ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Phosphorylation  (46)
  • Models, Molecular  (37)
  • American Association for the Advancement of Science (AAAS)  (82)
  • American Institute of Physics (AIP)
  • Oxford University Press
  • 2010-2014
  • 1995-1999
  • 1990-1994  (82)
  • 1993  (82)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (82)
  • American Institute of Physics (AIP)
  • Oxford University Press
  • Springer  (5)
  • Wiley-Blackwell  (3)
Years
  • 2010-2014
  • 1995-1999
  • 1990-1994  (82)
Year
  • 1
    Publication Date: 1993-11-05
    Description: Hydrogen exchange pulse labeling and stopped-flow circular dichroism were used to establish that the structure of the earliest detectable intermediate formed during refolding of apomyoglobin corresponds closely to that of a previously characterized equilibrium molten globule. This compact, cooperatively folded intermediate was formed in less than 5 milliseconds and contained stable, hydrogen-bonded secondary structure localized in the A, G, and H helices and part of the B helix. The remainder of the B helix folded on a much slower time scale, followed by the C and E helices and the CD loop. The data indicate that a molten globule intermediate was formed on the kinetic folding pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jennings, P A -- Wright, P E -- DK-34909/DK/NIDDK NIH HHS/ -- GM14541/GM/NIGMS NIH HHS/ -- RR04953/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 5;262(5135):892-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235610" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/*chemistry ; Circular Dichroism ; Hydrogen/chemistry ; Hydrogen Bonding ; Kinetics ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Myoglobin/*chemistry ; *Protein Conformation ; *Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1993-08-06
    Description: The structure of the bifunctional, pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase was determined to 2.1-angstrom resolution. Model building suggests that a single cleavage site catalyzes both decarboxylation and transamination by maximizing stereoelectronic advantages and providing electrostatic and general base catalysis. The enzyme contains two binding sites for alkali metal ions. One is located near the active site and accounts for the dependence of activity on potassium ions. The other is located at the carboxyl terminus of an alpha helix. These sites help show how proteins can specifically bind alkali metals and how these ions can exert functional effects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Toney, M D -- Hohenester, E -- Cowan, S W -- Jansonius, J N -- GM13854/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Aug 6;261(5122):756-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, University of Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8342040" target="_blank"〉PubMed〈/a〉
    Keywords: Amination ; Amino Acid Sequence ; Binding Sites ; Carboxy-Lyases/*chemistry/metabolism ; Catalysis ; Computer Graphics ; Decarboxylation ; Metals, Alkali/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-11-12
    Description: Activation of the Raf and extracellular signal-regulated kinases (ERKs) (or mitogen-activated protein kinases) are key events in mitogenic signalling, but little is known about interactions with other signaling pathways. Agents that raise levels of intracellular cyclic adenosine 3',5'-monophosphate (cAMP) blocked DNA synthesis and signal transduction in Rat1 cells exposed to epidermal growth factor (EGF) or lysophosphatidic acid. In the case of EGF, receptor tyrosine kinase activity and association with the signaling molecules Grb2 and Shc were unaffected by cAMP. Likewise, EGF-dependent accumulation of the guanosine 5'-triphosphate-bound form of Ras was unaffected. In contrast, activation of Raf-1 and ERK kinases was inhibited. Thus, cAMP appears to inhibit signal transmission from Ras by preventing Ras-dependent activation of Raf-1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cook, S J -- McCormick, F -- UO1 CA51992-03/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 12;262(5136):1069-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Onyx Pharmaceuticals, Richmond, CA 94806.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7694367" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Methyl-3-isobutylxanthine/pharmacology ; Animals ; Bucladesine/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Line ; Cholera Toxin/pharmacology ; Cyclic AMP/*pharmacology ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Enzyme Activation ; Epidermal Growth Factor/pharmacology ; Interphase ; Lysophospholipids/pharmacology ; Mitogen-Activated Protein Kinase 1 ; Mitogen-Activated Protein Kinase 3 ; *Mitogen-Activated Protein Kinases ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-raf ; Proto-Oncogene Proteins p21(ras)/*metabolism ; Rats ; Receptor, Epidermal Growth Factor/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1993-09-10
    Description: The function of voltage-gated sodium channels that are responsible for action potential generation in mammalian brain neurons is modulated by phosphorylation by adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase (cA-PK) and by protein kinase C (PKC). Reduction of peak sodium currents by cA-PK in intact cells required concurrent activation of PKC and was prevented by blocking phosphorylation of serine 1506, a site in the inactivation gate of the channel that is phosphorylated by PKC but not by cA-PK. Replacement of serine 1506 with negatively charged amino acids mimicked the effect of phosphorylation. Conversion of the consensus sequence surrounding serine 1506 to one more favorable for cA-PK enhanced modulation of sodium currents by cA-PK. Convergent modulation of sodium channels required phosphorylation of serine 1506 by PKC accompanied by phosphorylation of additional sites by cA-PK. This regulatory mechanism may serve to integrate neuronal signals mediated through these parallel signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, M -- West, J W -- Numann, R -- Murphy, B J -- Scheuer, T -- Catterall, W A -- R01-NS15751/NS/NINDS NIH HHS/ -- T32-GM07270/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 10;261(5127):1439-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8396273" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Amino Acid Sequence ; Animals ; CHO Cells ; Consensus Sequence ; Cricetinae ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Phosphorylation ; Protein Kinase C/*metabolism ; Protein Kinases/*metabolism ; Sodium/metabolism ; Sodium Channels/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1993-11-12
    Description: Rapid photoinduced electron transfer is demonstrated over a distance of greater than 40 angstroms between metallointercalators that are tethered to the 5' termini of a 15-base pair DNA duplex. An oligomeric assembly was synthesized in which the donor is Ru(phen)2dppz2+ (phen, phenanthroline, and dppz, dipyridophenazine) and the acceptor is Rh(phi)2phen3+ (phi, phenanthrenequinone diimine). These metal complexes are intercalated either one or two base steps in from the helix termini. Although the ruthenium-modified oligonucleotide hybridized to an unmodified complement luminesces intensely, the ruthenium-modified oligomer hybridized to the rhodium-modified oligomer shows no detectable luminescence. Time-resolved studies point to a lower limit of 10(9) per second for the quenching rate. No quenching was observed upon metallation of two complementary octamers by Ru(phen)3(2+) and Rh(phen)3(3+) under conditions where the phen complexes do not intercalate. The stacked aromatic heterocycles of the DNA duplex therefore serve as an efficient medium for coupling electron donors and acceptors over very long distances.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murphy, C J -- Arkin, M R -- Jenkins, Y -- Ghatlia, N D -- Bossmann, S H -- Turro, N J -- Barton, J K -- GM49216/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 12;262(5136):1025-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beckman Institute, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7802858" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA/*chemistry ; *Electrons ; Intercalating Agents/*chemistry ; Lasers ; Luminescence ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/*chemistry ; Organometallic Compounds/chemistry ; Phenanthrenes/chemistry ; Phenanthrolines/chemistry ; Photochemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1993-02-12
    Description: Biomolecular membranes display rich statistical mechanical behavior. They are classified as liquid in the absence of shear elasticity in the plane of the membrane and tethered (solid) when the neighboring molecules or subunits are connected and the membranes exhibit solid-like elastic behavior in the plane of the membrane. The spectrin skeleton of red blood cells was studied as a model tethered membrane. The static structure factor of the skeletons, measured by small-angle x-ray and light scattering, was fitted with a structure factor predicted with a model calculation. The model describes tethered membrane sheets with free edges in a flat phase, which is a locally rough but globally flat membrane configuration. The fit was good for large scattering vectors. The membrane roughness exponent, zeta, defined through h alpha L zeta, where h is the average amplitude of out-of-plane fluctuations and L is the linear membrane dimension, was determined to be 0.65 +/- 0.10. Computer simulations of model red blood cell skeletons also showed this flat phase. The value for the roughness exponent, which was determined from the scaling properties of membranes of different sizes, was consistent with that from the experiments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmidt, C F -- Svoboda, K -- Lei, N -- Petsche, I B -- Berman, L E -- Safinya, C R -- Grest, G S -- New York, N.Y. -- Science. 1993 Feb 12;259(5097):952-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8438153" target="_blank"〉PubMed〈/a〉
    Keywords: Chemistry, Physical ; Computer Simulation ; Electrochemistry ; Erythrocyte Membrane/chemistry/*ultrastructure ; Light ; Mathematics ; Models, Molecular ; Physicochemical Phenomena ; Scattering, Radiation ; Spectrin/chemistry/*ultrastructure ; X-Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-04-16
    Description: Klenow fragment of Escherichia coli DNA polymerase I, which was cocrystallized with duplex DNA, positioned 11 base pairs of DNA in a groove that lies at right angles to the cleft that contains the polymerase active site and is adjacent to the 3' to 5' exonuclease domain. When the fragment bound DNA, a region previously referred to as the "disordered domain" became more ordered and moved along with two helices toward the 3' to 5' exonuclease domain to form the binding groove. A single-stranded, 3' extension of three nucleotides bound to the 3' to 5' exonuclease active site. Although this cocrystal structure appears to be an editing complex, it suggests that the primer strand approaches the catalytic site of the polymerase from the direction of the 3' to 5' exonuclease domain and that the duplex DNA product may bend to enter the cleft that contains the polymerase catalytic site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beese, L S -- Derbyshire, V -- Steitz, T A -- GM28550/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Apr 16;260(5106):352-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8469987" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Crystallization ; DNA/chemistry/*metabolism ; DNA Polymerase I/*chemistry/metabolism ; DNA Replication ; DNA, Single-Stranded/chemistry/metabolism ; Escherichia coli/*enzymology ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1993-01-29
    Description: The phosphocarrier protein IIIGlc is an integral component of the bacterial phosphotransferase (PTS) system. Unphosphorylated IIIGlc inhibits non-PTS carbohydrate transport systems by binding to diverse target proteins. The crystal structure at 2.6 A resolution of one of the targets, glycerol kinase (GK), in complex with unphosphorylated IIIGlc, glycerol, and adenosine diphosphate was determined. GK contains a region that is topologically identical to the adenosine triphosphate binding domains of hexokinase, the 70-kD heat shock cognate, and actin. IIIGlc binds far from the catalytic site of GK, indicating that long-range conformational changes mediate the inhibition of GK by IIIGlc. GK and IIIGlc are bound by hydrophobic and electrostatic interactions, with only one hydrogen bond involving an uncharged group. The phosphorylation site of IIIGlc, His90, is buried in a hydrophobic environment formed by the active site region of IIIGlc and a 3(10) helix of GK, suggesting that phosphorylation prevents IIIGlc binding to GK by directly disrupting protein-protein interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hurley, J H -- Faber, H R -- Worthylake, D -- Meadow, N D -- Roseman, S -- Pettigrew, D W -- Remington, S J -- 5-R37 GM38759/GM/NIGMS NIH HHS/ -- GM 42618-01A1/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jan 29;259(5095):673-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, University of Oregon, Eugene 97403.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8430315" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Amino Acid Sequence ; Binding Sites ; Escherichia coli/*enzymology ; Escherichia coli Proteins ; Glycerol Kinase/*chemistry/*metabolism ; Hydrogen Bonding ; Models, Molecular ; Models, Structural ; Phosphoenolpyruvate Sugar Phosphotransferase System/*chemistry/*metabolism ; *Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1993-12-24
    Description: The elongated proteins of the spectrin family (dystrophin, alpha-actinin, and spectrin) contain tandemly repeated segments and form resilient cellular meshworks by cross-linking actin filaments. The structure of one of the repetitive segments of alpha-spectrin was determined at a 1.8 angstrom resolution. A segment consists of a three-helix bundle. A model of the interface between two tandem segments suggests that hydrophobic interactions between segments may constrain intersegment flexibility. The helix side chain interactions explain how mutations that are known to produce hemolytic anemias disrupt spectrin associations that sustain the integrity of the erythrocyte membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, Y -- Winograd, E -- Viel, A -- Cronin, T -- Harrison, S C -- Branton, D -- CA 13202/CA/NCI NIH HHS/ -- HL 17411/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 24;262(5142):2027-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266097" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Crystallization ; Drosophila ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Spectrin/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1993-09-24
    Description: Intraperitoneal injection of epidermal growth factor (EGF) into mice resulted in the appearance in liver nuclei of three tyrosine phosphorylated proteins (84, 91, and 92 kilodaltons) within minutes after administration of EGF. Administration of interferon-gamma (IFN-gamma) resulted in the appearance in liver nuclei of two tyrosine phosphorylated proteins (84 and 91 kilodaltons). The 84- and 91-kilodalton proteins detected after either EGF or IFN-gamma administration were identified as the IFN-gamma activation factors (GAF). Furthermore, gel shift analysis revealed that these GAF proteins, detected after either EGF or IFN-gamma administration, specifically bound to the sis-inducible element of the c-fos promoter. Thus, GAF proteins participate in nuclear signaling in both IFN-gamma and EGF pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruff-Jamison, S -- Chen, K -- Cohen, S -- HD-00700/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 24;261(5129):1733-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8378774" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Nucleus/drug effects/*metabolism ; DNA-Binding Proteins/*metabolism ; Epidermal Growth Factor/*pharmacology ; Genes, fos ; Interferon-Stimulated Gene Factor 3 ; Interferon-gamma/*pharmacology ; Liver/drug effects/metabolism ; Mice ; Molecular Sequence Data ; Phosphorylation ; Promoter Regions, Genetic ; STAT1 Transcription Factor ; *Trans-Activators ; Transcription Factors/*metabolism ; Tyrosine/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1993-05-21
    Description: The three-dimensional solution structure of the DNA binding domain (DBD) of the retinoid X receptor alpha (RXR alpha) was determined by nuclear magnetic resonance spectroscopy. The two zinc fingers of the RXR DBD fold to form a single structural domain that consists of two perpendicularly oriented helices and that resembles the corresponding regions of the glucocorticoid and estrogen receptors (GR and ER, respectively). However, in contrast to the DBDs of the GR and ER, the RXR DBD contains an additional helix immediately after the second zinc finger. This third helix mediates both protein-protein and protein-DNA interactions required for cooperative, dimeric binding of the RXR DBD to DNA. Identification of the third helix in the RXR DBD thus defines a structural feature required for selective dimerization of the RXR on hormone response elements composed of half-sites (5'-AGGTCA-3') arranged as tandem repeats.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, M S -- Kliewer, S A -- Provencal, J -- Wright, P E -- Evans, R M -- New York, N.Y. -- Science. 1993 May 21;260(5111):1117-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8388124" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; DNA/*metabolism ; DNA-Binding Proteins/*chemistry/metabolism ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/*chemistry/metabolism ; Oligodeoxyribonucleotides ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Cell Surface/*chemistry/metabolism ; *Receptors, Retinoic Acid ; Repetitive Sequences, Nucleic Acid ; Retinoid X Receptors ; *Transcription Factors ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-06-04
    Description: Pectate lyases are secreted by pathogens and initiate soft-rot diseases in plants by cleaving polygalacturonate, a major component of the plant cell wall. The three-dimensional structure of pectate lyase C from Erwinia chrysanthemi has been solved and refined to a resolution of 2.2 angstroms. The enzyme folds into a unique motif of parallel beta strands coiled into a large helix. Within the core, the amino acids form linear stacks and include a novel asparagine ladder. The sequence similarities that pectate lyases share with pectin lyases, pollen and style proteins, and tubulins suggest that the parallel beta helix motif may occur in a broad spectrum of proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoder, M D -- Keen, N T -- Jurnak, F -- New York, N.Y. -- Science. 1993 Jun 4;260(5113):1503-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of California, Riverside 92521.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8502994" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Calcium ; Crystallography ; Isoenzymes/*chemistry ; Models, Molecular ; Molecular Sequence Data ; Pectobacterium chrysanthemi/enzymology ; Polysaccharide-Lyases/*chemistry ; Protein Structure, Secondary ; *Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-07-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taylor, E W -- New York, N.Y. -- Science. 1993 Jul 2;261(5117):35-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8316856" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/chemistry/metabolism ; Actomyosin/chemistry ; Adenosine Triphosphate/metabolism ; Models, Biological ; Models, Molecular ; *Muscle Contraction ; Myosin Subfragments/*chemistry/metabolism ; *Protein Conformation ; Protein Structure, Secondary ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1993-06-18
    Description: The biological functions of interleukin-6 (IL-6) are mediated through a signal-transducing component of the IL-6 receptor, gp130, which is associated with the ligand-occupied IL-6 receptor (IL-6R) protein. Binding of IL-6 to IL-6R induced disulfide-linked homodimerization of gp130. Tyrosine kinase activity was associated with dimerized but not monomeric gp130 protein. Substitution of serine for proline residues 656 and 658 in the cytoplasmic motif abolished tyrosine kinase activation and cellular responses but not homodimerization of gp130. The IL-6-induced gp130 homodimer appears to be similar in function to the heterodimer formed between the leukemia inhibitory factor (LIF) receptor (LIFR) and gp130 in response to the LIF or ciliary neurotrophic factor (CNTF). Thus, a general first step in IL-6-related cytokine signaling may be the dimerization of signal-transducing molecules and activation of associated tyrosine kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murakami, M -- Hibi, M -- Nakagawa, N -- Nakagawa, T -- Yasukawa, K -- Yamanishi, K -- Taga, T -- Kishimoto, T -- New York, N.Y. -- Science. 1993 Jun 18;260(5115):1808-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular and Cellular Biology, Osaka University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8511589" target="_blank"〉PubMed〈/a〉
    Keywords: *Antigens, CD ; Cytokine Receptor gp130 ; Enzyme Activation ; Haptoglobins/biosynthesis ; Humans ; Interleukin-6/*metabolism/pharmacology ; Macromolecular Substances ; Membrane Glycoproteins/chemistry/*metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Receptors, Immunologic/*metabolism ; Receptors, Interleukin-6 ; *Signal Transduction ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1993-10-29
    Description: A 24-amino acid peptide designed to solubilize integral membrane proteins has been synthesized. The design was for an amphipathic alpha helix with a "flat" hydrophobic surface that would interact with a transmembrane protein as a detergent. When mixed with peptide, 85 percent of bacteriorhodopsin and 60 percent of rhodopsin remained in solution over a period of 2 days in their native forms. The crystal structure of peptide alone showed it to form an antiparallel four-helix bundle in which monomers interact, flat surface to flat surface, as predicted.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schafmeister, C E -- Miercke, L J -- Stroud, R M -- GM24485/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Oct 29;262(5134):734-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235592" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriorhodopsins/chemistry ; Crystallography, X-Ray ; Detergents/chemical synthesis/*chemistry ; Drug Design ; Membrane Proteins/*chemistry ; Models, Molecular ; Molecular Sequence Data ; Peptides/chemical synthesis/*chemistry ; Protein Conformation ; Protein Structure, Secondary ; Rhodopsin/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-06-18
    Description: Mammalian apolipoprotein B (apo B) exists in two forms, each the product of a single gene. The shorter form, apo B48, arises by posttranscriptional RNA editing whereby cytidine deamination produces a UAA termination codon. A full-length complementary DNA clone encoding an apo B messenger RNA editing protein (REPR) was isolated from rat small intestine. The 229-residue protein contains consensus phosphorylation sites and leucine zipper domains. HepG2 cell extracts acquire editing activity when mixed with REPR from oocyte extracts. REPR is essential for apo B messenger RNA editing, and the isolation and characterization of REPR may lead to the identification of other eukaryotic RNA editing proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Teng, B -- Burant, C F -- Davidson, N O -- DK-42086/DK/NIDDK NIH HHS/ -- HL-38180/HL/NHLBI NIH HHS/ -- KO-4 HL-02166/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1993 Jun 18;260(5115):1816-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Chicago, IL 60637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8511591" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apolipoproteins B/*genetics ; Base Sequence ; Cell Line ; *Cloning, Molecular ; Cytidine Deaminase/chemistry/*genetics ; Humans ; Intestine, Small/chemistry ; Leucine Zippers ; Molecular Sequence Data ; Molecular Weight ; Open Reading Frames ; Phosphorylation ; *RNA Editing ; Rats ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-09-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Montminy, M -- New York, N.Y. -- Science. 1993 Sep 24;261(5129):1694-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Clayton Foundation Laboratories for Peptide Biology, Salk Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8397444" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Nucleus/*metabolism ; DNA/*metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; Growth Substances/*metabolism ; Interferon-gamma/pharmacology ; Phosphorylation ; Receptors, Cell Surface/*metabolism ; STAT1 Transcription Factor ; *Signal Transduction ; *Trans-Activators
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1993-06-11
    Description: The guanosine triphosphate (GTP)-binding protein Ras functions in regulating growth and differentiation; however, little is known about the protein interactions that bring about its biological activity. Wild-type Ras or mutant forms of Ras were covalently attached to an insoluble matrix and then used to examine the interaction of signaling proteins with Ras. Forms of Ras activated either by mutation (Gly12Val) or by binding of the GTP analog, guanylyl-imidodiphosphate (GMP-PNP) interacted specifically with Raf-1 whereas an effector domain mutant, Ile36Ala, failed to interact with Raf-1. Mitogen-activated protein kinase (MAP kinase) activity was only associated with activated forms of Ras. The specific interaction of activated Ras with active MAP kinase kinase (MAPKK) was confirmed by direct assays. Thus the forming of complexes containing MAPKK activity and Raf-1 protein are dependent upon the activity of Ras.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moodie, S A -- Willumsen, B M -- Weber, M J -- Wolfman, A -- CA 39076/CA/NCI NIH HHS/ -- CA 40042/CA/NCI NIH HHS/ -- GM 41220/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1993 Jun 11;260(5114):1658-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Cleveland Clinic Foundation, OH 44106.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8503013" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/metabolism ; Guanosine Triphosphate/*metabolism ; Guanylyl Imidodiphosphate/metabolism ; In Vitro Techniques ; Mitogen-Activated Protein Kinase 1 ; Mitogen-Activated Protein Kinase Kinases ; Mutation ; Phosphorylation ; Protein Binding ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Protein-Tyrosine Kinases/metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-raf ; Proto-Oncogene Proteins p21(ras)/*metabolism ; Rats ; Signal Transduction/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1993-12-17
    Description: The interleukin-2 (IL-2) receptor gamma chain (IL-2R gamma) is an essential component of high- and intermediate-affinity IL-2 receptors. IL-2R gamma was demonstrated to be a component of the IL-4 receptor on the basis of chemical cross-linking data, the ability of IL-2R gamma to augment IL-4 binding affinity, and the requirement for IL-2R gamma in IL-4-mediated phosphorylation of insulin receptor substrate-1. The observation that IL-2R gamma is a functional component of the IL-4 receptor, together with the finding that IL-2R gamma associates with the IL-7 receptor, begins to elucidate why deficiency of this common gamma chain (gamma c) has a profound effect on lymphoid function and development, as seen in X-linked severe combined immunodeficiency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Russell, S M -- Keegan, A D -- Harada, N -- Nakamura, Y -- Noguchi, M -- Leland, P -- Friedmann, M C -- Miyajima, A -- Puri, R K -- Paul, W E -- New York, N.Y. -- Science. 1993 Dec 17;262(5141):1880-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section on Pulmonary and Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266078" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line ; Cell Line, Transformed ; Genetic Linkage ; Humans ; Insulin Receptor Substrate Proteins ; Interleukin-4/metabolism ; L Cells (Cell Line) ; Mice ; Molecular Sequence Data ; Phosphoproteins/metabolism ; Phosphorylation ; Receptors, Interleukin-2/chemistry/genetics/*metabolism ; Receptors, Interleukin-4 ; Receptors, Mitogen/chemistry/genetics/*metabolism ; Severe Combined Immunodeficiency/genetics/immunology ; Signal Transduction ; Transfection ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1993-09-24
    Description: Growth factors and cytokines act through cell surface receptors with different biochemical properties. Yet each type of receptor can elicit similar as well as distinct biological responses in target cells, suggesting that distinct classes of receptors activate common gene sets. Epidermal growth factor, interferon-gamma, and interleukin-6 all activated, through direct tyrosine phosphorylation, latent cytoplasmic transcription factors that recognized similar DNA elements. However, different ligands activated different patterns of factors with distinct DNA-binding specificities in the same and different cells. Thus, unrelated receptors may activate a common nuclear signal transduction pathway that, through differential use of latent cytoplasmic proteins, permits these receptors to regulate both common and unique sets of genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sadowski, H B -- Shuai, K -- Darnell, J E Jr -- Gilman, M Z -- AI32489/AI/NIAID NIH HHS/ -- CA09311/CA/NCI NIH HHS/ -- CA45642/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 24;261(5129):1739-44.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, NY 11724.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8397445" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Nucleus/metabolism ; Cytokines/metabolism/*pharmacology ; DNA-Binding Proteins/*metabolism ; Epidermal Growth Factor/pharmacology ; Growth Substances/metabolism/pharmacology ; Humans ; Interferon-Stimulated Gene Factor 3 ; Interferon-gamma/pharmacology ; Interleukin-6/pharmacology ; Molecular Sequence Data ; Phosphorylation ; Receptors, Cell Surface/*metabolism ; *Signal Transduction ; Transcription Factors/*metabolism ; Tumor Cells, Cultured ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-05-14
    Description: Antigen receptor genes are assembled by site-specific DNA rearrangement. The recombination activator genes RAG-1 and RAG-2 are essential for this process, termed V(D)J rearrangement. The activity and stability of the RAG-2 protein have now been shown to be regulated by phosphorylation. In fibroblasts RAG-2 was phosphorylated predominantly at two serine residues, one of which affected RAG-2 activity in vivo. The threonine at residue 490 was phosphorylated by p34cdc2 kinase in vitro; phosphorylation at this site in vivo was associated with rapid degradation of RAG-2. Instability was transferred to chimeric proteins by a 90-residue portion of RAG-2. Mutation of the p34cdc2 phosphorylation site of the tumor suppressor protein p53 conferred a similar phenotype, suggesting that this association between phosphorylation and degradation is a general mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, W C -- Desiderio, S -- CA16519/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 May 14;260(5110):953-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493533" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; CDC2 Protein Kinase/metabolism ; Cell Line ; *DNA-Binding Proteins ; *Gene Rearrangement ; Humans ; Mice ; Molecular Sequence Data ; Mutation ; Nuclear Proteins ; Phosphorylation ; Proteins/chemistry/genetics/*metabolism ; Receptors, Antigen/*genetics ; Recombinant Fusion Proteins/metabolism ; Transfection ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-19
    Description: The unfertilized eggs of vertebrates are arrested in metaphase of meiosis II because of the activity of cytostatic factor (CSF). Xenopus CSF is thought to contain the product of the Mos proto-oncogene, but other proteins synthesized during meiosis II are also required for arrest induced by CSF. In Xenopus oocytes, ablation of synthesis of cyclin-dependent kinase 2 (Cdk2) during meiosis resulted in absence of the metaphase II block, even though the Mosxe protein kinase was fully active at metaphase. Introduction of purified Cdk2 restored metaphase II arrest, and increasing the amount of Cdk2 during meiosis I (when Mosxe is present) led to metaphase arrest at meiosis I. These data indicate that metaphase arrest is a result of cooperation between a proto-oncogene kinase and a cyclin-dependent kinase and illustrate the interaction of a cell growth regulator with a cell cycle control element.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gabrielli, B G -- Roy, L M -- Maller, J L -- F32 CA0981/CA/NCI NIH HHS/ -- GM26743/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 19;259(5102):1766-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Colorado School of Medicine, Denver 80262.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456304" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *CDC2-CDC28 Kinases ; Cyclin-Dependent Kinase 2 ; *Cyclin-Dependent Kinases ; Female ; Meiosis/*physiology ; Metaphase/*physiology ; Molecular Sequence Data ; Oligonucleotides, Antisense/pharmacology ; Oocytes/*cytology/drug effects/metabolism ; Phosphorylation ; Poly A/metabolism ; Progesterone/pharmacology ; Protein Kinases/genetics/*physiology ; *Protein-Serine-Threonine Kinases ; *Proto-Oncogene Proteins c-mos/metabolism/*physiology ; RNA, Messenger/metabolism ; Xenopus ; Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-08-06
    Description: Metalloenzymes effect a variety of important chemical transformations, often involving small molecule substrates or products such as molecular oxygen, hydrogen, nitrogen, and water. A diverse array of ions or metal clusters is observed at the active-site cores, but living systems use basic recurring structures that have been modified or tuned for specific purposes. Inorganic chemists are actively involved in the elucidation of the structure, spectroscopy, and mechanism of action of these biological catalysts, in part through a synthetic modeling approach involving biomimetic studies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlin, K D -- GM28962/GM/NIGMS NIH HHS/ -- GM45971/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Aug 6;261(5122):701-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7688141" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Oxidoreductases/chemistry/metabolism ; Binding Sites ; Electron Transport ; Enzymes/*chemistry/metabolism ; Hydrolysis ; Iron-Sulfur Proteins/chemistry/metabolism ; Metalloproteins/*chemistry/metabolism ; *Models, Chemical ; Models, Molecular ; Nitric Oxide/metabolism ; Nitric Oxide Synthase ; Oxidation-Reduction ; Peptides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1993-07-09
    Description: Transfer RNA (tRNA) splicing is essential in Saccharomyces cerevisiae as well as in humans, and many of its features are the same in both. In yeast, the final step of this process is removal of the 2' phosphate generated at the splice junction during ligation. A nicotinamide adenine dinucleotide (NAD)-dependent phosphotransferase catalyzes removal of the 2' phosphate and produces a small molecule. It is shown here that this small molecule is an NAD derivative: adenosine diphosphate (ADP)-ribose 1"-2" cyclic phosphate. Evidence is also presented that this molecule is produced in Xenopus laevis oocytes as a result of dephosphorylation of ligated tRNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Culver, G M -- McCraith, S M -- Zillmann, M -- Kierzek, R -- Michaud, N -- LaReau, R D -- Turner, D H -- Phizicky, E M -- DE07202-02/DE/NIDCR NIH HHS/ -- GM 22939/GM/NIGMS NIH HHS/ -- GM 25349/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 9;261(5118):206-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Rochester School of Medicine and Dentistry, NY 14642.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8392224" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate Ribose/*analogs & derivatives/chemistry/metabolism ; Animals ; Cyclic ADP-Ribose ; Endoribonucleases/metabolism ; NAD/chemistry/metabolism ; Oocytes/metabolism ; Phosphates/metabolism ; Phosphorylation ; Phosphotransferases/metabolism ; *RNA Splicing ; RNA, Fungal/*metabolism ; RNA, Transfer/*metabolism ; Saccharomyces cerevisiae/*genetics ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-19
    Description: The eukaryotic cell exhibits compartmentalization of functions to various membrane-bound organelles and to specific domains within each membrane. The spatial distribution of the membrane chemoreceptors and associated cytoplasmic chemotaxis proteins in Escherichia coli were examined as a prototypic functional aggregate in bacterial cells. Bacterial chemotaxis involves a phospho-relay system brought about by ligand association with a membrane receptor, culminating in a switch in the direction of flagellar rotation. The transduction of the chemotaxis signal is initiated by a chemoreceptor-CheW-CheA ternary complex at the inner membrane. These ternary complexes aggregate predominantly at the cell poles. Polar localization of the cytoplasmic CheA and CheW proteins is dependent on membrane-bound chemoreceptor. Chemoreceptors are not confined to the cell poles in strains lacking both CheA and CheW. The chemoreceptor-CheW binary complex is polarly localized in the absence of CheA, whereas the chemoreceptor-CheA binary complex is not confined to the cell poles in strains lacking CheW. The subcellular localization of the chemotaxis proteins may reflect a general mechanism by which the bacterial cell sequesters different regions of the cell for specialized functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maddock, J R -- Shapiro, L -- GM13929/GM/NIGMS NIH HHS/ -- GM32506/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 19;259(5102):1717-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, CA 94305-5427.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456299" target="_blank"〉PubMed〈/a〉
    Keywords: *ATP-Binding Cassette Transporters ; Bacterial Proteins/analysis/metabolism ; Carrier Proteins/metabolism ; Cell Membrane/ultrastructure ; Chemoreceptor Cells/physiology/*ultrastructure ; Chemotactic Factors/metabolism ; Chemotaxis/physiology ; Cytoplasm/metabolism ; Escherichia coli/chemistry/physiology/*ultrastructure ; *Escherichia coli Proteins ; Flagella/physiology/ultrastructure ; Fluorescent Antibody Technique ; Maltose-Binding Proteins ; Membrane Proteins/analysis/metabolism ; Microscopy, Immunoelectron ; *Monosaccharide Transport Proteins ; Phosphorylation ; Protein Conformation ; Signal Transduction/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-08-06
    Description: Metalloproteins play structural and catalytic roles in gene expression. The metalloregulatory proteins are a subclass that exerts metal-responsive control of genes involved in respiration, metabolism, and metal-specific homeostasis or stress-response systems, such as iron uptake and storage, copper efflux, and mercury detoxification. Two allosteric mechanisms for control of gene expression were first discovered in metalloregulatory systems: an iron-responsive translational control mechanism for ferritin production and a mercury-responsive DNA-distortion mechanism for transcriptional control of detoxification genes. These otherwise unrelated mechanisms give rise to a rapid physiological response when metal ion concentrations exceed a dangerous threshold. Molecular recognition in these allosteric metal ion receptors is achieved through atypical coordination geometries, cluster formation, or complexes with prosthetic groups, such as sulfide and heme. Thus, many of the inorganic assemblies that otherwise buttress the structure of biopolymers or catalyze substrate transformation in active sites of enzymes have also been adapted to serve sensor functions in the metalloregulatory proteins. Mechanistic studies of these metal-sensor protein interactions are providing new insights into fundamental aspects of inorganic chemistry, molecular biology, and cellular physiology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Halloran, T V -- R01 GM038784/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Aug 6;261(5122):715-25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Northwestern University, Evanston, IL 60208-3113.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8342038" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/metabolism ; Copper/chemistry/metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; *Gene Expression Regulation ; Iron/chemistry/metabolism ; Mercury/pharmacology ; Metalloproteins/chemistry/*metabolism ; Metals/chemistry/*metabolism ; Models, Molecular ; Protein Biosynthesis ; Transcription Factors/chemistry/*metabolism ; Zinc/chemistry/metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1993-08-20
    Description: Single-site mutants in the Cu,Zn superoxide dismutase (SOD) gene (SOD1) occur in patients with the fatal neurodegenerative disorder familial amyotrophic lateral sclerosis (FALS). Complete screening of the SOD1 coding region revealed that the mutation Ala4 to Val in exon 1 was the most frequent one; mutations were identified in exons 2, 4, and 5 but not in the active site region formed by exon 3. The 2.4 A crystal structure of human SOD, along with two other SOD structures, established that all 12 observed FALS mutant sites alter conserved interactions critical to the beta-barrel fold and dimer contact, rather than catalysis. Red cells from heterozygotes had less than 50 percent normal SOD activity, consistent with a structurally defective SOD dimer. Thus, defective SOD is linked to motor neuron death and carries implications for understanding and possible treatment of FALS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deng, H X -- Hentati, A -- Tainer, J A -- Iqbal, Z -- Cayabyab, A -- Hung, W Y -- Getzoff, E D -- Hu, P -- Herzfeldt, B -- Roos, R P -- New York, N.Y. -- Science. 1993 Aug 20;261(5124):1047-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Northwestern University Medical School, Chicago, IL 60611.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8351519" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amyotrophic Lateral Sclerosis/enzymology/*genetics ; Base Sequence ; Binding Sites ; Erythrocytes/enzymology ; Exons ; Free Radicals/metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Folding ; Protein Structure, Tertiary ; Superoxide Dismutase/blood/chemistry/*genetics/metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-10-22
    Description: Many bacterial signaling pathways involve a two-component design. In these pathways, a sensor kinase, when activated by a signal, phosphorylates its own histidine, which then serves as a phosphoryl donor to an aspartate in a response regulator protein. The Sln1 protein of the yeast Saccharomyces cerevisiae has sequence similarities to both the histidine kinase and the response regulator proteins of bacteria. A missense mutation in SLN1 is lethal in the absence but not in the presence of the N-end rule pathway, a ubiquitin-dependent proteolytic system. The finding of SLN1 demonstrates that a mode of signal transduction similar to the bacterial two-component design operates in eukaryotes as well.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ota, I M -- Varshavsky, A -- New York, N.Y. -- Science. 1993 Oct 22;262(5133):566-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211183" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/chemistry/genetics/metabolism ; Base Sequence ; Fungal Proteins/chemistry/*genetics/metabolism ; Genes, Fungal ; Intracellular Signaling Peptides and Proteins ; *Ligases ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Protein Kinases/chemistry/*genetics/metabolism ; Saccharomyces cerevisiae/*genetics/growth & development/metabolism ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment ; *Signal Transduction ; *Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-06-04
    Description: In mammals, the hydroperoxidation of arachidonic acid by lipoxygenases leads to the formation of leukotrienes and lipoxins, compounds that mediate inflammatory responses. Lipoxygenases are dioxygenases that contain a nonheme iron and are present in many animal cells. Soybean lipoxygenase-1 is a single-chain, 839-residue protein closely related to mammalian lipoxygenases. The structure of soybean lipoxygenase-1 solved to 2.6 angstrom resolution shows that the enzyme has two domains: a 146-residue beta barrel and a 693-residue helical bundle. The iron atom is in the center of the larger domain and is coordinated by three histidines and the COO- of the carboxyl terminus. The coordination geometry is nonregular and appears to be a distorted octahedron in which two adjacent positions are not occupied by ligands. Two cavities, in the shapes of a bent cylinder and a frustum, connect the unoccupied positions to the surface of the enzyme. The iron, with two adjacent and unoccupied positions, is poised to interact with the 1,4-diene system of the substrate and with molecular oxygen during catalysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boyington, J C -- Gaffney, B J -- Amzel, L M -- GM36232/GM/NIGMS NIH HHS/ -- R01 GM036232/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jun 4;260(5113):1482-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8502991" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arachidonate 15-Lipoxygenase/*chemistry/metabolism ; Iron/chemistry ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Soybeans/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-12-17
    Description: Myosin II, which converts the energy of adenosine triphosphate hydrolysis into the movement of actin filaments, is a hexamer of two heavy chains, two essential light chains, and two regulatory light chains (RLCs). Dictyostelium myosin II is known to be regulated in vitro by phosphorylation of the RLC. Cells in which the wild-type myosin II heavy chain was replaced with a recombinant form that lacks the binding site for RLC carried out cytokinesis and almost normal development, processes known to be dependent on functional myosin II. Characterization of the purified recombinant protein suggests that a complex of RLC and the RLC binding site of the heavy chain plays an inhibitory role for adenosine triphosphatase activity and a structural role for the movement of myosin along actin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uyeda, T Q -- Spudich, J A -- GM46551/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 17;262(5141):1867-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266074" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Ca(2+) Mg(2+)-ATPase/metabolism ; Calcium-Transporting ATPases/metabolism ; Cell Division ; Dictyostelium/cytology/genetics/*metabolism ; Genes, Fungal ; Molecular Sequence Data ; Myosin-Light-Chain Kinase/metabolism ; Myosins/chemistry/genetics/*metabolism ; Phosphorylation ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1993-05-14
    Description: The CD4 antigen is a membrane glycoprotein of T lymphocytes that interacts with major histocompatibility complex class II antigens and is also a receptor for the human immunodeficiency virus. the extracellular portion of CD4 is predicted to fold into four immunoglobulin-like domains. The crystal structure of the third and fourth domains of rat CD4 was solved at 2.8 angstrom resolution and shows that both domains have immunoglobulin folds. Domain 3, however, lacks the disulfide between the beta sheets; this results in an expansion of the domain. There is a difference of 30 degrees in the orientation between domains 3 and 4 when compared with domains 1 and 2. The two CD4 fragment structures provide a basis from which models of the overall receptor can be proposed. These models suggest an extended structure comprising two rigid portions joined by a short and possibly flexible linker region.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brady, R L -- Dodson, E J -- Dodson, G G -- Lange, G -- Davis, S J -- Williams, A F -- Barclay, A N -- New York, N.Y. -- Science. 1993 May 14;260(5110):979-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of York, United Kingdom.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493535" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD4/*chemistry ; Crystallization ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Rats ; Sequence Alignment ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1993-06-18
    Description: The ciliary neurotrophic factor (CNTF) receptor complex is shown here to include the CNTF binding protein (CNTFR alpha) as well as the components of the leukemia inhibitory factor (LIF) receptor, LIFR beta (the LIF binding protein) and gp130 [the signal transducer of interleukin-6 (IL-6)]. Thus, the conversion of a bipartite LIF receptor into a tripartite CNTF receptor apparently occurs by the addition of the specificity-conferring element CNTFR alpha. Both CNTF and LIF trigger the association of initially separate receptor components, which in turn results in tyrosine phosphorylation of receptor subunits. Unlike the IL-6 receptor complex in which homodimerization of gp130 appears to be critical for signal initiation, signaling by the CNTF and LIF receptor complexes depends on the heterodimerization of gp130 with LIFR beta. Ligand-induced dimerization of signal-transducing receptor components, also seen with receptor tyrosine kinases, may provide a general mechanism for the transmission of a signal across the cell membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S -- Aldrich, T H -- Stahl, N -- Pan, L -- Taga, T -- Kishimoto, T -- Ip, N Y -- Yancopoulos, G D -- New York, N.Y. -- Science. 1993 Jun 18;260(5115):1805-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8390097" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigens, CD ; Cell Line ; Cytokine Receptor gp130 ; Growth Inhibitors/pharmacology ; Interleukin-6/pharmacology ; Leukemia Inhibitory Factor ; Lymphokines/pharmacology ; Macromolecular Substances ; Membrane Glycoproteins/chemistry/*metabolism ; Models, Biological ; Nerve Growth Factors ; Nerve Tissue Proteins/pharmacology ; Phosphorylation ; Receptor, Ciliary Neurotrophic Factor ; Receptors, Cell Surface/chemistry/*metabolism ; *Receptors, Cytokine ; Receptors, Immunologic/chemistry/*metabolism ; Receptors, Interleukin-6 ; Receptors, OSM-LIF ; *Signal Transduction ; Tumor Cells, Cultured ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-12
    Description: Many metalloenzymes exhibit distinctive spectral features that are now becoming well understood. These reflect active site electronic structures that can make significant contributions to catalysis. Copper proteins provide well-characterized examples in which the unusual electronic structures of their active sites contribute to rapid, long-range electron transfer reactivity, oxygen binding and activation, and the multielectron reduction of dioxygen to water.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Solomon, E I -- Lowery, M D -- DK-31450/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 12;259(5101):1575-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8384374" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Copper/analysis/metabolism ; Electron Spin Resonance Spectroscopy ; Electron Transport ; Enzymes/*chemistry/metabolism ; Hemocyanin/chemistry/metabolism ; Metalloproteins/*chemistry/metabolism ; Models, Molecular ; Plastocyanin/chemistry/metabolism ; *Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1993-08-13
    Description: T cell antigen receptor (TCR) activation involves interactions between receptor subunits and nonreceptor protein tyrosine kinases (PTKs). Early steps in signaling through the zeta chain of the TCR were examined in transfected COS-1 cells. Coexpression of the PTK p59fynT, but not p56lck, with zeta or with a homodimeric TCR beta-zeta fusion protein produced tyrosine phosphorylation of both zeta and phospholipase C (PLC)-gamma 1, as well as calcium ion mobilization in response to receptor cross-linking. CD45 coexpression enhanced these effects. No requirement for the PTKZAP-70 was observed. Thus, p59fynT may link zeta directly to the PLC-gamma 1 activation pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hall, C G -- Sancho, J -- Terhorst, C -- AI 15066/AI/NIAID NIH HHS/ -- CA 01486/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Aug 13;261(5123):915-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology, Beth Israel Hospital, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8346442" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD45/analysis ; Base Sequence ; Calcium/*metabolism ; Cell Line ; Cercopithecus aethiops ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck) ; Membrane Proteins/*metabolism ; Molecular Sequence Data ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism/physiology ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-fyn ; Receptors, Antigen, T-Cell/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transfection ; Type C Phospholipases/metabolism ; Tyrosine/metabolism ; ZAP-70 Protein-Tyrosine Kinase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1993-03-12
    Description: PU.1 recruits the binding of a second B cell-restricted nuclear factor, NF-EM5, to a DNA site in the immunoglobulin kappa 3' enhancer. DNA binding by NF-EM5 requires a protein-protein interaction with PU.1 and specific DNA contacts. Dephosphorylated PU.1 bound to DNA but did not interact with NF-EM5. Analysis of serine-to-alanine mutations in PU.1 indicated that serine 148 (Ser148) is required for protein-protein interaction. PU.1 produced in bacteria did not interact with NF-EM5. Phosphorylation of bacterially produced PU.1 by purified casein kinase II modified it to a form that interacted with NF-EM5 and that recruited NF-EM5 to bind to DNA. Phosphopeptide analysis of bacterially produced PU.1 suggested that Ser148 is phosphorylated by casein kinase II. This site is also phosphorylated in vivo. Expression of wild-type PU.1 increased expression of a reporter construct containing the PU.1 and NF-EM5 binding sites nearly sixfold, whereas the Ser148 mutant form only weakly activated transcription. These results demonstrate that phosphorylation of PU.1 at Ser148 is necessary for interaction with NF-EM5 and suggest that this phosphorylation can regulate transcriptional activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pongubala, J M -- Van Beveren, C -- Nagulapalli, S -- Klemsz, M J -- McKercher, S R -- Maki, R A -- Atchison, M L -- AI 30656/AI/NIAID NIH HHS/ -- CA 42909/CA/NCI NIH HHS/ -- GM 42415/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 12;259(5101):1622-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Animal Biology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia 19104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456286" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/immunology ; Base Sequence ; Cell Line ; Cell Nucleus/metabolism ; DNA-Binding Proteins/genetics/isolation & purification/*metabolism ; Enhancer Elements, Genetic ; Immunoglobulin kappa-Chains/genetics ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligonucleotide Probes ; Phosphorylation ; Plasmacytoma ; Recombinant Proteins/isolation & purification/metabolism ; Retroviridae Proteins, Oncogenic ; Transcription Factors/*metabolism ; *Transcription, Genetic ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-11-05
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432308/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432308/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Englander, S W -- R01 GM031847/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 5;262(5135):848-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6059.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235606" target="_blank"〉PubMed〈/a〉
    Keywords: Hydrogen-Ion Concentration ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Models, Molecular ; Muramidase/*chemistry ; Myoglobin/*chemistry ; Protein Conformation ; *Protein Folding ; Ribonuclease, Pancreatic/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 1993-04-23
    Description: Transforming growth factor-beta (TGF-beta) is a naturally occurring growth inhibitory polypeptide that arrests the cell cycle in middle to late G1 phase. Cells treated with TGF-beta contained normal amounts of cyclin E and cyclin-dependent protein kinase 2 (Cdk2) but failed to stably assemble cyclin E-Cdk2 complexes or accumulate cyclin E-associated kinase activity. Moreover, G1 phase extracts from TGF-beta-treated cells did not support activation of endogenous cyclin-dependent protein kinases by exogenous cyclins. These effects of TGF-beta, which correlated with the inhibition of retinoblastoma protein phosphorylation, suggest that mammalian G1 cyclin-dependent kinases, like their counterparts in yeast, are targets for negative regulators of the cell cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koff, A -- Ohtsuki, M -- Polyak, K -- Roberts, J M -- Massague, J -- New York, N.Y. -- Science. 1993 Apr 23;260(5107):536-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8475385" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *CDC2-CDC28 Kinases ; Cell Extracts ; Cell Line ; Cyclin-Dependent Kinase 2 ; *Cyclin-Dependent Kinases ; Cyclins/*metabolism/pharmacology ; Enzyme Activation/drug effects ; *G1 Phase ; Mink ; Phosphorylation ; Protein Kinases/*metabolism ; *Protein-Serine-Threonine Kinases ; Retinoblastoma Protein/metabolism ; Transforming Growth Factor beta/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-05-07
    Description: Structures recently proposed for the FeMo-cofactor and P-cluster pair of the nitrogenase molybdenum-iron (MoFe)-protein from Azotobacter vinelandii have been crystallographically verified at 2.2 angstrom resolution. Significantly, no hexacoordinate sulfur atoms are observed in either type of metal center. Consequently, the six bridged iron atoms in the FeMo-cofactor are trigonally coordinated by nonprotein ligands, although there may be some iron-iron bonding interactions that could provide a fourth coordination interaction for these sites. Two of the cluster sulfurs in the P-cluster pair are very close together (approximately 2.1 angstroms), indicating that they form a disulfide bond. These findings indicate that a cavity exists in the interior of the FeMo-cofactor that could be involved in substrate binding and suggest that redox reactions at the P-cluster pair may be linked to transitions of two cluster-bound sulfurs between disulfide and sulfide oxidation states.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chan, M K -- Kim, J -- Rees, D C -- 1F32 GM15006/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 May 7;260(5109):792-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8484118" target="_blank"〉PubMed〈/a〉
    Keywords: Azotobacter vinelandii/*enzymology ; Iron/*chemistry ; Models, Molecular ; Molybdoferredoxin/*chemistry ; Nitrogenase/*chemistry ; Oxidation-Reduction ; Sulfur/*chemistry ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1993-09-17
    Description: The CD8 alpha cytoplasmic domain associates with p56lck, a nonreceptor protein-tyrosine kinase. The biological relevance of CD8 alpha-Lck association in T cell development was tested with transgenic mice generated to express a CD8 alpha molecule with two amino acid substitutions in its cytoplasmic domain, which abolishes the association of CD8 alpha with Lck. The CD8 alpha mutant was analyzed in a CD8-/- background and in the context of the transgenic 2C T cell receptor. The development and function of CD8+ T cells in these mice were apparently normal. Thus, CD8 alpha-Lck association is not necessary for positive selection, negative selection, or CD8-dependent cytotoxic function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chan, I T -- Limmer, A -- Louie, M C -- Bullock, E D -- Fung-Leung, W P -- Mak, T W -- Loh, D Y -- AI 155322-13/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 17;261(5128):1581-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Medicine, Genetics, and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8372352" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD4/metabolism ; Antigens, CD8/immunology/*metabolism ; *Cytotoxicity, Immunologic ; Female ; Genes, MHC Class I ; Lymphocyte Culture Test, Mixed ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck) ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Mice, Transgenic ; Mutation ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Receptors, Antigen, T-Cell ; T-Lymphocytes, Cytotoxic/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-08-20
    Description: The effectiveness of long-term potentiation (LTP) as a mechanism for information storage would be severely limited if processes that decrease synaptic strength did not also exist. In area CA1 of the rat hippocampus, prolonged periods of low-frequency afferent stimulation elicit a long-term depression (LTD) that is specific to the stimulated input. The induction of LTD was blocked by the extracellular application of okadaic acid or calyculin A, two inhibitors of protein phosphatases 1 and 2A. The loading of CA1 cells with microcystin LR, a membrane-impermeable protein phosphatase inhibitor, or calmodulin antagonists also blocked or attenuated LTD. The application of calyculin A after the induction of LTD reversed the synaptic depression, suggesting that phosphatase activity is required for the maintenance of LTD. These findings indicate that the synaptic activation of protein phosphatases plays an important role in the regulation of synaptic transmission.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mulkey, R M -- Herron, C E -- Malenka, R C -- MH00942/MH/NIMH NIH HHS/ -- MH10306/MH/NIMH NIH HHS/ -- MH45334/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1993 Aug 20;261(5124):1051-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, University of California, San Francisco 94143-0984.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8394601" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Calmodulin/metabolism ; Electric Stimulation ; Ethers, Cyclic/pharmacology ; Hippocampus/drug effects/enzymology/*physiology ; Microcystins ; Okadaic Acid ; Oxazoles/pharmacology ; Peptides, Cyclic/pharmacology ; Phosphoprotein Phosphatases/antagonists & inhibitors/*metabolism ; Phosphorylation ; Rats ; Rats, Sprague-Dawley ; Receptors, N-Methyl-D-Aspartate/physiology ; Synapses/drug effects/*physiology ; *Synaptic Transmission/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-06-11
    Description: The propensity of an amino acid to form an alpha helix in a protein was determined by multiple amino substitutions at positions 44 and 131 in T4 lysozyme. These positions are solvent-exposed sites within the alpha helices that comprise, respectively, residues 39 to 50 and 126 to 134. Except for two acidic substitutions that may be involved in salt bridges, the changes in stability at the two sites agree well. The stability values also agree with those observed for corresponding amino acid substitutions in some model peptides. Thus, helix propensity values derived from model peptides can be applicable to proteins. Among the 20 naturally occurring amino acids, proline, glycine, and alanine each have a structurally unique feature that helps to explain their low or high helix propensities. For the remaining 17 amino acids, it appears that the side chain hydrophobic surface buried against the side of the helix contributes substantially to alpha helix propensity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blaber, M -- Zhang, X J -- Matthews, B W -- GM 21967/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jun 11;260(5114):1637-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene 97403.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8503008" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*chemistry ; Bacteriophage T4/enzymology ; Enzyme Stability ; Models, Molecular ; Muramidase/chemistry ; Mutation ; *Protein Structure, Secondary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1993-05-14
    Description: Antigen receptors on B and T lymphocytes transduce signals by activating nonreceptor protein tyrosine kinases (PTKs). A family of receptor PTKs contains kinase insert regions with the sequence tyrosine-X-X-methionine (where X is any amino acid) that when phosphorylated mediate the binding and activation of phosphatidylinositol 3-kinase (PI 3-kinase). The CD19 membrane protein of B cells enhances activation through membrane immunoglobulin M (mIgM) and was found to contain a functional analog of the kinase insert region. Ligation of mIgM induced phosphorylation of CD19 and association with PI 3-kinase. Thus, CD19 serves as a surrogate kinase insert region for mIgM by providing the means for PI 3-kinase activation by nonreceptor PTKs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tuveson, D A -- Carter, R H -- Soltoff, S P -- Fearon, D T -- 5T32GM07309/GM/NIGMS NIH HHS/ -- AI22833/AI/NIAID NIH HHS/ -- AI28191/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1993 May 14;260(5110):986-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7684160" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, CD/*metabolism ; Antigens, CD19 ; Antigens, Differentiation, B-Lymphocyte/*metabolism ; B-Lymphocytes/*immunology/metabolism ; Base Sequence ; Humans ; Immunoglobulin M/*metabolism ; Molecular Sequence Data ; Phosphatidylinositol 3-Kinases ; Phosphatidylinositols/metabolism ; Phosphorylation ; Phosphotransferases/*metabolism ; Tumor Cells, Cultured ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-12-17
    Description: Lysin, a protein from abalone sperm, creates a hole in the envelope of the egg, permitting the sperm to pass through the envelope and fuse with the egg. The structure of lysin, refined at 1.9 angstroms resolution, reveals an alpha-helical, amphipathic molecule. The surface of the protein exhibits three features: two tracks of basic residues that span the length of the molecule, a solvent-exposed cluster of aromatic and aliphatic amino acids, and an extended amino-terminal hypervariable domain that is species-specific. The structure suggests possible mechanisms of action.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shaw, A -- McRee, D E -- Vacquier, V D -- Stout, C D -- HD12986/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 17;262(5141):1864-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037-1093.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266073" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Computer Graphics ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Mollusca ; Mucoproteins/*chemistry/metabolism ; Protein Structure, Secondary ; Vitelline Membrane/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1993-07-23
    Description: The three-dimensional solution structure of a complex between the DNA binding domain of the chicken erythroid transcription factor GATA-1 and its cognate DNA site has been determined with multidimensional heteronuclear magnetic resonance spectroscopy. The DNA binding domain consists of a core which contains a zinc coordinated by four cysteines and a carboxyl-terminal tail. The core is composed of two irregular antiparallel beta sheets and an alpha helix, followed by a long loop that leads into the carboxyl-terminal tail. The amino-terminal part of the core, including the helix, is similar in structure, although not in sequence, to the amino-terminal zinc module of the glucocorticoid receptor DNA binding domain. In the other regions, the structures of these two DNA binding domains are entirely different. The DNA target site in contact with the protein spans eight base pairs. The helix and the loop connecting the two antiparallel beta sheets interact with the major groove of the DNA. The carboxyl-terminal tail, which is an essential determinant of specific binding, wraps around into the minor groove. The complex resembles a hand holding a rope with the palm and fingers representing the protein core and the thumb, the carboxyl-terminal tail. The specific interactions between GATA-1 and DNA in the major groove are mainly hydrophobic in nature, which accounts for the preponderance of thymines in the target site. A large number of interactions are observed with the phosphate backbone.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Omichinski, J G -- Clore, G M -- Schaad, O -- Felsenfeld, G -- Trainor, C -- Appella, E -- Stahl, S J -- Gronenborn, A M -- New York, N.Y. -- Science. 1993 Jul 23;261(5120):438-46.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8332909" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Chickens ; DNA-Binding Proteins/*chemistry ; Erythroid-Specific DNA-Binding Factors ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Tertiary ; Transcription Factors/*chemistry ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1993-06-25
    Description: Insulin-induced activation of extracellular signal-regulated kinases [ERKs, also known as mitogen-activated protein (MAP) kinases] is mediated by Ras. Insulin activates Ras primarily by increasing the rate of guanine nucleotide-releasing activity. Here, we show that insulin-induced activation of ERKs was enhanced by stable overexpression of growth factor receptor-bound protein 2 (GRB2) but not by overexpression of GRB2 proteins with point mutations in the Src homology 2 and 3 domains. Moreover, a dominant negative form of Ras (with Ser17 substituted with Asn) blocked insulin-induced activation of ERKs in cells that overexpressed GRB2. GRB2 overexpression led to increased formation of a complex between the guanine nucleotide-releasing factor Sos (the product of the mammalian homolog of son of sevenless gene) and GRB2. In response to insulin stimulation, this complex bound to tyrosine-phosphorylated IRS-1 (insulin receptor substrate-1) and Shc. In contrast to the activated epidermal growth factor receptor that binds the GRB2-Sos complex directly, activation of the insulin receptor results in the interaction of GRB2-Sos with IRS-1 and Shc, thus linking the insulin receptor to Ras signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Skolnik, E Y -- Batzer, A -- Li, N -- Lee, C H -- Lowenstein, E -- Mohammadi, M -- Margolis, B -- Schlessinger, J -- DK01927/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1993 Jun 25;260(5116):1953-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, New York University Medical Center, NY 10016.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8316835" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Cell Line ; Enzyme Activation ; Epidermal Growth Factor/*metabolism ; GRB2 Adaptor Protein ; Insulin/pharmacology ; Insulin Receptor Substrate Proteins ; Membrane Proteins/metabolism ; Mitogen-Activated Protein Kinase 1 ; Mitogen-Activated Protein Kinase 3 ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Phosphoproteins/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Proteins/*metabolism ; Receptor, Insulin/*metabolism ; Signal Transduction ; Son of Sevenless Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1993-11-12
    Description: Structures of the protein-chromophore complex and the apoprotein form of neocarzinostatin were determined at 1.8 angstrom resolution. Neocarzinostatin is composed of a labile chromophore with DNA-cleaving activity and a stabilizing protein. The chromophore displays marked nonlinearity of the triple bonds and is bound noncovalently in a pocket formed by the two protein domains. The chromophore pi-face interacts with the phenyl ring edges of Phe52 and Phe78. The amino sugar and carbonate groups of the chromophore are solvent exposed, whereas the epoxide, acetylene groups, and carbon C-12, the site of nucleophilic thiol addition during chromophore activation, are unexposed. The position of the amino group of the chromophore carbohydrate relative to C-12 supports the idea that the amino group plays a role in thiol activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, K H -- Kwon, B M -- Myers, A G -- Rees, D C -- CA47148/CA/NCI NIH HHS/ -- GM45162/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 12;262(5136):1042-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235619" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/chemistry ; Computer Graphics ; Computer Simulation ; Crystallography, X-Ray ; Hydrogen Bonding ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Zinostatin/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-07-30
    Description: The epidermal growth factor (EGF) receptor interacts with plasma membrane-associated adapter proteins during endocytosis through coated pits. Almost 50 percent of the total pool of alpha-adaptins was coimmunoprecipitated with the EGF receptor when A-431 cells were treated with EGF at 37 degrees C, but not at 4 degrees C. Partial proteolysis of alpha-adaptin suggested that the amino-terminal domain is the region that associates with the EGF receptor. The extent of receptor-adaptin association was increased in cells depleted of potassium to block endocytosis. These data suggest that receptor-adaptin association occurs in intact cells before coated pits are fully assembled.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sorkin, A -- Carpenter, G -- CA24071/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 30;261(5121):612-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8342026" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Protein Complex alpha Subunits ; Adaptor Proteins, Vesicular Transport ; Coated Pits, Cell-Membrane/*metabolism ; *Endocytosis ; Epidermal Growth Factor/metabolism/pharmacology ; Humans ; Phosphorylation ; Potassium/metabolism ; Proteins/*metabolism ; Receptor, Epidermal Growth Factor/*metabolism ; Temperature ; Tumor Cells, Cultured ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-02-19
    Description: Antifreeze proteins (AFPs) are present in the blood of some marine fishes and inhibit the growth of ice crystals at subzero temperatures by adsorption to the ice lattice. The solution structure of a Type III AFP was determined by two-dimensional nuclear magnetic resonance spectroscopy. These measurements indicate that this 66-residue protein has an unusual fold in which eight beta strands form two sheets of three antiparallel strands and one sheet of two antiparallel strands, and the triple-stranded sheets are packed orthogonally into a beta sandwich. This structure is completely different from the amphipathic, helical structure observed for Type I AFPs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sonnichsen, F D -- Sykes, B D -- Chao, H -- Davies, P L -- New York, N.Y. -- Science. 1993 Feb 19;259(5098):1154-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Protein Engineering Network of Centres of Excellence, University of Alberta, Edmonton, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8438165" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antifreeze Proteins ; Cloning, Molecular ; Escherichia coli/genetics ; Fishes ; Freezing ; Genes, Synthetic ; Glycoproteins/*chemistry/genetics ; Magnetic Resonance Spectroscopy/methods ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Recombinant Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-12
    Description: Regulation of cell proliferation, differentiation, and metabolic homeostasis is associated with the phosphorylation and dephosphorylation of specific tyrosine residues of key regulatory proteins. The phosphotyrosine phosphatase 1D (PTP 1D) contains two amino terminally located Src homology 2 (SH2) domains and is similar to the Drosophila corkscrew gene product, which positively regulates the torso tyrosine kinase signal transduction pathway. PTP activity was found to be regulated by physical interaction with a protein tyrosine kinase. PTP 1D did not dephosphorylate receptor tyrosine kinases, despite the fact that it associated with the epidermal growth factor receptor and chimeric receptors containing the extracellular domain of the epidermal growth factor receptor and the cytoplasmic domain of either the HER2-neu, kit-SCF, or platelet-derived growth factor beta (beta PDGF) receptors. PTP 1D was phosphorylated on tyrosine in cells overexpressing the beta PDGF receptor kinase and this tyrosine phosphorylation correlated with an enhancement of its catalytic activity. Thus, protein tyrosine kinases and phosphatases do not simply oppose each other's action; rather, they may work in concert to maintain a fine balance of effector activation needed for the regulation of cell growth and differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, W -- Lammers, R -- Huang, J -- Ullrich, A -- New York, N.Y. -- Science. 1993 Mar 12;259(5101):1611-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Max-Planck-Institut fur Biochemie, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7681217" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Chimera ; Drosophila/genetics ; Enzyme Activation ; Genes, src ; Humans ; Kidney ; Luminescent Measurements ; Mice ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Phosphorylation ; Phosphotyrosine ; Plasmids ; Protein Tyrosine Phosphatases/*metabolism ; Proto-Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Proteins c-kit ; Proto-Oncogenes ; Receptor, Epidermal Growth Factor/genetics/metabolism ; Receptor, ErbB-2 ; Receptors, Platelet-Derived Growth Factor/genetics/metabolism ; Sequence Homology, Amino Acid ; Signal Transduction ; Transfection ; Tyrosine/*analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 1993-05-28
    Description: The retinoblastoma gene product (Rb) is a nuclear phosphoprotein that regulates cell cycle progression. Elf-1 is a lymphoid-specific Ets transcription factor that regulates inducible gene expression during T cell activation. In this report, it is demonstrated that Elf-1 contains a sequence motif that is highly related to the Rb binding sites of several viral oncoproteins and binds to the pocket region of Rb both in vitro and in vivo. Elf-1 binds exclusively to the underphosphorylated form of Rb and fails to bind to Rb mutants derived from patients with retinoblastoma. Co-immunoprecipitation experiments demonstrated an association between Elf-1 and Rb in resting normal human T cells. After T cell activation, the phosphorylation of Rb results in the release of Elf-1, which is correlated temporally with the activation of Elf-1-mediated transcription. Overexpression of a phosphorylation-defective form of Rb inhibited Elf-1-dependent transcription during T cell activation. These results demonstrate that Rb interacts specifically with a lineage-restricted Ets transcription factor. This regulated interaction may be important for the coordination of lineage-specific effector functions such as lymphokine production with cell cycle progression in activated T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, C Y -- Petryniak, B -- Thompson, C B -- Kaelin, W G -- Leiden, J M -- R01 AI29673-01/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1993 May 28;260(5112):1330-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Chicago, IL 60637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493578" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Cell Cycle ; Cell Line ; DNA-Binding Proteins/chemistry/*metabolism ; Eye Neoplasms/genetics ; Humans ; Lymphocyte Activation ; Molecular Sequence Data ; Mutation ; Oligodeoxyribonucleotides ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; Retinoblastoma/genetics ; Retinoblastoma Protein/*metabolism ; T-Lymphocytes/immunology/*metabolism ; Transcription Factors/chemistry/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-05-21
    Description: A method is described here for identifying good protease substrates among approximately 10(7) possible sequences. A library of fusion proteins was constructed containing an amino-terminal domain used to bind to an affinity support, followed by a randomized protease substrate sequence and the carboxyl-terminal domain of M13 gene III. Each fusion protein was displayed as a single copy on filamentous phagemid particles (substrate phage). Phage were then bound to an affinity support and treated with the protease of interest. Phage with good protease substrates were released, whereas phage with substrates that resisted proteolysis remained bound. After several rounds of binding, proteolysis, and phagemid propagation, sensitive and resistant substrate sequences were identified for two different proteases, a variant of subtilisin and factor Xa. The technique may also be useful for studying the sequence specificity of a variety of posttranslational modifications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matthews, D J -- Wells, J A -- New York, N.Y. -- Science. 1993 May 21;260(5111):1113-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493554" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriophages/*genetics ; Base Sequence ; Computer Simulation ; Factor Xa/chemistry/*metabolism ; Genetic Vectors ; Humans ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligopeptides/chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Substrate Specificity ; Subtilisins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1993-02-26
    Description: The x-ray crystal structure of a peptide designed to form a double-stranded parallel coiled coil shows that it is actually a triple-stranded coiled coil formed by three alpha-helices. Unlike the designed parallel coiled coil, the helices run up-up-down. The structure is stabilized by a distinctive hydrophobic interface consisting of eight layers. As in the design, each alpha-helix in the coiled coil contributes one leucine side chain to each layer. The structure suggests that hydrophobic interactions are a dominant factor in the stabilization of coiled coils. The stoichiometry and geometry of coiled coils are primarily determined by side chain packing in the solvent-inaccessible interior, but electrostatic interactions also contribute.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lovejoy, B -- Choe, S -- Cascio, D -- McRorie, D K -- DeGrado, W F -- Eisenberg, D -- 31299/PHS HHS/ -- New York, N.Y. -- Science. 1993 Feb 26;259(5099):1288-93.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Institute, University of California, Los Angeles 90024-1570.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8446897" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography ; *DNA-Binding Proteins ; Fungal Proteins/chemistry/ultrastructure ; Hydrogen Bonding ; Leucine/chemistry ; Models, Molecular ; Molecular Sequence Data ; Peptides/chemistry ; Protein Kinases/chemistry/ultrastructure ; *Protein Structure, Secondary ; *Saccharomyces cerevisiae Proteins ; Tropomyosin/chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1993-03-05
    Description: A molecular docking computer program (DOCK) was used to screen the Fine Chemical Directory, a database of commercially available compounds, for molecules that are complementary to thymidylate synthase (TS), a chemotherapeutic target. Besides retrieving the substrate and several known inhibitors, DOCK proposed putative inhibitors previously unknown to bind to the enzyme. Three of these compounds inhibited Lactobacillus casei TS at submillimolar concentrations. One of these inhibitors, sulisobenzone, crystallized with TS in two configurations that differed from the DOCK-favored geometry: a counterion was bound in the substrate site, which resulted in a 6 to 9 angstrom displacement of the inhibitor. The structure of the complexes suggested another binding region in the active site that could be exploited. This region was probed with molecules sterically similar to sulisobenzone, which led to the identification of a family of phenolphthalein analogs that inhibit TS in the 1 to 30 micromolar range. These inhibitors do not resemble the substrates of the enzyme. A crystal structure of phenolphthalein with TS shows that it binds in the target site in a configuration that resembles the one suggested by DOCK.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shoichet, B K -- Stroud, R M -- Santi, D V -- Kuntz, I D -- Perry, K M -- GM24485/GM/NIGMS NIH HHS/ -- GM31497/GM/NIGMS NIH HHS/ -- GM39553/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1993 Mar 5;259(5100):1445-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmaceutical Chemistry, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8451640" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Benzophenones/chemistry/*pharmacology ; Binding Sites ; *Computers ; Databases, Factual ; Lactobacillus casei/enzymology ; Models, Molecular ; Molecular Conformation ; Molecular Structure ; Phenolphthaleins/chemistry/*pharmacology ; Protein Structure, Secondary ; Thymidylate Synthase/*antagonists & inhibitors/chemistry ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 1993-04-09
    Description: Mammalian circadian rhythms are regulated by a pacemaker within the suprachiasmatic nuclei (SCN) of the hypothalamus. The molecular mechanisms controlling the synchronization of the circadian pacemaker are unknown; however, immediate early gene (IEG) expression in the SCN is tightly correlated with entrainment of SCN-regulated rhythms. Antibodies were isolated that recognize the activated, phosphorylated form of the transcription factor cyclic adenosine monophosphate response element binding protein (CREB). Within minutes after exposure of hamsters to light, CREB in the SCN became phosphorylated on the transcriptional regulatory site, Ser133. CREB phosphorylation was dependent on circadian time: CREB became phosphorylated only at times during the circadian cycle when light induced IEG expression and caused phase shifts of circadian rhythms. These results implicate CREB in neuronal signaling in the hypothalamus and suggest that circadian clock gating of light-regulated molecular responses in the SCN occurs upstream of phosphorylation of CREB.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ginty, D D -- Kornhauser, J M -- Thompson, M A -- Bading, H -- Mayo, K E -- Takahashi, J S -- Greenberg, M E -- F31 MH10241/MH/NIMH NIH HHS/ -- F32 NS08764/NS/NINDS NIH HHS/ -- NS 28829/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1993 Apr 9;260(5105):238-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8097062" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; *Circadian Rhythm ; Colforsin/pharmacology ; Cricetinae ; Cyclic AMP Response Element-Binding Protein/immunology/*metabolism ; Darkness ; Gene Expression Regulation ; Genes, fos ; Glutamates/pharmacology ; Glutamic Acid ; *Light ; Molecular Sequence Data ; PC12 Cells ; Phosphorylation ; Potassium Chloride/pharmacology ; Suprachiasmatic Nucleus/drug effects/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1993-10-15
    Description: The cell cycle regulatory protein CksHs2 binds to the catalytic subunit of the cyclin-dependent kinases (Cdk's) and is essential for their biological function. The crystal structure of the protein was determined at 2.1 A resolution. The CksHs2 structure is an unexpected hexamer formed by the symmetric assembly of three interlocked dimers into an unusual 12-stranded beta barrel fold that may represent a prototype for this class of protein structures. Sequence-conserved regions form the unusual beta strand exchange between the subunits of the dimer, and the metal and anion binding sites associated with the hexamer assembly. The two other sequence-conserved regions line a 12 A diameter tunnel through the beta barrel and form the six exposed, charged helix pairs. Six kinase subunits can be modeled to bind the assembled hexamer without collision, and therefore this CksHs2 hexamer may participate in cell cycle control by acting as the hub for Cdk multimerization in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parge, H E -- Arvai, A S -- Murtari, D J -- Reed, S I -- Tainer, J A -- New York, N.Y. -- Science. 1993 Oct 15;262(5132):387-95.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211159" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; CDC2-CDC28 Kinases ; Carrier Proteins/*chemistry/physiology ; *Cell Cycle ; *Cell Cycle Proteins ; Computer Graphics ; Conserved Sequence ; Crystallography, X-Ray ; Humans ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Protein Folding ; Protein Kinases/metabolism ; Protein Structure, Secondary ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 1993-09-24
    Description: Interferons induce transcriptional activation through tyrosine phosphorylation of the latent, cytoplasmic transcription factor interferon-stimulated gene factor-3 (ISGF-3). Growth factors and cytokines were found to use a similar pathway: The 91-kilodalton subunit of ISGF-3 was activated and tyrosine phosphorylated in response to epidermal growth factor (EGF), platelet-derived growth factor, and colony stimulating factor-1. The tyrosine phosphorylated factor acquired DNA binding activity and accumulated in nuclei. Activation required the major sites for autophosphorylation on the EGF receptor that bind Src homology region 2 domain-containing proteins implicated in Ras activation. However, activation of this factor was independent of the normal functioning of Ras.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Silvennoinen, O -- Schindler, C -- Schlessinger, J -- Levy, D E -- AI-28900/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 24;261(5129):1736-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, New York University School of Medicine, New York, 10016.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8378775" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Base Sequence ; Cell Line ; DNA-Binding Proteins/*metabolism ; Epidermal Growth Factor/pharmacology ; Genes, ras ; Growth Substances/*pharmacology ; Humans ; Interferon-Stimulated Gene Factor 3 ; Interferon-Stimulated Gene Factor 3, gamma Subunit ; Macrophage Colony-Stimulating Factor/pharmacology ; Mice ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; Receptor, Epidermal Growth Factor/metabolism ; STAT1 Transcription Factor ; *Signal Transduction ; *Trans-Activators ; Transcription Factors/*metabolism ; Tyrosine/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1993-01-29
    Description: Crystals of bovine trypsin were acylated at the reactive residue, serine 195, to form the transiently stable p-guanidinobenzoate. Hydrolysis of this species was triggered in the crystals by a jump in pH. The hydrolysis was monitored by three-dimensional Laue crystallography, resulting in three x-ray diffraction structures, all from the same crystal and each representing approximately 5 seconds of x-ray exposure. The structures were analyzed at a nominal resolution of 1.8 angstroms and were of sufficient quality to reproduce subtle features in the electron-density maps for each of the structures. Comparison of the structures before and after the pH jump reveals that a water molecule has positioned itself to attack the acyl group in the initial step of the hydrolysis of this transient intermediate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Singer, P T -- Smalas, A -- Carty, R P -- Mangel, W F -- Sweet, R M -- New York, N.Y. -- Science. 1993 Jan 29;259(5095):669-73.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, Argonne National Laboratory, IL 60439.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8430314" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cattle ; Crystallography/methods ; Indicators and Reagents ; Models, Molecular ; *Protein Conformation ; Serine ; Trypsin/*chemistry ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-19
    Description: Yeast genes were isolated that are required for restoring the osmotic gradient across the cell membrane in response to increased external osmolarity. Two of these genes, HOG1 and PBS2, encode members of the mitogen-activated protein kinase (MAP kinase) and MAP kinase kinase gene families, respectively. MAP kinases are activated by extracellular ligands such as growth factors and function as intermediate kinases in protein phosphorylation cascades. A rapid, PBS2-dependent tyrosine phosphorylation of HOG1 protein occurred in response to increases in extracellular osmolarity. These data define a signal transduction pathway that is activated by changes in the osmolarity of the extracellular environment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brewster, J L -- de Valoir, T -- Dwyer, N D -- Winter, E -- Gustin, M C -- GM45772/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 19;259(5102):1760-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7681220" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Blotting, Northern ; Calcium-Calmodulin-Dependent Protein Kinases ; *Genes, Fungal ; Molecular Sequence Data ; Osmolar Concentration ; Phosphorylation ; Phosphothreonine/metabolism ; Phosphotyrosine ; Protein Kinases/chemistry/*genetics ; Restriction Mapping ; Saccharomyces cerevisiae/*genetics ; Signal Transduction/*genetics ; Tyrosine/analogs & derivatives/metabolism ; Water-Electrolyte Balance/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1993-06-04
    Description: Recent theoretical developments permit the prediction of 1H, 13C, 15N, and 19F nuclear magnetic resonance chemical shifts in proteins and offer new ways of analyzing secondary and tertiary structure as well as for probing protein electrostatics. For 13C, phi, psi torsion angles dominate shielding for C alpha and C beta, but the addition of hydrogen bonding and electrostatics gives even better accord with experiment. For 15NH, side chain (chi 1) torsion angles are also important, as are nearest neighbor sequence effects, whereas for 1HN, hydrogen bonding is particularly significant. For 19F, weak or long-range electrostatic fields dominate 19F shielding nonequivalencies. The ability to predict chemical shifts in proteins from known or test structures opens new avenues to structure refinement or determination, especially for condensed systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Dios, A C -- Pearson, J G -- Oldfield, E -- GM-14545/GM/NIGMS NIH HHS/ -- GM-40426/GM/NIGMS NIH HHS/ -- HL-19481/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1993 Jun 4;260(5113):1491-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Illinois, Urbana-Champaign 61801.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8502992" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry ; *Calcium-Binding Proteins ; Carrier Proteins/chemistry ; *Magnetic Resonance Spectroscopy ; Models, Chemical ; Models, Molecular ; *Monosaccharide Transport Proteins ; *Periplasmic Binding Proteins ; *Protein Structure, Secondary ; *Protein Structure, Tertiary ; Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1993-11-19
    Description: The natural arrest of vertebrate unfertilized eggs in second meiotic metaphase results from the activity of cytostatic factor (CSF). The product of the c-mos(xe) proto-oncogene is thought to be a component of CSF and can induce metaphase arrest when injected into blastomeres of two-cell embryos. The c-Mos(xe) protein can directly activate the mitogen-activated protein kinase kinase (MAP kinase kinase) in vitro, leading to activation of MAP kinase. MAP kinase and c-Mos(xe) are active in unfertilized eggs and are rapidly inactivated after fertilization. Microinjection of thiophosphorylated MAP kinase into one blastomere of a two-cell embryo induced metaphase arrest similar to that induced by c-Mos(xe). However, only arrest with c-Mos(xe) was associated with activation of endogenous MAP kinase. These results indicate that active MAP kinase is a component of CSF in Xenopus and suggest that the CSF activity of c-Mos(xe) is mediated by MAP kinase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haccard, O -- Sarcevic, B -- Lewellyn, A -- Hartley, R -- Roy, L -- Izumi, T -- Erikson, E -- Maller, J L -- F32CA0981/CA/NCI NIH HHS/ -- GM26743/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 19;262(5137):1262-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Colorado School of Medicine, Denver 80262.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235656" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Blastomeres/*cytology/metabolism ; Enzyme Activation ; *Metaphase ; Mitogen-Activated Protein Kinase 1 ; Mitogen-Activated Protein Kinase Kinases ; Models, Biological ; Molecular Sequence Data ; Phosphorylation ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Protein-Tyrosine Kinases/*metabolism ; Proto-Oncogene Proteins c-mos/*metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1993-04-23
    Description: The CD45 protein is a transmembrane tyrosine phosphatase that is required for normal T cell receptor (TCR)-mediated signaling. A chimeric complementary DNA encoding the intracellular enzymatically active portion of murine CD45 preceded by a short amino-terminal sequence from p60c-src was transfected into CD45- T cells. Expression of this chimeric protein corrected most of the TCR signaling abnormalities observed in the absence of CD45, including TCR-mediated enhancement of tyrosine kinase activity and Ca2+ flux. Thus, the enzymatically active intracellular portion of CD45 is sufficient to allow TCR transmembrane signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Volarevic, S -- Niklinska, B B -- Burns, C M -- June, C H -- Weissman, A M -- Ashwell, J D -- New York, N.Y. -- Science. 1993 Apr 23;260(5107):541-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8475386" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD3/immunology ; Antigens, CD45/genetics/*metabolism ; Base Sequence ; Calcium/metabolism ; Cell Membrane/metabolism ; Membrane Proteins/metabolism ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Receptors, Antigen, T-Cell/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Tumor Cells, Cultured ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1993-05-07
    Description: The hematopoietically expressed product of the vav proto-oncogene, Vav, shared homology with guanine nucleotide releasing factors (GRFs) [also called guanosine diphosphate-dissociation stimulators (GDSs)] that activate Ras-related small guanosine triphosphate (GTP)-binding proteins. Human T cell lysates or Vav immunoprecipitates possessed GRF activity that increased after T cell antigen receptor (TCR)-CD3 triggering; an in vitro-translated Vav fragment that contained the putative GRF domain was also active. Vav-associated GRF stimulation after TCR-CD3 ligation paralleled its tyrosine phosphorylation; both were blocked by a protein tyrosine kinase (PTK) inhibitor. Vav also was a substrate for the p56lck PTK. Thus, Vav is a PTK-regulated GRF that may be important in TCR-CD3-initiated signal transduction through the activation of Ras.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gulbins, E -- Coggeshall, K M -- Baier, G -- Katzav, S -- Burn, P -- Altman, A -- CA35299/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 May 7;260(5109):822-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cell Biology, La Jolla Institute for Allergy and Immunology, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8484124" target="_blank"〉PubMed〈/a〉
    Keywords: Benzoquinones ; *Cell Cycle Proteins ; Fungal Proteins/metabolism ; GTP-Binding Proteins/metabolism ; Guanosine Diphosphate/*metabolism ; Guanosine Triphosphate/*metabolism ; Humans ; Lactams, Macrocyclic ; Lymphocyte Activation ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck) ; Muromonab-CD3/pharmacology ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-vav ; Quinones/pharmacology ; Receptor-CD3 Complex, Antigen, T-Cell/immunology ; Rifabutin/analogs & derivatives ; Signal Transduction ; T-Lymphocytes/*immunology/metabolism ; Tumor Cells, Cultured ; rap GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hall, S S -- New York, N.Y. -- Science. 1993 Mar 12;259(5101):1532-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456281" target="_blank"〉PubMed〈/a〉
    Keywords: DNA/chemistry/*history ; England ; History, 20th Century ; Models, Molecular ; Nucleic Acid Conformation ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 1993-09-17
    Description: Although several interleukin-3 (IL-3)-dependent cell lines proliferate in response to IL-4 or insulin, the 32D line does not. Insulin and IL-4 sensitivity was restored to 32D cells by expression of IRS-1, the principal substrate of the insulin receptor. Although 32D cells possessed receptors for both factors, they lacked the IRS-1--related protein, 4PS, which becomes phosphorylated by tyrosine in insulin- or IL-4--responsive lines after stimulation. These results indicate that factors that bind unrelated receptors can use similar mitogenic signaling pathways in hematopoietic cells and that 4PS and IRS-1 are functionally similar proteins that are essential for insulin- and IL-4--induced proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, L M -- Myers, M G Jr -- Sun, X J -- Aaronson, S A -- White, M -- Pierce, J H -- DK-43808/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 17;261(5128):1591-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8372354" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division/drug effects ; Cell Line ; Hematopoietic Stem Cells/*cytology/drug effects ; Insulin/*pharmacology ; Insulin Receptor Substrate Proteins ; Interleukin-4/*pharmacology ; Phosphoproteins/*metabolism ; Phosphorylation ; Receptor, Insulin/metabolism ; Receptors, Interleukin-4 ; Receptors, Mitogen/metabolism ; Transfection ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-10-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koshland, D E Jr -- New York, N.Y. -- Science. 1993 Oct 22;262(5133):532.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211179" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/metabolism ; Fungal Proteins/metabolism ; Intracellular Signaling Peptides and Proteins ; Phosphorylation ; Plant Proteins/metabolism ; Plants/genetics/*metabolism ; Protein Kinases/metabolism ; *Receptors, Cell Surface ; *Saccharomyces cerevisiae Proteins ; *Signal Transduction ; Yeasts/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-12
    Description: A mouse phosphotyrosine phosphatase containing two Src homology 2 (SH2) domains, Syp, was identified. Syp bound to autophosphorylated epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) receptors through its SH2 domains and was rapidly phosphorylated on tyrosine in PDGF- and EGF-stimulated cells. Furthermore, Syp was constitutively phosphorylated on tyrosine in cells transformed by v-src. This mammalian phosphatase is most closely related, especially in its SH2 domains, to the corkscrew (csw) gene product of Drosophila, which is required for signal transduction downstream of the Torso receptor tyrosine kinase. The Syp gene is widely expressed throughout embryonic mouse development and in adult tissues. Thus, Syp may function in mammalian embryonic development and as a common target of both receptor and nonreceptor tyrosine kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, G S -- Hui, C C -- Pawson, T -- New York, N.Y. -- Science. 1993 Mar 12;259(5101):1607-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular and Developmental Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8096088" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line, Transformed ; Cell Transformation, Neoplastic ; Embryo, Mammalian ; Embryonic and Fetal Development ; Epidermal Growth Factor/pharmacology ; *Genes, src ; Humans ; Intracellular Signaling Peptides and Proteins ; Kinetics ; Mice ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; Poly A/isolation & purification/metabolism ; Polymerase Chain Reaction ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 ; Protein Tyrosine Phosphatase, Non-Receptor Type 6 ; Protein Tyrosine Phosphatases/genetics/*metabolism ; Protein-Tyrosine Kinases/*metabolism ; RNA, Messenger/isolation & purification/metabolism ; Rats ; Receptor, Epidermal Growth Factor/metabolism ; Receptors, Platelet-Derived Growth Factor/genetics/metabolism ; Sequence Homology, Amino Acid ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 1993-12-10
    Description: Calmodulin is the primary calcium-dependent signal transducer and regulator of a wide variety of essential cellular functions. The structure of calcium-calmodulin bound to the peptide corresponding to the calmodulin-binding domain of brain calmodulin-dependent protein kinase II alpha was determined to 2 angstrom resolution. A comparison to two other calcium-calmodulin structures reveals how the central helix unwinds in order to position the two domains optimally in the recognition of different target enzymes and clarifies the role of calcium in maintaining recognition-competent domain structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meador, W E -- Means, A R -- Quiocho, F A -- New York, N.Y. -- Science. 1993 Dec 10;262(5140):1718-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8259515" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium/*metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/chemistry/*metabolism ; Calmodulin/*chemistry/metabolism ; Computer Graphics ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Peptides/chemistry/*metabolism ; Protein Structure, Secondary ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 1993-11-05
    Description: The shc oncogene product is tyrosine-phosphorylated by Src family kinases and after its phosphorylation interacts with the adapter protein Grb2 (growth factor receptor-bound protein 2). In turn, Grb2 interacts with the guanine nucleotide exchange factor for Ras, mSOS. Because several Src family kinases participate in T cell activation and Shc functions upstream of Ras, the role of Shc in T cell signaling was examined. Shc was phosphorylated on tyrosine after activation through the T cell receptor (TCR), and subsequently interacted with Grb2 and mSOS. The Src homology region 2 (SH2) domain of Shc directly interacted with the tyrosine-phosphorylated zeta chain of the TCR. Thus, Shc may couple TCR activation to the Ras signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravichandran, K S -- Lee, K K -- Songyang, Z -- Cantley, L C -- Burn, P -- Burakoff, S J -- AI-17258/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 5;262(5135):902-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235613" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Cell Line ; GRB2 Adaptor Protein ; GTP-Binding Proteins/metabolism ; Humans ; Hybridomas ; *Lymphocyte Activation ; Membrane Proteins/*metabolism ; Molecular Sequence Data ; Oncogene Proteins/*metabolism ; Phosphorylation ; Proteins/metabolism ; Receptor, Epidermal Growth Factor/metabolism ; Receptors, Antigen, T-Cell/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Son of Sevenless Proteins ; T-Lymphocytes/*immunology/metabolism ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 1993-08-06
    Description: Cytochrome P450BM-3, a bacterial fatty acid monoxygenase, resembles the eukaryotic microsomal P450's and their flavoprotein reductase in primary structure and function. The three-dimensional structure of the hemoprotein domain of P450BM-3 was determined by x-ray diffraction and refined to an R factor of 16.9 percent at 2.0 angstrom resolution. The structure consists of an alph and a beta domain. The active site heme is accessible through a long hydrophobic channel formed primarily by the beta domain and the B' and F helices of the alpha domain. The two molecules in the asymmetric unit differ in conformation around the substrate binding pocket. Substantial differences between P450BM-3 and P450cam, the only other P450 structure available, are observed around the substrate binding pocket and the regions important for redox partner binding. A general mechanism for proton transfer in P450's is also proposed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravichandran, K G -- Boddupalli, S S -- Hasermann, C A -- Peterson, J A -- Deisenhofer, J -- GM43479/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Aug 6;261(5122):731-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75235-9050.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8342039" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Bacterial Proteins ; Binding Sites ; Computer Graphics ; Crystallization ; Cytochrome P-450 Enzyme System/*chemistry ; Heme/chemistry ; Mixed Function Oxygenases/*chemistry ; Models, Molecular ; Molecular Sequence Data ; NADPH-Ferrihemoprotein Reductase ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Alignment ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-01-08
    Description: The p34CDC28 protein from Saccharomyces cerevisiae is a homolog of the p34cdc2 protein kinase, a fundamental regulator of cell division in all eukaryotic cells. Once activated it initiates the visible events of mitosis (chromosome condensation, nuclear envelope breakdown, and spindle formation). The p34CDC28 protein also has a critical role in the initiation of DNA synthesis. The protein kinase activity is regulated by cycles of phosphorylation and dephosphorylation and by periodic association with cyclins. An endogenous 40-kilodalton protein (p40) originally identified as a substrate of the p34CDC28 protein kinase was purified. The p40 protein bound tightly to p34CDC28 and inhibited the activity of the kinase. The p40 protein may provide another mechanism to regulate p34CDC28 protein kinase activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mendenhall, M D -- New York, N.Y. -- Science. 1993 Jan 8;259(5092):216-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Kentucky, Lexington 40536.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8421781" target="_blank"〉PubMed〈/a〉
    Keywords: CDC28 Protein Kinase, S cerevisiae ; Cyclins/metabolism ; Histones/metabolism ; Kinetics ; Molecular Weight ; Phosphorylation ; Phosphothreonine/metabolism ; *Protein Kinase Inhibitors ; Protein Kinases/metabolism ; Saccharomyces cerevisiae/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1993-03-26
    Description: RecA protein is essential in eubacteria for homologous recombination and promotes the homologous pairing and strand exchange of DNA molecules in vitro. Recombination proteins with weak sequence similarity to bacterial RecA proteins have been identified in bacteriophage T4, yeast, and other higher organisms. Analysis of the primary sequence relationships of DMC1 from Saccharomyces cerevisiae and UvsX of T4 relative to the three-dimensional structure of RecA from Escherichia coli suggests that both proteins are structural homologs of bacterial RecA proteins. This analysis argues that proteins in this group are members of a single family that diverged from a common ancestor that existed prior to the divergence of prokaryotes and eukaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Story, R M -- Bishop, D K -- Kleckner, N -- Steitz, T A -- GM22778/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 26;259(5103):1892-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics, Yale University, New Haven, CT 06511.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456313" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Binding Sites ; *Cell Cycle Proteins ; Conserved Sequence ; DNA/metabolism ; DNA-Binding Proteins/metabolism ; Escherichia coli/chemistry ; Fungal Proteins/chemistry/metabolism ; Membrane Proteins/metabolism ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Protein Structure, Secondary ; Rec A Recombinases/*chemistry/metabolism ; Recombinant Proteins/chemistry ; Saccharomyces cerevisiae/*chemistry ; Saccharomyces cerevisiae Proteins ; Sequence Homology, Amino Acid ; T-Phages/*chemistry ; Viral Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-02-05
    Description: Mutations in Ras protein at positions Gly12 and Gly13 (phosphate-binding loop L1) and at positions Ala59, Gly60, and Gln61 (loop L4) are commonly associated with oncogenic activation. The structural and catalytic roles of these residues were probed with a series of unnatural amino acids that have unusual main chain conformations, hydrogen bonding abilities, and steric features. The properties of wild-type and transforming Ras proteins previously thought to be uniquely associated with the structure of a single amino acid at these positions were retained by mutants that contained a variety of unnatural amino acids. This expanded set of functional mutants provides new insight into the role of loop L4 residues in switch function and suggests that loop L1 may participate in the activation of Ras protein by effector molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, H H -- Benson, D R -- Schultz, P G -- F32 GM14165/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Feb 5;259(5096):806-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8430333" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cloning, Molecular/methods ; Escherichia coli/genetics/metabolism ; GTP Phosphohydrolases/metabolism ; GTPase-Activating Proteins ; *Genes, ras ; Hydrogen Bonding ; Methionine/genetics ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Phosphorylation ; Plasmids ; Promoter Regions, Genetic ; *Protein Conformation ; *Protein Structure, Secondary ; Proteins/metabolism ; Proto-Oncogene Proteins p21(ras)/*chemistry/*genetics/metabolism ; Recombinant Proteins/chemistry/metabolism ; ras GTPase-Activating Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-11-19
    Description: Interleukin-4 (IL-4) is an immunoregulatory cytokine produced by activated T lymphocytes to promote the growth and differentiation of cells that participate in immune defense. This study demonstrates the rapid activation of a specific DNA binding factor by IL-4. The IL-4 nuclear-activated factor (IL-4 NAF) appeared within minutes of IL-4 stimulation and recognized a specific DNA sequence found in the promoters of IL-4-responsive genes. Activation of this putative transcription factor required tyrosine phosphorylation, and antibodies specific for phosphotyrosine recognize the IL-4 NAF-DNA complex. Thus, IL-4 appears to transduce a signal to the nucleus through tyrosine phosphorylation of a latent DNA binding factor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kotanides, H -- Reich, N C -- R29CA50773/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 19;262(5137):1265-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program in Molecular and Cellular Biology, State University of New York at Stony Brook 11794.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7694370" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Cell Nucleus/metabolism ; DNA-Binding Proteins/*metabolism ; *Gene Expression Regulation ; Humans ; Interferon-gamma/pharmacology ; Interleukin-4/metabolism/*pharmacology ; Molecular Sequence Data ; Monocytes/metabolism ; Phosphorylation ; Phosphotyrosine ; Promoter Regions, Genetic ; Receptors, IgG/genetics ; Signal Transduction ; Transcription Factors/*metabolism ; Tyrosine/analogs & derivatives/analysis/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 1993-11-19
    Description: The assembly of different types of virulence-associated surface fibers called pili in Gram-negative bacteria requires periplasmic chaperones. PapD is the prototype member of the periplasmic chaperone family, and the structural basis of its interactions with pilus subunits was investigated. Peptides corresponding to the carboxyl terminus of pilus subunits bound PapD and blocked the ability of PapD to bind to the pilus adhesin PapG in vitro. The crystal structure of PapD complexed to the PapG carboxyl-terminal peptide was determined to 3.0 A resolution. The peptide bound in an extended conformation with its carboxyl terminus anchored in the interdomain cleft of the chaperone via hydrogen bonds to invariant chaperone residues Arg8 and Lys112. Main chain hydrogen bonds and contacts between hydrophobic residues in the peptide and the chaperone stabilized the complex and may play a role in determining binding specificity. Site-directed mutations in Arg8 and Lys112 abolished the ability of PapD to bind pilus subunits and mediate pilus assembly in vivo, an indication that the PapD-peptide crystal structure is a reflection of at least part of the PapD-subunit interaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuehn, M J -- Ogg, D J -- Kihlberg, J -- Slonim, L N -- Flemmer, K -- Bergfors, T -- Hultgren, S J -- AI07172/AI/NIAID NIH HHS/ -- R01AI29549/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 19;262(5137):1234-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7901913" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/chemistry/*metabolism ; Base Sequence ; Chaperonins ; Crystallography, X-Ray ; *Escherichia coli Proteins ; Fimbriae, Bacterial/*metabolism ; Hydrogen Bonding ; Models, Molecular ; *Molecular Chaperones ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Peptide Fragments/chemistry/metabolism ; *Periplasmic Proteins ; Protein Conformation ; Protein Structure, Secondary ; Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 1993-02-26
    Description: A novel polyiron oxo complex, [FeIII4FeII8(O)2(OCH3)18(O2CCH3)6(CH3OH) 4.67] (1), has been prepared from ferrous acetate and lithium methoxide in methanol by slow addition of dioxygen. The three-dimensional close-packed layered structure found in 1 closely mimics that proposed for the inorganic core in the iron storage protein ferritin. The Mossbauer spectra of 1 reveal superparamagnetic relaxation at temperatures below 15 K, a property characteristic of the ferritin core. The small size and mixed-valent nature of 1 suggest that it is a reasonable model for intermediates formed in the biomineralization of iron during ferritin core formation. A related compound, with the same iron-oxygen framework found in 1 but containing only two ferric ions, has also been structurally characterized. Because the clusters exhibit properties of both discrete molecules and extended solids, they are representative of a new class of nanometer-sized compounds that bridge the molecular solid-state boundary.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taft, K L -- Papaefthymiou, G C -- Lippard, S J -- New York, N.Y. -- Science. 1993 Feb 26;259(5099):1302-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8446898" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ferritins/chemistry/*ultrastructure ; Horses ; Humans ; In Vitro Techniques ; Iron/*chemistry ; Models, Molecular ; Spectrum Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 1993-11-26
    Description: The protein CD36 is a membrane receptor for thrombospondin (TSP), malaria-infected erythrocytes, and collagen. Three functional sequences were identified within a single disulfide loop of CD36: one that mediates TSP binding (amino acids 87 to 99) and two that support malarial cytoadhesion (amino acids 8 to 21 and 97 to 110). One of these peptides (p87-99) is a consensus protein kinase C (PKC) phosphorylation site. Dephosphorylation of constitutively phosphorylated CD36 in resting platelets and a megakaryocytic cell line led to the loss of collagen adhesion and platelet reactivity to collagen, with a reciprocal increase in TSP binding. PKC-mediated phosphorylation of this ectodomain resulted in a loss of TSP binding and the reciprocal acquisition of collagen binding. In site-directed mutagenesis studies, when the threonine phosphorylation site was changed to alanine, CD36 was expressed in a dephosphorylated state and bound to TSP constitutively.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Asch, A S -- Liu, I -- Briccetti, F M -- Barnwell, J W -- Kwakye-Berko, F -- Dokun, A -- Goldberger, J -- Pernambuco, M -- HL02541/HL/NHLBI NIH HHS/ -- HL18828/HL/NHLBI NIH HHS/ -- HL44389/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 26;262(5138):1436-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology-Oncology, Cornell University Medical College, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7504322" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD/chemistry/genetics/*metabolism ; Antigens, CD36 ; Base Sequence ; Blood Platelets/*metabolism ; Cell Adhesion ; Cell Line ; Collagen/*metabolism ; Erythrocytes/cytology/parasitology ; Humans ; Megakaryocytes/metabolism ; Membrane Glycoproteins/*metabolism ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Phosphorylation ; Plasmodium falciparum/physiology ; Platelet Adhesiveness ; Platelet Aggregation ; Platelet Membrane Glycoproteins/chemistry/genetics/*metabolism ; Protein Kinase C/metabolism ; Receptors, Cytoadhesin/metabolism ; Thrombospondins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-10-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tan, Y H -- New York, N.Y. -- Science. 1993 Oct 15;262(5132):376-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular and Cell Biology, National University of Singapore, Republic of Singapore.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7692598" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Cytokines/*metabolism/pharmacology ; Humans ; Interferons/metabolism/pharmacology ; Interleukins/metabolism/pharmacology ; Mice ; Models, Biological ; Phosphoprotein Phosphatases/*metabolism ; Phosphorylation ; Protein Kinases/*metabolism ; *Signal Transduction ; T-Lymphocytes/metabolism ; Tumor Necrosis Factor-alpha/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 1993-04-23
    Description: Surface expression of the CD45 tyrosine phosphatase is essential for the T cell antigen receptor (TCR) to couple optimally with its second messenger pathways. CD45 may be required to dephosphorylate a TCR-activated protein tyrosine kinase, which then transduces an activation signal from the TCR. A chimeric molecule that contained extracellular and transmembrane sequences from an allele of a major histocompatibility class I molecule and cytoplasmic sequences of CD45 restored TCR signaling in a CD45-deficient mutant T cell line. Thus, expression of the complex extracellular domain of CD45 is not required for the TCR to couple to its signaling machinery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hovis, R R -- Donovan, J A -- Musci, M A -- Motto, D G -- Goldman, F D -- Ross, S E -- Koretzky, G A -- CA56050-01/CA/NCI NIH HHS/ -- CA56843-02/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Apr 23;260(5107):544-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8475387" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD45/genetics/*metabolism ; Base Sequence ; Cell Line ; Cell Membrane/metabolism ; Cytoplasm/metabolism ; Enzyme Activation ; Humans ; Inositol Phosphates/metabolism ; Membrane Proteins/metabolism ; Molecular Sequence Data ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Receptors, Antigen, T-Cell/*metabolism ; Recombinant Fusion Proteins/metabolism ; Second Messenger Systems ; *Signal Transduction ; T-Lymphocytes/*metabolism ; Transfection ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1993-04-16
    Description: Mitogen-activated protein kinases (MAPKs) are rapidly phosphorylated and activated in response to various extracellular stimuli in many different cell types. Such regulation of MAPK results from sequential activation of a series of protein kinases. The kinases that phosphorylate MAPKs, the MAP kinase kinases (MEKs) are also activated by phosphorylation. MEKs are related in sequence to the yeast protein kinases Byr1 (from Schizosaccharomyces pombe) and Ste7 (from Saccharomyces cerevisiae), which function in the pheromone-induced signaling pathway that results in mating. Byr1 and Ste7 are in turn regulated by the protein kinases Byr2 and Ste11. The amino acid sequence of the mouse homolog of Byr2 and Ste11, denoted MEKK (MEK kinase), was elucidated from a complementary DNA sequence encoding a protein of 672 amino acid residues (73 kilodaltons). MEKK was expressed in all mouse tissues tested, and it phosphorylated and activated MEK. Phosphorylation and activation of MEK by MEKK was independent of Raf, a growth factor-regulated protein kinase that also phosphorylates MEK. Thus, MEKK and Raf converge at MEK in the protein kinase network mediating the activation of MAPKs by hormones, growth factors, and neurotransmitters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lange-Carter, C A -- Pleiman, C M -- Gardner, A M -- Blumer, K J -- Johnson, G L -- CA58187/CA/NCI NIH HHS/ -- DK 37871/DK/NIDDK NIH HHS/ -- GM 30324/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Apr 16;260(5106):315-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Basic Sciences, National Jewish Center for Immunology and Respiratory Medicine, Denver, CO 80206.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8385802" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Calcium-Calmodulin-Dependent Protein Kinases ; Cell Line, Transformed ; Cercopithecus aethiops ; Enzyme Activation ; *MAP Kinase Kinase Kinase 1 ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Protein-Tyrosine Kinases/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-raf ; Recombinant Proteins/metabolism ; Saccharomyces cerevisiae/enzymology/genetics ; Schizosaccharomyces/enzymology/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1993-11-12
    Description: Mitogen-activated protein (MAP) kinases p42mapk and p44mapk are activated in cells stimulated with epidermal growth factor (EGF) and other agents. A principal pathway for MAP kinase (MAPK) activation by EGF consists of sequential activations of the guanine nucleotide exchange factor Sos, the guanosine triphosphate binding protein Ras, and the protein kinases Raf-1, MAPK kinase (MKK), and MAPK. Because adenosine 3',5'-monophosphate (cAMP) does not activate MAPK and has some opposing physiologic effects, the effect of increasing intracellular concentrations of cAMP with forskolin and 3-isobutyl-1-methylxanthine on the EGF-stimulated MAPK pathway was studied. Increased concentrations of cAMP blocked activation of Raf-1, MKK, and MAPK in Rat1hER fibroblasts, accompanied by a threefold increase in Raf-1 phosphorylation on serine 43 in the regulatory domain. Phosphorylation of Raf-1 in vitro and in vivo reduces the apparent affinity with which it binds to Ras and may contribute to the blockade by cAMP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, J -- Dent, P -- Jelinek, T -- Wolfman, A -- Weber, M J -- Sturgill, T W -- CA39076/CA/NCI NIH HHS/ -- DK41077/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 12;262(5136):1065-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Virginia, Health Sciences Center, Charlottesville 22908.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7694366" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Methyl-3-isobutylxanthine/pharmacology ; 3T3 Cells ; Amino Acid Sequence ; Animals ; Cell Line ; Colforsin/pharmacology ; Cyclic AMP/*metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Enzyme Activation/drug effects ; Epidermal Growth Factor/*pharmacology ; Mice ; Mitogen-Activated Protein Kinase 1 ; Mitogen-Activated Protein Kinase Kinases ; Molecular Sequence Data ; Phosphorylation ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Protein-Tyrosine Kinases/*metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-raf ; Proto-Oncogene Proteins p21(ras)/*metabolism ; Rats ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1993-06-25
    Description: Signal transmission by insulin involves tyrosine phosphorylation of a major insulin receptor substrate (IRS-1) and exchange of Ras-bound guanosine diphosphate for guanosine triphosphate. Proteins containing Src homology 2 and 3 (SH2 and SH3) domains, such as the p85 regulatory subunit of phosphatidylinositol-3 kinase and growth factor receptor-bound protein 2 (GRB2), bind tyrosine phosphate sites on IRS-1 through their SH2 regions. Such complexes in COS cells were found to contain the heterologously expressed putative guanine nucleotide exchange factor encoded by the Drosophila son of sevenless gene (dSos). Thus, GRB2, p85, or other proteins with SH2-SH3 adapter sequences may link Sos proteins to IRS-1 signaling complexes as part of the mechanism by which insulin activates Ras.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baltensperger, K -- Kozma, L M -- Cherniack, A D -- Klarlund, J K -- Chawla, A -- Banerjee, U -- Czech, M P -- DK 30648/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1993 Jun 25;260(5116):1950-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester 01605.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8391166" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Animals ; Cell Line ; GRB2 Adaptor Protein ; Guanosine Triphosphate/metabolism ; Insulin/pharmacology ; Insulin Receptor Substrate Proteins ; Membrane Proteins/*metabolism ; Phosphatidylinositol 3-Kinases ; Phosphoproteins/*metabolism ; Phosphorylation ; Phosphotransferases/metabolism ; Proteins/metabolism ; Proto-Oncogene Proteins p21(ras)/*metabolism ; Receptor, Insulin/*metabolism ; Signal Transduction ; Son of Sevenless Proteins ; Transfection ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 1993-09-24
    Description: Interferon-alpha (IFN-alpha) and IFN-gamma regulate gene expression by tyrosine phosphorylation of several transcription factors that have the 91-kilodalton (p91) protein of interferon-stimulated gene factor-3 (ISGF-3) as a common component. Interferon-activated protein complexes bind enhancers present in the promoters of early response genes such as the high-affinity Fc gamma receptor gene (Fc gamma RI). Treatment of human peripheral blood monocytes or basophils with interleukin-3 (IL-3), IL-5, IL-10, or granulocyte-macrophage colony-stimulating factor (GM-CSF) activated DNA binding proteins that recognized the IFN-gamma response region (GRR) located in the promoter of the Fc gamma RI gene. Although tyrosine phosphorylation was required for the assembly of each of these GRR binding complexes, only those formed as a result of treatment with IFN-gamma or IL-10 contained p91. Instead, complexes activated by IL-3 or GM-CSF contained a tyrosine-phosphorylated protein of 80 kilodaltons. Induction of Fc gamma RI RNA occurred only with IFN-gamma and IL-10, whereas pretreatment of cells with GM-CSF or IL-3 inhibited IFN-gamma induction of Fc gamma RI RNA. Thus, several cytokines other than interferons can activate putative transcription factors by tyrosine phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larner, A C -- David, M -- Feldman, G M -- Igarashi, K -- Hackett, R H -- Webb, D S -- Sweitzer, S M -- Petricoin, E F 3rd -- Finbloom, D S -- New York, N.Y. -- Science. 1993 Sep 24;261(5129):1730-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cytokine Biology, Center for Biologics Evaluation and Research, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8378773" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cytokines/*pharmacology ; DNA-Binding Proteins/*metabolism ; Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology ; Humans ; Interferon-gamma/pharmacology ; Interleukin-10/pharmacology ; Interleukin-3/pharmacology ; Interleukins/pharmacology ; Molecular Sequence Data ; Monocytes/*metabolism ; Phosphorylation ; Promoter Regions, Genetic ; Receptors, IgG/genetics/metabolism ; STAT1 Transcription Factor ; *Trans-Activators ; Transcription Factors/*metabolism ; Tyrosine/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...