organisms, and its inhibition may explain the ability of PZA to eradicate persisting organisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502614/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502614/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Wanliang -- Zhang, Xuelian -- Jiang, Xin -- Yuan, Haiming -- Lee, Jong Seok -- Barry, Clifton E 3rd -- Wang, Honghai -- Zhang, Wenhong -- Zhang, Ying -- AI44063/AI/NIAID NIH HHS/ -- ZIA AI000783-16/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1630-2. doi: 10.1126/science.1208813. Epub 2011 Aug 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21835980" target="_blank"〉PubMed〈/a〉
    Keywords: Amidohydrolases/genetics/metabolism ; Amino Acid Sequence ; Antitubercular Agents/metabolism/*pharmacology ; Bacterial Proteins/chemistry/genetics/*metabolism ; Drug Resistance, Bacterial ; Molecular Sequence Data ; Mutant Proteins/metabolism ; Mutation ; Mycobacterium tuberculosis/*drug effects/genetics/metabolism ; Prodrugs/metabolism/pharmacology ; Protein Binding ; Protein Biosynthesis/drug effects ; Protein Structure, Tertiary ; Pyrazinamide/*analogs & derivatives/metabolism/*pharmacology ; RNA, Bacterial/metabolism ; RNA, Messenger/metabolism ; RNA, Transfer/metabolism ; Ribosomal Proteins/chemistry/genetics/*metabolism ; Ribosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2011-11-15
    Description: The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei, reveals a similarity to Escherichia coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity. BPSL1549 promotes deamidation of glutamine-339 of the translation initiation factor eIF4A, abolishing its helicase activity and inhibiting translation. We propose to name BPSL1549 Burkholderia lethal factor 1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364511/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364511/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cruz-Migoni, Abimael -- Hautbergue, Guillaume M -- Artymiuk, Peter J -- Baker, Patrick J -- Bokori-Brown, Monika -- Chang, Chung-Te -- Dickman, Mark J -- Essex-Lopresti, Angela -- Harding, Sarah V -- Mahadi, Nor Muhammad -- Marshall, Laura E -- Mobbs, George W -- Mohamed, Rahmah -- Nathan, Sheila -- Ngugi, Sarah A -- Ong, Catherine -- Ooi, Wen Fong -- Partridge, Lynda J -- Phillips, Helen L -- Raih, M Firdaus -- Ruzheinikov, Sergei -- Sarkar-Tyson, Mitali -- Sedelnikova, Svetlana E -- Smither, Sophie J -- Tan, Patrick -- Titball, Richard W -- Wilson, Stuart A -- Rice, David W -- 085162/Wellcome Trust/United Kingdom -- BB/D011795/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/D524975/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E025293/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- WT085162AIA/Wellcome Trust/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2011 Nov 11;334(6057):821-4. doi: 10.1126/science.1211915.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield S10 2TN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22076380" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Bacterial Proteins/*chemistry/genetics/metabolism/*toxicity ; Bacterial Toxins/*chemistry/genetics/metabolism/*toxicity ; Burkholderia pseudomallei/*chemistry/*pathogenicity ; Catalytic Domain ; Cell Line ; Crystallography, X-Ray ; Cytotoxins/chemistry/genetics/metabolism/toxicity ; Escherichia coli Proteins/chemistry ; Eukaryotic Initiation Factor-4A/*antagonists & inhibitors/metabolism ; Glutamine/metabolism ; Humans ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Mutant Proteins/toxicity ; Peptide Chain Initiation, Translational/drug effects ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2011-02-05
    Description: N-glycosylation of eukaryotic proteins helps them fold and traverse the cellular secretory pathway and can increase their stability, although the molecular basis for stabilization is poorly understood. Glycosylation of proteins at naive sites (ones that normally are not glycosylated) could be useful for therapeutic and research applications but currently results in unpredictable changes to protein stability. We show that placing a phenylalanine residue two or three positions before a glycosylated asparagine in distinct reverse turns facilitates stabilizing interactions between the aromatic side chain and the first N-acetylglucosamine of the glycan. Glycosylating this portable structural module, an enhanced aromatic sequon, in three different proteins stabilizes their native states by -0.7 to -2.0 kilocalories per mole and increases cellular glycosylation efficiency.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099596/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099596/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Culyba, Elizabeth K -- Price, Joshua L -- Hanson, Sarah R -- Dhar, Apratim -- Wong, Chi-Huey -- Gruebele, Martin -- Powers, Evan T -- Kelly, Jeffery W -- AI072155/AI/NIAID NIH HHS/ -- F32 GM086039/GM/NIGMS NIH HHS/ -- F32 GM086039-03/GM/NIGMS NIH HHS/ -- GM051105/GM/NIGMS NIH HHS/ -- R01 AI072155/AI/NIAID NIH HHS/ -- R01 AI072155-04/AI/NIAID NIH HHS/ -- R01 GM051105/GM/NIGMS NIH HHS/ -- R01 GM051105-15/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 4;331(6017):571-5. doi: 10.1126/science.1198461.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21292975" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylglucosamine/chemistry ; Acid Anhydride Hydrolases/*chemistry ; Amino Acid Sequence ; Animals ; Antigens, CD2/*chemistry ; Asparagine/chemistry ; Glycosylation ; Humans ; Models, Molecular ; Mutagenesis, Site-Directed ; Mutant Proteins/chemistry ; Peptidylprolyl Isomerase/*chemistry ; Phenylalanine/chemistry ; Polysaccharides/chemistry ; Protein Conformation ; Protein Engineering ; Protein Folding ; *Protein Stability ; Protein Structure, Tertiary ; Rats ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2011-06-11
    Description: Active nuclear import of soluble cargo involves transport factors that shuttle cargo through the nuclear pore complex (NPC) by binding to phenylalanine-glycine (FG) domains. How nuclear membrane proteins cross through the NPC to reach the inner membrane is presently unclear. We found that at least a 120-residue-long intrinsically disordered linker was required for the import of membrane proteins carrying a nuclear localization signal for the transport factor karyopherin-alpha. We propose an import mechanism for membrane proteins in which an unfolded linker slices through the NPC scaffold to enable binding between the transport factor and the FG domains in the center of the NPC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meinema, Anne C -- Laba, Justyna K -- Hapsari, Rizqiya A -- Otten, Renee -- Mulder, Frans A A -- Kralt, Annemarie -- van den Bogaart, Geert -- Lusk, C Patrick -- Poolman, Bert -- Veenhoff, Liesbeth M -- New York, N.Y. -- Science. 2011 Jul 1;333(6038):90-3. doi: 10.1126/science.1205741. Epub 2011 Jun 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21659568" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Endoplasmic Reticulum/metabolism ; Karyopherins/chemistry/metabolism ; Membrane Proteins/*chemistry/genetics/*metabolism ; Models, Biological ; Molecular Sequence Data ; Nuclear Envelope/*metabolism ; Nuclear Localization Signals ; Nuclear Pore/*metabolism ; Nuclear Pore Complex Proteins/chemistry/genetics/*metabolism ; Nuclear Proteins/chemistry/genetics/metabolism ; Protein Folding ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-09-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Willig, Michael R -- New York, N.Y. -- Science. 2011 Sep 23;333(6050):1709-10. doi: 10.1126/science.1212453.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Environmental Sciences and Engineering, and Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-4210, USA. michael.willig@uconn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21940881" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Biomass ; Biota ; *Ecosystem ; Plant Development ; Plant Physiological Processes ; *Plants
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2011-10-29
    Description: Antibodies against the CD4 binding site (CD4bs) on the HIV-1 spike protein gp120 can show exceptional potency and breadth. We determined structures of NIH45-46, a more potent clonal variant of VRC01, alone and bound to gp120. Comparisons with VRC01-gp120 revealed that a four-residue insertion in heavy chain complementarity-determining region 3 (CDRH3) contributed to increased interaction between NIH45-46 and the gp120 inner domain, which correlated with enhanced neutralization. We used structure-based design to create NIH45-46(G54W), a single substitution in CDRH2 that increases contact with the gp120 bridging sheet and improves breadth and potency, critical properties for potential clinical use, by an order of magnitude. Together with the NIH45-46-gp120 structure, these results indicate that gp120 inner domain and bridging sheet residues should be included in immunogens to elicit CD4bs antibodies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diskin, Ron -- Scheid, Johannes F -- Marcovecchio, Paola M -- West, Anthony P Jr -- Klein, Florian -- Gao, Han -- Gnanapragasam, Priyanthi N P -- Abadir, Alexander -- Seaman, Michael S -- Nussenzweig, Michel C -- Bjorkman, Pamela J -- P01 AI081677-01/AI/NIAID NIH HHS/ -- RR00862/RR/NCRR NIH HHS/ -- RR022220/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Dec 2;334(6060):1289-93. doi: 10.1126/science.1213782. Epub 2011 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22033520" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines ; Amino Acid Sequence ; Antibodies, Neutralizing/chemistry/*immunology/metabolism ; Antibody Affinity ; Antigens, CD4/chemistry/metabolism ; Binding Sites ; Complementarity Determining Regions ; Crystallography, X-Ray ; HIV Antibodies/chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV-1/*immunology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Immunoglobulin Fab Fragments/chemistry/immunology/metabolism ; Immunoglobulin Heavy Chains/chemistry/immunology/metabolism ; Molecular Mimicry ; Molecular Sequence Data ; Mutant Proteins/chemistry/immunology/metabolism ; Protein Conformation ; *Protein Engineering ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spudich, James A -- R01 GM033289/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1143-4. doi: 10.1126/science.1203978.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry Department, Stanford University, Stanford, CA 94305, USA. jspudich@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21385703" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Crystallography, X-Ray ; Cytoplasmic Dyneins/*chemistry/*metabolism ; Microtubules/*metabolism ; Models, Molecular ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2011-04-02
    Description: Climate change is predicted to become a major threat to biodiversity in the 21st century, but accurate predictions and effective solutions have proved difficult to formulate. Alarming predictions have come from a rather narrow methodological base, but a new, integrated science of climate-change biodiversity assessment is emerging, based on multiple sources and approaches. Drawing on evidence from paleoecological observations, recent phenological and microevolutionary responses, experiments, and computational models, we review the insights that different approaches bring to anticipating and managing the biodiversity consequences of climate change, including the extent of species' natural resilience. We introduce a framework that uses information from different sources to identify vulnerability and to support the design of conservation responses. Although much of the information reviewed is on species, our framework and conclusions are also applicable to ecosystems, habitats, ecological communities, and genetic diversity, whether terrestrial, marine, or fresh water.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawson, Terence P -- Jackson, Stephen T -- House, Joanna I -- Prentice, Iain Colin -- Mace, Georgina M -- New York, N.Y. -- Science. 2011 Apr 1;332(6025):53-8. doi: 10.1126/science.1200303.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of the Environment, University of Dundee, Dundee DD1 4HN, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21454781" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Climate Change ; *Conservation of Natural Resources
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2011-04-02
    Description: The carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII) in mammals undergoes extensive posttranslational modification, which is essential for transcriptional initiation and elongation. Here, we show that the CTD of RNAPII is methylated at a single arginine (R1810) by the coactivator-associated arginine methyltransferase 1 (CARM1). Although methylation at R1810 is present on the hyperphosphorylated form of RNAPII in vivo, Ser2 or Ser5 phosphorylation inhibits CARM1 activity toward this site in vitro, suggesting that methylation occurs before transcription initiation. Mutation of R1810 results in the misexpression of a variety of small nuclear RNAs and small nucleolar RNAs, an effect that is also observed in Carm1(-/-) mouse embryo fibroblasts. These results demonstrate that CTD methylation facilitates the expression of select RNAs, perhaps serving to discriminate the RNAPII-associated machinery recruited to distinct gene types.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773223/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773223/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sims, Robert J 3rd -- Rojas, Luis Alejandro -- Beck, David -- Bonasio, Roberto -- Schuller, Roland -- Drury, William J 3rd -- Eick, Dirk -- Reinberg, Danny -- F32 GM071166/GM/NIGMS NIH HHS/ -- GM-37120/GM/NIGMS NIH HHS/ -- GM-71166/GM/NIGMS NIH HHS/ -- R01 GM037120/GM/NIGMS NIH HHS/ -- R37 GM037120/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Apr 1;332(6025):99-103. doi: 10.1126/science.1202663.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI), Department of Biochemistry, New York University School of Medicine, 522 First Avenue, Smilow 211, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21454787" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arginine/metabolism ; Cell Line ; HeLa Cells ; Humans ; Methylation ; Mice ; Mutation ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Protein-Arginine N-Methyltransferases/metabolism ; RNA Polymerase II/genetics/*metabolism ; RNA, Small Nuclear/metabolism ; RNA, Small Nucleolar/metabolism ; Recombinant Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2011-07-02
    Description: Tail-anchored (TA) proteins are involved in cellular processes including trafficking, degradation, and apoptosis. They contain a C-terminal membrane anchor and are posttranslationally delivered to the endoplasmic reticulum (ER) membrane by the Get3 adenosine triphosphatase interacting with the hetero-oligomeric Get1/2 receptor. We have determined crystal structures of Get3 in complex with the cytosolic domains of Get1 and Get2 in different functional states at 3.0, 3.2, and 4.6 angstrom resolution. The structural data, together with biochemical experiments, show that Get1 and Get2 use adjacent, partially overlapping binding sites and that both can bind simultaneously to Get3. Docking to the Get1/2 complex allows for conformational changes in Get3 that are required for TA protein insertion. These data suggest a molecular mechanism for nucleotide-regulated delivery of TA proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601824/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601824/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stefer, Susanne -- Reitz, Simon -- Wang, Fei -- Wild, Klemens -- Pang, Yin-Yuin -- Schwarz, Daniel -- Bomke, Jorg -- Hein, Christopher -- Lohr, Frank -- Bernhard, Frank -- Denic, Vladimir -- Dotsch, Volker -- Sinning, Irmgard -- R01 GM099943/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Aug 5;333(6043):758-62. doi: 10.1126/science.1207125. Epub 2011 Jun 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe University, D-60325 Frankfurt am Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21719644" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport/*chemistry/*metabolism ; Adenosine Triphosphatases/*chemistry/*metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Cytosol/chemistry ; Endoplasmic Reticulum/metabolism ; Guanine Nucleotide Exchange Factors/*chemistry/*metabolism ; Membrane Proteins/*chemistry/*metabolism ; Microsomes/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Saccharomyces cerevisiae/*chemistry/metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2011-09-17
    Description: Eukaryotic and archaeal multisubunit RNA polymerases (Pols) are structurally related and require several similar components for transcription initiation. However, none of the Pol I factors were known to share homology with transcription factor IIB (TFIIB) or TFIIB-related proteins, key factors in the initiation mechanisms of the other Pols. Here we show that Rrn7, a subunit of the yeast Pol I core factor, and its human ortholog TAF1B are TFIIB-like factors. Although distantly related, Rrn7 shares many activities associated with TFIIB-like factors. Domain swaps between TFIIB-related factors show that Rrn7 is most closely related to the Pol III general factor Brf1. Our results point to the conservation of initiation mechanisms among multisubunit Pols and reveal a key function of yeast core factor/human SL1 in Pol I transcription.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319074/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319074/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knutson, Bruce A -- Hahn, Steven -- GM053451/GM/NIGMS NIH HHS/ -- R01 GM053451/GM/NIGMS NIH HHS/ -- R01 GM053451-17/GM/NIGMS NIH HHS/ -- T32 CA009657/CA/NCI NIH HHS/ -- T32 CA009657-22/CA/NCI NIH HHS/ -- T32 CA09657/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1637-40. doi: 10.1126/science.1207699.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fred Hutchinson Cancer Research Center, Division of Basic Sciences, 1100 Fairview Avenue N, Post Office Box 19024, Mailstop A1-162, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921198" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Humans ; Molecular Sequence Data ; Pol1 Transcription Initiation Complex Proteins/*chemistry/genetics/*metabolism ; Protein Folding ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA Polymerase I/*metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Sequence Alignment ; TATA-Box Binding Protein/metabolism ; Transcription Factor TFIIB/chemistry/metabolism ; Transcription Factor TFIIIB/chemistry/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2011-07-23
    Description: Type II topoisomerases (TOP2s) resolve the topological problems of DNA by transiently cleaving both strands of a DNA duplex to form a cleavage complex through which another DNA segment can be transported. Several widely prescribed anticancer drugs increase the population of TOP2 cleavage complex, which leads to TOP2-mediated chromosome DNA breakage and death of cancer cells. We present the crystal structure of a large fragment of human TOP2beta complexed to DNA and to the anticancer drug etoposide to reveal structural details of drug-induced stabilization of a cleavage complex. The interplay between the protein, the DNA, and the drug explains the structure-activity relations of etoposide derivatives and the molecular basis of drug-resistant mutations. The analysis of protein-drug interactions provides information applicable for developing an isoform-specific TOP2-targeting strategy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Chyuan-Chuan -- Li, Tsai-Kun -- Farh, Lynn -- Lin, Li-Ying -- Lin, Te-Sheng -- Yu, Yu-Jen -- Yen, Tien-Jui -- Chiang, Chia-Wang -- Chan, Nei-Li -- New York, N.Y. -- Science. 2011 Jul 22;333(6041):459-62. doi: 10.1126/science.1204117.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City 100, Taiwan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21778401" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Catalytic Domain ; Crystallography, X-Ray ; DNA/*chemistry/metabolism ; DNA Topoisomerases, Type II/*chemistry/genetics/metabolism ; DNA-Binding Proteins/*chemistry/genetics/metabolism ; Drug Resistance, Neoplasm ; Etoposide/analogs & derivatives/*chemistry/metabolism/*pharmacology ; Humans ; Models, Molecular ; Mutant Proteins/chemistry/metabolism ; Mutation ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Structure-Activity Relationship ; Topoisomerase II Inhibitors/*chemistry/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-10-01
    Description: Generating and applying new knowledge from the wealth of available genomic information is hindered, in part, by the difficulty of altering nucleotide sequences and expression of genes in living cells in a targeted fashion. Progress has been made in engineering DNA binding domains to direct proteins to particular sequences for mutagenesis or manipulation of transcription; however, achieving the requisite specificities has been challenging. Transcription activator-like (TAL) effectors of plant pathogenic bacteria contain a modular DNA binding domain that appears to overcome this challenge. Comprising tandem, polymorphic amino acid repeats that individually specify contiguous nucleotides in DNA, this domain is being deployed in DNA targeting for applications ranging from understanding gene function in model organisms to improving traits in crop plants to treating genetic disorders in people.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bogdanove, Adam J -- Voytas, Daniel F -- New York, N.Y. -- Science. 2011 Sep 30;333(6051):1843-6. doi: 10.1126/science.1204094.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology, 351 Bessey Hall, Iowa State University, Ames, IA 50011, USA. ajbog@iastate.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21960622" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/*chemistry/genetics/*metabolism ; DNA/*metabolism ; DNA Repair ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; *Gene Expression Regulation ; Genetic Engineering/*methods ; Humans ; Mutagenesis, Site-Directed ; Plants/genetics ; Protein Structure, Tertiary ; Repetitive Sequences, Amino Acid ; Transcription Factors/chemistry/genetics/metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-08-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Briggs, Sue V -- Knight, Andrew T -- New York, N.Y. -- Science. 2011 Aug 5;333(6043):696-7. doi: 10.1126/science.333.6043.696-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21817031" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Ecosystem ; *Policy ; Policy Making
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2011-02-12
    Description: The unconventional myosin VIIa (MYO7A) is one of the five proteins that form a network of complexes involved in formation of stereocilia. Defects in these proteins cause syndromic deaf-blindness in humans [Usher syndrome I (USH1)]. Many disease-causing mutations occur in myosin tail homology 4-protein 4.1, ezrin, radixin, moesin (MyTH4-FERM) domains in the myosin tail that binds to another USH1 protein, Sans. We report the crystal structure of MYO7A MyTH4-FERM domains in complex with the central domain (CEN) of Sans at 2.8 angstrom resolution. The MyTH4 and FERM domains form an integral structural and functional supramodule binding to two highly conserved segments (CEN1 and 2) of Sans. The MyTH4-FERM/CEN complex structure provides mechanistic explanations for known deafness-causing mutations in MYO7A MyTH4-FERM. The structure will also facilitate mechanistic and functional studies of MyTH4-FERM domains in other myosins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Lin -- Pan, Lifeng -- Wei, Zhiyi -- Zhang, Mingjie -- New York, N.Y. -- Science. 2011 Feb 11;331(6018):757-60. doi: 10.1126/science.1198848.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Life Science, Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21311020" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Crystallography, X-Ray ; Humans ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutation, Missense ; Myosins/*chemistry/metabolism ; Nerve Tissue Proteins/*chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-11-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayashi, Kiyotada -- New York, N.Y. -- Science. 2011 Nov 4;334(6056):593-4; author reply 594-5. doi: 10.1126/science.334.6056.593-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22053027" target="_blank"〉PubMed〈/a〉
    Keywords: *Agriculture ; Animals ; *Biodiversity ; *Conservation of Natural Resources ; Crops, Agricultural/*growth & development ; *Ecosystem ; *Food
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-01-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Tong -- Petriello, Michael Anthony -- New York, N.Y. -- Science. 2011 Jan 7;331(6013):30-1; author reply 31. doi: 10.1126/science.331.6013.30-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21212339" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Conservation of Natural Resources ; *Culture ; Humans ; *Population Groups
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-01-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Midgley, Guy F -- New York, N.Y. -- Science. 2012 Jan 13;335(6065):174-5. doi: 10.1126/science.1217245.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Climate Change and Bioadaptation, South African National Biodiversity Institute, Rhodes Drive, Cape Town 7735, South Africa. g.midgley@sanbi.org.za〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246761" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Climate ; *Ecosystem ; *Plants
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2012-04-21
    Description: Prion conversion from a soluble protein to an aggregated state may be involved in the cellular adaptation of yeast to the environment. However, it remains unclear whether and how cells actively use prion conversion to acquire a fitness advantage in response to environmental stress. We identified Mod5, a yeast transfer RNA isopentenyltransferase lacking glutamine/asparagine-rich domains, as a yeast prion protein and found that its prion conversion in yeast regulated the sterol biosynthetic pathway for acquired cellular resistance against antifungal agents. Furthermore, selective pressure by antifungal drugs on yeast facilitated the de novo appearance of Mod5 prion states for cell survival. Thus, phenotypic changes caused by active prion conversion under environmental selection may contribute to cellular adaptation in living organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suzuki, Genjiro -- Shimazu, Naoyuki -- Tanaka, Motomasa -- New York, N.Y. -- Science. 2012 Apr 20;336(6079):355-9. doi: 10.1126/science.1219491.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Protein Conformation Diseases, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22517861" target="_blank"〉PubMed〈/a〉
    Keywords: Alkyl and Aryl Transferases/*chemistry/genetics/*metabolism ; Antifungal Agents/*pharmacology ; Biosynthetic Pathways ; Crosses, Genetic ; Drug Resistance, Fungal ; Ergosterol/biosynthesis ; Fluorouracil/pharmacology ; Microbial Viability ; Prions/*chemistry/genetics/metabolism ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Fungal/metabolism ; RNA, Transfer/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/chemistry/*drug effects/genetics/*physiology ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Selection, Genetic ; Solubility ; *Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2012-11-01
    Description: Johnson and colleagues (Reports, 18 May 2012, p. 904) claim that conspecific negative density dependence is a pervasive mechanism driving forest diversity, especially for rare tree species. We show that their results are due to a statistical bias in their analysis caused by the exclusion of joint absences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dickie, Ian A -- Hurst, Jennifer M -- Bellingham, Peter J -- New York, N.Y. -- Science. 2012 Oct 26;338(6106):469; author reply 469. doi: 10.1126/science.1225520.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Landcare Research, Lincoln, 7640 New Zealand. dickiei@landcareresearch.co.nz〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23112313" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Ecosystem ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2012-03-24
    Description: Development of fertilization-competent oocytes depends on integrated processes controlling meiosis, cytoplasmic development, and maintenance of genomic integrity. We show that meiosis arrest female 1 (MARF1) is required for these processes in mammalian oocytes. Mutations of Marf1 cause female infertility characterized by up-regulation of a cohort of transcripts, increased retrotransposon expression, defective cytoplasmic maturation, and meiotic arrest. Up-regulation of protein phosphatase 2 catalytic subunit (PPP2CB) is key to the meiotic arrest phenotype. Moreover, Iap and Line1 retrotransposon messenger RNAs are also up-regulated, and, concomitantly, DNA double-strand breaks are elevated in mutant oocytes. Therefore MARF1, by suppressing levels of specific transcripts, is an essential regulator of important oogenic processes leading to female fertility and the development of healthy offspring.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612990/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612990/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, You-Qiang -- Sugiura, Koji -- Sun, Fengyun -- Pendola, Janice K -- Cox, Gregory A -- Handel, Mary Ann -- Schimenti, John C -- Eppig, John J -- CA34196/CA/NCI NIH HHS/ -- HD42137/HD/NICHD NIH HHS/ -- P01 HD042137/HD/NICHD NIH HHS/ -- P30 CA034196/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2012 Mar 23;335(6075):1496-9. doi: 10.1126/science.1214680.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Jackson Laboratory, Bar Harbor, ME 04609, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22442484" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; DNA Breaks, Double-Stranded ; Embryonic Development ; Female ; *Fertility ; Meiosis ; Mice ; Molecular Sequence Data ; Mutation ; Oocytes/*physiology ; *Oogenesis ; Phenotype ; Protein Phosphatase 2/genetics/metabolism ; Protein Structure, Tertiary ; RNA, Messenger/genetics/metabolism ; Retroelements ; Transcription, Genetic ; Transcriptome ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2012-09-22
    Description: Cytoplasmic dynein is a microtubule-based motor required for intracellular transport and cell division. Its movement involves coupling cycles of track binding and release with cycles of force-generating nucleotide hydrolysis. How this is accomplished given the ~25 nanometers separating dynein's track- and nucleotide-binding sites is not understood. Here, we present a subnanometer-resolution structure of dynein's microtubule-binding domain bound to microtubules by cryo-electron microscopy that was used to generate a pseudo-atomic model of the complex with molecular dynamics. We identified large rearrangements triggered by track binding and specific interactions, confirmed by mutagenesis and single-molecule motility assays, which tune dynein's affinity for microtubules. Our results provide a molecular model for how dynein's binding to microtubules is communicated to the rest of the motor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919166/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919166/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Redwine, William B -- Hernandez-Lopez, Rogelio -- Zou, Sirui -- Huang, Julie -- Reck-Peterson, Samara L -- Leschziner, Andres E -- 1 DP2 OD004268-1/OD/NIH HHS/ -- DP2 OD004268/OD/NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 21;337(6101):1532-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22997337" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Binding Sites ; Cryoelectron Microscopy ; Cytoplasmic Dyneins/*chemistry/metabolism ; Hydrogen Bonding ; Microtubules/*metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Mutagenesis ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...