ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Models, Molecular  (62)
  • American Association for the Advancement of Science (AAAS)  (62)
  • American Institute of Physics
  • American Institute of Physics (AIP)
  • American Physical Society (APS)
  • 2005-2009
  • 1995-1999  (62)
  • 1998  (62)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (62)
  • American Institute of Physics
  • American Institute of Physics (AIP)
  • American Physical Society (APS)
Years
  • 2005-2009
  • 1995-1999  (62)
Year
  • 1
    Publication Date: 1998-03-21
    Description: The T cell receptor (TCR) inherently has dual specificity. T cells must recognize self-antigens in the thymus during maturation and then discriminate between foreign pathogens in the periphery. A molecular basis for this cross-reactivity is elucidated by the crystal structure of the alloreactive 2C TCR bound to self peptide-major histocompatibility complex (pMHC) antigen H-2Kb-dEV8 refined against anisotropic 3.0 angstrom resolution x-ray data. The interface between peptide and TCR exhibits extremely poor shape complementarity, and the TCR beta chain complementarity-determining region 3 (CDR3) has minimal interaction with the dEV8 peptide. Large conformational changes in three of the TCR CDR loops are induced upon binding, providing a mechanism of structural plasticity to accommodate a variety of different peptide antigens. Extensive TCR interaction with the pMHC alpha helices suggests a generalized orientation that is mediated by the Valpha domain of the TCR and rationalizes how TCRs can effectively "scan" different peptides bound within a large, low-affinity MHC structural framework for those that provide the slight additional kinetic stabilization required for signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia, K C -- Degano, M -- Pease, L R -- Huang, M -- Peterson, P A -- Teyton, L -- Wilson, I A -- AI42266/AI/NIAID NIH HHS/ -- AI42267/AI/NIAID NIH HHS/ -- R01 CA58896/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 20;279(5354):1166-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and the Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9469799" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallization ; Crystallography, X-Ray ; H-2 Antigens/*chemistry/*immunology/metabolism ; Ligands ; Mice ; Mice, Transgenic ; Models, Molecular ; Mutation ; Oligopeptides/*chemistry/immunology/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Antigen, T-Cell, alpha-beta/*chemistry/*immunology/metabolism ; Recombinant Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-10
    Description: The 2.5 angstrom resolution x-ray crystal structure of the Escherichia coli RNA polymerase (RNAP) alpha subunit amino-terminal domain (alphaNTD), which is necessary and sufficient to dimerize and assemble the other RNAP subunits into a transcriptionally active enzyme and contains all of the sequence elements conserved among eukaryotic alpha homologs, has been determined. The alphaNTD monomer comprises two distinct, flexibly linked domains, only one of which participates in the dimer interface. In the alphaNTD dimer, a pair of helices from one monomer interact with the cognate helices of the other to form an extensive hydrophobic core. All of the determinants for interactions with the other RNAP subunits lie on one face of the alphaNTD dimer. Sequence alignments, combined with secondary-structure predictions, support proposals that a heterodimer of the eukaryotic RNAP subunits related to Saccharomyces cerevisiae Rpb3 and Rpb11 plays the role of the alphaNTD dimer in prokaryotic RNAP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, G -- Darst, S A -- GM19441-01/GM/NIGMS NIH HHS/ -- GM53759/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jul 10;281(5374):262-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9657722" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; DNA-Directed RNA Polymerases/*chemistry ; Dimerization ; Escherichia coli/*enzymology ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA Polymerase II/chemistry ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graves, B J -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):1000-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84132, USA. graves@bioscience.utah.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9490475" target="_blank"〉PubMed〈/a〉
    Keywords: Ankyrins/chemistry ; Base Sequence ; Binding Sites ; DNA/chemistry/*metabolism ; DNA-Binding Proteins/*chemistry/*metabolism ; Dimerization ; GA-Binding Protein Transcription Factor ; Hydrogen Bonding ; Leucine Zippers ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Transcription Factors/*chemistry/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-21
    Description: The three-dimensional structure of a 70-kilodalton amino terminally truncated form of human topoisomerase I in complex with a 22-base pair duplex oligonucleotide, determined to a resolution of 2.8 angstroms, reveals all of the structural elements of the enzyme that contact DNA. The linker region that connects the central core of the enzyme to the carboxyl-terminal domain assumes a coiled-coil configuration and protrudes away from the remainder of the enzyme. The positively charged DNA-proximal surface of the linker makes only a few contacts with the DNA downstream of the cleavage site. In combination with the crystal structures of the reconstituted human topoisomerase I before and after DNA cleavage, this information suggests which amino acid residues are involved in catalyzing phosphodiester bond breakage and religation. The structures also lead to the proposal that the topoisomerization step occurs by a mechanism termed "controlled rotation."〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stewart, L -- Redinbo, M R -- Qiu, X -- Hol, W G -- Champoux, J J -- CA65656/CA/NCI NIH HHS/ -- GM16713/GM/NIGMS NIH HHS/ -- GM49156/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 6;279(5356):1534-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomolecular Structure Center and Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA 98195-7742, USA. emerald_biostructures@rocketmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9488652" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/chemistry/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA Topoisomerases, Type I/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; *Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; *Protein Conformation ; Protein Structure, Secondary ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-04-16
    Description: Photoactive yellow protein (PYP) is a member of the xanthopsin family of eubacterial blue-light photoreceptors. On absorption of light, PYP enters a photocycle that ultimately transduces the energy contained in a light signal into an altered biological response. Nanosecond time-resolved x-ray crystallography was used to determine the structure of the short-lived, red-shifted, intermediate state denoted [pR], which develops within 1 nanosecond after photoelectronic excitation of the chromophore of PYP by absorption of light. The resulting structural model demonstrates that the [pR] state possesses the cis conformation of the 4-hydroxyl cinnamic thioester chromophore, and that the process of trans to cis isomerization is accompanied by the specific formation of new hydrogen bonds that replace those broken upon excitation of the chromophore. Regions of flexibility that compose the chromophore-binding pocket serve to lower the activation energy barrier between the dark state, denoted pG, and [pR], and help initiate entrance into the photocycle. Direct structural evidence is provided for the initial processes of transduction of light energy, which ultimately translate into a physiological signal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perman, B -- Srajer, V -- Ren, Z -- Teng, T -- Pradervand, C -- Ursby, T -- Bourgeois, D -- Schotte, F -- Wulff, M -- Kort, R -- Hellingwerf, K -- Moffat, K -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1946-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506946" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Chromatiaceae/chemistry ; Crystallography, X-Ray ; Energy Metabolism ; Fourier Analysis ; Hydrogen Bonding ; Isomerism ; Kinetics ; *Light ; Models, Molecular ; *Photoreceptors, Microbial ; *Protein Conformation ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-01-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1998 Jan 9;279(5348):176-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9446222" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry ; Binding Sites ; Cell Division ; Crystallization ; Crystallography/*methods ; Crystallography, X-Ray ; *Cytoskeletal Proteins ; GTP-Binding Proteins/chemistry ; Guanosine Triphosphate/metabolism ; Microtubules/chemistry ; Models, Molecular ; *Protein Conformation ; Protein Structure, Secondary ; Tubulin/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-04-16
    Description: Genetic selection was exploited in combination with structure-based design to transform an intimately entwined, dimeric chorismate mutase into a monomeric, four-helix-bundle protein with near native activity. Successful reengineering depended on choosing a thermostable starting protein, introducing point mutations that preferentially destabilize the wild-type dimer, and using directed evolution to optimize an inserted interhelical turn. Contrary to expectations based on studies of other four-helix-bundle proteins, only a small fraction of possible turn sequences (fewer than 0.05 percent) yielded well-behaved, monomeric, and highly active enzymes. Selection for catalytic function thus provides an efficient yet stringent method for rapidly assessing correctly folded polypeptides and may prove generally useful for protein design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacBeath, G -- Kast, P -- Hilvert, D -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1958-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, Department of Chemistry, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506949" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Chorismate Mutase/*chemistry/genetics/*metabolism ; Circular Dichroism ; Cloning, Molecular ; Dimerization ; *Directed Molecular Evolution ; Escherichia coli/genetics ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; *Protein Engineering ; Protein Folding ; Protein Structure, Secondary ; Recombinant Proteins/chemistry/metabolism ; Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-10
    Description: A 20-residue protein (named Betanova) forming a monomeric, three-stranded, antiparallel beta sheet was designed using a structural backbone template and an iterative hierarchical approach. Structural and physicochemical characterization show that the beta-sheet conformation is stabilized by specific tertiary interactions and that the protein exhibits a cooperative two-state folding-unfolding transition, which is a hallmark of natural proteins. The Betanova molecule constitutes a tractable model system to aid in the understanding of beta-sheet formation, including beta-sheet aggregation and amyloid fibril formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kortemme, T -- Ramirez-Alvarado, M -- Serrano, L -- New York, N.Y. -- Science. 1998 Jul 10;281(5374):253-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg D-69117, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9657719" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Circular Dichroism ; Computer Simulation ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; Protein Denaturation ; *Protein Engineering ; Protein Folding ; *Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemical synthesis/*chemistry ; Solubility ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1998-02-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wlodawer, A -- Davies, D -- Petsko, G -- Rossmann, M -- Olson, A -- Sussman, J L -- New York, N.Y. -- Science. 1998 Jan 16;279(5349):306-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9454319" target="_blank"〉PubMed〈/a〉
    Keywords: *Crystallography, X-Ray ; *Databases, Factual ; Models, Molecular ; Periodicals as Topic ; *Protein Conformation ; Proteins/*chemistry ; Publishing ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-06-20
    Description: Crystal structures of bovine heart cytochrome c oxidase in the fully oxidized, fully reduced, azide-bound, and carbon monoxide-bound states were determined at 2.30, 2.35, 2.9, and 2.8 angstrom resolution, respectively. An aspartate residue apart from the O2 reduction site exchanges its effective accessibility to the matrix aqueous phase for one to the cytosolic phase concomitantly with a significant decrease in the pK of its carboxyl group, on reduction of the metal sites. The movement indicates the aspartate as the proton pumping site. A tyrosine acidified by a covalently linked imidazole nitrogen is a possible proton donor for the O2 reduction by the enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshikawa, S -- Shinzawa-Itoh, K -- Nakashima, R -- Yaono, R -- Yamashita, E -- Inoue, N -- Yao, M -- Fei, M J -- Libeu, C P -- Mizushima, T -- Yamaguchi, H -- Tomizaki, T -- Tsukihara, T -- New York, N.Y. -- Science. 1998 Jun 12;280(5370):1723-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Science, Himeji Institute of Technology and CREST, Japan Science and Technology Corporation (JST), Kamigohri Akoh, Hyogo 678-1297, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9624044" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aspartic Acid/chemistry/metabolism ; Azides/metabolism ; Binding Sites ; Carbon Monoxide/metabolism ; Cattle ; Copper/chemistry/metabolism ; Crystallography, X-Ray ; Electron Transport Complex IV/*chemistry/*metabolism ; Heme/analogs & derivatives/chemistry/metabolism ; Hydrogen Bonding ; Hydrogen Peroxide/chemistry/metabolism ; Hydrogen-Ion Concentration ; Ligands ; Metals/metabolism ; Models, Chemical ; Models, Molecular ; Myocardium/*enzymology ; Oxidation-Reduction ; Oxygen/metabolism ; Protein Conformation ; *Proton Pumps ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-13
    Description: Many cell surface proteins are marked for endocytosis by a cytoplasmic sequence motif, tyrosine-X-X-(hydrophobic residue), that is recognized by the mu2 subunit of AP2 adaptors. Crystal structures of the internalization signal binding domain of mu2 complexed with the internalization signal peptides of epidermal growth factor receptor and the trans-Golgi network protein TGN38 have been determined at 2.7 angstrom resolution. The signal peptides adopted an extended conformation rather than the expected tight turn. Specificity was conferred by hydrophobic pockets that bind the tyrosine and leucine in the peptide. In the crystal, the protein forms dimers that could increase the strength and specificity of binding to dimeric receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Owen, D J -- Evans, P R -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1327-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9812899" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Protein Complex 1 ; Adaptor Protein Complex 2 ; *Adaptor Protein Complex 3 ; Adaptor Protein Complex alpha Subunits ; *Adaptor Protein Complex mu Subunits ; Adaptor Proteins, Vesicular Transport ; Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Dimerization ; *Endocytosis ; *Glycoproteins ; Humans ; Hydrogen Bonding ; Membrane Glycoproteins/*chemistry/metabolism ; Membrane Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation ; Protein Sorting Signals/*chemistry/metabolism ; Protein Structure, Secondary ; Receptor, Epidermal Growth Factor/*chemistry/metabolism ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1998-05-23
    Description: The crystal structure of Bacillus subtilis ribonuclease P protein is reported at 2.6 angstroms resolution. This protein binds to ribonuclease P RNA to form a ribonucleoprotein holoenzyme with optimal catalytic activity. Mutagenesis and biochemical data indicate that an unusual left-handed betaalphabeta crossover connection and a large central cleft in the protein form conserved RNA binding sites; a metal binding loop may comprise a third RNA binding site. The unusual topology is partly shared with ribosomal protein S5 and the ribosomal translocase elongation factor G, which suggests evolution from a common RNA binding ancestor in the primordial translational apparatus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stams, T -- Niranjanakumari, S -- Fierke, C A -- Christianson, D W -- GM55387/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 May 1;280(5364):752-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9563955" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/enzymology ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Endoribonucleases/*chemistry/metabolism ; *Evolution, Molecular ; Magnesium/metabolism ; Models, Molecular ; Peptide Elongation Factor G ; Peptide Elongation Factors/chemistry ; *Protein Biosynthesis ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA, Bacterial/*chemistry/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Ribonuclease P ; Ribosomal Proteins/chemistry ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-02
    Description: The splicing of transfer RNA precursors is similar in Eucarya and Archaea. In both kingdoms an endonuclease recognizes the splice sites and releases the intron, but the mechanism of splice site recognition is different in each kingdom. The crystal structure of the endonuclease from the archaeon Methanococcus jannaschii was determined to a resolution of 2.3 angstroms. The structure indicates that the cleavage reaction is similar to that of ribonuclease A and the arrangement of the active sites is conserved between the archaeal and eucaryal enzymes. These results suggest an evolutionary pathway for splice site recognition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, H -- Trotta, C R -- Abelson, J -- F32 GM188930-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Apr 10;280(5361):279-84.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, Mail Code 147-75, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9535656" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Cloning, Molecular ; Crystallography, X-Ray ; Dimerization ; Endoribonucleases/*chemistry/genetics/metabolism ; *Evolution, Molecular ; HIV Long Terminal Repeat ; Hydrogen Bonding ; Methanococcus/*enzymology/genetics ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA Precursors/chemistry/metabolism ; *RNA Splicing ; RNA, Archaeal/chemistry/metabolism ; Saccharomyces cerevisiae/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1998-04-16
    Description: A method involving electron paramagnetic resonance spectroscopy of a site-selectively spin-labeled peripheral membrane protein in the presence and absence of membranes and of a water-soluble spin relaxant (chromium oxalate) has been developed to determine how bee venom phospholipase A2 sits on the membrane. Theory based on the Poisson-Boltzmann equation shows that the rate of spin relaxation of a protein-bound nitroxide by a membrane-impermeant spin relaxant depends on the distance (up to tens of angstroms) from the spin probe to the membrane. The measurements define the interfacial binding surface of this secreted phospholipase A2.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443684/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443684/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Y -- Nielsen, R -- Murray, D -- Hubbell, W L -- Mailer, C -- Robinson, B H -- Gelb, M H -- GM32681/GM/NIGMS NIH HHS/ -- HL36235/HL/NHLBI NIH HHS/ -- P30 ES07033/ES/NIEHS NIH HHS/ -- R01 CA052874/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1925-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Biochemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506941" target="_blank"〉PubMed〈/a〉
    Keywords: Bee Venoms/chemistry ; Binding Sites ; Chromates ; Electron Spin Resonance Spectroscopy ; *Glycerophospholipids ; Liposomes ; Membrane Proteins/analysis/*chemistry/genetics/metabolism ; *Membranes, Artificial ; Models, Molecular ; Mutation ; Oxalates ; Phosphatidic Acids ; Phospholipases A/analysis/*chemistry/genetics/metabolism ; Phospholipases A2 ; Spin Labels ; Surface Properties
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-20
    Description: Recent advances in computational techniques have allowed the design of precise side-chain packing in proteins with predetermined, naturally occurring backbone structures. Because these methods do not model protein main-chain flexibility, they lack the breadth to explore novel backbone conformations. Here the de novo design of a family of alpha-helical bundle proteins with a right-handed superhelical twist is described. In the design, the overall protein fold was specified by hydrophobic-polar residue patterning, whereas the bundle oligomerization state, detailed main-chain conformation, and interior side-chain rotamers were engineered by computational enumerations of packing in alternate backbone structures. Main-chain flexibility was incorporated through an algebraic parameterization of the backbone. The designed peptides form alpha-helical dimers, trimers, and tetramers in accord with the design goals. The crystal structure of the tetramer matches the designed structure in atomic detail.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harbury, P B -- Plecs, J J -- Tidor, B -- Alber, T -- Kim, P S -- GM44162/GM/NIGMS NIH HHS/ -- GM48598/GM/NIGMS NIH HHS/ -- GM55758/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1462-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9822371" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Circular Dichroism ; Computer Simulation ; Crystallography, X-Ray ; Dimerization ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Mutation ; Peptides/chemical synthesis/*chemistry ; *Protein Conformation ; Protein Denaturation ; *Protein Engineering ; *Protein Folding ; Protein Structure, Secondary ; Proteins/chemical synthesis/*chemistry ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1998-12-04
    Description: A three-dimensional structure for the monomeric iron-containing hydrogenase (CpI) from Clostridium pasteurianum was determined to 1.8 angstrom resolution by x-ray crystallography using multiwavelength anomalous dispersion (MAD) phasing. CpI, an enzyme that catalyzes the two-electron reduction of two protons to yield dihydrogen, was found to contain 20 gram atoms of iron per mole of protein, arranged into five distinct [Fe-S] clusters. The probable active-site cluster, previously termed the H-cluster, was found to be an unexpected arrangement of six iron atoms existing as a [4Fe-4S] cubane subcluster covalently bridged by a cysteinate thiol to a [2Fe] subcluster. The iron atoms of the [2Fe] subcluster both exist with an octahedral coordination geometry and are bridged to each other by three non-protein atoms, assigned as two sulfide atoms and one carbonyl or cyanide molecule. This structure provides insights into the mechanism of biological hydrogen activation and has broader implications for [Fe-S] cluster structure and function in biological systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peters, J W -- Lanzilotta, W N -- Lemon, B J -- Seefeldt, L C -- New York, N.Y. -- Science. 1998 Dec 4;282(5395):1853-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA. petersj@cc.usu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9836629" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Carbon Monoxide/chemistry ; Catalytic Domain ; Clostridium/*enzymology ; Crystallography, X-Ray ; Cyanides/chemistry ; Cysteine/chemistry ; Histidine/chemistry ; Hydrogen/metabolism ; Hydrogenase/*chemistry/metabolism ; Iron/*chemistry ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protons ; Sulfur/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-06-25
    Description: Photoisomerization of the retinal of bacteriorhodopsin initiates a cyclic reaction in which a proton is translocated across the membrane. Studies of this protein promise a better understanding of how ion pumps function. Together with a large amount of spectroscopic and mutational data, the atomic structure of bacteriorhodopsin, determined in the last decade at increasing resolutions, has suggested plausible but often contradictory mechanisms. X-ray diffraction of bacteriorhodopsin crystals grown in cubic lipid phase revealed unexpected two-fold symmetries that indicate merohedral twinning along the crystallographic c axis. The structure, refined to 2.3 angstroms taking this twinning into account, is different from earlier models, including that most recently reported. One of the carboxyl oxygen atoms of the proton acceptor Asp85 is connected to the proton donor, the retinal Schiff base, through a hydrogen-bonded water and forms a second hydrogen bond with another water. The other carboxyl oxygen atom of Asp85 accepts a hydrogen bond from Thr89. This structure forms the active site. The nearby Arg82 is the center of a network of numerous hydrogen-bonded residues and an ordered water molecule. This network defines the pathway of the proton from the buried Schiff base to the extracellular surface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luecke, H -- Richter, H T -- Lanyi, J K -- R01-GM29498/GM/NIGMS NIH HHS/ -- R01-GM56445/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 19;280(5371):1934-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA. HUDEL@UCI.EDU〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9632391" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid/chemistry ; Bacteriorhodopsins/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Ligands ; Light ; Models, Molecular ; Photochemistry ; Protein Conformation ; Protein Structure, Secondary ; *Protons ; Retinaldehyde/chemistry ; Schiff Bases/chemistry ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1998-04-29
    Description: Toxins from scorpion venom interact with potassium channels. Resin-attached, mutant K+ channels from Streptomyces lividans were used to screen venom from Leiurus quinquestriatus hebraeus, and the toxins that interacted with the channel were rapidly identified by mass spectrometry. One of the toxins, agitoxin2, was further studied by mutagenesis and radioligand binding. The results show that a prokaryotic K+ channel has the same pore structure as eukaryotic K+ channels. This structural conservation, through application of techniques presented here, offers a new approach for K+ channel pharmacology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacKinnon, R -- Cohen, S L -- Kuo, A -- Lee, A -- Chait, B T -- GM43949/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Apr 3;280(5360):106-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics and the Howard Hughes Medical Institute, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA. mackinn@rockvax.rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9525854" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Bacterial Proteins ; Binding Sites ; Charybdotoxin/metabolism ; Models, Molecular ; Molecular Sequence Data ; Point Mutation ; Potassium Channel Blockers ; Potassium Channels/*chemistry/genetics/*metabolism ; *Protein Conformation ; Radioligand Assay ; Recombinant Proteins/chemistry/metabolism ; Scorpion Venoms/*metabolism ; Sequence Alignment ; Shaker Superfamily of Potassium Channels ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Streptomyces/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1998-12-16
    Description: Src homology 3 (SH3) and WW protein interaction domains bind specific proline-rich sequences. However, instead of recognizing critical prolines on the basis of side chain shape or rigidity, these domains broadly accepted amide N-substituted residues. Proline is apparently specifically selected in vivo, despite low complementarity, because it is the only endogenous N-substituted amino acid. This discriminatory mechanism explains how these domains achieve specific but low-affinity recognition, a property that is necessary for transient signaling interactions. The mechanism can be exploited: screening a series of ligands in which key prolines were replaced by nonnatural N-substituted residues yielded a ligand that selectively bound the Grb2 SH3 domain with 100 times greater affinity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nguyen, J T -- Turck, C W -- Cohen, F E -- Zuckermann, R N -- Lim, W A -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):2088-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9851931" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; *Caenorhabditis elegans Proteins ; Carrier Proteins/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; GRB2 Adaptor Protein ; Helminth Proteins/chemistry/metabolism ; Humans ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Oligopeptides/chemistry/*metabolism ; Phosphoproteins/chemistry/metabolism ; Proline/chemistry/*metabolism ; Protein Engineering ; Proteins/chemistry/metabolism ; Proto-Oncogene Proteins/chemistry/metabolism ; Proto-Oncogene Proteins c-crk ; Sequence Homology, Amino Acid ; *src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1998-05-09
    Description: High-fidelity transfers of genetic information in the central dogma can be achieved by a reaction called editing. The crystal structure of an enzyme with editing activity in translation is presented here at 2.5 angstroms resolution. The enzyme, isoleucyl-transfer RNA synthetase, activates not only the cognate substrate L-isoleucine but also the minimally distinct L-valine in the first, aminoacylation step. Then, in a second, "editing" step, the synthetase itself rapidly hydrolyzes only the valylated products. For this two-step substrate selection, a "double-sieve" mechanism has already been proposed. The present crystal structures of the synthetase in complexes with L-isoleucine and L-valine demonstrate that the first sieve is on the aminoacylation domain containing the Rossmann fold, whereas the second, editing sieve exists on a globular beta-barrel domain that protrudes from the aminoacylation domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nureki, O -- Vassylyev, D G -- Tateno, M -- Shimada, A -- Nakama, T -- Fukai, S -- Konno, M -- Hendrickson, T L -- Schimmel, P -- Yokoyama, S -- GM15539/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Apr 24;280(5363):578-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9554847" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate ; Binding Sites ; Crystallography, X-Ray ; Escherichia coli/enzymology ; Hydrogen Bonding ; Hydrolysis ; Isoleucine/*metabolism ; Isoleucine-tRNA Ligase/*chemistry/metabolism ; Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA, Transfer, Ile/metabolism ; Substrate Specificity ; Thermus thermophilus/enzymology ; Transfer RNA Aminoacylation ; Valine/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1998-12-18
    Description: Mechanosensitive ion channels play a critical role in transducing physical stresses at the cell membrane into an electrochemical response. The MscL family of large-conductance mechanosensitive channels is widely distributed among prokaryotes and may participate in the regulation of osmotic pressure changes within the cell. In an effort to better understand the structural basis for the function of these channels, the structure of the MscL homolog from Mycobacterium tuberculosis was determined by x-ray crystallography to 3.5 angstroms resolution. This channel is organized as a homopentamer, with each subunit containing two transmembrane alpha helices and a third cytoplasmic alpha helix. From the extracellular side, a water-filled opening approximately 18 angstroms in diameter leads into a pore lined with hydrophilic residues which narrows at the cytoplasmic side to an occluded hydrophobic apex that may act as the channel gate. This structure may serve as a model for other mechanosensitive channels, as well as the broader class of pentameric ligand-gated ion channels exemplified by the nicotinic acetylcholine receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, G -- Spencer, R H -- Lee, A T -- Barclay, M T -- Rees, D C -- GM18486/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2220-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, 147-75CH, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856938" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Cell Membrane/chemistry ; Cloning, Molecular ; Crystallization ; Crystallography, X-Ray ; *Escherichia coli Proteins ; *Ion Channel Gating ; Ion Channels/*chemistry/metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Mycobacterium tuberculosis/*chemistry ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1998-11-13
    Description: The fungal metabolite fumagillin suppresses the formation of new blood vessels, and a fumagillin analog is currently in clinical trials as an anticancer agent. The molecular target of fumagillin is methionine aminopeptidase-2 (MetAP-2). A 1.8 A resolution crystal structure of free and inhibited human MetAP-2 shows a covalent bond formed between a reactive epoxide of fumagillin and histidine-231 in the active site of MetAP-2. Extensive hydrophobic and water-mediated polar interactions with other parts of fumagillin provide additional affinity. Fumagillin-based drugs inhibit MetAP-2 but not MetAP-1, and the three-dimensional structure also indicates the likely determinants of this specificity. The structural basis for fumagillin's potency and specificity forms the starting point for structure-based drug design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, S -- Widom, J -- Kemp, C W -- Crews, C M -- Clardy, J -- CA24487/CA/NCI NIH HHS/ -- CA59021/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1324-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉J. Clardy, Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9812898" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aminopeptidases/antagonists & inhibitors/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Cyclohexanes ; Fatty Acids, Unsaturated/chemistry/*metabolism/pharmacology ; Humans ; Hydrogen Bonding ; Metalloendopeptidases/antagonists & inhibitors/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Sequence Alignment ; Sesquiterpenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1998-08-14
    Description: Hemolin, an insect immunoglobulin superfamily member, is a lipopolysaccharide-binding immune protein induced during bacterial infection. The 3.1 angstrom crystal structure reveals a bound phosphate and patches of positive charge, which may represent the lipopolysaccharide binding site, and a new and unexpected arrangement of four immunoglobulin-like domains forming a horseshoe. Sequence analysis and analytical ultracentrifugation suggest that the domain arrangement is a feature of the L1 family of neural cell adhesion molecules related to hemolin. These results are relevant to interpretation of human L1 mutations in neurological diseases and suggest a domain swapping model for how L1 family proteins mediate homophilic adhesion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, X D -- Gastinel, L N -- Vaughn, D E -- Faye, I -- Poon, P -- Bjorkman, P J -- New York, N.Y. -- Science. 1998 Aug 14;281(5379):991-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology 156-29 and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9703515" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Adhesion/*physiology ; Cell Adhesion Molecules, Neuronal/chemistry ; Crystallography, X-Ray ; Drosophila Proteins ; Drosophila melanogaster ; Humans ; Immunoglobulins ; Insect Proteins ; Leukocyte L1 Antigen Complex ; Membrane Glycoproteins/chemistry ; Models, Molecular ; Molecular Sequence Data ; Moths ; Neural Cell Adhesion Molecules/chemistry ; Protein Binding ; Protein Conformation ; Proteins/*chemistry/physiology ; Recombinant Proteins/chemistry ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-01-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, G -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1883-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9417635" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; *Cell Cycle Proteins ; *Cell Division ; Humans ; *Mitosis ; Models, Molecular ; Peptidylprolyl Isomerase/chemistry/*metabolism ; Phosphoproteins/*metabolism ; Phosphorylation ; Proline/metabolism ; Protein Conformation ; Protein-Serine-Threonine Kinases/metabolism ; Yeasts/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 1998-01-07
    Description: Pin1 is an essential and conserved mitotic peptidyl-prolyl isomerase (PPIase) that is distinct from members of two other families of conventional PPIases, cyclophilins and FKBPs (FK-506 binding proteins). In response to their phosphorylation during mitosis, Pin1 binds and regulates members of a highly conserved set of proteins that overlaps with antigens recognized by the mitosis-specific monoclonal antibody MPM-2. Pin1 is here shown to be a phosphorylation-dependent PPIase that specifically recognizes the phosphoserine-proline or phosphothreonine-proline bonds present in mitotic phosphoproteins. Both Pin1 and MPM-2 selected similar phosphorylated serine-proline-containing peptides, providing the basis for the specific interaction between Pin1 and MPM-2 antigens. Pin1 preferentially isomerized proline residues preceded by phosphorylated serine or threonine with up to 1300-fold selectivity compared with unphosphorylated peptides. Pin1 may thus regulate mitotic progression by catalyzing sequence-specific and phosphorylation-dependent proline isomerization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yaffe, M B -- Schutkowski, M -- Shen, M -- Zhou, X Z -- Stukenberg, P T -- Rahfeld, J U -- Xu, J -- Kuang, J -- Kirschner, M W -- Fischer, G -- Cantley, L C -- Lu, K P -- GM56203/GM/NIGMS NIH HHS/ -- GM56230/GM/NIGMS NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1957-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9395400" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/metabolism ; Antibodies, Monoclonal ; Binding Sites ; Carrier Proteins/metabolism ; Cell Cycle Proteins/chemistry/*metabolism ; DNA-Binding Proteins/metabolism ; Epitopes ; HeLa Cells ; Heat-Shock Proteins/metabolism ; Humans ; Isomerism ; *Mitosis ; Models, Molecular ; Oligopeptides/chemistry/*metabolism ; Peptide Library ; Peptidylprolyl Isomerase/chemistry/*metabolism ; Phosphoproteins/chemistry/immunology/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Phosphothreonine/metabolism ; Proline/*metabolism ; Protein Conformation ; Recombinant Fusion Proteins/chemistry/metabolism ; Substrate Specificity ; Tacrolimus Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1998-11-30
    Description: A combinatorial disulfide cross-linking strategy was used to prepare a stalled complex of human immunodeficiency virus-type 1 (HIV-1) reverse transcriptase with a DNA template:primer and a deoxynucleoside triphosphate (dNTP), and the crystal structure of the complex was determined at a resolution of 3.2 angstroms. The presence of a dideoxynucleotide at the 3'-primer terminus allows capture of a state in which the substrates are poised for attack on the dNTP. Conformational changes that accompany formation of the catalytic complex produce distinct clusters of the residues that are altered in viruses resistant to nucleoside analog drugs. The positioning of these residues in the neighborhood of the dNTP helps to resolve some long-standing puzzles about the molecular basis of resistance. The resistance mutations are likely to influence binding or reactivity of the inhibitors, relative to normal dNTPs, and the clustering of the mutations correlates with the chemical structure of the drug.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, H -- Chopra, R -- Verdine, G L -- Harrison, S C -- GM-18621/GM/NIGMS NIH HHS/ -- GM-39589/GM/NIGMS NIH HHS/ -- GM-44853/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 27;282(5394):1669-75.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9831551" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-HIV Agents/metabolism/*pharmacology ; Binding Sites ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; DNA Primers/chemistry/metabolism ; DNA, Viral/chemistry/metabolism ; Deoxyribonucleotides/chemistry/metabolism ; Dimerization ; Drug Resistance, Microbial ; HIV Reverse Transcriptase/*chemistry/genetics/metabolism ; HIV-1/*drug effects/enzymology ; Humans ; Hydrogen Bonding ; Models, Molecular ; Mutation ; Nucleic Acid Conformation ; Protein Conformation ; Reverse Transcriptase Inhibitors/metabolism/*pharmacology ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1998-03-07
    Description: STATs (signal transducers and activators of transcription) are a family of transcription factors that are specifically activated to regulate gene transcription when cells encounter cytokines and growth factors. The crystal structure of an NH2-terminal conserved domain (N-domain) comprising the first 123 residues of STAT-4 was determined at 1.45 angstroms. The domain consists of eight helices that are assembled into a hook-like structure. The N-domain has been implicated in several protein-protein interactions affecting transcription, and it enables dimerized STAT molecules to polymerize and to bind DNA cooperatively. The structure shows that N-domains can interact through an extensive interface formed by polar interactions across one face of the hook. Mutagenesis of an invariant tryptophan residue at the heart of this interface abolished cooperative DNA binding by the full-length protein in vitro and reduced the transcriptional response after cytokine stimulation in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vinkemeier, U -- Moarefi, I -- Darnell, J E Jr -- Kuriyan, J -- AI32489/AI/NIAID NIH HHS/ -- AI34420/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):1048-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Cell Biology and Laboratories of Molecular Biophysics, The Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9461439" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; DNA/metabolism ; DNA-Binding Proteins/*chemistry/genetics/metabolism ; Humans ; Hydrogen Bonding ; Interferon-gamma/pharmacology ; Models, Molecular ; Molecular Sequence Data ; Oligodeoxyribonucleotides/metabolism ; *Protein Conformation ; Protein Structure, Tertiary ; STAT1 Transcription Factor ; STAT4 Transcription Factor ; Signal Transduction ; Trans-Activators/*chemistry/genetics/metabolism ; Transcription, Genetic ; Transfection ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1998-04-16
    Description: Crystal structures of the murine cytokine-inducible nitric oxide synthase oxygenase dimer with active-center water molecules, the substrate L-arginine (L-Arg), or product analog thiocitrulline reveal how dimerization, cofactor tetrahydrobiopterin, and L-Arg binding complete the catalytic center for synthesis of the essential biological signal and cytotoxin nitric oxide. Pterin binding refolds the central interface region, recruits new structural elements, creates a 30 angstrom deep active-center channel, and causes a 35 degrees helical tilt to expose a heme edge and the adjacent residue tryptophan-366 for likely reductase domain interactions and caveolin inhibition. Heme propionate interactions with pterin and L-Arg suggest that pterin has electronic influences on heme-bound oxygen. L-Arginine binds to glutamic acid-371 and stacks with heme in an otherwise hydrophobic pocket to aid activation of heme-bound oxygen by direct proton donation and thereby differentiate the two chemical steps of nitric oxide synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crane, B R -- Arvai, A S -- Ghosh, D K -- Wu, C -- Getzoff, E D -- Stuehr, D J -- Tainer, J A -- HL58883/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 27;279(5359):2121-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9516116" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arginine/chemistry/*metabolism ; Binding Sites ; Biopterin/*analogs & derivatives/chemistry/metabolism ; Citrulline/analogs & derivatives/chemistry/metabolism ; Crystallography, X-Ray ; Dimerization ; Hydrogen Bonding ; Isoenzymes/chemistry/metabolism ; Ligands ; Macrophages/enzymology ; Mice ; Models, Molecular ; Nitric Oxide/biosynthesis ; Nitric Oxide Synthase/*chemistry/metabolism ; Nitric Oxide Synthase Type II ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Thiourea/analogs & derivatives/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1998-07-04
    Description: Mitochondrial cytochrome bc1 complex performs two functions: It is a respiratory multienzyme complex and it recognizes a mitochondrial targeting presequence. Refined crystal structures of the 11-subunit bc1 complex from bovine heart reveal full views of this bifunctional enzyme. The "Rieske" iron-sulfur protein subunit shows significant conformational changes in different crystal forms, suggesting a new electron transport mechanism of the enzyme. The mitochondrial targeting presequence of the "Rieske" protein (subunit 9) is lodged between the two "core" subunits at the matrix side of the complex. These "core" subunits are related to the matrix processing peptidase, and the structure unveils how mitochondrial targeting presequences are recognized.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iwata, S -- Lee, J W -- Okada, K -- Lee, J K -- Iwata, M -- Rasmussen, B -- Link, T A -- Ramaswamy, S -- Jap, B K -- New York, N.Y. -- Science. 1998 Jul 3;281(5373):64-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA. iwata@xray.bmc.uu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9651245" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cattle ; Crystallization ; Crystallography, X-Ray ; Cytochrome b Group/chemistry/metabolism ; Cytochromes c1/chemistry/metabolism ; Electron Transport ; Electron Transport Complex III/*chemistry/metabolism ; Enzyme Inhibitors/metabolism ; Hydrogen Bonding ; Hydroquinones/metabolism ; Intracellular Membranes/enzymology ; Iron-Sulfur Proteins/chemistry/metabolism ; Methacrylates ; Mitochondria, Heart/*enzymology ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; *Protein Conformation ; Protein Structure, Secondary ; Thiazoles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1998-06-25
    Description: The entry of primate immunodeficiency viruses into target cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors, CD4 and members of the chemokine receptor family. The gp120 third variable (V3) loop has been implicated in chemokine receptor binding, but the use of the CCR5 chemokine receptor by diverse primate immunodeficiency viruses suggests the involvement of an additional, conserved gp120 element. Through the use of gp120 mutants, a highly conserved gp120 structure was shown to be critical for CCR5 binding. This structure is located adjacent to the V3 loop and contains neutralization epitopes induced by CD4 binding. This conserved element may be a useful target for pharmacologic or prophylactic intervention in human immunodeficiency virus (HIV) infections.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rizzuto, C D -- Wyatt, R -- Hernandez-Ramos, N -- Sun, Y -- Kwong, P D -- Hendrickson, W A -- Sodroski, J -- AI 40895/AI/NIAID NIH HHS/ -- AI 41851/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 19;280(5371):1949-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9632396" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Antigens, CD4/metabolism ; Binding Sites ; Crystallization ; HIV Antibodies/immunology ; HIV Envelope Protein gp120/*chemistry/genetics/immunology/*metabolism ; HIV-1/*chemistry/immunology ; Humans ; Models, Molecular ; Peptide Fragments/chemistry ; Protein Conformation ; Protein Structure, Secondary ; Receptors, CCR5/*metabolism ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1998-01-24
    Description: The preferred antitubercular drug isoniazid specifically targets a long-chain enoyl-acyl carrier protein reductase (InhA), an enzyme essential for mycolic acid biosynthesis in Mycobacterium tuberculosis. Despite the widespread use of this drug for more than 40 years, its precise mode of action has remained obscure. Data from x-ray crystallography and mass spectrometry reveal that the mechanism of isoniazid action against InhA is covalent attachment of the activated form of the drug to the nicotinamide ring of nicotinamide adenine dinucleotide bound within the active site of InhA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rozwarski, D A -- Grant, G A -- Barton, D H -- Jacobs, W R Jr -- Sacchettini, J C -- AI-36849/AI/NIAID NIH HHS/ -- GM-45859/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jan 2;279(5347):98-102.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9417034" target="_blank"〉PubMed〈/a〉
    Keywords: Antitubercular Agents/metabolism/*pharmacology ; Bacterial Proteins ; Binding Sites ; Biotransformation ; Crystallography, X-Ray ; Drug Resistance, Microbial ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) ; Fatty Acid Synthases/antagonists & inhibitors/chemistry/genetics/metabolism ; Isoniazid/metabolism/*pharmacology ; Mass Spectrometry ; Models, Molecular ; Mutation ; Mycobacterium tuberculosis/*drug effects/enzymology ; Mycolic Acids/metabolism ; NAD/chemistry/*metabolism ; Oxidoreductases/*antagonists & inhibitors/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1998-04-16
    Description: A highly specific Diels-Alder protein catalyst was made by manipulating the antibody repertoire of the immune system. The catalytic antibody 13G5 catalyzes a disfavored exo Diels-Alder transformation in a reaction for which there is no natural enzyme counterpart and that yields a single regioisomer in high enantiomeric excess. The crystal structure of the antibody Fab in complex with a ferrocenyl inhibitor containing the essential haptenic core that elicited 13G5 was determined at 1.95 angstrom resolution. Three key antibody residues appear to be responsible for the observed catalysis and product control. Tyrosine-L36 acts as a Lewis acid activating the dienophile for nucleophilic attack, and asparagine-L91 and aspartic acid-H50 form hydrogen bonds to the carboxylate side chain that substitutes for the carbamate diene substrate. This hydrogen-bonding scheme leads to rate acceleration and also pronounced stereoselectivity. Docking experiments with the four possible ortho transition states of the reaction explain the specific exo effect and suggest that the (3R,4R)-exo stereoisomer is the preferred product.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heine, A -- Stura, E A -- Yli-Kauhaluoma, J T -- Gao, C -- Deng, Q -- Beno, B R -- Houk, K N -- Janda, K D -- Wilson, I A -- CA27489/CA/NCI NIH HHS/ -- GM-43858/GM/NIGMS NIH HHS/ -- P01 CA27489/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1934-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute of Chemical Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506943" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Catalytic/*chemistry/immunology/metabolism ; Catalysis ; Chemistry, Organic ; Crystallography, X-Ray ; Ferrous Compounds/*chemistry/immunology/metabolism ; Haptens/chemistry/immunology ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Immunoglobulin Fab Fragments/chemistry ; Models, Molecular ; Organic Chemistry Phenomena ; Stereoisomerism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1998-08-28
    Description: Eps15 homology (EH) domains are eukaryotic signaling modules that recognize proteins containing Asn-Pro-Phe (NPF) sequences. The structure of the central EH domain of Eps15 has been solved by heteronuclear magnetic resonance spectroscopy. The fold consists of a pair of EF hand motifs, the second of which binds tightly to calcium. The NPF peptide is bound in a hydrophobic pocket between two alpha helices, and binding is mediated by a critical aromatic interaction as revealed by structure-based mutagenesis. The fold is predicted to be highly conserved among 30 identified EH domains and provides a structural basis for defining EH-mediated events in protein trafficking and growth factor signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Beer, T -- Carter, R E -- Lobel-Rice, K E -- Sorkin, A -- Overduin, M -- New York, N.Y. -- Science. 1998 Aug 28;281(5381):1357-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9721102" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Calcium/metabolism ; Calcium-Binding Proteins/*chemistry/metabolism ; Helix-Loop-Helix Motifs ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Oligopeptides/chemistry/*metabolism ; Phosphoproteins/*chemistry/metabolism ; Protein Binding ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1998-01-24
    Description: Terbium(III) [Tb(III)] was shown to inhibit the hammerhead ribozyme by competing with a single magnesium(II) ion. X-ray crystallography revealed that the Tb(III) ion binds to a site adjacent to an essential guanosine in the catalytic core of the ribozyme, approximately 10 angstroms from the cleavage site. Synthetic modifications near this binding site yielded an RNA substrate that was resistant to Tb(III) binding and capable of being cleaved, even in the presence of up to 20 micromolar Tb(III). It is suggested that the magnesium(II) ion thought to bind at this site may act as a switch, affecting the conformational changes required to achieve the transition state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feig, A L -- Scott, W G -- Uhlenbeck, O C -- GM-36944/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jan 2;279(5347):81-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9417029" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Binding, Competitive ; Catalysis ; Crystallography, X-Ray ; Magnesium/metabolism ; Models, Molecular ; Nucleic Acid Conformation ; RNA, Catalytic/*antagonists & inhibitors/chemistry/*metabolism ; Terbium/*metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1998-06-20
    Description: The ligand-binding domain of nuclear receptors contains a transcriptional activation function (AF-2) that mediates hormone-dependent binding of coactivator proteins. Scanning surface mutagenesis on the human thyroid hormone receptor was performed to define the site that binds the coactivators, glucocorticoid receptor-interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1). The residues involved encircle a small surface that contains a hydrophobic cleft. Ligand activation of transcription involves formation of this surface by folding the carboxyl-terminal alpha helix against a scaffold of three other helices. These features may represent general ones for nuclear receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, W -- Ribeiro, R C -- Wagner, R L -- Nguyen, H -- Apriletti, J W -- Fletterick, R J -- Baxter, J D -- Kushner, P J -- West, B L -- DK09516/DK/NIDDK NIH HHS/ -- DK51281/DK/NIDDK NIH HHS/ -- P41-RR01081/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 12;280(5370):1747-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Metabolic Research Unit, Box 0540, University of California San Francisco, San Francisco, CA 94143-0540, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9624051" target="_blank"〉PubMed〈/a〉
    Keywords: HeLa Cells ; Histone Acetyltransferases ; Humans ; Ligands ; Models, Molecular ; Mutagenesis, Site-Directed ; Nuclear Receptor Coactivator 1 ; Nuclear Receptor Coactivator 2 ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Receptors, Retinoic Acid/metabolism ; Receptors, Thyroid Hormone/*chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Retinoid X Receptors ; Transcription Factors/*metabolism ; *Transcriptional Activation ; Triiodothyronine/*metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1998-12-18
    Description: FhuA, the receptor for ferrichrome-iron in Escherichia coli, is a member of a family of integral outer membrane proteins, which, together with the energy-transducing protein TonB, mediate the active transport of ferric siderophores across the outer membrane of Gram-negative bacteria. The three-dimensional structure of FhuA is presented here in two conformations: with and without ferrichrome-iron at resolutions of 2.7 and 2.5 angstroms, respectively. FhuA is a beta barrel composed of 22 antiparallel beta strands. In contrast to the typical trimeric arrangement found in porins, FhuA is monomeric. Located within the beta barrel is a structurally distinct domain, the "cork," which mainly consists of a four-stranded beta sheet and four short alpha helices. A single lipopolysaccharide molecule is noncovalently associated with the membrane-embedded region of the protein. Upon binding of ferrichrome-iron, conformational changes are transduced to the periplasmic pocket of FhuA, signaling the ligand-loaded status of the receptor. Sequence homologies and mutagenesis data are used to propose a structural mechanism for TonB-dependent siderophore-mediated transport across the outer membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferguson, A D -- Hofmann, E -- Coulton, J W -- Diederichs, K -- Welte, W -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2215-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec, Canada H3A 2B4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856937" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*chemistry/metabolism ; Bacterial Proteins/chemistry/metabolism ; Binding Sites ; Biological Transport, Active ; Cell Membrane/chemistry/metabolism ; Crystallography, X-Ray ; Diffusion ; Escherichia coli/*chemistry/metabolism ; *Escherichia coli Proteins ; Ferric Compounds/*metabolism ; Ferrichrome/*metabolism ; Hydrogen Bonding ; Ligands ; Lipopolysaccharides/*metabolism ; Membrane Proteins/chemistry/metabolism ; Models, Molecular ; *Protein Conformation ; Protein Structure, Secondary ; Receptors, Virus/*chemistry/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-02-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balter, M -- New York, N.Y. -- Science. 1997 Nov 7;278(5340):1014-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9381198" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/*chemistry ; Binding Sites ; Folic Acid/analogs & derivatives/metabolism ; Folic Acid Antagonists/metabolism ; Hydrogen-Ion Concentration ; *Magnetic Resonance Spectroscopy ; Models, Molecular ; Myoglobin/*chemistry ; *Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; Tetrahydrofolate Dehydrogenase/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1998-09-22
    Description: Multiple copies of a molecule, held together in finite aggregates, give rise to properties and functions that are unique to their assembled states. Because these aggregates are held together by weak forces operating over short distances, a premium is placed on complementarity: The molecular surfaces must facilitate specific interactions that direct the assembly to one aggregate rather than another. Hydrogen-bonding preferences can be combined with molecular curvature to favor the assembly of four self-complementary subunits into a pseudo-spherical capsule. Filling the capsule with smaller, complementary molecules provides the final instruction for the assembly process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martin, T -- Obst, U -- Rebek, J Jr -- New York, N.Y. -- Science. 1998 Sep 18;281(5384):1842-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skaggs Institute for Chemical Biology and Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9743495" target="_blank"〉PubMed〈/a〉
    Keywords: Adamantane/*analogs & derivatives/*chemistry ; Alkynes ; Bridged Compounds/*chemistry ; Chemistry, Physical ; Dimerization ; Heterocyclic Compounds/chemical synthesis/*chemistry ; Hydrogen Bonding ; Imidazoles/chemistry ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Physicochemical Phenomena ; Solubility
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1998-03-21
    Description: Topoisomerases I promote the relaxation of DNA superhelical tension by introducing a transient single-stranded break in duplex DNA and are vital for the processes of replication, transcription, and recombination. The crystal structures at 2.1 and 2.5 angstrom resolution of reconstituted human topoisomerase I comprising the core and carboxyl-terminal domains in covalent and noncovalent complexes with 22-base pair DNA duplexes reveal an enzyme that "clamps" around essentially B-form DNA. The core domain and the first eight residues of the carboxyl-terminal domain of the enzyme, including the active-site nucleophile tyrosine-723, share significant structural similarity with the bacteriophage family of DNA integrases. A binding mode for the anticancer drug camptothecin is proposed on the basis of chemical and biochemical information combined with these three-dimensional structures of topoisomerase I-DNA complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Redinbo, M R -- Stewart, L -- Kuhn, P -- Champoux, J J -- Hol, W G -- CA65656/CA/NCI NIH HHS/ -- GM49156/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 6;279(5356):1504-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomolecular Structure Center and Department of Biological Structure, Box 357742, School of Medicine, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9488644" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents, Phytogenic/metabolism/pharmacology ; Binding Sites ; Camptothecin/analogs & derivatives/metabolism/pharmacology ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA Topoisomerases, Type I/*chemistry/genetics/metabolism ; *DNA-Binding Proteins ; Homeodomain Proteins/chemistry ; Host Cell Factor C1 ; Humans ; Hydrogen Bonding ; Integrases/chemistry ; Models, Molecular ; Mutation ; Nucleic Acid Conformation ; Octamer Transcription Factor-1 ; Oligodeoxyribonucleotides/chemistry/metabolism ; *Protein Conformation ; Protein Structure, Secondary ; Recombinant Proteins/chemistry ; Transcription Factors/chemistry ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 1998-04-29
    Description: The potassium channel from Streptomyces lividans is an integral membrane protein with sequence similarity to all known K+ channels, particularly in the pore region. X-ray analysis with data to 3.2 angstroms reveals that four identical subunits create an inverted teepee, or cone, cradling the selectivity filter of the pore in its outer end. The narrow selectivity filter is only 12 angstroms long, whereas the remainder of the pore is wider and lined with hydrophobic amino acids. A large water-filled cavity and helix dipoles are positioned so as to overcome electrostatic destabilization of an ion in the pore at the center of the bilayer. Main chain carbonyl oxygen atoms from the K+ channel signature sequence line the selectivity filter, which is held open by structural constraints to coordinate K+ ions but not smaller Na+ ions. The selectivity filter contains two K+ ions about 7.5 angstroms apart. This configuration promotes ion conduction by exploiting electrostatic repulsive forces to overcome attractive forces between K+ ions and the selectivity filter. The architecture of the pore establishes the physical principles underlying selective K+ conduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doyle, D A -- Morais Cabral, J -- Pfuetzner, R A -- Kuo, A -- Gulbis, J M -- Cohen, S L -- Chait, B T -- MacKinnon, R -- New York, N.Y. -- Science. 1998 Apr 3;280(5360):69-77.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics and the Howard Hughes Medical Institute, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9525859" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Bacterial Proteins ; Binding Sites ; Cesium/metabolism ; Crystallization ; Crystallography, X-Ray ; Fourier Analysis ; Hydrogen Bonding ; Lipid Bilayers ; Models, Molecular ; Molecular Sequence Data ; Potassium/*metabolism ; Potassium Channel Blockers ; Potassium Channels/*chemistry/*metabolism ; *Protein Conformation ; Protein Structure, Secondary ; Rubidium/metabolism ; Scorpion Venoms/metabolism/pharmacology ; Sodium/metabolism ; Static Electricity ; Streptomyces/chemistry ; Tetraethylammonium/metabolism/pharmacology ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1998-01-07
    Description: The crystal structure of a soluble, catalytically active form of adenylyl cyclase in a complex with its stimulatory heterotrimeric G protein alpha subunit (Gsalpha) and forskolin was determined to a resolution of 2.3 angstroms. When P-site inhibitors were soaked into native crystals of the complex, the active site of adenylyl cyclase was located and structural elements important for substrate recognition and catalysis were identified. On the basis of these and other structures, a molecular mechanism is proposed for the activation of adenylyl cyclase by Gsalpha.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tesmer, J J -- Sunahara, R K -- Gilman, A G -- Sprang, S R -- DK38828/DK/NIDDK NIH HHS/ -- DK46371/DK/NIDDK NIH HHS/ -- GM34497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1907-16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75235-9050, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9417641" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Adenylyl Cyclase Inhibitors ; Adenylyl Cyclases/*chemistry/metabolism ; Amino Acid Sequence ; Binding Sites ; Catalysis ; Colforsin/metabolism ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Enzyme Activation ; GTP-Binding Protein alpha Subunits, Gs/*chemistry/metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/*chemistry/metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-01-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bourne, H R -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1898-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California Medical Center, San Francisco, CA 94143, USA. h_bourne@quickmail.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9417637" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Adenylyl Cyclases/*chemistry/metabolism ; Binding Sites ; Catalysis ; Cell Membrane/chemistry ; Colforsin/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Cyclic AMP/biosynthesis/metabolism ; Cytoplasm/metabolism ; Dimerization ; GTP-Binding Protein alpha Subunits, Gi-Go/metabolism ; GTP-Binding Protein alpha Subunits, Gs/*chemistry/metabolism ; Guanosine Triphosphate/chemistry/metabolism ; Models, Molecular ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-01-07
    Description: Twenty-four molecular dynamics trajectories of chymotrypsin inhibitor 2 provide a direct demonstration of the diversity of unfolding pathways. Comparison with experiments suggests that the transition state region for folding and unfolding occurs early with only 25 percent of the native contacts and that the root-mean-square deviations between contributing structures can be as large as 15 angstroms. Nevertheless, a statistically preferred unfolding pathway emerges from the simulations; disruption of tertiary interactions between the helix and a two-stranded portion of the beta sheet is the primary unfolding event. The results suggest a synthesis of the "new" and the classical view of protein folding with a preferred pathway on a funnel-like average energy surface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lazaridis, T -- Karplus, M -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1928-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9395391" target="_blank"〉PubMed〈/a〉
    Keywords: Computer Simulation ; Models, Molecular ; Peptides/*chemistry ; Plant Proteins ; Protein Conformation ; Protein Denaturation ; *Protein Folding ; Protein Structure, Secondary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-01-07
    Description: The crystal structure of Gsalpha, the heterotrimeric G protein alpha subunit that stimulates adenylyl cyclase, was determined at 2.5 A in a complex with guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS). Gsalpha is the prototypic member of a family of GTP-binding proteins that regulate the activities of effectors in a hormone-dependent manner. Comparison of the structure of Gsalpha.GTPgammaS with that of Gialpha.GTPgammaS suggests that their effector specificity is primarily dictated by the shape of the binding surface formed by the switch II helix and the alpha3-beta5 loop, despite the high sequence homology of these elements. In contrast, sequence divergence explains the inability of regulators of G protein signaling to stimulate the GTPase activity of Gsalpha. The betagamma binding surface of Gsalpha is largely conserved in sequence and structure to that of Gialpha, whereas differences in the surface formed by the carboxyl-terminal helix and the alpha4-beta6 loop may mediate receptor specificity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sunahara, R K -- Tesmer, J J -- Gilman, A G -- Sprang, S R -- DK46371/DK/NIDDK NIH HHS/ -- GM34497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1943-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9041, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9395396" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/chemistry/*metabolism ; Amino Acid Sequence ; Binding Sites ; Conserved Sequence ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Enzyme Activation ; GTP Phosphohydrolases/metabolism ; GTP-Binding Protein alpha Subunits, Gi-Go/chemistry/metabolism ; GTP-Binding Protein alpha Subunits, Gs/*chemistry/metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/*chemistry/metabolism ; Guanosine Triphosphate/metabolism ; Hydrolysis ; Magnesium/metabolism ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Structure, Secondary ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1998-03-07
    Description: GA-binding protein (GABP) is a transcriptional regulator composed of two structurally dissimilar subunits. The alpha subunit contains a DNA-binding domain that is a member of the ETS family, whereas the beta subunit contains a series of ankyrin repeats. The crystal structure of a ternary complex containing a GABPalpha/beta ETS domain-ankyrin repeat heterodimer bound to DNA was determined at 2. 15 angstrom resolution. The structure shows how an ETS domain protein can recruit a partner protein using both the ETS domain and a carboxyl-terminal extension and provides a view of an extensive protein-protein interface formed by a set of ankyrin repeats. The structure also reveals how the GABPalpha ETS domain binds to its core GGA DNA-recognition motif.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Batchelor, A H -- Piper, D E -- de la Brousse, F C -- McKnight, S L -- Wolberger, C -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):1037-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry and the Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9461436" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Ankyrins/chemistry ; Crystallography, X-Ray ; DNA/*metabolism ; DNA-Binding Proteins/*chemistry/*metabolism ; Dimerization ; GA-Binding Protein Transcription Factor ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Structure, Secondary ; Proto-Oncogene Proteins/chemistry/metabolism ; Proto-Oncogene Proteins c-ets ; Recombinant Proteins/chemistry/metabolism ; Trans-Activators/chemistry/metabolism ; Transcription Factors/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1998-04-16
    Description: The three-dimensional structure of an antibody (39-A11) that catalyzes a Diels-Alder reaction has been determined. The structure suggests that the antibody catalyzes this pericyclic reaction through a combination of packing and hydrogen-bonding interactions that control the relative geometries of the bound substrates and electronic distribution in the dienophile. A single somatic mutation, serine-91 of the light chain to valine, is largely responsible for the increase in affinity and catalytic activity of the affinity-matured antibody. Structural and functional studies of the germ-line precursor suggest that 39-A11 and related antibodies derive from a family of germ-line genes that have been selected throughout evolution for the ability of the encoded proteins to form a polyspecific combining site. Germ line-encoded antibodies of this type, which can rapidly evolve into high-affinity receptors for a broad range of structures, may help to expand the binding potential associated with the structural diversity of the primary antibody repertoire.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Romesberg, F E -- Spiller, B -- Schultz, P G -- Stevens, R C -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1929-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and the Department of Chemistry, University of California, Berkeley, CA 94720, USA. 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506942" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies/chemistry/genetics/immunology/metabolism ; Antibodies, Catalytic/*chemistry/genetics/immunology/*metabolism ; Antibody Affinity ; Antibody Specificity ; Binding Sites ; Binding Sites, Antibody ; Catalysis ; Chemistry, Organic ; Cloning, Molecular ; Crystallography, X-Ray ; Evolution, Molecular ; Germ-Line Mutation ; Haptens/immunology ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/immunology/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Organic Chemistry Phenomena ; Protein Conformation ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-02-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hajduk, P J -- Meadows, R P -- Fesik, S W -- New York, N.Y. -- Science. 1997 Oct 17;278(5337):497,499.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abbott Laboratories, Pharmaceutical Discovery Division, Abbott Park, IL 60064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9381145" target="_blank"〉PubMed〈/a〉
    Keywords: Chemistry, Pharmaceutical/*methods ; Computer Simulation ; *Drug Design ; Ligands ; *Magnetic Resonance Spectroscopy ; Models, Molecular ; Proteins/*metabolism ; Solubility ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-02-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wickelgren, I -- New York, N.Y. -- Science. 1997 Oct 17;278(5337):389.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9381140" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Enzyme Induction ; Enzyme Inhibitors/metabolism ; Heme/chemistry/metabolism ; Humans ; Isoenzymes/antagonists & inhibitors/*chemistry/metabolism ; Models, Molecular ; Nitric Oxide/biosynthesis/physiology ; Nitric Oxide Synthase/antagonists & inhibitors/*chemistry/metabolism ; *Protein Conformation ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1998-02-12
    Description: Structural and mechanistic studies show that when the selection criteria of the immune system are changed, catalytic antibodies that have the efficiency of natural enzymes evolve, but the catalytic antibodies are much more accepting of a wide range of substrates. The catalytic antibodies were prepared by reactive immunization, a process whereby the selection criteria of the immune system are changed from simple binding to chemical reactivity. This process yielded aldolase catalytic antibodies that approximated the rate acceleration of the natural enzyme used in glycolysis. Unlike the natural enzyme, however, the antibody aldolases catalyzed a variety of aldol reactions and decarboxylations. The crystal structure of one of these antibodies identified the reactive lysine residue that was selected in the immunization process. This lysine is deeply buried in a hydrophobic pocket at the base of the binding site, thereby accounting for its perturbed pKa.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barbas, C F 3rd -- Heine, A -- Zhong, G -- Hoffmann, T -- Gramatikova, S -- Bjornestedt, R -- List, B -- Anderson, J -- Stura, E A -- Wilson, I A -- Lerner, R A -- CA27489/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Dec 19;278(5346):2085-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute for Chemical Biology and the Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9405338" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Catalytic/chemistry/immunology/*metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Decarboxylation ; *Evolution, Molecular ; Fructose-Bisphosphate Aldolase/chemistry/immunology/*metabolism ; Glycolysis ; Hydrogen-Ion Concentration ; Immunization ; Immunoglobulin Fab Fragments/chemistry/immunology/*metabolism ; Kinetics ; Lysine/chemistry/metabolism ; Mice ; Models, Molecular ; Protein Conformation ; Pyridoxal/metabolism ; Selection, Genetic ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-07
    Description: Molecules with self-complementary surfaces interact through weak intermolecular forces to form assemblies, and the assembled states frequently exhibit distinctive properties. Described here are systems in which symmetrical molecules assemble through hydrogen bonding to produce capsules with dissymmetric cavities. The capsules form and dissipate on a time scale that permits their direct observation by nuclear magnetic resonance measurements, and they act as hosts for smaller molecular guests. Molecular recognition of chiral guests, such as naturally occurring terpenes, determines which dissymmetric cavities are preferentially formed in the assembly process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rivera, J M -- Martin, T -- Rebek, J Jr -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):1021-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9461432" target="_blank"〉PubMed〈/a〉
    Keywords: Bicyclo Compounds, Heterocyclic/*chemistry ; Chemistry, Physical ; Dimerization ; Hydrogen Bonding ; Magnetic Resonance Spectroscopy ; Models, Chemical ; Models, Molecular ; Physicochemical Phenomena ; *Stereoisomerism ; Succinimides/*chemistry ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 1998-09-11
    Description: Streptokinase is a plasminogen activator widely used in treating blood-clotting disorders. Complexes of streptokinase with human plasminogen can hydrolytically activate other plasminogen molecules to plasmin, which then dissolves blood clots. A similar binding activation mechanism also occurs in some key steps of blood coagulation. The crystal structure of streptokinase complexed with the catalytic unit of human plasmin was solved at 2.9 angstroms. The amino-terminal domain of streptokinase in the complex is hypothesized to enhance the substrate recognition. The carboxyl-terminal domain of streptokinase, which binds near the activation loop of plasminogen, is likely responsible for the contact activation of plasminogen in the complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, X -- Lin, X -- Loy, J A -- Tang, J -- Zhang, X C -- HL 60626/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1662-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Crystallography Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733510" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Fibrinolysin/*chemistry/metabolism ; Humans ; Hydrogen Bonding ; Models, Molecular ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Recombinant Proteins/chemistry ; Streptokinase/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kestenbaum, D -- New York, N.Y. -- Science. 1998 Oct 2;282(5386):30-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9786790" target="_blank"〉PubMed〈/a〉
    Keywords: *Algorithms ; *Crystallography, X-Ray ; Models, Molecular ; *Protein Conformation ; Selenomethionine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nash, H A -- New York, N.Y. -- Science. 1998 Mar 6;279(5356):1490-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA. nash@codon.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9508726" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents, Phytogenic/metabolism/pharmacology ; Camptothecin/metabolism/pharmacology ; Crystallization ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA Topoisomerases, Type I/*chemistry/metabolism ; DNA, Superhelical/chemistry/metabolism ; Humans ; Integrases/chemistry/metabolism ; Models, Molecular ; Nucleic Acid Conformation ; *Protein Conformation ; Protein Structure, Secondary ; Topoisomerase I Inhibitors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balter, M -- New York, N.Y. -- Science. 1998 Nov 27;282(5394):1623, 1625.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9867659" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-HIV Agents/*metabolism/pharmacology ; Binding Sites ; Crystallography, X-Ray ; DNA Primers/metabolism ; DNA, Viral/metabolism ; Deoxyribonucleotides/metabolism ; Drug Resistance, Microbial ; HIV Reverse Transcriptase/*chemistry/genetics/metabolism ; HIV-1/*drug effects/*enzymology ; Models, Molecular ; Mutation ; Protein Conformation ; Reverse Transcriptase Inhibitors/*metabolism/pharmacology ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1998-06-20
    Description: Both the alpha and betagamma subunits of heterotrimeric guanine nucleotide-binding proteins (G proteins) communicate signals from receptors to effectors. Gbetagamma subunits can regulate a diverse array of effectors, including ion channels and enzymes. Galpha subunits bound to guanine diphosphate (Galpha-GDP) inhibit signal transduction through Gbetagamma subunits, suggesting a common interface on Gbetagamma subunits for Galpha binding and effector interaction. The molecular basis for interaction of Gbetagamma with effectors was characterized by mutational analysis of Gbeta residues that make contact with Galpha-GDP. Analysis of the ability of these mutants to regulate the activity of calcium and potassium channels, adenylyl cyclase 2, phospholipase C-beta2, and beta-adrenergic receptor kinase revealed the Gbeta residues required for activation of each effector and provides evidence for partially overlapping domains on Gbeta for regulation of these effectors. This organization of interaction regions on Gbeta for different effectors and Galpha explains why subunit dissociation is crucial for signal transmission through Gbetagamma subunits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ford, C E -- Skiba, N P -- Bae, H -- Daaka, Y -- Reuveny, E -- Shekter, L R -- Rosal, R -- Weng, G -- Yang, C S -- Iyengar, R -- Miller, R J -- Jan, L Y -- Lefkowitz, R J -- Hamm, H E -- DA02121/DA/NIDA NIH HHS/ -- DA02575/DA/NIDA NIH HHS/ -- MH40165/MH/NIMH NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 May 22;280(5367):1271-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Neuroscience and Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, IL 60611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9596582" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate Ribose/metabolism ; Adenylyl Cyclases/metabolism ; Binding Sites ; Calcium Channels/metabolism ; Cell Line ; Cyclic AMP-Dependent Protein Kinases/metabolism ; G Protein-Coupled Inwardly-Rectifying Potassium Channels ; GTP-Binding Proteins/*chemistry/*metabolism ; Guanosine Diphosphate/metabolism ; *Heterotrimeric GTP-Binding Proteins ; Humans ; Isoenzymes/metabolism ; Models, Molecular ; Mutation ; Phospholipase C beta ; Potassium Channels/metabolism ; *Potassium Channels, Inwardly Rectifying ; Protein Conformation ; Rhodopsin/pharmacology ; *Signal Transduction ; Transducin/metabolism ; Type C Phospholipases/metabolism ; beta-Adrenergic Receptor Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 1998-06-20
    Description: Activation and covalent attachment of complement component C3 to pathogens is the key step in complement-mediated host defense. Additionally, the antigen-bound C3d fragment interacts with complement receptor 2 (CR2; also known as CD21) on B cells and thereby contributes to the initiation of an acquired humoral response. The x-ray crystal structure of human C3d solved at 2.0 angstroms resolution reveals an alpha-alpha barrel with the residues responsible for thioester formation and covalent attachment at one end and an acidic pocket at the other. The structure supports a model whereby the transition of native C3 to its functionally active state involves the disruption of a complementary domain interface and provides insight into the basis for the interaction between C3d and CR2.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nagar, B -- Jones, R G -- Diefenbach, R J -- Isenman, D E -- Rini, J M -- New York, N.Y. -- Science. 1998 May 22;280(5367):1277-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9596584" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Complement C3d/*chemistry/metabolism ; Conserved Sequence ; Crystallography, X-Ray ; Humans ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Complement 3d/*metabolism ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1998-04-16
    Description: Radiolysis of water with a synchrotron x-ray beam permits the hydroxyl radical-accessible surface of an RNA to be mapped with nucleotide resolution in 10 milliseconds. Application of this method to folding of the Tetrahymena ribozyme revealed that the most stable domain of the tertiary structure, P4-P6, formed cooperatively within 3 seconds. Exterior helices became protected from hydroxyl radicals in 10 seconds, whereas the catalytic center required minutes to be completely folded. The results show that rapid collapse to a partially disordered state is followed by a slow search for the active structure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sclavi, B -- Sullivan, M -- Chance, M R -- Brenowitz, M -- Woodson, S A -- GM39929/GM/NIGMS NIH HHS/ -- GM51506/GM/NIGMS NIH HHS/ -- GM52348/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1940-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, Center for Synchrotron Biosciences, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506944" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Hydroxyl Radical ; Kinetics ; Magnesium ; Models, Molecular ; *Nucleic Acid Conformation ; RNA, Catalytic/*chemistry ; Solvents ; Synchrotrons ; Tetrahymena/chemistry ; X-Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1998-02-07
    Description: The three-dimensional structure of the human immunodeficiency virus-type 1 (HIV-1) nucleocapsid protein (NC) bound to the SL3 stem-loop recognition element of the genomic Psi RNA packaging signal has been determined by heteronuclear magnetic resonance spectroscopy. Tight binding (dissociation constant, approximately 100 nM) is mediated by specific interactions between the amino- and carboxyl-terminal CCHC-type zinc knuckles of the NC protein and the G7 and G9 nucleotide bases, respectively, of the G6-G7-A8-G9 RNA tetraloop. A8 packs against the amino-terminal knuckle and forms a hydrogen bond with conserved Arg32, and residues Lys3 to Arg10 of NC form a 310 helix that binds to the major groove of the RNA stem and also packs against the amino-terminal zinc knuckle. The structure provides insights into the mechanism of viral genome recognition, explains extensive amino acid conservation within NC, and serves as a basis for the development of inhibitors designed to interfere with genome encapsidation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De Guzman, R N -- Wu, Z R -- Stalling, C C -- Pappalardo, L -- Borer, P N -- Summers, M F -- GM32691/GM/NIGMS NIH HHS/ -- GM42561/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jan 16;279(5349):384-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland-Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9430589" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Gene Products, gag/*chemistry/metabolism ; Genome, Viral ; HIV-1/*chemistry/genetics ; Hydrogen Bonding ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleocapsid/*chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; RNA, Viral/*chemistry/genetics/metabolism ; Zinc/chemistry/metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1998-10-02
    Description: Polyamide dimers containing three types of aromatic rings-pyrrole, imidazole, and hydroxypyrrole-afford a small-molecule recognition code that discriminates among all four Watson-Crick base pairs in the minor groove. The crystal structure of a specific polyamide dimer-DNA complex establishes the structural basis for distinguishing T.A from A.T base pairs. Specificity for the T.A base pair is achieved by means of distinct hydrogen bonds between pairs of substituted pyrroles on the ligand and the O2 of thymine and N3 of adenine. In addition, shape-selective recognition of an asymmetric cleft between the thymine-O2 and the adenine-C2 was observed. Although hitherto similarities among the base pairs in the minor groove have been emphasized, the structure illustrates differences that allow specific minor groove recognition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kielkopf, C L -- White, S -- Szewczyk, J W -- Turner, J M -- Baird, E E -- Dervan, P B -- Rees, D C -- New York, N.Y. -- Science. 1998 Oct 2;282(5386):111-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9756473" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/*chemistry ; *Base Composition ; DNA/*chemistry ; Dimerization ; Hydrogen Bonding ; Ligands ; Models, Molecular ; *Nucleic Acid Conformation ; Nylons/chemistry ; Oligodeoxyribonucleotides/chemistry ; Thymine/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1998-04-16
    Description: In the magnesium ion-dependent folding of the Tetrahymena ribozyme, a kinetic intermediate accumulates in which the P4-P6 domain is formed, but the P3-P7 domain is not. The kinetic barriers to P3-P7 formation were investigated with the use of in vitro selection to identify mutant RNA molecules in which the folding rate of the P3-P7 domain was increased. The critical mutations disrupt native tertiary interactions within the P4-P6 domain and increase the rate of P3-P7 formation by destabilizing a kinetically trapped intermediate. Hence, kinetic traps stabilized by native interactions, and not simply by mispaired nonnative structures, can present a substantial barrier to RNA folding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Treiber, D K -- Rook, M S -- Zarrinkar, P P -- Williamson, J R -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1943-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, MB33, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506945" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Kinetics ; Magnesium/metabolism ; Models, Molecular ; Mutation ; *Nucleic Acid Conformation ; RNA, Catalytic/*chemistry/genetics/metabolism ; Tetrahymena/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-02-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, R F -- New York, N.Y. -- Science. 1998 Jan 23;279(5350):479-80.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9454346" target="_blank"〉PubMed〈/a〉
    Keywords: Alcohols/metabolism ; Aldehydes/metabolism ; Binding Sites ; Catalysis ; Copper/chemistry/metabolism ; Electrons ; Galactose Oxidase/*chemistry/*metabolism ; Hydrogen Peroxide/metabolism ; Models, Chemical ; Models, Molecular ; Protons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1998-05-09
    Description: Pseudoknot formation folds the 3' ends of many plant viral genomic RNAs into structures that resemble transfer RNA in global folding and in their reactivity to transfer RNA-specific proteins. The solution structure of the pseudoknotted T arm and acceptor arm of the transfer RNA-like structure of turnip yellow mosaic virus (TYMV) was determined by nuclear magnetic resonance (NMR) spectroscopy. The molecule is stabilized by the hairpin formed by the 5' end of the RNA, and by the intricate interactions related to the loops of the pseudoknot. Loop 1 spans the major groove of the helix with only two of its four nucleotides. Loop 2, which crosses the minor groove, interacts closely with its opposing helix, in particular through hydrogen bonds with a highly conserved adenine. The structure resulting from this interaction between the minor groove and single-stranded RNA at helical junctions displays internal mobility, which may be a general feature of RNA pseudoknots that regulates their interaction with proteins or other RNA molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kolk, M H -- van der Graaf, M -- Wijmenga, S S -- Pleij, C W -- Heus, H A -- Hilbers, C W -- New York, N.Y. -- Science. 1998 Apr 17;280(5362):434-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nijmegen SON Research Center for Molecular Structure, Design and Synthesis, Laboratory of Biophysical Chemistry, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9545221" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acyl-tRNA Synthetases/chemistry/metabolism ; Binding Sites ; Diethyl Pyrocarbonate/chemistry ; Hydrogen Bonding ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Mutation ; *Nucleic Acid Conformation ; RNA, Double-Stranded/*chemistry ; RNA, Transfer/*chemistry ; RNA, Viral/*chemistry ; Tymovirus/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...