ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-09-20
    Description: Structure determination at 2.4 angstrom resolution shows that lambda-exonuclease consists of three subunits that form a toroid. The central channel is funnel shaped, tapering from an inner diameter of about 30 angstroms at the wider end to 15 angstroms at the narrow end. This is adequate to accommodate the DNA substrate and thus provides a structural basis for the ability of the enzyme to sequentially hydrolyze thousands of nucleotides in a highly processive manner. The results also suggest the locations of the active sites and the constraints that limit cleavage to a single strand.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kovall, R -- Matthews, B W -- GM20066/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Sep 19;277(5333):1824-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, Howard Hughes Medical Institute, and Department of Physics, University of Oregon, Eugene, OR 97403, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9295273" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage lambda/enzymology ; Binding Sites ; Crystallography, X-Ray ; DNA/genetics/*metabolism ; DNA, Single-Stranded/genetics/*metabolism ; DNA, Viral/genetics/metabolism ; Evolution, Molecular ; Exodeoxyribonucleases/*chemistry/genetics/metabolism ; Hydrolysis ; Magnesium/metabolism ; Models, Molecular ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Recombination, Genetic ; Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1992-01-10
    Description: Six "cavity-creating" mutants, Leu46----Ala (L46A), L99A, L118A, L121A, L133A, and Phe153----Ala (F153A), were constructed within the hydrophobic core of phage T4 lysozyme. The substitutions decreased the stability of the protein at pH 3.0 by different amounts, ranging from 2.7 kilocalories per mole (kcal mol-1) for L46A and L121A to 5.0 kcal mol-1 for L99A. The double mutant L99A/F153A was also constructed and decreased in stability by 8.3 kcal mol-1. The x-ray structures of all of the variants were determined at high resolution. In every case, removal of the wild-type side chain allowed some of the surrounding atoms to move toward the vacated space but a cavity always remained, which ranged in volume from 24 cubic angstroms (A3) for L46A to 150 A3 for L99A. No solvent molecules were observed in any of these cavities. The destabilization of the mutant Leu----Ala proteins relative to wild type can be approximated by a constant term (approximately 2.0 kcal mol-1) plus a term that increases in proportion to the size of the cavity. The constant term is approximately equal to the transfer free energy of leucine relative to alanine as determined from partitioning between aqueous and organic solvents. The energy term that increases with the size of the cavity can be expressed either in terms of the cavity volume (24 to 33 cal mol-1 A-3) or in terms of the cavity surface area (20 cal mol-1 A-2). The results suggest how to reconcile a number of conflicting reports concerning the strength of the hydrophobic effect in proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eriksson, A E -- Baase, W A -- Zhang, X J -- Heinz, D W -- Blaber, M -- Baldwin, E P -- Matthews, B W -- GM12989/GM/NIGMS NIH HHS/ -- GM13709/GM/NIGMS NIH HHS/ -- GM21967/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Jan 10;255(5041):178-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, Howard Hughes Medical Institute, Eugene, OR.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1553543" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calorimetry ; Models, Molecular ; Molecular Sequence Data ; Muramidase/*chemistry/*genetics ; Mutagenesis, Site-Directed ; Protein Conformation ; Structure-Activity Relationship ; T-Phages/enzymology/genetics ; Thermodynamics ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-02-10
    Description: A novel approach to the control of enzyme catalysis is presented in which a disulfide bond engineered into the active-site cleft of bacteriophage T4 lysozyme is capable of switching the activity on and off. Two cysteines (Thr21----Cys and Thr142----Cys) were introduced by oligonucleotide-directed mutagenesis into the active-site cleft. These cysteines spontaneously formed a disulfide bond under oxidative conditions in vitro, and the catalytic activity of the oxidized (cross-linked) T4 lysozyme was completely lost. On exposure to reducing agent, however, the disulfide bond was rapidly broken, and the reduced (non-cross-linked) lysozyme was restored to full activity. Thus an enzyme has been engineered such that redox potential can be used to control catalytic activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsumura, M -- Matthews, B W -- GM21967/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Feb 10;243(4892):792-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, University of Oregon, Eugene 97403.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2916125" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chromatography, High Pressure Liquid ; DNA Mutational Analysis ; *Disulfides ; Models, Molecular ; Muramidase/*physiology ; *Protein Engineering ; Recombinant Proteins ; Structure-Activity Relationship ; T-Phages/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-12-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matthews, B W -- Morton, A G -- Dahlquist, F W -- New York, N.Y. -- Science. 1995 Dec 15;270(5243):1847-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8525384" target="_blank"〉PubMed〈/a〉
    Keywords: Humans ; Interleukin-1/*chemistry ; *Magnetic Resonance Spectroscopy ; Water/*analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-06-11
    Description: The propensity of an amino acid to form an alpha helix in a protein was determined by multiple amino substitutions at positions 44 and 131 in T4 lysozyme. These positions are solvent-exposed sites within the alpha helices that comprise, respectively, residues 39 to 50 and 126 to 134. Except for two acidic substitutions that may be involved in salt bridges, the changes in stability at the two sites agree well. The stability values also agree with those observed for corresponding amino acid substitutions in some model peptides. Thus, helix propensity values derived from model peptides can be applicable to proteins. Among the 20 naturally occurring amino acids, proline, glycine, and alanine each have a structurally unique feature that helps to explain their low or high helix propensities. For the remaining 17 amino acids, it appears that the side chain hydrophobic surface buried against the side of the helix contributes substantially to alpha helix propensity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blaber, M -- Zhang, X J -- Matthews, B W -- GM 21967/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jun 11;260(5114):1637-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene 97403.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8503008" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*chemistry ; Bacteriophage T4/enzymology ; Enzyme Stability ; Models, Molecular ; Muramidase/chemistry ; Mutation ; *Protein Structure, Secondary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1993-12-24
    Description: The glycosyl-enzyme intermediate in lysozyme action has long been considered to be an oxocarbonium ion, although precedent from other glycosidases and theoretical considerations suggest it should be a covalent enzyme-substrate adduct. The mutation of threonine 26 to glutamic acid in the active site cleft of phage T4 lysozyme (T4L) produced an enzyme that cleaved the cell wall of Escherichia coli but left the product covalently bound to the enzyme. The crystalline complex was nonisomorphous with wild-type T4L, and analysis of its structure showed a covalent linkage between the product and the newly introduced glutamic acid 26. The covalently linked sugar ring was substantially distorted, suggesting that distortion of the substrate toward the transition state is important for catalysis, as originally proposed by Phillips. It is also postulated that the adduct formed by the mutant is an intermediate, consistent with a double displacement mechanism of action in which the glycosidic linkage is cleaved with retention of configuration as originally proposed by Koshland. The peptide part of the cell wall fragment displays extensive hydrogen-bonding interactions with the carboxyl-terminal domain of the enzyme, consistent with previous studies of mutations in T4L.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuroki, R -- Weaver, L H -- Matthews, B W -- GM21967/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 24;262(5142):2030-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene 97403.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266098" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacteriophage T4/*enzymology ; Binding Sites ; Carbohydrate Conformation ; Carbohydrate Sequence ; Cell Wall/*metabolism ; Chickens ; Disaccharides/*metabolism ; Egg White ; Escherichia coli ; Molecular Sequence Data ; Muramidase/*metabolism ; Mutation ; Oligopeptides/*metabolism ; Peptidoglycan
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1993-12-10
    Description: To understand better how the packing of side chains within the core influences protein structure and stability, the crystal structures were determined for eight variants of T4 lysozyme, each of which contains three to five substitutions at adjacent interior sites. Concerted main-chain and side-chain displacements, with movements of helical segments as large as 0.8 angstrom, were observed. In contrast, the angular conformations of the mutated side chains tended to remain unchanged, with torsion angles within 20 degrees of those in the wild-type structure. These observations suggest that not only the rotation of side chains but also movements of the main chain must be considered in the evaluation of which amino acid sequences are compatible with a given protein fold.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldwin, E P -- Hajiseyedjavadi, O -- Baase, W A -- Matthews, B W -- GM12989/GM/NIGMS NIH HHS/ -- GM21967/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 10;262(5140):1715-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene 97403.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8259514" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage T4/*enzymology ; Crystallography, X-Ray ; Muramidase/*chemistry/genetics/metabolism ; Mutagenesis ; Mutation ; Protein Conformation ; Protein Structure, Secondary ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1983-09-09
    Description: The structures of three proteins that regulate gene expression have been determined recently and suggest how these proteins may bind to their specific recognition sites on the DNA. One protein (Cro) is a repressor of gene expression, the second (CAP) usually stimulates gene expression, and the third (lambda repressor) can act as either a repressor or an activator. The three proteins contain a substructure consisting of two consecutive alpha helices that is virtually identical in each case. Structural and amino acid sequence comparisons suggest that this bihelical fold occurs in a number of proteins that regulate gene expression, and is an intrinsic part of the DNA-protein recognition event. The modes of repression and activation by Cro and lambda repressor are understood reasonably well, but the mode of action of CAP is still unclear.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takeda, Y -- Ohlendorf, D H -- Anderson, W F -- Matthews, B W -- GM20066/GM/NIGMS NIH HHS/ -- GM28138/GM/NIGMS NIH HHS/ -- GM30894/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1983 Sep 9;221(4615):1020-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6308768" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chemical Phenomena ; Chemistry ; *DNA Helicases ; DNA-Binding Proteins ; Escherichia coli/genetics ; Gene Expression Regulation ; Models, Chemical ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1987-01-30
    Description: The mode of binding to thermolysin of the ester analog Cbz-GlyP-(O)-Leu-Leu has been determined by x-ray crystallography and shown to be virtually identical (maximum difference 0.2 angstrom) with the corresponding peptide analog Cbz-GlyP-(NH)-Leu-Leu. The two inhibitors provide a matched pair of enzyme-inhibitor complexes that differ by 4.1 kilocalories per mole in intrinsic binding energy but are essentially identical except for the presence or absence of a specific hydrogen bond.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tronrud, D E -- Holden, H M -- Matthews, B W -- GM20066/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1987 Jan 30;235(4788):571-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3810156" target="_blank"〉PubMed〈/a〉
    Keywords: Amides ; Crystallography ; Esters ; Hydrogen Bonding ; Molecular Conformation ; Oligopeptides/pharmacology ; Organophosphonates ; Thermodynamics ; Thermolysin/*antagonists & inhibitors ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1988-02-05
    Description: To investigate the relation between protein stability and the predicted stabilities of individual secondary structural elements, residue Pro86 in an alpha-helix in phage T4 lysozyme was replaced by ten different amino acids. The x-ray crystal structures of seven of the mutant lysozymes were determined at high resolution. In each case, replacement of the proline resulted in the formation of an extended alpha-helix. This involves a large conformational change in residues 81 to 83 and smaller shifts that extend 20 angstroms across the protein surface. Unexpectedly, all ten amino acid substitutions marginally reduce protein thermostability. This insensitivity of stability to the amino acid at position 86 is not simply explained by statistical and thermodynamic criteria for helical propensity. The observed conformational changes illustrate a general mechanism by which proteins can tolerate mutations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alber, T -- Bell, J A -- Sun, D P -- Nicholson, H -- Wozniak, J A -- Cook, S -- Matthews, B W -- GM 20066/GM/NIGMS NIH HHS/ -- GM 21967/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Feb 5;239(4840):631-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, University of Oregon, Eugene 97403.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3277275" target="_blank"〉PubMed〈/a〉
    Keywords: Enzyme Stability ; Escherichia coli/enzymology ; Models, Molecular ; Muramidase/*genetics/metabolism ; Mutation ; *Proline ; Protein Conformation ; T-Phages/*enzymology/genetics ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...