ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line
  • American Association for the Advancement of Science (AAAS)  (63)
  • Cell Press
  • EMBO Press
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • PANGAEA
  • 2005-2009  (63)
  • 1945-1949
  • 2007  (63)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (63)
  • Cell Press
  • EMBO Press
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • +
Years
  • 2005-2009  (63)
  • 1945-1949
Year
  • 1
    Publication Date: 2007-01-06
    Description: We have designed a microfluidic device in which we can manipulate, lyse, label, separate, and quantify the protein contents of a single cell using single-molecule fluorescence counting. Generic labeling of proteins is achieved through fluorescent-antibody binding. The use of cylindrical optics enables high-efficiency (approximately 60%) counting of molecules in micrometer-sized channels. We used this microfluidic device to quantify beta2 adrenergic receptors expressed in insect cells (SF9). We also analyzed phycobiliprotein contents in individual cyanobacterial cells (Synechococcus sp. PCC 7942) and observed marked differences in the levels of specific complexes in cell populations that were grown under nitrogen-depleted conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Bo -- Wu, Hongkai -- Bhaya, Devaki -- Grossman, Arthur -- Granier, Sebastien -- Kobilka, Brian K -- Zare, Richard N -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):81-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204646" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; Bacterial Proteins/*analysis ; Bacteriolysis ; Carbocyanines ; Cell Line ; Culture Media ; Fluorescence ; Fluorescent Antibody Technique ; Fluorescent Dyes ; Humans ; Lasers ; *Microfluidic Analytical Techniques/instrumentation ; Microfluidics ; Nitrogen/metabolism ; Optics and Photonics ; Phycobilisomes/metabolism ; Phycocyanin/*analysis ; Receptors, Adrenergic, beta-2/*analysis ; Synechococcus/*chemistry/growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-08-19
    Description: Recent advances in far-field optical nanoscopy have enabled fluorescence imaging with a spatial resolution of 20 to 50 nanometers. Multicolor super-resolution imaging, however, remains a challenging task. Here, we introduce a family of photo-switchable fluorescent probes and demonstrate multicolor stochastic optical reconstruction microscopy (STORM). Each probe consists of a photo-switchable "reporter" fluorophore that can be cycled between fluorescent and dark states, and an "activator" that facilitates photo-activation of the reporter. Combinatorial pairing of reporters and activators allows the creation of probes with many distinct colors. Iterative, color-specific activation of sparse subsets of these probes allows their localization with nanometer accuracy, enabling the construction of a super-resolution STORM image. Using this approach, we demonstrate multicolor imaging of DNA model samples and mammalian cells with 20- to 30-nanometer resolution. This technique will facilitate direct visualization of molecular interactions at the nanometer scale.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633025/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633025/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bates, Mark -- Huang, Bo -- Dempsey, Graham T -- Zhuang, Xiaowei -- GM 068518/GM/NIGMS NIH HHS/ -- R01 GM068518/GM/NIGMS NIH HHS/ -- R01 GM068518-05/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 21;317(5845):1749-53. Epub 2007 Aug 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17702910" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cercopithecus aethiops ; Clathrin-Coated Vesicles ; DNA/*analysis ; *DNA Probes ; *Fluorescent Dyes ; Microscopy, Fluorescence/methods ; Microtubules ; Nanotechnology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-01-06
    Description: Cell migration requires the transmission of motion generated in the actin cytoskeleton to the extracellular environment through a complex assembly of proteins in focal adhesions. We developed correlational fluorescent speckle microscopy to measure the coupling of focal-adhesion proteins to actin filaments. Different classes of focal-adhesion structural and regulatory molecules exhibited varying degrees of correlated motions with actin filaments, indicating hierarchical transmission of actin motion through focal adhesions. Interactions between vinculin, talin, and actin filaments appear to constitute a slippage interface between the cytoskeleton and integrins, generating a molecular clutch that is regulated during the morphodynamic transitions of cell migration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Ke -- Ji, Lin -- Applegate, Kathryn T -- Danuser, Gaudenz -- Waterman-Storer, Clare M -- GM67230/GM/NIGMS NIH HHS/ -- U54GM64346/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):111-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204653" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*metabolism ; Actinin/metabolism ; Actins/*metabolism ; Animals ; Cell Line ; Cell Movement ; Extracellular Matrix/metabolism ; Focal Adhesion Protein-Tyrosine Kinases/metabolism ; Focal Adhesions/*metabolism ; Integrin alphaVbeta3/metabolism ; Microfilament Proteins/*metabolism ; Microscopy, Fluorescence ; Monte Carlo Method ; Paxillin/metabolism ; Potoroidae ; Recombinant Fusion Proteins/metabolism ; Talin/metabolism ; Vinculin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-02-10
    Description: A central issue in the regulation of apoptosis by the Bcl-2 family is whether its BH3-only members initiate apoptosis by directly binding to the essential cell-death mediators Bax and Bak, or whether they can act indirectly, by engaging their pro-survival Bcl-2-like relatives. Contrary to the direct-activation model, we show that Bax and Bak can mediate apoptosis without discernable association with the putative BH3-only activators (Bim, Bid, and Puma), even in cells with no Bim or Bid and reduced Puma. Our results indicate that BH3-only proteins induce apoptosis at least primarily by engaging the multiple pro-survival relatives guarding Bax and Bak.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Willis, Simon N -- Fletcher, Jamie I -- Kaufmann, Thomas -- van Delft, Mark F -- Chen, Lin -- Czabotar, Peter E -- Ierino, Helen -- Lee, Erinna F -- Fairlie, W Douglas -- Bouillet, Philippe -- Strasser, Andreas -- Kluck, Ruth M -- Adams, Jerry M -- Huang, David C S -- CA43540/CA/NCI NIH HHS/ -- CA80188/CA/NCI NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):856-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289999" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins/chemistry/genetics/*metabolism ; BH3 Interacting Domain Death Agonist Protein/chemistry/genetics/*metabolism ; Cell Line ; Cells, Cultured ; Humans ; Ligands ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mice, Knockout ; Models, Biological ; Mutation ; Myeloid Cell Leukemia Sequence 1 Protein ; Neoplasm Proteins/metabolism ; Protein Structure, Tertiary ; Proteins/metabolism ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-bcl-2/*metabolism ; Tumor Suppressor Proteins/genetics/metabolism ; bcl-2 Homologous Antagonist-Killer Protein/metabolism ; bcl-2-Associated X Protein/chemistry/*metabolism ; bcl-Associated Death Protein/metabolism ; bcl-X Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-09-29
    Description: The SAX-3/roundabout (Robo) receptor has SLT-1/Slit-dependent and -independent functions in guiding cell and axon migrations. We identified enhancer of ventral-axon guidance defects of unc-40 mutants (EVA-1) as a Caenorhabditis elegans transmembrane receptor for SLT-1. EVA-1 has two predicted galactose-binding ectodomains, acts cell-autonomously for SLT-1/Slit-dependent axon migration functions of SAX-3/Robo, binds to SLT-1 and SAX-3, colocalizes with SAX-3 on cells, and provides cell specificity to the activation of SAX-3 signaling by SLT-1. Double mutants of eva-1 or slt-1 with sax-3 mutations suggest that SAX-3 can (when slt-1 or eva-1 function is reduced) inhibit a parallel-acting guidance mechanism, which involves UNC-40/deleted in colorectal cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fujisawa, Kazuko -- Wrana, Jeffrey L -- Culotti, Joseph G -- NS41397/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 28;317(5846):1934-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute of Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17901337" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Axons/*physiology ; Caenorhabditis elegans/cytology/genetics/growth & development/*physiology ; Caenorhabditis elegans Proteins/*chemistry/genetics/*metabolism ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cell Movement ; Cloning, Molecular ; Humans ; Molecular Sequence Data ; Mutation ; Nerve Tissue Proteins/*metabolism ; Nervous System/growth & development/metabolism ; Neurons/physiology ; Protein Structure, Tertiary ; Receptors, Immunologic/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-05-26
    Description: Mutations affecting the BRCT domains of the breast cancer-associated tumor suppressor BRCA1 disrupt the recruitment of this protein to DNA double-strand breaks (DSBs). The molecular structures at DSBs recognized by BRCA1 are presently unknown. We report the interaction of the BRCA1 BRCT domain with RAP80, a ubiquitin-binding protein. RAP80 targets a complex containing the BRCA1-BARD1 (BRCA1-associated ring domain protein 1) E3 ligase and the deubiquitinating enzyme (DUB) BRCC36 to MDC1-gammaH2AX-dependent lysine(6)- and lysine(63)-linked ubiquitin polymers at DSBs. These events are required for cell cycle checkpoint and repair responses to ionizing radiation, implicating ubiquitin chain recognition and turnover in the BRCA1-mediated repair of DSBs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706583/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706583/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sobhian, Bijan -- Shao, Genze -- Lilli, Dana R -- Culhane, Aedin C -- Moreau, Lisa A -- Xia, Bing -- Livingston, David M -- Greenberg, Roger A -- K08 CA106597/CA/NCI NIH HHS/ -- K08 CA106597-01A2/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 May 25;316(5828):1198-202.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute and Department of Genetics and Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525341" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; BRCA1 Protein/*metabolism ; Binding Sites ; Carrier Proteins/*metabolism ; Cell Line ; DNA/*metabolism ; *DNA Breaks, Double-Stranded ; DNA Repair/physiology ; HeLa Cells ; Humans ; Mice ; Molecular Sequence Data ; Nuclear Proteins/*metabolism ; Nucleic Acid Conformation ; Protein Structure, Tertiary ; Tumor Suppressor Proteins/metabolism ; Ubiquitin/*metabolism ; Ubiquitin-Protein Ligases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-10-27
    Description: The melanocortin 1 receptor (MC1R) regulates pigmentation in humans and other vertebrates. Variants of MC1R with reduced function are associated with pale skin color and red hair in humans of primarily European origin. We amplified and sequenced a fragment of the MC1R gene (mc1r) from two Neanderthal remains. Both specimens have a mutation that was not found in approximately 3700 modern humans analyzed. Functional analyses show that this variant reduces MC1R activity to a level that alters hair and/or skin pigmentation in humans. The impaired activity of this variant suggests that Neanderthals varied in pigmentation levels, potentially on the scale observed in modern humans. Our data suggest that inactive MC1R variants evolved independently in both modern humans and Neanderthals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lalueza-Fox, Carles -- Rompler, Holger -- Caramelli, David -- Staubert, Claudia -- Catalano, Giulio -- Hughes, David -- Rohland, Nadin -- Pilli, Elena -- Longo, Laura -- Condemi, Silvana -- de la Rasilla, Marco -- Fortea, Javier -- Rosas, Antonio -- Stoneking, Mark -- Schoneberg, Torsten -- Bertranpetit, Jaume -- Hofreiter, Michael -- New York, N.Y. -- Science. 2007 Nov 30;318(5855):1453-5. Epub 2007 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departament de Biologia Animal, Universitat de Barcelona, Spain. clalueza@ub.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962522" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Substitution ; Animals ; Biological Evolution ; Cell Line ; DNA/genetics ; *Fossils ; Hair Color/*genetics ; Hominidae/*genetics ; Humans ; Molecular Sequence Data ; *Mutation ; Polymerase Chain Reaction ; Receptor, Melanocortin, Type 1/chemistry/*genetics/metabolism ; Sequence Analysis, DNA ; Skin Pigmentation/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-10-13
    Description: Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene "mountains" and a much larger number of gene "hills" that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, Laura D -- Parsons, D Williams -- Jones, Sian -- Lin, Jimmy -- Sjoblom, Tobias -- Leary, Rebecca J -- Shen, Dong -- Boca, Simina M -- Barber, Thomas -- Ptak, Janine -- Silliman, Natalie -- Szabo, Steve -- Dezso, Zoltan -- Ustyanksky, Vadim -- Nikolskaya, Tatiana -- Nikolsky, Yuri -- Karchin, Rachel -- Wilson, Paul A -- Kaminker, Joshua S -- Zhang, Zemin -- Croshaw, Randal -- Willis, Joseph -- Dawson, Dawn -- Shipitsin, Michail -- Willson, James K V -- Sukumar, Saraswati -- Polyak, Kornelia -- Park, Ben Ho -- Pethiyagoda, Charit L -- Pant, P V Krishna -- Ballinger, Dennis G -- Sparks, Andrew B -- Hartigan, James -- Smith, Douglas R -- Suh, Erick -- Papadopoulos, Nickolas -- Buckhaults, Phillip -- Markowitz, Sanford D -- Parmigiani, Giovanni -- Kinzler, Kenneth W -- Velculescu, Victor E -- Vogelstein, Bert -- CA 43460/CA/NCI NIH HHS/ -- CA 57345/CA/NCI NIH HHS/ -- CA109274/CA/NCI NIH HHS/ -- CA112828/CA/NCI NIH HHS/ -- CA121113/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- GM070219/GM/NIGMS NIH HHS/ -- GM07309/GM/NIGMS NIH HHS/ -- P30-CA43703/CA/NCI NIH HHS/ -- RR017698/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1108-13. Epub 2007 Oct 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/*genetics/metabolism ; Cell Line ; Chromosome Mapping ; Colorectal Neoplasms/*genetics/metabolism ; Computational Biology ; DNA, Neoplasm ; Databases, Genetic ; Genes, Neoplasm ; Genome, Human ; Humans ; Metabolic Networks and Pathways/genetics ; Mice ; Mutation ; Neoplasm Proteins/genetics/metabolism ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-02-17
    Description: Migrating cells extend protrusions, probing the surrounding matrix in search of permissive sites to form adhesions. We found that actin fibers polymerizing along the leading edge directed local protrusions and drove synchronous sideways movement of beta1 integrin adhesion receptors. These movements lead to the clustering and positioning of conformationally activated, but unligated, beta1 integrins along the leading edge of fibroblast lamellae and growth cone filopodia. Thus, rapid actin-based movement of primed integrins along the leading edge suggests a "sticky fingers" mechanism to probe for new adhesion sites and to direct migration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galbraith, Catherine G -- Yamada, Kenneth M -- Galbraith, James A -- New York, N.Y. -- Science. 2007 Feb 16;315(5814):992-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17303755" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*physiology ; Animals ; Antigens, CD29/*physiology ; Cell Adhesion/*physiology ; Cell Adhesion Molecules/metabolism ; Cell Line ; Cell Movement/*physiology ; Extracellular Matrix/metabolism ; Fibroblasts/physiology ; Fibronectins/metabolism ; Green Fluorescent Proteins/metabolism ; Mice ; Microfilament Proteins/metabolism ; NIH 3T3 Cells ; Phosphoproteins/metabolism ; Protein Binding ; Pseudopodia/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-07-14
    Description: Many human cancers involve up-regulation of the phosphoinositide 3-kinase PI3Kalpha, with oncogenic mutations identified in both the p110alpha catalytic and the p85alpha regulatory subunits. We used crystallographic and biochemical approaches to gain insight into activating mutations in two noncatalytic p110alpha domains-the adaptor-binding and the helical domains. A structure of the adaptor-binding domain of p110alpha in a complex with the p85alpha inter-Src homology 2 (inter-SH2) domain shows that oncogenic mutations in the adaptor-binding domain are not at the inter-SH2 interface but in a polar surface patch that is a plausible docking site for other domains in the holo p110/p85 complex. We also examined helical domain mutations and found that the Glu545 to Lys545 (E545K) oncogenic mutant disrupts an inhibitory charge-charge interaction with the p85 N-terminal SH2 domain. These studies extend our understanding of the architecture of PI3Ks and provide insight into how two classes of mutations that cause a gain in function can lead to cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miled, Nabil -- Yan, Ying -- Hon, Wai-Ching -- Perisic, Olga -- Zvelebil, Marketa -- Inbar, Yuval -- Schneidman-Duhovny, Dina -- Wolfson, Haim J -- Backer, Jonathan M -- Williams, Roger L -- GM55692/GM/NIGMS NIH HHS/ -- MC_U105184308/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):239-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626883" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; *Catalytic Domain ; Cattle ; Cell Line ; Cell Transformation, Neoplastic ; Crystallography, X-Ray ; Dimerization ; Humans ; Models, Molecular ; Molecular Sequence Data ; *Mutation ; Neoplasms/*genetics ; Phosphatidylinositol 3-Kinases/antagonists & ; inhibitors/chemistry/*genetics/*metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2007-03-31
    Description: Telomerase is a ribonucleoprotein enzyme complex that adds 5'-TTAGGG-3' repeats onto the ends of human chromosomes, providing a telomere maintenance mechanism for approximately 90% of human cancers. We have purified human telomerase approximately 10(8)-fold, with the final elution dependent on the enzyme's ability to catalyze nucleotide addition onto a DNA oligonucleotide of telomeric sequence, thereby providing specificity for catalytically active telomerase. Mass spectrometric sequencing of the protein components and molecular size determination indicated an enzyme composition of two molecules each of telomerase reverse transcriptase, telomerase RNA, and dyskerin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Scott B -- Graham, Mark E -- Lovrecz, George O -- Bache, Nicolai -- Robinson, Phillip J -- Reddel, Roger R -- New York, N.Y. -- Science. 2007 Mar 30;315(5820):1850-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research Unit, Children's Medical Research Institute, 214 Hawkesbury Road, Westmead NSW 2145, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17395830" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Cycle Proteins/*chemistry/isolation & purification ; Cell Line ; Cell Line, Tumor ; Centrifugation, Density Gradient ; Humans ; Molecular Sequence Data ; Molecular Weight ; Multienzyme Complexes/chemistry ; Nuclear Proteins/*chemistry/isolation & purification ; RNA/*chemistry/isolation & purification ; Tandem Mass Spectrometry ; Telomerase/*chemistry/isolation & purification/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2007-10-20
    Description: To investigate the unregulated Ras activation associated with cancer, we developed and validated a mathematical model of Ras signaling. The model-based predictions and associated experiments help explain why only one of two classes of activating Ras point mutations with in vitro transformation potential is commonly found in cancers. Model-based analysis of these mutants uncovered a systems-level process that contributes to total Ras activation in cells. This predicted behavior was supported by experimental observations. We also used the model to identify a strategy in which a drug could cause stronger inhibition on the cancerous Ras network than on the wild-type network. This system-level analysis of the oncogenic Ras network provides new insights and potential therapeutic strategies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stites, Edward C -- Trampont, Paul C -- Ma, Zhong -- Ravichandran, Kodi S -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):463-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beirne B. Carter Center for Immunology Research and the Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947584" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/metabolism/pharmacology ; Cell Line ; Cell Line, Tumor ; Cell Transformation, Neoplastic ; *Computer Simulation ; Extracellular Signal-Regulated MAP Kinases/metabolism ; GTP Phosphohydrolases/metabolism ; GTPase-Activating Proteins/antagonists & inhibitors/metabolism ; Genes, ras ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Mathematics ; *Metabolic Networks and Pathways ; *Models, Biological ; Neoplasms/*metabolism ; Phosphorylation ; Point Mutation ; *Signal Transduction ; ras Proteins/antagonists & inhibitors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2007-03-10
    Description: Cellular memory is maintained at homeotic genes by cis-regulatory elements whose mechanism of action is unknown. We have examined chromatin at Drosophila homeotic gene clusters by measuring, at high resolution, levels of histone replacement and nucleosome occupancy. Homeotic gene clusters display conspicuous peaks of histone replacement at boundaries of cis-regulatory domains superimposed over broad regions of low replacement. Peaks of histone replacement closely correspond to nuclease-hypersensitive sites, binding sites for Polycomb and trithorax group proteins, and sites of nucleosome depletion. Our results suggest the existence of a continuous process that disrupts nucleosomes and maintains accessibility of cis-regulatory elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mito, Yoshiko -- Henikoff, Jorja G -- Henikoff, Steven -- New York, N.Y. -- Science. 2007 Mar 9;315(5817):1408-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17347439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Line ; Chromatin/*metabolism ; Chromatin Immunoprecipitation ; DNA-Binding Proteins/metabolism ; Drosophila Proteins/metabolism ; Drosophila melanogaster ; Genes, Homeobox ; Genes, Insect ; HSP70 Heat-Shock Proteins/genetics ; Histones/*metabolism ; Multigene Family ; Nuclear Proteins/metabolism ; Nucleosomes/*metabolism ; Oligonucleotide Array Sequence Analysis ; Polycomb Repressive Complex 1 ; Polycomb Repressive Complex 2 ; Protein Binding ; *Regulatory Sequences, Nucleic Acid ; Repressor Proteins/metabolism ; Response Elements ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2007-08-11
    Description: Tricyclic antidepressants exert their pharmacological effect-inhibiting the reuptake of serotonin, norepinephrine, and dopamine-by directly blocking neurotransmitter transporters (SERT, NET, and DAT, respectively) in the presynaptic membrane. The drug-binding site and the mechanism of this inhibition are poorly understood. We determined the crystal structure at 2.9 angstroms of the bacterial leucine transporter (LeuT), a homolog of SERT, NET, and DAT, in complex with leucine and the antidepressant desipramine. Desipramine binds at the inner end of the extracellular cavity of the transporter and is held in place by a hairpin loop and by a salt bridge. This binding site is separated from the leucine-binding site by the extracellular gate of the transporter. By directly locking the gate, desipramine prevents conformational changes and blocks substrate transport. Mutagenesis experiments on human SERT and DAT indicate that both the desipramine-binding site and its inhibition mechanism are probably conserved in the human neurotransmitter transporters.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711652/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711652/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Zheng -- Zhen, Juan -- Karpowich, Nathan K -- Goetz, Regina M -- Law, Christopher J -- Reith, Maarten E A -- Wang, Da-Neng -- DA013261/DA/NIDA NIH HHS/ -- DA019676/DA/NIDA NIH HHS/ -- GM075026/GM/NIGMS NIH HHS/ -- GM075936/GM/NIGMS NIH HHS/ -- R01 DA013261/DA/NIDA NIH HHS/ -- R01 DA019676/DA/NIDA NIH HHS/ -- R01 DK053973/DK/NIDDK NIH HHS/ -- R21 DK060841/DK/NIDDK NIH HHS/ -- R21 GM075936/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM095315/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 7;317(5843):1390-3. Epub 2007 Aug 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17690258" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antidepressive Agents, Tricyclic/chemistry/*metabolism ; Bacterial Proteins/chemistry/*metabolism ; Binding Sites ; Caenorhabditis elegans Proteins/chemistry/metabolism ; Cell Line ; Conserved Sequence ; Crystallography, X-Ray ; Desipramine/chemistry/*metabolism ; Dopamine/chemistry/metabolism ; Dopamine Uptake Inhibitors/chemistry/metabolism ; Drosophila Proteins/chemistry/metabolism ; Humans ; Leucine/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Neurotransmitter Uptake Inhibitors/chemistry/*metabolism ; Norepinephrine/chemistry/metabolism ; Norepinephrine Plasma Membrane Transport Proteins/antagonists & ; inhibitors/chemistry/metabolism ; Plasma Membrane Neurotransmitter Transport Proteins/chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Sequence Homology, Amino Acid ; Serotonin/chemistry/metabolism ; Serotonin Uptake Inhibitors/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2007-09-01
    Description: Methylation of histone H3 lysine 27 (H3K27) is a posttranslational modification that is highly correlated with genomic silencing. Here we show that human UTX, a member of the Jumonji C family of proteins, is a di- and trimethyl H3K27 demethylase. UTX occupies the promoters of HOX gene clusters and regulates their transcriptional output by modulating the recruitment of polycomb repressive complex 1 and the monoubiquitination of histone H2A. Moreover, UTX associates with mixed-lineage leukemia (MLL) 2/3 complexes, and during retinoic acid signaling events, the recruitment of the UTX complex to HOX genes results in H3K27 demethylation and a concomitant methylation of H3K4. Our results suggest a concerted mechanism for transcriptional activation in which cycles of H3K4 methylation by MLL2/3 are linked with the demethylation of H3K27 through UTX.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Min Gyu -- Villa, Raffaella -- Trojer, Patrick -- Norman, Jessica -- Yan, Kai-Ping -- Reinberg, Danny -- Di Croce, Luciano -- Shiekhattar, Ramin -- R01CA090758/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):447-50. Epub 2007 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17761849" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Differentiation ; Cell Line ; Cell Line, Tumor ; DNA-Binding Proteins/metabolism ; Embryonic Stem Cells ; *Genes, Homeobox ; Histone Demethylases ; Histones/*metabolism ; Humans ; Lysine/*metabolism ; Methylation ; Multigene Family ; Neoplasm Proteins/metabolism ; Nuclear Proteins/genetics/*metabolism ; Polycomb-Group Proteins ; Promoter Regions, Genetic ; Protein Processing, Post-Translational ; Recombinant Proteins/metabolism ; Repressor Proteins/*metabolism ; Signal Transduction ; Transcription, Genetic ; Transcriptional Activation ; Tretinoin/metabolism/pharmacology ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2007-01-27
    Description: Vitamin A has diverse biological functions. It is transported in the blood as a complex with retinol binding protein (RBP), but the molecular mechanism by which vitamin A is absorbed by cells from the vitamin A-RBP complex is not clearly understood. We identified in bovine retinal pigment epithelium cells STRA6, a multitransmembrane domain protein, as a specific membrane receptor for RBP. STRA6 binds to RBP with high affinity and has robust vitamin A uptake activity from the vitamin A-RBP complex. It is widely expressed in embryonic development and in adult organ systems. The RBP receptor represents a major physiological mediator of cellular vitamin A uptake.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawaguchi, Riki -- Yu, Jiamei -- Honda, Jane -- Hu, Jane -- Whitelegge, Julian -- Ping, Peipei -- Wiita, Patrick -- Bok, Dean -- Sun, Hui -- 5T32EY07026/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):820-5. Epub 2007 Jan 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive South, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17255476" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/metabolism ; Amino Acid Sequence ; Animals ; Blood-Retinal Barrier ; COS Cells ; Cattle ; Cell Line ; Cell Line, Tumor ; Cell Membrane/metabolism ; Cercopithecus aethiops ; Embryonic Development ; Endocytosis ; Humans ; Molecular Sequence Data ; Mutation, Missense ; Pigment Epithelium of Eye/*metabolism ; Placenta/metabolism ; Receptors, Cell Surface/*metabolism ; Retinal Vessels/metabolism ; Retinol-Binding Proteins/*metabolism ; Spleen/metabolism ; Transfection ; Vitamin A/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2007-03-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin, Jennifer -- New York, N.Y. -- Science. 2007 Mar 23;315(5819):1646.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17379778" target="_blank"〉PubMed〈/a〉
    Keywords: Biomedical Research/*economics ; *Budgets ; Cell Line ; Embryo Research/*economics ; *Embryonic Stem Cells ; Financing, Government ; Humans ; National Institutes of Health (U.S.)/*economics ; Politics ; *Research Support as Topic ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2007-11-17
    Description: Monoallelic expression with random choice between the maternal and paternal alleles defines an unusual class of genes comprising X-inactivated genes and a few autosomal gene families. Using a genome-wide approach, we assessed allele-specific transcription of about 4000 human genes in clonal cell lines and found that more than 300 were subject to random monoallelic expression. For a majority of monoallelic genes, we also observed some clonal lines displaying biallelic expression. Clonal cell lines reflect an independent choice to express the maternal, the paternal, or both alleles for each of these genes. This can lead to differences in expressed protein sequence and to differences in levels of gene expression. Unexpectedly widespread monoallelic expression suggests a mechanism that generates diversity in individual cells and their clonal descendants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gimelbrant, Alexander -- Hutchinson, John N -- Thompson, Benjamin R -- Chess, Andrew -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1136-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Human Genetic Research and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18006746" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Animals ; Apoptosis Regulatory Proteins/genetics ; Calcium-Calmodulin-Dependent Protein Kinases/genetics ; Cell Line ; Clone Cells ; DNA-Binding Proteins/genetics ; Death-Associated Protein Kinases ; Dosage Compensation, Genetic ; Female ; *Gene Expression ; Gene Expression Regulation ; Genetic Predisposition to Disease ; Genotype ; Humans ; In Situ Hybridization, Fluorescence ; Polymerase Chain Reaction ; Trans-Activators/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2007-11-10
    Description: Production of type I interferon (IFN-I) is a critical host defense triggered by pattern-recognition receptors (PRRs) of the innate immune system. Deubiquitinating enzyme A (DUBA), an ovarian tumor domain-containing deubiquitinating enzyme, was discovered in a small interfering RNA-based screen as a regulator of IFN-I production. Reduction of DUBA augmented the PRR-induced IFN-I response, whereas ectopic expression of DUBA had the converse effect. DUBA bound tumor necrosis factor receptor-associated factor 3 (TRAF3), an adaptor protein essential for the IFN-I response. TRAF3 is an E3 ubiquitin ligase that preferentially assembled lysine-63-linked polyubiquitin chains. DUBA selectively cleaved the lysine-63-linked polyubiquitin chains on TRAF3, resulting in its dissociation from the downstream signaling complex containing TANK-binding kinase 1. A discrete ubiquitin interaction motif within DUBA was required for efficient deubiquitination of TRAF3 and optimal suppression of IFN-I. Our data identify DUBA as a negative regulator of innate immune responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kayagaki, Nobuhiko -- Phung, Qui -- Chan, Salina -- Chaudhari, Ruchir -- Quan, Casey -- O'Rourke, Karen M -- Eby, Michael -- Pietras, Eric -- Cheng, Genhong -- Bazan, J Fernando -- Zhang, Zemin -- Arnott, David -- Dixit, Vishva M -- New York, N.Y. -- Science. 2007 Dec 7;318(5856):1628-32. Epub 2007 Nov 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17991829" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cell Line ; Endopeptidases/*metabolism ; Humans ; Interferon Type I/*biosynthesis/genetics ; Interferon-alpha/genetics ; Molecular Sequence Data ; NF-kappa B/metabolism ; Protein Structure, Tertiary ; RNA, Small Interfering ; Signal Transduction ; TNF Receptor-Associated Factor 3/metabolism ; Toll-Like Receptor 3/metabolism ; Ubiquitin/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2007-08-25
    Description: Changes in the concentration of oxidants in cells can regulate biochemical signaling mechanisms that control cell function. We have found that guanosine 3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) functions directly as a redox sensor. The Ialpha isoform, PKGIalpha, formed an interprotein disulfide linking its two subunits in cells exposed to exogenous hydrogen peroxide. This oxidation directly activated the kinase in vitro, and in rat cells and tissues. The affinity of the kinase for substrates it phosphorylates was enhanced by disulfide formation. This oxidation-induced activation represents an alternate mechanism for regulation along with the classical activation involving nitric oxide and cGMP. This mechanism underlies cGMP-independent vasorelaxation in response to oxidants in the cardiovascular system and provides a molecular explantion for how hydrogen peroxide can operate as an endothelium-derived hyperpolarizing factor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burgoyne, Joseph R -- Madhani, Melanie -- Cuello, Friederike -- Charles, Rebecca L -- Brennan, Jonathan P -- Schroder, Ewald -- Browning, Darren D -- Eaton, Philip -- G0700320/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Sep 7;317(5843):1393-7. Epub 2007 Aug 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cardiology, Cardiovascular Division, King's College London, Rayne Institute, St. Thomas' Hospital, London SE1 7EH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17717153" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aorta ; Cell Line ; Cyclic GMP/metabolism ; Cyclic GMP-Dependent Protein Kinase Type I ; Cyclic GMP-Dependent Protein Kinases/genetics/*metabolism ; Cysteine/*metabolism ; Disulfides/metabolism ; Enzyme Activation ; Humans ; Hydrogen Peroxide/metabolism ; Male ; Nitric Oxide/metabolism ; Oxidants/*metabolism ; Oxidation-Reduction ; Oxidative Stress ; Rats ; Rats, Wistar ; Signal Transduction ; Tissue Culture Techniques ; Transfection ; Vasodilation/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-01-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sapienza, Carmen -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):46-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fels Institute for Cancer Research and Department of Pathology, Temple University Medical School, 3307 North Broad Street, Philadelphia, PA 19140, USA. sapienza@temple.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204629" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axonemal Dyneins ; Body Patterning ; Cell Line ; Cells, Cultured ; Chromatids/*physiology ; *Chromosome Segregation ; DNA Replication ; Dyneins/*genetics/*physiology ; Ectoderm/*cytology ; Embryonic Stem Cells/*cytology ; Endoderm/*cytology ; Interphase ; Mice ; Mitosis ; Recombination, Genetic ; Spindle Apparatus/physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2007-09-01
    Description: MicroRNAs (miRNAs) are evolutionarily conserved, 18- to 25-nucleotide, non-protein coding transcripts that posttranscriptionally regulate gene expression during development. miRNAs also occur in postmitotic cells, such as neurons in the mammalian central nervous system, but their function is less well characterized. We investigated the role of miRNAs in mammalian midbrain dopaminergic neurons (DNs). We identified a miRNA, miR-133b, that is specifically expressed in midbrain DNs and is deficient in midbrain tissue from patients with Parkinson's disease. miR-133b regulates the maturation and function of midbrain DNs within a negative feedback circuit that includes the paired-like homeodomain transcription factor Pitx3. We propose a role for this feedback circuit in the fine-tuning of dopaminergic behaviors such as locomotion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782470/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782470/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jongpil -- Inoue, Keiichi -- Ishii, Jennifer -- Vanti, William B -- Voronov, Sergey V -- Murchison, Elizabeth -- Hannon, Gregory -- Abeliovich, Asa -- R01 NS064433/NS/NINDS NIH HHS/ -- R01 NS064433-01/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 31;317(5842):1220-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Pathology and Neurology, Center for Neurobiology and Behavior, and Taub Institute, Columbia University, College of Physicians and Surgeons 15-403, 630 West 168th Street, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17761882" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/metabolism ; Aged ; Aged, 80 and over ; Animals ; Cell Differentiation ; Cell Line ; Cells, Cultured ; Dopamine/*metabolism ; Embryonic Stem Cells ; *Feedback, Physiological ; Female ; Gene Expression Regulation ; Homeodomain Proteins/*metabolism ; Humans ; Locomotion ; Male ; Mesencephalon/cytology/*metabolism ; Mice ; MicroRNAs/*metabolism ; Middle Aged ; Models, Biological ; Neurons/cytology/*metabolism ; Parkinson Disease/metabolism ; Rats ; Ribonuclease III/genetics/metabolism ; Transcription Factors/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2007-08-04
    Description: Toll-like receptors (TLRs) trigger the production of inflammatory cytokines and shape adaptive and innate immunity to pathogens. We report the identification of B cell leukemia (Bcl)-3 as an essential negative regulator of TLR signaling. By blocking ubiquitination of p50, a member of the nuclear factor (NF)-kappaB family, Bcl-3 stabilizes a p50 complex that inhibits gene transcription. As a consequence, Bcl-3-deficient mice and cells were found to be hypersensitive to TLR activation and unable to control responses to lipopolysaccharides. Thus, p50 ubiquitination blockade by Bcl-3 limits the strength of TLR responses and maintains innate immune homeostasis. These findings indicate that the p50 ubiquitination pathway can be selectively targeted to control deleterious inflammatory diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carmody, Ruaidhri J -- Ruan, Qingguo -- Palmer, Scott -- Hilliard, Brendan -- Chen, Youhai H -- AI069289/AI/NIAID NIH HHS/ -- AI50059/AI/NIAID NIH HHS/ -- DK070691/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 3;317(5838):675-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17673665" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cells, Cultured ; DNA/metabolism ; Female ; Half-Life ; Immune Tolerance ; Immunity, Innate ; Lipopolysaccharides/immunology ; Macrophage Activation ; Macrophages, Peritoneal/*immunology/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; NF-kappa B p50 Subunit/*metabolism ; Promoter Regions, Genetic ; Proto-Oncogene Proteins/genetics/*metabolism ; *Signal Transduction ; Toll-Like Receptors/*metabolism ; Transcription Factor RelA/metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic ; Tumor Necrosis Factor-alpha/genetics/metabolism ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-02-27
    Description: Differential DNA methylation is important for the epigenetic regulation of gene expression. Allele-specific methylation of the inactive X chromosome has been demonstrated at promoter CpG islands, but the overall pattern of methylation on the active X(Xa) and inactive X (Xi) chromosomes is unknown. We performed allele-specific analysis of more than 1000 informative loci along the human X chromosome. The Xa displays more than two times as much allele-specific methylation as Xi. This methylation is concentrated at gene bodies, affecting multiple neighboring CpGs. Before X inactivation, all of these Xa gene body-methylated sites are biallelically methylated. Thus, a bipartite methylation-demethylation program results in Xa-specific hypomethylation at gene promoters and hypermethylation at gene bodies. These results suggest a relationship between global methylation and expression potentiality.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hellman, Asaf -- Chess, Andrew -- New York, N.Y. -- Science. 2007 Feb 23;315(5815):1141-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Human Genetic Research and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA. hellman@chgr.mgh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17322062" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Cell Line ; Chromosomes, Human, X/*genetics/metabolism ; CpG Islands ; *DNA Methylation ; Embryonic Stem Cells ; Epigenesis, Genetic ; Female ; Gene Expression Regulation ; Gene Silencing ; Heterozygote ; Humans ; Male ; Oligonucleotide Array Sequence Analysis ; Polymorphism, Single Nucleotide ; Promoter Regions, Genetic ; X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2007-12-01
    Description: AU-rich elements (AREs) and microRNA target sites are conserved sequences in messenger RNA (mRNA) 3' untranslated regions (3'UTRs) that control gene expression posttranscriptionally. Upon cell cycle arrest, the ARE in tumor necrosis factor-alpha (TNFalpha) mRNA is transformed into a translation activation signal, recruiting Argonaute (AGO) and fragile X mental retardation-related protein 1 (FXR1), factors associated with micro-ribonucleoproteins (microRNPs). We show that human microRNA miR369-3 directs association of these proteins with the AREs to activate translation. Furthermore, we document that two well-studied microRNAs-Let-7 and the synthetic microRNA miRcxcr4-likewise induce translation up-regulation of target mRNAs on cell cycle arrest, yet they repress translation in proliferating cells. Thus, activation is a common function of microRNPs on cell cycle arrest. We propose that translation regulation by microRNPs oscillates between repression and activation during the cell cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vasudevan, Shobha -- Tong, Yingchun -- Steitz, Joan A -- New York, N.Y. -- Science. 2007 Dec 21;318(5858):1931-4. Epub 2007 Nov 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18048652" target="_blank"〉PubMed〈/a〉
    Keywords: *3' Untranslated Regions ; Argonaute Proteins ; Base Pairing ; Cell Cycle ; Cell Line ; Cell Proliferation ; Computational Biology ; Eukaryotic Initiation Factor-2/genetics/metabolism ; *Gene Expression Regulation ; HMGA2 Protein/genetics ; HeLa Cells ; Humans ; Interphase ; MicroRNAs/*metabolism ; *Protein Biosynthesis ; RNA, Messenger/genetics/metabolism ; RNA-Binding Proteins/genetics/metabolism ; Ribonucleoproteins/metabolism ; Transfection ; Tumor Necrosis Factor-alpha/biosynthesis/*genetics ; *Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2007-11-24
    Description: Inositol pyrophosphates are recognized components of cellular processes that regulate vesicle trafficking, telomere length, and apoptosis. We observed that pancreatic beta cells maintain high basal concentrations of the pyrophosphate diphosphoinositol pentakisphosphate (InsP7 or IP7). Inositol hexakisphosphate kinases (IP6Ks) that can generate IP7 were overexpressed. This overexpression stimulated exocytosis of insulin-containing granules from the readily releasable pool. Exogenously applied IP7 dose-dependently enhanced exocytosis at physiological concentrations. We determined that IP6K1 and IP6K2 were present in beta cells. RNA silencing of IP6K1, but not IP6K2, inhibited exocytosis, which suggests that IP6K1 is the critical endogenous kinase. Maintenance of high concentrations of IP7 in the pancreatic beta cell may enhance the immediate exocytotic capacity and consequently allow rapid adjustment of insulin secretion in response to increased demand.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Illies, Christopher -- Gromada, Jesper -- Fiume, Roberta -- Leibiger, Barbara -- Yu, Jia -- Juhl, Kirstine -- Yang, Shao-Nian -- Barma, Deb K -- Falck, John R -- Saiardi, Adolfo -- Barker, Christopher J -- Berggren, Per-Olof -- GM31278/GM/NIGMS NIH HHS/ -- MC_U122680443/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Nov 23;318(5854):1299-302.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76, Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18033884" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cricetinae ; Electric Capacitance ; *Exocytosis ; Inositol Phosphates/*metabolism ; Insulin/*secretion ; Insulin-Secreting Cells/*metabolism/secretion ; Islets of Langerhans/metabolism ; Mice ; Patch-Clamp Techniques ; Phosphotransferases (Phosphate Group Acceptor)/genetics/metabolism ; Phytic Acid/metabolism ; RNA Interference ; Rats ; Secretory Vesicles/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-04-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McLaren, Anne -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):339.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446356" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Embryo Research ; Embryonic Stem Cells/*cytology/physiology ; Female ; Humans ; Male ; Mice ; Nuclear Transfer Techniques ; *Oocyte Donation/ethics ; Ovum/*cytology/physiology ; Spermatozoa/cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2007-11-10
    Description: The mammalian target of rapamycin, mTOR, is a central regulator of cell growth. Its activity is regulated by Rheb, a Ras-like small guanosine triphosphatase (GTPase), in response to growth factor stimulation and nutrient availability. We show that Rheb regulates mTOR through FKBP38, a member of the FK506-binding protein (FKBP) family that is structurally related to FKBP12. FKBP38 binds to mTOR and inhibits its activity in a manner similar to that of the FKBP12-rapamycin complex. Rheb interacts directly with FKBP38 and prevents its association with mTOR in a guanosine 5'-triphosphate (GTP)-dependent manner. Our findings suggest that FKBP38 is an endogenous inhibitor of mTOR, whose inhibitory activity is antagonized by Rheb in response to growth factor stimulation and nutrient availability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bai, Xiaochun -- Ma, Dongzhu -- Liu, Anling -- Shen, Xiaoyun -- Wang, Qiming J -- Liu, Yongjian -- Jiang, Yu -- GM068832/GM/NIGMS NIH HHS/ -- R01 CA129821/CA/NCI NIH HHS/ -- R01 GM068832/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 9;318(5852):977-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Pittsburgh School of Medicine, E1357 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15213, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17991864" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/metabolism ; Cell Line ; Culture Media ; Guanosine Triphosphate/metabolism ; Humans ; Insulin/metabolism ; Intercellular Signaling Peptides and Proteins/metabolism ; Monomeric GTP-Binding Proteins/*metabolism ; Multiprotein Complexes ; Mutant Proteins/metabolism ; Neuropeptides/*metabolism ; Phosphorylation ; Protein Binding ; Protein Kinases/chemistry/*metabolism ; Protein Structure, Tertiary ; Proteins ; Recombinant Proteins/metabolism ; Serum ; Signal Transduction ; Sirolimus/metabolism/pharmacology ; TOR Serine-Threonine Kinases ; Tacrolimus Binding Proteins/antagonists & inhibitors/*metabolism ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2007-06-26
    Description: Although classical genetic and biochemical approaches have identified hundreds of proteins that function in the dynamic remodeling of cell shape in response to upstream signals, there is currently little systems-level understanding of the organization and composition of signaling networks that regulate cell morphology. We have developed quantitative morphological profiling methods to systematically investigate the role of individual genes in the regulation of cell morphology in a fast, robust, and cost-efficient manner. We analyzed a compendium of quantitative morphological signatures and described the existence of local signaling networks that act to regulate cell protrusion, adhesion, and tension.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bakal, Chris -- Aach, John -- Church, George -- Perrimon, Norbert -- New York, N.Y. -- Science. 2007 Jun 22;316(5832):1753-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17588932" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Movement/genetics/physiology ; Cell Shape/*genetics/physiology ; Drosophila ; Green Fluorescent Proteins ; Metabolic Networks and Pathways/*genetics ; Phenotype ; RNA Interference ; Signal Transduction/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2007-01-16
    Description: alphabeta and gammadelta T cells originate from a common, multipotential precursor population in the thymus, but the molecular mechanisms regulating this lineage-fate decision are unknown. We have identified Sox13 as a gammadelta-specific gene in the immune system. Using Sox13 transgenic mice, we showed that this transcription factor promotes gammadelta T cell development while opposing alphabeta T cell differentiation. Conversely, mice deficient in Sox13 expression exhibited impaired development of gammadelta T cells but not alphabeta T cells. One mechanism of SOX13 function is the inhibition of signaling by the developmentally important Wnt/T cell factor (TCF) pathway. Our data thus reveal a dominant pathway regulating the developmental fate of these two lineages of T lymphocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Melichar, Heather J -- Narayan, Kavitha -- Der, Sandy D -- Hiraoka, Yoshiki -- Gardiol, Noemie -- Jeannet, Gregoire -- Held, Werner -- Chambers, Cynthia A -- Kang, Joonsoo -- R01CA100382/92614/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 12;315(5809):230-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Graduate Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17218525" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD4/genetics ; Autoantigens/genetics/*metabolism ; Cell Line ; Cell Lineage ; Cell Proliferation ; Embryonic Development ; Gene Expression Profiling ; Gene Expression Regulation ; Gene Rearrangement, T-Lymphocyte ; High Mobility Group Proteins/genetics/*metabolism ; Humans ; *Lymphopoiesis ; Mice ; Mice, Transgenic ; Receptors, Antigen, T-Cell, alpha-beta/*analysis ; Receptors, Antigen, T-Cell, gamma-delta/*analysis/genetics ; Signal Transduction ; T Cell Transcription Factor 1/physiology ; T-Lymphocyte Subsets/*cytology/immunology/metabolism ; Wnt Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2007-05-26
    Description: Cellular responses to DNA damage are mediated by a number of protein kinases, including ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related). The outlines of the signal transduction portion of this pathway are known, but little is known about the physiological scope of the DNA damage response (DDR). We performed a large-scale proteomic analysis of proteins phosphorylated in response to DNA damage on consensus sites recognized by ATM and ATR and identified more than 900 regulated phosphorylation sites encompassing over 700 proteins. Functional analysis of a subset of this data set indicated that this list is highly enriched for proteins involved in the DDR. This set of proteins is highly interconnected, and we identified a large number of protein modules and networks not previously linked to the DDR. This database paints a much broader landscape for the DDR than was previously appreciated and opens new avenues of investigation into the responses to DNA damage in mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsuoka, Shuhei -- Ballif, Bryan A -- Smogorzewska, Agata -- McDonald, E Robert 3rd -- Hurov, Kristen E -- Luo, Ji -- Bakalarski, Corey E -- Zhao, Zhenming -- Solimini, Nicole -- Lerenthal, Yaniv -- Shiloh, Yosef -- Gygi, Steven P -- Elledge, Stephen J -- 1U19A1067751/PHS HHS/ -- New York, N.Y. -- Science. 2007 May 25;316(5828):1160-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Center for Genetics and Genomics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525332" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins ; Binding Sites ; Cell Cycle/physiology ; Cell Cycle Proteins/*physiology ; Cell Line ; Computational Biology ; Consensus Sequence ; *DNA Damage ; *DNA Repair ; DNA Replication/physiology ; DNA-Binding Proteins/*physiology ; Humans ; Immunoprecipitation ; Isotope Labeling ; Mice ; NIH 3T3 Cells ; Phosphorylation ; Protein-Serine-Threonine Kinases/*physiology ; Proteome/isolation & purification/physiology ; RNA, Small Interfering ; Signal Transduction ; Substrate Specificity ; Tumor Suppressor Proteins/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2007-11-03
    Description: Quinoxalinedione compounds such as 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) are the most commonly used alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists. However, we find that in the presence of transmembrane AMPA receptor regulatory proteins (TARPs), which are AMPA receptor auxiliary subunits, CNQX acts as a partial agonist. CNQX induced small depolarizing currents in neurons of the central nervous system, and reconstitution of this agonist activity required coexpression of TARPs. A crystal structure of CNQX bound to the TARP-less AMPA receptor ligand-binding domain showed that, although CNQX induces partial domain closure, this movement is not transduced into linker separation, suggesting that TARPs may increase agonist efficacy by strengthening the coupling between domain closure and channel opening. Our results demonstrate that the presence of an auxiliary subunit can determine whether a compound functions as an agonist or antagonist.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Menuz, Karen -- Stroud, Robert M -- Nicoll, Roger A -- Hays, Franklin A -- GM078754/GM/NIGMS NIH HHS/ -- P50 GM73210/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):815-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17975069" target="_blank"〉PubMed〈/a〉
    Keywords: 6-Cyano-7-nitroquinoxaline-2,3-dione/chemistry/*pharmacology ; Animals ; Benzodiazepines/pharmacology ; Binding, Competitive ; Cell Line ; Cerebellum/cytology ; Crystallography, X-Ray ; *Drug Partial Agonism ; Hippocampus/cytology ; Humans ; In Vitro Techniques ; Interneurons/drug effects ; Mice ; Models, Molecular ; Patch-Clamp Techniques ; Protein Conformation ; Protein Subunits/*physiology ; Pyramidal Cells/drug effects/metabolism ; Quinoxalines/pharmacology ; Receptors, AMPA/*agonists/*antagonists & inhibitors ; Structure-Activity Relationship ; Synaptic Transmission/drug effects ; Trichlormethiazide/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2007-08-11
    Description: Influenza virus entry is mediated by the receptor binding domain (RBD) of its spike, the hemagglutinin (HA). Adaptation of avian viruses to humans is associated with HA specificity for alpha2,6- rather than alpha2,3-linked sialic acid (SA) receptors. Here, we define mutations in influenza A subtype H5N1 (avian) HA that alter its specificity for SA either by decreasing alpha2,3- or increasing alpha2,6-SA recognition. RBD mutants were used to develop vaccines and monoclonal antibodies that neutralized new variants. Structure-based modification of HA specificity can guide the development of preemptive vaccines and therapeutic monoclonal antibodies that can be evaluated before the emergence of human-adapted H5N1 strains.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367145/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367145/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Zhi-Yong -- Wei, Chih-Jen -- Kong, Wing-Pui -- Wu, Lan -- Xu, Ling -- Smith, David F -- Nabel, Gary J -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 10;317(5839):825-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Building 40, Room 4502, Mailstop Code MSC-3005, 40 Convent Drive, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17690300" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/immunology ; Antibodies, Viral/immunology ; Carbohydrate Conformation ; Cell Line ; Female ; Genes, Viral ; Hemagglutination Inhibition Tests ; Hemagglutinin Glycoproteins, Influenza Virus/*genetics/*immunology/metabolism ; Humans ; Influenza A Virus, H5N1 Subtype/*genetics/*immunology/metabolism ; Influenza Vaccines/immunology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; *Mutation ; Neutralization Tests ; Receptors, Virus/*metabolism ; Sialic Acids/*metabolism ; Vaccination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2007-11-17
    Description: The circadian clock temporally coordinates metabolic homeostasis in mammals. Central to this is heme, an iron-containing porphyrin that serves as prosthetic group for enzymes involved in oxidative metabolism as well as transcription factors that regulate circadian rhythmicity. The circadian factor that integrates this dual function of heme is not known. We show that heme binds reversibly to the orphan nuclear receptor Rev-erbalpha, a critical negative component of the circadian core clock, and regulates its interaction with a nuclear receptor corepressor complex. Furthermore, heme suppresses hepatic gluconeogenic gene expression and glucose output through Rev-erbalpha-mediated gene repression. Thus, Rev-erbalpha serves as a heme sensor that coordinates the cellular clock, glucose homeostasis, and energy metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yin, Lei -- Wu, Nan -- Curtin, Joshua C -- Qatanani, Mohammed -- Szwergold, Nava R -- Reid, Robert A -- Waitt, Gregory M -- Parks, Derek J -- Pearce, Kenneth H -- Wisely, G Bruce -- Lazar, Mitchell A -- R01 DK45586/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2007 Dec 14;318(5857):1786-9. Epub 2007 Nov 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18006707" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks ; Cell Line ; Cell Line, Tumor ; *Circadian Rhythm/genetics ; DNA-Binding Proteins/*metabolism ; Energy Metabolism ; *Gene Expression Regulation ; Gluconeogenesis/genetics ; Glucose/*metabolism ; Glucose-6-Phosphatase/genetics/metabolism ; Heme/*metabolism ; Hemin/pharmacology ; Histone Deacetylases/metabolism ; Homeostasis ; Humans ; Male ; *Metabolic Networks and Pathways ; Mice ; Nuclear Proteins/metabolism ; Nuclear Receptor Co-Repressor 1 ; Nuclear Receptor Subfamily 1, Group D, Member 1 ; Receptors, Cytoplasmic and Nuclear/*metabolism ; Repressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2007-09-18
    Description: Some Toll and Toll-like receptors (TLRs) provide immunity to experimental infections in animal models, but their contribution to host defense in natural ecosystems is unknown. We report a dominant-negative TLR3 allele in otherwise healthy children with herpes simplex virus 1 (HSV-1) encephalitis. TLR3 is expressed in the central nervous system (CNS), where it is required to control HSV-1, which spreads from the epithelium to the CNS via cranial nerves. TLR3 is also expressed in epithelial and dendritic cells, which apparently use TLR3-independent pathways to prevent further dissemination of HSV-1 and to provide resistance to other pathogens in TLR3-deficient patients. Human TLR3 appears to be redundant in host defense to most microbes but is vital for natural immunity to HSV-1 in the CNS, which suggests that neurotropic viruses have contributed to the evolutionary maintenance of TLR3.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Shen-Ying -- Jouanguy, Emmanuelle -- Ugolini, Sophie -- Smahi, Asma -- Elain, Gaelle -- Romero, Pedro -- Segal, David -- Sancho-Shimizu, Vanessa -- Lorenzo, Lazaro -- Puel, Anne -- Picard, Capucine -- Chapgier, Ariane -- Plancoulaine, Sabine -- Titeux, Matthias -- Cognet, Celine -- von Bernuth, Horst -- Ku, Cheng-Lung -- Casrouge, Armanda -- Zhang, Xin-Xin -- Barreiro, Luis -- Leonard, Joshua -- Hamilton, Claire -- Lebon, Pierre -- Heron, Benedicte -- Vallee, Louis -- Quintana-Murci, Lluis -- Hovnanian, Alain -- Rozenberg, Flore -- Vivier, Eric -- Geissmann, Frederic -- Tardieu, Marc -- Abel, Laurent -- Casanova, Jean-Laurent -- G0900867/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Sep 14;317(5844):1522-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genetics of Infectious Diseases, Institut National de la Sante et de la Recherche Medicale (INSERM), U550, Faculty Necker, Paris 75015, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17872438" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; CD8-Positive T-Lymphocytes/immunology ; Cell Line ; Child, Preschool ; Dendritic Cells/immunology ; Encephalitis, Herpes Simplex/*genetics/*immunology ; Female ; Fibroblasts/immunology/metabolism/virology ; Genes, Dominant ; *Herpesvirus 1, Human/physiology ; Heterozygote ; Humans ; Immunity, Innate ; Infant ; Interferons/biosynthesis ; Keratinocytes/immunology ; Killer Cells, Natural/immunology ; Leukocytes, Mononuclear/immunology ; Mutation ; Poly I-C/pharmacology ; Toll-Like Receptor 3/chemistry/*deficiency/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2007-10-20
    Description: We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assembled monolayers through deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioinert and bioactive surfaces via grafting of macromolecules.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2601629/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2601629/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Haeshin -- Dellatore, Shara M -- Miller, William M -- Messersmith, Phillip B -- DE 14193/DE/NIDCR NIH HHS/ -- HL 74151/HL/NHLBI NIH HHS/ -- R01 DE014193/DE/NIDCR NIH HHS/ -- R01 DE014193-03/DE/NIDCR NIH HHS/ -- R01 HL074151/HL/NHLBI NIH HHS/ -- R01 HL074151-04/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):426-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947576" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesiveness ; Animals ; Biopolymers/chemistry ; Cell Adhesion ; Cell Adhesion Molecules/chemistry ; Cell Line ; Ceramics/chemistry ; Dihydroxyphenylalanine/chemistry ; Dopamine/*chemistry ; Fibroblasts/physiology ; Humans ; Hyaluronic Acid/chemistry ; Hydrogen-Ion Concentration ; Metals/chemistry ; Mytilus edulis/chemistry/physiology ; Oxidation-Reduction ; Oxides/chemistry ; Polymers/*chemistry ; Proteins/chemistry ; Semiconductors ; Surface Properties
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2007-06-02
    Description: Human cytomegalovirus infection perturbs multiple cellular processes that could promote the release of proapoptotic stimuli. Consequently, it encodes mechanisms to prevent cell death during infection. Using rotenone, a potent inhibitor of the mitochondrial enzyme complex I (reduced nicotinamide adenine dinucleotide-ubiquinone oxido-reductase), we found that human cytomegalovirus infection protected cells from rotenone-induced apoptosis, a protection mediated by a 2.7-kilobase virally encoded RNA (beta2.7). During infection, beta2.7 RNA interacted with complex I and prevented the relocalization of the essential subunit genes associated with retinoid/interferon-induced mortality-19, in response to apoptotic stimuli. This interaction, which is important for stabilizing the mitochondrial membrane potential, resulted in continued adenosine triphosphate production, which is critical for the successful completion of the virus' life cycle. Complex I targeting by a viral RNA represents a refined strategy to modulate the metabolic viability of the infected host cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reeves, Matthew B -- Davies, Andrew A -- McSharry, Brian P -- Wilkinson, Gavin W -- Sinclair, John H -- G0700142/Medical Research Council/United Kingdom -- G9202171/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Jun 1;316(5829):1345-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17540903" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; *Apoptosis ; Apoptosis Regulatory Proteins/genetics/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cytomegalovirus/genetics/growth & development/*physiology ; Electron Transport Complex I/antagonists & inhibitors/*metabolism ; Enzyme Inhibitors/pharmacology ; Fibroblasts/metabolism/virology ; Humans ; Membrane Potential, Mitochondrial ; Mitochondria/*metabolism ; NADH, NADPH Oxidoreductases/genetics/metabolism ; Neurons/*cytology/*virology ; Oxidative Stress ; RNA, Untranslated/genetics/metabolism ; RNA, Viral/genetics/*metabolism ; Rotenone/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2007-06-26
    Description: Primate genomes contain a large number of endogenous retroviruses and encode evolutionarily dynamic proteins that provide intrinsic immunity to retroviral infections. We report here the resurrection of the core protein of a 4-million-year-old endogenous virus from the chimpanzee genome and show that the human variant of the intrinsic immune protein TRIM5alpha can actively prevent infection by this virus. However, we suggest that selective changes that have occurred in the human lineage during the acquisition of resistance to this virus, and perhaps similar viruses, may have left our species more susceptible to infection by human immunodeficiency virus type 1 (HIV-1).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Shari M -- Malik, Harmit S -- Emerman, Michael -- New York, N.Y. -- Science. 2007 Jun 22;316(5832):1756-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17588933" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Biological Evolution ; Carrier Proteins/genetics/*physiology ; Cats ; Cell Line ; Dna ; Disease Susceptibility ; Endogenous Retroviruses/genetics/*physiology ; Evolution, Molecular ; Gorilla gorilla ; HIV Infections/genetics/immunology ; Hiv-1 ; Humans ; Immunity, Innate/genetics ; Macaca mulatta ; Molecular Sequence Data ; Pan troglodytes/genetics/virology ; Retroviridae Infections/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2007-06-16
    Description: Multiple signaling pathways, including Wnt signaling, participate in animal development, stem cell biology, and human cancer. Although many components of the Wnt pathway have been identified, unresolved questions remain as to the mechanism by which Wnt binding to its receptors Frizzled and Low-density lipoprotein receptor-related protein 6 (LRP6) triggers downstream signaling events. With live imaging of vertebrate cells, we show that Wnt treatment quickly induces plasma membrane-associated LRP6 aggregates. LRP6 aggregates are phosphorylated and can be detergent-solubilized as ribosome-sized multiprotein complexes. Phospho-LRP6 aggregates contain Wnt-pathway components but no common vesicular traffic markers except caveolin. The scaffold protein Dishevelled (Dvl) is required for LRP6 phosphorylation and aggregation. We propose that Wnts induce coclustering of receptors and Dvl in LRP6-signalosomes, which in turn triggers LRP6 phosphorylation to promote Axin recruitment and beta-catenin stabilization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bilic, Josipa -- Huang, Ya-Lin -- Davidson, Gary -- Zimmermann, Timo -- Cruciat, Cristina-Maria -- Bienz, Mariann -- Niehrs, Christof -- MC_U105192713/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Jun 15;316(5831):1619-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17569865" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*metabolism ; Animals ; Axin Protein ; Cell Line ; Cell Line, Tumor ; Cell Membrane/metabolism ; Centrifugation, Density Gradient ; Cytoplasm/metabolism ; Drosophila ; Glycogen Synthase Kinase 3/analysis/metabolism ; HeLa Cells ; Humans ; LDL-Receptor Related Proteins/analysis/genetics/*metabolism ; Low Density Lipoprotein Receptor-Related Protein-6 ; Mice ; Models, Biological ; Phosphoproteins/*metabolism ; Phosphorylation ; Repressor Proteins/analysis/metabolism ; *Signal Transduction ; Transfection ; Wnt Proteins/*metabolism ; Wnt3 Protein ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2007-04-07
    Description: The formation of a metaphase spindle, a bipolar microtubule array with centrally aligned chromosomes, is a prerequisite for the faithful segregation of a cell's genetic material. Using a full-genome RNA interference screen of Drosophila S2 cells, we identified about 200 genes that contribute to spindle assembly, more than half of which were unexpected. The screen, in combination with a variety of secondary assays, led to new insights into how spindle microtubules are generated; how centrosomes are positioned; and how centrioles, centrosomes, and kinetochores are assembled.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837481/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837481/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goshima, Gohta -- Wollman, Roy -- Goodwin, Sarah S -- Zhang, Nan -- Scholey, Jonathan M -- Vale, Ronald D -- Stuurman, Nico -- R37 GM038499/GM/NIGMS NIH HHS/ -- R37 GM038499-21/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):417-21. Epub 2007 Apr 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and the Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412918" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Centrosome/metabolism/ultrastructure ; Chromosomes/physiology/ultrastructure ; Drosophila Proteins/*genetics/*physiology ; Drosophila melanogaster ; *Genes, Insect ; Image Processing, Computer-Assisted ; Kinetochores/metabolism ; Metaphase ; Microtubules/metabolism ; Mitosis ; Phenotype ; RNA Interference ; Spindle Apparatus/*genetics/*metabolism/ultrastructure ; Tubulin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2007-01-06
    Description: Wilms tumor is a pediatric kidney cancer associated with inactivation of the WT1 tumor-suppressor gene in 5 to 10% of cases. Using a high-resolution screen for DNA copy-number alterations in Wilms tumor, we identified somatic deletions targeting a previously uncharacterized gene on the X chromosome. This gene, which we call WTX, is inactivated in approximately one-third of Wilms tumors (15 of 51 tumors). Tumors with mutations in WTX lack WT1 mutations, and both genes share a restricted temporal and spatial expression pattern in normal renal precursors. In contrast to biallelic inactivation of autosomal tumor-suppressor genes, WTX is inactivated by a monoallelic "single-hit" event targeting the single X chromosome in tumors from males and the active X chromosome in tumors from females.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rivera, Miguel N -- Kim, Woo Jae -- Wells, Julie -- Driscoll, David R -- Brannigan, Brian W -- Han, Moonjoo -- Kim, James C -- Feinberg, Andrew P -- Gerald, William L -- Vargas, Sara O -- Chin, Lynda -- Iafrate, A John -- Bell, Daphne W -- Haber, Daniel A -- P01-CA101942/CA/NCI NIH HHS/ -- R37 CA054358/CA/NCI NIH HHS/ -- R37 CA054358-17/CA/NCI NIH HHS/ -- R37-CA058596/CA/NCI NIH HHS/ -- T32-CA009216/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):642-5. Epub 2007 Jan 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center, Harvard Medical Center, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204608" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Alleles ; Amino Acid Sequence ; Animals ; Cell Line ; Chromosome Deletion ; Chromosomes, Human, X/*genetics ; Female ; Gene Expression ; *Gene Silencing ; *Genes, Wilms Tumor ; Heterozygote ; Humans ; In Situ Hybridization, Fluorescence ; Kidney/embryology/metabolism ; Kidney Neoplasms/*genetics ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; Point Mutation ; Tumor Suppressor Proteins/chemistry/*genetics/physiology ; Wilms Tumor/*genetics ; beta Catenin/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2007-08-04
    Description: Epigenetic inheritance in mammals relies in part on robust propagation of DNA methylation patterns throughout development. We show that the protein UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1), also known as NP95 in mouse and ICBP90 in human, is required for maintaining DNA methylation. UHRF1 colocalizes with the maintenance DNA methyltransferase protein DNMT1 throughout S phase. UHRF1 appears to tether DNMT1 to chromatin through its direct interaction with DNMT1. Furthermore UHRF1 contains a methyl DNA binding domain, the SRA (SET and RING associated) domain, that shows strong preferential binding to hemimethylated CG sites, the physiological substrate for DNMT1. These data suggest that UHRF1 may help recruit DNMT1 to hemimethylated DNA to facilitate faithful maintenance of DNA methylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bostick, Magnolia -- Kim, Jong Kyong -- Esteve, Pierre-Olivier -- Clark, Amander -- Pradhan, Sriharsa -- Jacobsen, Steven E -- GM060398/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 21;317(5845):1760-4. Epub 2007 Aug 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17673620" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CCAAT-Enhancer-Binding Proteins/*metabolism ; COS Cells ; Cell Line ; Cercopithecus aethiops ; Chromatin/metabolism ; DNA (Cytosine-5-)-Methyltransferase/*metabolism ; *DNA Methylation ; HeLa Cells ; Humans ; Mice ; Nuclear Proteins/*metabolism ; Protein Binding ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2007-02-17
    Description: Pathogenic bacteria use the type III secretion system to deliver effector proteins into host cells to modulate the host signaling pathways. In this study, the Shigella type III effector OspF was shown to inactivate mitogen-activated protein kinases (MAPKs) [extracellular signal-regulated kinases 1 and 2 (Erk1/2), c-Jun N-terminal kinase, and p38]. OspF irreversibly removed phosphate groups from the phosphothreonine but not from the phosphotyrosine residue in the activation loop of MAPKs. Mass spectrometry revealed a mass loss of 98 daltons in p-Erk2, due to the abstraction of the alpha proton concomitant with cleavage of the C-OP bond in the phosphothreonine residue. This unexpected enzymatic activity, termed phosphothreonine lyase, appeared specific for MAPKs and was shared by other OspF family members.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Hongtao -- Xu, Hao -- Zhou, Yan -- Zhang, Jie -- Long, Chengzu -- Li, Shuqin -- Chen, She -- Zhou, Jian-Min -- Shao, Feng -- New York, N.Y. -- Science. 2007 Feb 16;315(5814):1000-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Biological Sciences, Beijing, 102206, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17303758" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacterial Proteins/genetics/*metabolism ; Cell Line ; HeLa Cells ; Humans ; JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase 1/antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinase 3/antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinases/antagonists & inhibitors/*metabolism ; Molecular Sequence Data ; Mutagenesis ; NF-kappa B/metabolism ; Phosphoprotein Phosphatases/*metabolism ; Phosphorylation ; Salmonella typhimurium ; Shigella flexneri/*metabolism/physiology ; Tyrosine/metabolism ; p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2007-02-10
    Description: Extensive studies are currently being performed to associate disease susceptibility with one form of genetic variation, namely, single-nucleotide polymorphisms (SNPs). In recent years, another type of common genetic variation has been characterized, namely, structural variation, including copy number variants (CNVs). To determine the overall contribution of CNVs to complex phenotypes, we have performed association analyses of expression levels of 14,925 transcripts with SNPs and CNVs in individuals who are part of the International HapMap project. SNPs and CNVs captured 83.6% and 17.7% of the total detected genetic variation in gene expression, respectively, but the signals from the two types of variation had little overlap. Interrogation of the genome for both types of variants may be an effective way to elucidate the causes of complex phenotypes and disease in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2665772/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2665772/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stranger, Barbara E -- Forrest, Matthew S -- Dunning, Mark -- Ingle, Catherine E -- Beazley, Claude -- Thorne, Natalie -- Redon, Richard -- Bird, Christine P -- de Grassi, Anna -- Lee, Charles -- Tyler-Smith, Chris -- Carter, Nigel -- Scherer, Stephen W -- Tavare, Simon -- Deloukas, Panagiotis -- Hurles, Matthew E -- Dermitzakis, Emmanouil T -- 065535/Wellcome Trust/United Kingdom -- 076113/Wellcome Trust/United Kingdom -- 077009/Wellcome Trust/United Kingdom -- 077014/Wellcome Trust/United Kingdom -- 077046/Wellcome Trust/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):848-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289997" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Female ; Gene Deletion ; *Gene Dosage ; Gene Duplication ; *Gene Expression Regulation ; *Genetic Variation ; Genetics, Population ; *Genome, Human ; Genomics/methods ; Haplotypes ; Humans ; Linkage Disequilibrium ; Male ; Mutation ; Nucleic Acid Hybridization ; Phenotype ; *Polymorphism, Single Nucleotide ; Regression Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2007-02-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Daley, George Q -- Ahrlund Richter, Lars -- Auerbach, Jonathan M -- Benvenisty, Nissim -- Charo, R Alta -- Chen, Grace -- Deng, Hong-Kui -- Goldstein, Lawrence S -- Hudson, Kathy L -- Hyun, Insoo -- Junn, Sung Chull -- Love, Jane -- Lee, Eng Hin -- McLaren, Anne -- Mummery, Christine L -- Nakatsuji, Norio -- Racowsky, Catherine -- Rooke, Heather -- Rossant, Janet -- Scholer, Hans R -- Solbakk, Jan Helge -- Taylor, Patrick -- Trounson, Alan O -- Weissman, Irving L -- Wilmut, Ian -- Yu, John -- Zoloth, Laurie -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):603-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Children's Hospital, Boston, Massachusetts, USA. george.daley@childrens.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272706" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chimera ; *Embryo Research/ethics/legislation & jurisprudence ; Embryonic Development ; *Embryonic Stem Cells ; *Guidelines as Topic ; Humans ; Informed Consent ; International Cooperation ; Oocyte Donation/economics/ethics ; Pluripotent Stem Cells ; Societies, Scientific ; Tissue Donors/ethics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2007-11-10
    Description: Endoplasmic reticulum (ER) stress activates a set of signaling pathways, collectively termed the unfolded protein response (UPR). The three UPR branches (IRE1, PERK, and ATF6) promote cell survival by reducing misfolded protein levels. UPR signaling also promotes apoptotic cell death if ER stress is not alleviated. How the UPR integrates its cytoprotective and proapoptotic outputs to select between life or death cell fates is unknown. We found that IRE1 and ATF6 activities were attenuated by persistent ER stress in human cells. By contrast, PERK signaling, including translational inhibition and proapoptotic transcription regulator Chop induction, was maintained. When IRE1 activity was sustained artificially, cell survival was enhanced, suggesting a causal link between the duration of UPR branch signaling and life or death cell fate after ER stress. Key findings from our studies in cell culture were recapitulated in photoreceptors expressing mutant rhodopsin in animal models of retinitis pigmentosa.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670588/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670588/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Jonathan H -- Li, Han -- Yasumura, Douglas -- Cohen, Hannah R -- Zhang, Chao -- Panning, Barbara -- Shokat, Kevan M -- Lavail, Matthew M -- Walter, Peter -- K08 EY018313/EY/NEI NIH HHS/ -- K08 EY018313-01/EY/NEI NIH HHS/ -- R01 EY020846/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 9;318(5852):944-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA 94158, USA. Jonathan.Lin@ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17991856" target="_blank"〉PubMed〈/a〉
    Keywords: Activating Transcription Factor 6/metabolism ; Animals ; Animals, Genetically Modified ; *Apoptosis ; Cell Line ; *Cell Survival ; Disease Models, Animal ; Endoplasmic Reticulum/*metabolism ; Endoribonucleases/genetics/*metabolism ; Humans ; Kinetics ; Membrane Proteins/genetics/*metabolism ; Mice ; Mutation ; *Protein Folding ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Proteins/chemistry/*metabolism ; Rats ; Retina/metabolism ; Retinitis Pigmentosa/metabolism ; Rhodopsin/chemistry/metabolism ; *Signal Transduction ; eIF-2 Kinase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2007-04-28
    Description: Clinically successful hematopoietic cell transplantation is dependent on hematopoietic stem and progenitor cells. Here we identify the matricellular protein Nephroblastoma Overexpressed (Nov, CCN3) as being essential for their functional integrity. Nov expression is restricted to the primitive (CD34) compartments of umbilical vein cord blood, and its knockdown in these cells by lentivirus-mediated RNA interference abrogates their function in vitro and in vivo. Conversely, forced expression of Nov and addition of recombinant Nov protein both enhance primitive stem and/or progenitor activity. Taken together, our results identify Nov (CCN3) as a regulator of human hematopoietic stem or progenitor cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gupta, Rajeev -- Hong, Dengli -- Iborra, Francisco -- Sarno, Samantha -- Enver, Tariq -- MC_U137961143/Medical Research Council/United Kingdom -- MC_U137973816/Medical Research Council/United Kingdom -- MC_U137973817/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Apr 27;316(5824):590-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, OX3 9DS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17463287" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD34/analysis ; Cell Line ; Cells, Cultured ; Colony-Forming Units Assay ; Connective Tissue Growth Factor ; Genetic Vectors ; Hematopoiesis ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/cytology/*physiology ; Humans ; Immediate-Early Proteins/genetics/*physiology ; Intercellular Signaling Peptides and Proteins/genetics/*physiology ; Lentivirus/genetics ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Nephroblastoma Overexpressed Protein ; RNA Interference ; Recombinant Proteins/metabolism ; Transfection ; Transplantation, Heterologous
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2007-08-11
    Description: The contribution of stem and progenitor cell dysfunction and depletion in normal aging remains incompletely understood. We explored this concept in the Klotho mouse model of accelerated aging. Analysis of various tissues and organs from young Klotho mice revealed a decrease in stem cell number and an increase in progenitor cell senescence. Because klotho is a secreted protein, we postulated that klotho might interact with other soluble mediators of stem cells. We found that klotho bound to various Wnt family members. In a cell culture model, the Wnt-klotho interaction resulted in the suppression of Wnt biological activity. Tissues and organs from klotho-deficient animals showed evidence of increased Wnt signaling, and ectopic expression of klotho antagonized the activity of endogenous and exogenous Wnt. Both in vitro and in vivo, continuous Wnt exposure triggered accelerated cellular senescence. Thus, klotho appears to be a secreted Wnt antagonist and Wnt proteins have an unexpected role in mammalian aging.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Hongjun -- Fergusson, Maria M -- Castilho, Rogerio M -- Liu, Jie -- Cao, Liu -- Chen, Jichun -- Malide, Daniela -- Rovira, Ilsa I -- Schimel, Daniel -- Kuo, Calvin J -- Gutkind, J Silvio -- Hwang, Paul M -- Finkel, Toren -- 1 R01 DK069989-01/DK/NIDDK NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 10;317(5839):803-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17690294" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*physiology ; Animals ; Apoptosis ; Bone Density ; Bone and Bones/metabolism ; Cell Aging/*physiology ; Cell Count ; Cell Line ; Cell Shape ; Glucuronidase/chemistry/genetics/*metabolism ; Humans ; Mice ; Mice, Transgenic ; Protein Structure, Tertiary ; *Signal Transduction ; Stem Cells/cytology/*physiology ; Wnt Proteins/antagonists & inhibitors/*metabolism ; Wnt1 Protein/metabolism ; Wnt3 Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2007-10-27
    Description: The beta2-adrenergic receptor (beta2AR) is a well-studied prototype for heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) that respond to diffusible hormones and neurotransmitters. To overcome the structural flexibility of the beta2AR and to facilitate its crystallization, we engineered a beta2AR fusion protein in which T4 lysozyme (T4L) replaces most of the third intracellular loop of the GPCR ("beta2AR-T4L") and showed that this protein retains near-native pharmacologic properties. Analysis of adrenergic receptor ligand-binding mutants within the context of the reported high-resolution structure of beta2AR-T4L provides insights into inverse-agonist binding and the structural changes required to accommodate catecholamine agonists. Amino acids known to regulate receptor function are linked through packing interactions and a network of hydrogen bonds, suggesting a conformational pathway from the ligand-binding pocket to regions that interact with G proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosenbaum, Daniel M -- Cherezov, Vadim -- Hanson, Michael A -- Rasmussen, Soren G F -- Thian, Foon Sun -- Kobilka, Tong Sun -- Choi, Hee-Jung -- Yao, Xiao-Jie -- Weis, William I -- Stevens, Raymond C -- Kobilka, Brian K -- F32 GM082028/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM62411/GM/NIGMS NIH HHS/ -- R01 GM056169/GM/NIGMS NIH HHS/ -- R21 GM075811/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 23;318(5854):1266-73. Epub 2007 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962519" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-Agonists/chemistry/metabolism ; Adrenergic beta-Antagonists/chemistry/metabolism ; Amino Acid Sequence ; Bacteriophage T4/enzymology ; Binding Sites ; Cell Line ; Cell Membrane/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Drug Inverse Agonism ; Humans ; Immunoglobulin Fab Fragments/chemistry/metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Muramidase/chemistry/metabolism ; Propanolamines/chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Adrenergic, beta-2/*chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2007-12-22
    Description: The guanine nucleotide exchange factor p63RhoGEF is an effector of the heterotrimeric guanine nucleotide-binding protein (G protein) Galphaq and thereby links Galphaq-coupled receptors (GPCRs) to the activation of the small-molecular-weight G protein RhoA. We determined the crystal structure of the Galphaq-p63RhoGEF-RhoA complex, detailing the interactions of Galphaq with the Dbl and pleckstrin homology (DH and PH) domains of p63RhoGEF. These interactions involve the effector-binding site and the C-terminal region of Galphaq and appear to relieve autoinhibition of the catalytic DH domain by the PH domain. Trio, Duet, and p63RhoGEF are shown to constitute a family of Galphaq effectors that appear to activate RhoA both in vitro and in intact cells. We propose that this structure represents the crux of an ancient signal transduction pathway that is expected to be important in an array of physiological processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lutz, Susanne -- Shankaranarayanan, Aruna -- Coco, Cassandra -- Ridilla, Marc -- Nance, Mark R -- Vettel, Christiane -- Baltus, Doris -- Evelyn, Chris R -- Neubig, Richard R -- Wieland, Thomas -- Tesmer, John J G -- HL071818/HL/NHLBI NIH HHS/ -- HL086865/HL/NHLBI NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Dec 21;318(5858):1923-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Maybachstrasse 14, D-68169 Mannheim, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18096806" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; GTP-Binding Protein alpha Subunits, Gq-G11/*chemistry/metabolism ; Guanine Nucleotide Exchange Factors/*chemistry/metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rho Guanine Nucleotide Exchange Factors ; Signal Transduction ; rhoA GTP-Binding Protein/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2007-08-25
    Description: Histidine kinases, used for environmental sensing by bacterial two-component systems, are involved in regulation of bacterial gene expression, chemotaxis, phototaxis, and virulence. Flavin-containing domains function as light-sensory modules in plant and algal phototropins and in fungal blue-light receptors. We have discovered that the prokaryotes Brucella melitensis, Brucella abortus, Erythrobacter litoralis, and Pseudomonas syringae contain light-activated histidine kinases that bind a flavin chromophore and undergo photochemistry indicative of cysteinyl-flavin adduct formation. Infection of macrophages by B. abortus was stimulated by light in the wild type but was limited in photochemically inactive and null mutants, indicating that the flavin-containing histidine kinase functions as a photoreceptor regulating B. abortus virulence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Swartz, Trevor E -- Tseng, Tong-Seung -- Frederickson, Marcus A -- Paris, Gaston -- Comerci, Diego J -- Rajashekara, Gireesh -- Kim, Jung-Gun -- Mudgett, Mary Beth -- Splitter, Gary A -- Ugalde, Rodolfo A -- Goldbaum, Fernando A -- Briggs, Winslow R -- Bogomolni, Roberto A -- 1.U54-AI-057153/AI/NIAID NIH HHS/ -- R01 GM068886/GM/NIGMS NIH HHS/ -- R01-GM068886/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 24;317(5841):1090-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17717187" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Brucella abortus/*enzymology/growth & development/pathogenicity ; Brucella melitensis/*enzymology ; Cell Line ; Cloning, Molecular ; Enzyme Activation ; Flavin Mononucleotide/metabolism ; *Light ; Macrophages/*microbiology ; Mice ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Photochemistry ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Pseudomonas syringae/*enzymology ; Signal Transduction ; Sphingomonadaceae/*enzymology ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2007-02-03
    Description: Seven-transmembrane receptor (7TMR) signaling is transduced by second messengers such as diacylglycerol (DAG) generated in response to the heterotrimeric guanine nucleotide-binding protein Gq and is terminated by receptor desensitization and degradation of the second messengers. We show that beta-arrestins coordinate both processes for the Gq-coupled M1 muscarinic receptor. beta-Arrestins physically interact with diacylglycerol kinases (DGKs), enzymes that degrade DAG. Moreover, beta-arrestins are essential for conversion of DAG to phosphatidic acid after agonist stimulation, and this activity requires recruitment of the beta-arrestin-DGK complex to activated 7TMRs. The dual function of beta-arrestins, limiting production of diacylglycerol (by receptor desensitization) while enhancing its rate of degradation, is analogous to their ability to recruit adenosine 3',5'-monophosphate phosphodiesterases to Gs-coupled beta2-adrenergic receptors. Thus, beta-arrestins can serve similar regulatory functions for disparate classes of 7TMRs through structurally dissimilar enzymes that degrade chemically distinct second messengers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nelson, Christopher D -- Perry, Stephen J -- Regier, Debra S -- Prescott, Stephen M -- Topham, Matthew K -- Lefkowitz, Robert J -- CA95463/CA/NCI NIH HHS/ -- HL16037/HL/NHLBI NIH HHS/ -- HL70631/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):663-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272726" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/*metabolism ; COS Cells ; Carbachol/pharmacology ; Cell Line ; Cercopithecus aethiops ; Diacylglycerol Kinase/genetics/*metabolism ; Diglycerides/*metabolism ; Humans ; Mutation ; Phosphatidic Acids/metabolism ; Protein Binding ; RNA, Small Interfering ; Receptor, Muscarinic M1/*metabolism ; Recombinant Fusion Proteins/metabolism ; Second Messenger Systems ; *Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2007-02-27
    Description: MicroRNAs (miRNAs) are single-stranded noncoding RNAs of 19 to 25 nucleotides that function as gene regulators and as a host cell defense against both RNA and DNA viruses. We provide evidence for a physiological role of the miRNA-silencing machinery in controlling HIV-1 replication. Type III RNAses Dicer and Drosha, responsible for miRNA processing, inhibited virus replication both in peripheral blood mononuclear cells from HIV-1-infected donors and in latently infected cells. In turn, HIV-1 actively suppressed the expression of the polycistronic miRNA cluster miR-17/92. This suppression was found to be required for efficient viral replication and was dependent on the histone acetyltransferase Tat cofactor PCAF. Our results highlight the involvement of the miRNA-silencing pathway in HIV-1 replication and latency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Triboulet, Robinson -- Mari, Bernard -- Lin, Yea-Lih -- Chable-Bessia, Christine -- Bennasser, Yamina -- Lebrigand, Kevin -- Cardinaud, Bruno -- Maurin, Thomas -- Barbry, Pascal -- Baillat, Vincent -- Reynes, Jacques -- Corbeau, Pierre -- Jeang, Kuan-Teh -- Benkirane, Monsef -- New York, N.Y. -- Science. 2007 Mar 16;315(5818):1579-82. Epub 2007 Feb 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Virologie Moleculaire, Institut de Genetique Humaine, Montpellier, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17322031" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Cell Cycle Proteins/genetics/metabolism ; Cell Line ; Gene Expression Regulation ; Gene Products, tat/metabolism ; HIV-1/genetics/*physiology ; HeLa Cells ; Histone Acetyltransferases/genetics/metabolism ; Humans ; Jurkat Cells ; Leukocytes, Mononuclear/enzymology/*virology ; MicroRNAs/*genetics ; Oligonucleotide Array Sequence Analysis ; *RNA Interference ; RNA, Small Interfering/genetics ; Ribonuclease III/genetics/metabolism ; Transcription Factors/genetics/metabolism ; Transfection ; Virus Latency ; *Virus Replication ; p300-CBP Transcription Factors ; tat Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2007-10-20
    Description: Genetic analysis of mammalian color variation has provided fundamental insight into human biology and disease. In most vertebrates, two key genes, Agouti and Melanocortin 1 receptor (Mc1r), encode a ligand-receptor system that controls pigment type-switching, but in domestic dogs, a third gene is implicated, the K locus, whose genetic characteristics predict a previously unrecognized component of the melanocortin pathway. We identify the K locus as beta-defensin 103 (CBD103) and show that its protein product binds with high affinity to the Mc1r and has a simple and strong effect on pigment type-switching in domestic dogs and transgenic mice. These results expand the functional role of beta-defensins, a protein family previously implicated in innate immunity, and identify an additional class of ligands for signaling through melanocortin receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906624/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906624/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Candille, Sophie I -- Kaelin, Christopher B -- Cattanach, Bruce M -- Yu, Bin -- Thompson, Darren A -- Nix, Matthew A -- Kerns, Julie A -- Schmutz, Sheila M -- Millhauser, Glenn L -- Barsh, Gregory S -- R01 DK064265/DK/NIDDK NIH HHS/ -- R01 DK064265-08/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 30;318(5855):1418-23. Epub 2007 Oct 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Genetics and Pediatrics, Stanford University, Stanford, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947548" target="_blank"〉PubMed〈/a〉
    Keywords: Agouti Signaling Protein/genetics/metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Chromosome Mapping ; Dogs/*genetics/metabolism ; Female ; Hair Color/*genetics ; Haplotypes ; Humans ; Keratinocytes/metabolism ; Male ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Mutation ; Polymorphism, Genetic ; Receptor, Melanocortin, Type 1/*metabolism ; Sequence Analysis, DNA ; Sequence Deletion ; Signal Transduction ; Skin/metabolism ; beta-Defensins/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2007-01-06
    Description: During cell division, copies of mouse chromosome 7 are segregated selectively or randomly to daughter cells depending on the cell type. The mechanism for differential segregation is unknown. Because mouse left-right dynein (LRD) gene mutations result in randomization of visceral organs' laterality, we hypothesized that LRD may also function in selective chromatid segregation. Indeed, upon knock-down by RNA interference methods, LRD depletion disrupts biased segregation. LRD messenger RNA presence or absence correlates with the observed segregation patterns. This work supports the claim that LRD functions in a mechanism for selective chromatid segregation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Armakolas, Athanasios -- Klar, Amar J S -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):100-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Post Office Box B, Frederick, MD 21702-1201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204651" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axonemal Dyneins ; Body Patterning ; Cell Line ; Cell Lineage ; Chromatids/*physiology ; *Chromosome Segregation ; DNA Replication ; Dyneins/*genetics/*physiology ; Ectoderm/*cytology ; Embryonic Stem Cells/*cytology ; Endoderm/*cytology ; Interphase ; Mice ; Mitosis ; Mutation ; RNA Interference ; Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2007-12-15
    Description: RNA polymerase II (Pol II) transcribes genes that encode proteins and noncoding small nuclear RNAs (snRNAs). The carboxyl-terminal repeat domain (CTD) of the largest subunit of mammalian RNA Pol II, comprising tandem repeats of the heptapeptide consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7, is required for expression of both gene types. We show that mutation of serine-7 to alanine causes a specific defect in snRNA gene expression. We also present evidence that phosphorylation of serine-7 facilitates interaction with the snRNA gene-specific Integrator complex. These findings assign a biological function to this amino acid and highlight a gene type-specific requirement for a residue within the CTD heptapeptide, supporting the existence of a CTD code.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2263945/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2263945/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Egloff, Sylvain -- O'Reilly, Dawn -- Chapman, Rob D -- Taylor, Alice -- Tanzhaus, Katrin -- Pitts, Laura -- Eick, Dirk -- Murphy, Shona -- 072107/Wellcome Trust/United Kingdom -- 081312/Wellcome Trust/United Kingdom -- G0400653/Medical Research Council/United Kingdom -- G0400653(71330)/Medical Research Council/United Kingdom -- G9826944/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Dec 14;318(5857):1777-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18079403" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine ; Amino Acid Sequence ; Cell Line ; Consensus Sequence ; *Gene Expression Regulation ; Heterogeneous-Nuclear Ribonucleoproteins/genetics ; Humans ; Mutation ; Oligopeptides/chemistry/metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Protein Subunits/genetics/metabolism ; RNA Polymerase II/chemistry/genetics/*metabolism ; RNA Processing, Post-Transcriptional ; RNA, Messenger/genetics/metabolism ; RNA, Small Nuclear/*genetics ; Serine/*metabolism ; Templates, Genetic ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2007-02-03
    Description: The 1918 influenza pandemic was a catastrophic series of virus outbreaks that spread across the globe. Here, we show that only a modest change in the 1918 influenza hemagglutinin receptor binding site alters the transmissibility of this pandemic virus. Two amino acid mutations that cause a switch in receptor binding preference from the human alpha-2,6 to the avian alpha-2,3 sialic acid resulted in a virus incapable of respiratory droplet transmission between ferrets but that maintained its lethality and replication efficiency in the upper respiratory tract. Furthermore, poor transmission of a 1918 virus with dual alpha-2,6 and alpha-2,3 specificity suggests that a predominant human alpha-2,6 sialic acid binding preference is essential for optimal transmission of this pandemic virus. These findings confirm an essential role of hemagglutinin receptor specificity for the transmission of influenza viruses among mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tumpey, Terrence M -- Maines, Taronna R -- Van Hoeven, Neal -- Glaser, Laurel -- Solorzano, Alicia -- Pappas, Claudia -- Cox, Nancy J -- Swayne, David E -- Palese, Peter -- Katz, Jacqueline M -- Garcia-Sastre, Adolfo -- P01 AI058113/AI/NIAID NIH HHS/ -- U19 AI62623/AI/NIAID NIH HHS/ -- U54 AIO57158/PHS HHS/ -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):655-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Influenza Branch, Mailstop G-16, Division of Viral and Ricksettial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA. tft9@cdc.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272724" target="_blank"〉PubMed〈/a〉
    Keywords: *Amino Acid Substitution ; Animals ; Cell Line ; Disease Models, Animal ; Dogs ; Ferrets ; Galactose/metabolism ; Glycoconjugates/metabolism ; Hemagglutinin Glycoproteins, Influenza Virus/*genetics/metabolism ; Humans ; Influenza A Virus, H1N1 Subtype/*genetics/pathogenicity/physiology ; Influenza, Human/pathology/*transmission/*virology ; Lung/pathology/virology ; Male ; *Mutation ; Nose/virology ; Receptors, Virus/metabolism ; Respiratory System/virology ; Sialic Acids/metabolism ; Virulence ; Virus Replication ; Virus Shedding
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2007-05-19
    Description: Aberrant WNT signal transduction is involved in many diseases. In colorectal cancer and melanoma, mutational disruption of proteins involved in the degradation of beta-catenin, the key effector of the WNT signaling pathway, results in stabilization of beta-catenin and, in turn, activation of transcription. We have used tandem-affinity protein purification and mass spectrometry to define the protein interaction network of the beta-catenin destruction complex. This assay revealed that WTX, a protein encoded by a gene mutated in Wilms tumors, forms a complex with beta-catenin, AXIN1, beta-TrCP2 (beta-transducin repeat-containing protein 2), and APC (adenomatous polyposis coli). Functional analyses in cultured cells, Xenopus, and zebrafish demonstrate that WTX promotes beta-catenin ubiquitination and degradation, which antagonize WNT/beta-catenin signaling. These data provide a possible mechanistic explanation for the tumor suppressor activity of WTX.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Major, Michael B -- Camp, Nathan D -- Berndt, Jason D -- Yi, Xianhua -- Goldenberg, Seth J -- Hubbert, Charlotte -- Biechele, Travis L -- Gingras, Anne-Claude -- Zheng, Ning -- Maccoss, Michael J -- Angers, Stephane -- Moon, Randall T -- New York, N.Y. -- Science. 2007 May 18;316(5827):1043-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Washington School of Medicine, Box 357370, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17510365" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Adenomatous Polyposis Coli Protein/metabolism ; Animals ; Axin Protein ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; Genes, Wilms Tumor ; Humans ; Kidney Neoplasms/genetics ; Protein Binding ; Protein Interaction Mapping ; Proteomics ; RNA Interference ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/metabolism ; *Signal Transduction ; Transduction, Genetic ; Tumor Suppressor Proteins/chemistry/genetics/*metabolism ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/metabolism ; Wilms Tumor/genetics ; Wnt Proteins/*metabolism ; Xenopus Proteins ; Zebrafish ; beta Catenin/*metabolism ; beta-Transducin Repeat-Containing Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-06-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Constance -- New York, N.Y. -- Science. 2007 Jun 29;316(5833):1825.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17600188" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cloning, Organism ; Embryo Implantation ; Embryo Research/ethics/legislation & jurisprudence ; Embryo, Mammalian ; Embryonic Development ; *Embryonic Stem Cells/cytology/physiology ; Humans ; Mice ; *Pluripotent Stem Cells/cytology ; Politics ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-06-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Constance -- New York, N.Y. -- Science. 2007 Jun 8;316(5830):1404.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17556554" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; *Cellular Reprogramming ; Cloning, Organism ; *Embryonic Stem Cells ; Mice ; *Nuclear Transfer Techniques ; *Zygote
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2007-12-08
    Description: Mammalian dosage compensation involves silencing of one of the two X chromosomes in females and is controlled by the X-inactivation center (Xic). The Xic, which includes Xist and its antisense transcription unit Tsix/Xite, somehow senses the number of X chromosomes and triggers Xist up-regulation from one of the two X chromosomes in females. We found that a segment of the mouse Xic lying several hundred kilobases upstream of Xist brings the two Xics together before the onset of X inactivation. This region can autonomously drive Xic trans-interactions even as an ectopic single-copy transgene. Its introduction into male embryonic stem cells is strongly selected against, consistent with a possible role in trans-activating Xist. We propose that homologous associations driven by this novel X-pairing region (Xpr) of the Xic enable a cell to sense that more than one X chromosome is present and coordinate reciprocal Xist/Tsix expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Augui, S -- Filion, G J -- Huart, S -- Nora, E -- Guggiari, M -- Maresca, M -- Stewart, A F -- Heard, E -- New York, N.Y. -- Science. 2007 Dec 7;318(5856):1632-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS UMR218, Curie Institute, 26 rue d'Ulm, Paris 75005, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18063799" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Cell Differentiation ; Cell Line ; *Chromosome Pairing ; Chromosomes, Artificial, Bacterial ; Down-Regulation ; Embryonic Stem Cells ; Female ; Mice ; Mice, Transgenic ; RNA, Long Noncoding ; RNA, Untranslated/genetics/metabolism ; S Phase ; Transfection ; Transgenes ; Up-Regulation ; X Chromosome/*genetics/physiology ; *X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-04-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Constance -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):353.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446359" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/genetics/metabolism/*pathology ; Animals ; Astrocytes/*metabolism ; Cell Death ; Cell Line ; Cells, Cultured ; Embryonic Stem Cells/cytology ; Glutamic Acid/metabolism ; Humans ; Mice ; Motor Neurons/*pathology ; Mutation ; Superoxide Dismutase/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-01-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Constance -- New York, N.Y. -- Science. 2007 Jan 12;315(5809):170.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17218496" target="_blank"〉PubMed〈/a〉
    Keywords: Amniotic Fluid/*cytology ; Bioethical Issues ; Cell Differentiation ; Cell Line ; Cell Separation ; Embryonic Stem Cells/cytology ; Humans ; *Pluripotent Stem Cells/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...