ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (265)
  • Latest Papers from Table of Contents or Articles in Press  (265)
  • Protein Conformation  (265)
  • 2015-2019  (37)
  • 1990-1994  (228)
  • 1935-1939
  • Natural Sciences in General  (265)
Collection
  • Articles  (265)
Source
  • Latest Papers from Table of Contents or Articles in Press  (265)
Keywords
Years
Year
Topic
  • 1
    Publication Date: 2016-04-02
    Description: The dynamic properties of foldamers, synthetic molecules that mimic folded biomolecules, have mainly been explored in free solution. We report on the design, synthesis, and conformational behavior of photoresponsive foldamers bound in a phospholipid bilayer akin to a biological membrane phase. These molecules contain a chromophore, which can be switched between two configurations by different wavelengths of light, attached to a helical synthetic peptide that both promotes membrane insertion and communicates conformational change along its length. Light-induced structural changes in the chromophore are translated into global conformational changes, which are detected by monitoring the solid-state (19)F nuclear magnetic resonance signals of a remote fluorine-containing residue located 1 to 2 nanometers away. The behavior of the foldamers in the membrane phase is similar to that of analogous compounds in organic solvents.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De Poli, Matteo -- Zawodny, Wojciech -- Quinonero, Ophelie -- Lorch, Mark -- Webb, Simon J -- Clayden, Jonathan -- New York, N.Y. -- Science. 2016 Apr 29;352(6285):575-80. doi: 10.1126/science.aad8352. Epub 2016 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemistry, University of Manchester, Manchester M13 9PL, UK. ; Department of Chemistry, University of Hull, Hull HU6 7RX, UK. ; School of Chemistry, University of Manchester, Manchester M13 9PL, UK. Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK. ; School of Chemistry, University of Bristol, Bristol BS8 1TS, UK. j.clayden@bristol.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27033546" target="_blank"〉PubMed〈/a〉
    Keywords: Light ; Lipid Bilayers/*chemistry ; Magnetic Resonance Spectroscopy ; Peptides/*chemistry/radiation effects ; Phosphatidylcholines/*chemistry/radiation effects ; Phospholipids/*chemistry/radiation effects ; Photochemical Processes ; Protein Conformation ; Protein Folding
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-27
    Description: Ebola virus causes hemorrhagic fever with a high case fatality rate for which there is no approved therapy. Two human monoclonal antibodies, mAb100 and mAb114, in combination, protect nonhuman primates against all signs of Ebola virus disease, including viremia. Here, we demonstrate that mAb100 recognizes the base of the Ebola virus glycoprotein (GP) trimer, occludes access to the cathepsin-cleavage loop, and prevents the proteolytic cleavage of GP that is required for virus entry. We show that mAb114 interacts with the glycan cap and inner chalice of GP, remains associated after proteolytic removal of the glycan cap, and inhibits binding of cleaved GP to its receptor. These results define the basis of neutralization for two protective antibodies and may facilitate development of therapies and vaccines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Misasi, John -- Gilman, Morgan S A -- Kanekiyo, Masaru -- Gui, Miao -- Cagigi, Alberto -- Mulangu, Sabue -- Corti, Davide -- Ledgerwood, Julie E -- Lanzavecchia, Antonio -- Cunningham, James -- Muyembe-Tamfun, Jean Jacques -- Baxa, Ulrich -- Graham, Barney S -- Xiang, Ye -- Sullivan, Nancy J -- McLellan, Jason S -- 5K08AI079381/AI/NIAID NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- T32GM008704/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 18;351(6279):1343-6. doi: 10.1126/science.aad6117. Epub 2016 Feb 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02215, USA. ; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. ; Centre for Infectious Diseases Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 China. ; Institute for Research in Biomedicine, Universita della Svizzera Italiana, CH-6500 Bellinzona, Switzerland. ; Institute for Research in Biomedicine, Universita della Svizzera Italiana, CH-6500 Bellinzona, Switzerland. Institute of Microbiology, ETH Zurich, CH-8093 Zurich, Switzerland. ; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. ; National Institute for Biomedical Research, National Laboratory of Public Health, Kinshasa B.P. 1197, Democratic Republic of the Congo. ; Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA. ; Centre for Infectious Diseases Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 China. njsull@mail.nih.gov yxiang@mail.tsinghua.edu.cn. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. njsull@mail.nih.gov yxiang@mail.tsinghua.edu.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26917592" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal/*chemistry/immunology ; Antibodies, Neutralizing/*chemistry/immunology ; Antibodies, Viral/*chemistry/immunology ; Cathepsins/chemistry ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Ebolavirus/*immunology ; Hemorrhagic Fever, Ebola/immunology/*prevention & control ; Humans ; Protein Conformation ; Proteolysis ; Viral Envelope Proteins/chemistry/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-02-26
    Description: With functions that range from cell envelope structure to signal transduction and transport, lipoproteins constitute 2 to 3% of bacterial genomes and play critical roles in bacterial physiology, pathogenicity, and antibiotic resistance. Lipoproteins are synthesized with a signal peptide securing them to the cytoplasmic membrane with the lipoprotein domain in the periplasm or outside the cell. Posttranslational processing requires a signal peptidase II (LspA) that removes the signal peptide. Here, we report the crystal structure of LspA from Pseudomonas aeruginosa complexed with the antimicrobial globomycin at 2.8 angstrom resolution. Mutagenesis studies identify LspA as an aspartyl peptidase. In an example of molecular mimicry, globomycin appears to inhibit by acting as a noncleavable peptide that sterically blocks the active site. This structure should inform rational antibiotic drug discovery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogeley, Lutz -- El Arnaout, Toufic -- Bailey, Jonathan -- Stansfeld, Phillip J -- Boland, Coilin -- Caffrey, Martin -- BB/I019855/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):876-80. doi: 10.1126/science.aad3747.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland. ; Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK. ; School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland. martin.caffrey@tcd.ie.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912896" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anti-Bacterial Agents/*chemistry/pharmacology ; Aspartic Acid Endopeptidases/*antagonists & inhibitors/*chemistry/genetics ; Bacterial Proteins/*antagonists & inhibitors/*chemistry/genetics ; Catalytic Domain ; Conserved Sequence ; Crystallography, X-Ray ; Mutagenesis ; Peptides/*chemistry/pharmacology ; Protein Conformation ; Protein Processing, Post-Translational ; Pseudomonas aeruginosa/*enzymology ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-01-09
    Description: Splicing of precursor messenger RNA is accomplished by a dynamic megacomplex known as the spliceosome. Assembly of a functional spliceosome requires a preassembled U4/U6.U5 tri-snRNP complex, which comprises the U5 small nuclear ribonucleoprotein (snRNP), the U4 and U6 small nuclear RNA (snRNA) duplex, and a number of protein factors. Here we report the three-dimensional structure of a Saccharomyces cerevisiae U4/U6.U5 tri-snRNP at an overall resolution of 3.8 angstroms by single-particle electron cryomicroscopy. The local resolution for the core regions of the tri-snRNP reaches 3.0 to 3.5 angstroms, allowing construction of a refined atomic model. Our structure contains U5 snRNA, the extensively base-paired U4/U6 snRNA, and 30 proteins including Prp8 and Snu114, which amount to 8495 amino acids and 263 nucleotides with a combined molecular mass of ~1 megadalton. The catalytic nucleotide U80 from U6 snRNA exists in an inactive conformation, stabilized by its base-pairing interactions with U4 snRNA and protected by Prp3. Pre-messenger RNA is bound in the tri-snRNP through base-pairing interactions with U6 snRNA and loop I of U5 snRNA. This structure, together with that of the spliceosome, reveals the molecular choreography of the snRNAs in the activation process of the spliceosomal ribozyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wan, Ruixue -- Yan, Chuangye -- Bai, Rui -- Wang, Lin -- Huang, Min -- Wong, Catherine C L -- Shi, Yigong -- New York, N.Y. -- Science. 2016 Jan 29;351(6272):466-75. doi: 10.1126/science.aad6466. Epub 2016 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26743623" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Cryoelectron Microscopy ; Nucleic Acid Conformation ; Protein Conformation ; RNA Precursors/chemistry ; *RNA Splicing ; RNA, Messenger/chemistry ; RNA, Small Nuclear/*chemistry/ultrastructure ; Ribonucleoprotein, U4-U6 Small Nuclear/*chemistry/ultrastructure ; Ribonucleoprotein, U5 Small Nuclear/*chemistry/ultrastructure ; Saccharomyces cerevisiae/*metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/ultrastructure ; Spliceosomes/*chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-02-26
    Description: The U4/U6.U5 triple small nuclear ribonucleoprotein (tri-snRNP) is a major spliceosome building block. We obtained a three-dimensional structure of the 1.8-megadalton human tri-snRNP at a resolution of 7 angstroms using single-particle cryo-electron microscopy (cryo-EM). We fit all known high-resolution structures of tri-snRNP components into the EM density map and validated them by protein cross-linking. Our model reveals how the spatial organization of Brr2 RNA helicase prevents premature U4/U6 RNA unwinding in isolated human tri-snRNPs and how the ubiquitin C-terminal hydrolase-like protein Sad1 likely tethers the helicase Brr2 to its preactivation position. Comparison of our model with cryo-EM three-dimensional structures of the Saccharomyces cerevisiae tri-snRNP and Schizosaccharomyces pombe spliceosome indicates that Brr2 undergoes a marked conformational change during spliceosome activation, and that the scaffolding protein Prp8 is also rearranged to accommodate the spliceosome's catalytic RNA network.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Agafonov, Dmitry E -- Kastner, Berthold -- Dybkov, Olexandr -- Hofele, Romina V -- Liu, Wen-Ti -- Urlaub, Henning -- Luhrmann, Reinhard -- Stark, Holger -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1416-20. doi: 10.1126/science.aad2085. Epub 2016 Feb 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Gottingen, Germany. ; Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, D-37077 Gottingen, Germany. Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Gottingen, D-37075 Gottingen, Germany. ; Department of 3D Electron Cryomicroscopy, Georg-August Universitat Gottingen, D-37077 Gottingen, Germany. Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, D-37077 Gottingen, Germany. ; Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, D-37077 Gottingen, Germany. Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Gottingen, D-37075 Gottingen, Germany. reinhard.luehrmann@mpi-bpc.mpg.de hstark1@gwdg.de henning.urlaub@mpibpc.mpg.de. ; Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Gottingen, Germany. reinhard.luehrmann@mpi-bpc.mpg.de hstark1@gwdg.de henning.urlaub@mpibpc.mpg.de. ; Department of 3D Electron Cryomicroscopy, Georg-August Universitat Gottingen, D-37077 Gottingen, Germany. Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, D-37077 Gottingen, Germany. reinhard.luehrmann@mpi-bpc.mpg.de hstark1@gwdg.de henning.urlaub@mpibpc.mpg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912367" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; Crystallography, X-Ray ; DEAD-box RNA Helicases/chemistry ; Enzyme Activation ; HeLa Cells ; Humans ; Models, Molecular ; Peptide Elongation Factors/chemistry ; Protein Conformation ; RNA Helicases/chemistry ; RNA-Binding Proteins/chemistry ; Ribonucleoprotein, U4-U6 Small Nuclear/*chemistry ; Ribonucleoprotein, U5 Small Nuclear/*chemistry ; Ribonucleoproteins, Small Nuclear/chemistry ; Saccharomyces cerevisiae Proteins/chemistry ; Schizosaccharomyces/metabolism ; Ubiquitin Thiolesterase/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-02-04
    Description: Bacterial adaptive immunity and genome engineering involving the CRISPR (clustered regularly interspaced short palindromic repeats)-associated (Cas) protein Cas9 begin with RNA-guided DNA unwinding to form an RNA-DNA hybrid and a displaced DNA strand inside the protein. The role of this R-loop structure in positioning each DNA strand for cleavage by the two Cas9 nuclease domains is unknown. We determine molecular structures of the catalytically active Streptococcus pyogenes Cas9 R-loop that show the displaced DNA strand located near the RuvC nuclease domain active site. These protein-DNA interactions, in turn, position the HNH nuclease domain adjacent to the target DNA strand cleavage site in a conformation essential for concerted DNA cutting. Cas9 bends the DNA helix by 30 degrees , providing the structural distortion needed for R-loop formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Fuguo -- Taylor, David W -- Chen, Janice S -- Kornfeld, Jack E -- Zhou, Kaihong -- Thompson, Aubri J -- Nogales, Eva -- Doudna, Jennifer A -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):867-71. doi: 10.1126/science.aad8282. Epub 2016 Jan 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. ; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA. ; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA. ; Department of Chemistry, University of California, Berkeley, CA 94720, USA. ; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA. Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA. Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. doudna@berkeley.edu enogales@lbl.gov. ; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA. Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA. Department of Chemistry, University of California, Berkeley, CA 94720, USA. Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. doudna@berkeley.edu enogales@lbl.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26841432" target="_blank"〉PubMed〈/a〉
    Keywords: *CRISPR-Cas Systems ; Catalytic Domain ; *Clustered Regularly Interspaced Short Palindromic Repeats ; Crystallography, X-Ray ; DNA/*chemistry ; *DNA Cleavage ; Endonucleases/*chemistry/ultrastructure ; Genetic Engineering ; Genome ; Nucleic Acid Conformation ; Protein Conformation ; RNA/chemistry ; RNA, Guide ; Streptococcus pyogenes/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-03-26
    Description: Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naive B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naive B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872700/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872700/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jardine, Joseph G -- Kulp, Daniel W -- Havenar-Daughton, Colin -- Sarkar, Anita -- Briney, Bryan -- Sok, Devin -- Sesterhenn, Fabian -- Ereno-Orbea, June -- Kalyuzhniy, Oleksandr -- Deresa, Isaiah -- Hu, Xiaozhen -- Spencer, Skye -- Jones, Meaghan -- Georgeson, Erik -- Adachi, Yumiko -- Kubitz, Michael -- deCamp, Allan C -- Julien, Jean-Philippe -- Wilson, Ian A -- Burton, Dennis R -- Crotty, Shane -- Schief, William R -- P01 AI094419/AI/NIAID NIH HHS/ -- P01 AI110657/AI/NIAID NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1458-63. doi: 10.1126/science.aad9195.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. ; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Program in Molecular Structure and Function, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Vaccine and Infectious Disease Division, Statistical Center for HIV/AIDS Research and Prevention (SCHARP), Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. ; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Program in Molecular Structure and Function, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada. Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA. ; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA. schief@scripps.edu shane@lji.org. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA. schief@scripps.edu shane@lji.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013733" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/*immunology ; Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/*immunology/isolation & purification ; Antibodies, Neutralizing/chemistry/*immunology/isolation & purification ; Antibody Affinity ; B-Lymphocytes/immunology ; Cell Separation ; Combinatorial Chemistry Techniques ; Epitopes, B-Lymphocyte/chemistry/genetics/*immunology ; Germ Cells/*immunology ; HIV Antibodies/chemistry/*immunology/isolation & purification ; HIV-1/*immunology ; Humans ; Molecular Sequence Data ; Mutation ; Peptide Library ; Precursor Cells, B-Lymphoid/*immunology ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-24
    Description: (beta-)Arrestins are important regulators of G-protein-coupled receptors (GPCRs). They bind to active, phosphorylated GPCRs and thereby shut off 'classical' signalling to G proteins, trigger internalization of GPCRs via interaction with the clathrin machinery and mediate signalling via 'non-classical' pathways. In addition to two visual arrestins that bind to rod and cone photoreceptors (termed arrestin1 and arrestin4), there are only two (non-visual) beta-arrestin proteins (beta-arrestin1 and beta-arrestin2, also termed arrestin2 and arrestin3), which regulate hundreds of different (non-visual) GPCRs. Binding of these proteins to GPCRs usually requires the active form of the receptors plus their phosphorylation by G-protein-coupled receptor kinases (GRKs). The binding of receptors or their carboxy terminus as well as certain truncations induce active conformations of (beta-)arrestins that have recently been solved by X-ray crystallography. Here we investigate both the interaction of beta-arrestin with GPCRs, and the beta-arrestin conformational changes in real time and in living human cells, using a series of fluorescence resonance energy transfer (FRET)-based beta-arrestin2 biosensors. We observe receptor-specific patterns of conformational changes in beta-arrestin2 that occur rapidly after the receptor-beta-arrestin2 interaction. After agonist removal, these changes persist for longer than the direct receptor interaction. Our data indicate a rapid, receptor-type-specific, two-step binding and activation process between GPCRs and beta-arrestins. They further indicate that beta-arrestins remain active after dissociation from receptors, allowing them to remain at the cell surface and presumably signal independently. Thus, GPCRs trigger a rapid, receptor-specific activation/deactivation cycle of beta-arrestins, which permits their active signalling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nuber, Susanne -- Zabel, Ulrike -- Lorenz, Kristina -- Nuber, Andreas -- Milligan, Graeme -- Tobin, Andrew B -- Lohse, Martin J -- Hoffmann, Carsten -- 1 R01 DA038882/DA/NIDA NIH HHS/ -- BB/K019864/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2016 Mar 31;531(7596):661-4. doi: 10.1038/nature17198. Epub 2016 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Pharmacology and Toxicology, University of Wurzburg, Versbacher Str. 9, 97078 Wurzburg, Germany. ; Rudolf Virchow Center, University of Wurzburg, Versbacher Str. 9, 97078 Wurzburg, Germany. ; Comprehensive Heart Failure Center, University of Wurzburg, Versbacher Str. 9, 97078 Wurzburg, Germany. ; Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK. ; MRC Toxicology Unit, University of Leicester, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27007855" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/chemistry/*metabolism ; Biosensing Techniques ; Cattle ; Cell Line ; Cell Membrane/metabolism ; Cell Survival ; Crystallography, X-Ray ; Fluorescence Resonance Energy Transfer ; Humans ; Kinetics ; Models, Molecular ; Protein Binding ; Protein Conformation ; Receptors, G-Protein-Coupled/chemistry/*metabolism ; Signal Transduction ; Substrate Specificity ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-24
    Description: Arrestins are cytosolic proteins that regulate G-protein-coupled receptor (GPCR) desensitization, internalization, trafficking and signalling. Arrestin recruitment uncouples GPCRs from heterotrimeric G proteins, and targets the proteins for internalization via clathrin-coated pits. Arrestins also function as ligand-regulated scaffolds that recruit multiple non-G-protein effectors into GPCR-based 'signalsomes'. Although the dominant function(s) of arrestins vary between receptors, the mechanism whereby different GPCRs specify these divergent functions is unclear. Using a panel of intramolecular fluorescein arsenical hairpin (FlAsH) bioluminescence resonance energy transfer (BRET) reporters to monitor conformational changes in beta-arrestin2, here we show that GPCRs impose distinctive arrestin 'conformational signatures' that reflect the stability of the receptor-arrestin complex and role of beta-arrestin2 in activating or dampening downstream signalling events. The predictive value of these signatures extends to structurally distinct ligands activating the same GPCR, such that the innate properties of the ligand are reflected as changes in beta-arrestin2 conformation. Our findings demonstrate that information about ligand-receptor conformation is encoded within the population average beta-arrestin2 conformation, and provide insight into how different GPCRs can use a common effector for different purposes. This approach may have application in the characterization and development of functionally selective GPCR ligands and in identifying factors that dictate arrestin conformation and function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Mi-Hye -- Appleton, Kathryn M -- Strungs, Erik G -- Kwon, Joshua Y -- Morinelli, Thomas A -- Peterson, Yuri K -- Laporte, Stephane A -- Luttrell, Louis M -- DK055524/DK/NIDDK NIH HHS/ -- GM095497/GM/NIGMS NIH HHS/ -- MOP-74603/Canadian Institutes of Health Research/Canada -- R01 DK055524/DK/NIDDK NIH HHS/ -- R01 GM095497/GM/NIGMS NIH HHS/ -- RR027777/RR/NCRR NIH HHS/ -- S10 RR027777/RR/NCRR NIH HHS/ -- England -- Nature. 2016 Mar 31;531(7596):665-8. doi: 10.1038/nature17154. Epub 2016 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA. ; Department of Pharmaceutical &Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, USA. ; Department of Medicine, McGill University Health Center Research Institute, McGill University, Quebec H4A 3J1, Canada. ; Pharmacology and Therapeutics, McGill University, Quebec H3G 1Y6, Canada. ; Anatomy and Cell Biology, McGill University, Quebec H3A 0C7, Canada. ; Research Service of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27007854" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/*chemistry/*metabolism ; Enzyme Activation ; HEK293 Cells ; Humans ; Ligands ; Mitogen-Activated Protein Kinase 1/metabolism ; Mitogen-Activated Protein Kinase 3/metabolism ; Protein Conformation ; Protein Transport ; Rats ; Receptors, G-Protein-Coupled/chemistry/*metabolism ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-01-21
    Description: Cellular immunity against viral infection and tumour cells depends on antigen presentation by major histocompatibility complex class I (MHC I) molecules. Intracellular antigenic peptides are transported into the endoplasmic reticulum by the transporter associated with antigen processing (TAP) and then loaded onto the nascent MHC I molecules, which are exported to the cell surface and present peptides to the immune system. Cytotoxic T lymphocytes recognize non-self peptides and program the infected or malignant cells for apoptosis. Defects in TAP account for immunodeficiency and tumour development. To escape immune surveillance, some viruses have evolved strategies either to downregulate TAP expression or directly inhibit TAP activity. So far, neither the architecture of TAP nor the mechanism of viral inhibition has been elucidated at the structural level. Here we describe the cryo-electron microscopy structure of human TAP in complex with its inhibitor ICP47, a small protein produced by the herpes simplex virus I. Here we show that the 12 transmembrane helices and 2 cytosolic nucleotide-binding domains of the transporter adopt an inward-facing conformation with the two nucleotide-binding domains separated. The viral inhibitor ICP47 forms a long helical hairpin, which plugs the translocation pathway of TAP from the cytoplasmic side. Association of ICP47 precludes substrate binding and prevents nucleotide-binding domain closure necessary for ATP hydrolysis. This work illustrates a striking example of immune evasion by persistent viruses. By blocking viral antigens from entering the endoplasmic reticulum, herpes simplex virus is hidden from cytotoxic T lymphocytes, which may contribute to establishing a lifelong infection in the host.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oldham, Michael L -- Hite, Richard K -- Steffen, Alanna M -- Damko, Ermelinda -- Li, Zongli -- Walz, Thomas -- Chen, Jue -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Jan 28;529(7587):537-40. doi: 10.1038/nature16506. Epub 2016 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA. ; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA. ; Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26789246" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/antagonists & ; inhibitors/chemistry/*metabolism/*ultrastructure ; Amino Acid Sequence ; Antigens, Viral/immunology/metabolism ; *Cryoelectron Microscopy ; Endoplasmic Reticulum/metabolism ; Herpesvirus 1, Human/chemistry/*immunology/metabolism/ultrastructure ; Immediate-Early Proteins/chemistry/*metabolism/*ultrastructure ; *Immune Evasion ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-01-26
    Description: Intracellular aggregation of the human amyloid protein alpha-synuclein is causally linked to Parkinson's disease. While the isolated protein is intrinsically disordered, its native structure in mammalian cells is not known. Here we use nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy to derive atomic-resolution insights into the structure and dynamics of alpha-synuclein in different mammalian cell types. We show that the disordered nature of monomeric alpha-synuclein is stably preserved in non-neuronal and neuronal cells. Under physiological cell conditions, alpha-synuclein is amino-terminally acetylated and adopts conformations that are more compact than when in buffer, with residues of the aggregation-prone non-amyloid-beta component (NAC) region shielded from exposure to the cytoplasm, which presumably counteracts spontaneous aggregation. These results establish that different types of crowded intracellular environments do not inherently promote alpha-synuclein oligomerization and, more generally, that intrinsic structural disorder is sustainable in mammalian cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Theillet, Francois-Xavier -- Binolfi, Andres -- Bekei, Beata -- Martorana, Andrea -- Rose, Honor May -- Stuiver, Marchel -- Verzini, Silvia -- Lorenz, Dorothea -- van Rossum, Marleen -- Goldfarb, Daniella -- Selenko, Philipp -- England -- Nature. 2016 Feb 4;530(7588):45-50. doi: 10.1038/nature16531. Epub 2016 Jan 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉In-Cell NMR Laboratory, Department of NMR-supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rossle Strasse 10, 13125 Berlin, Germany. ; Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel. ; Department of Molecular Physiology and Cell Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rossle Strasse 10, 13125 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26808899" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Cell Line ; Cytoplasm/chemistry/metabolism ; Electron Spin Resonance Spectroscopy ; HeLa Cells ; Humans ; Intracellular Space/*chemistry/*metabolism ; Neurons/cytology/metabolism ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; alpha-Synuclein/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-11-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cyranoski, David -- England -- Nature. 2015 Nov 19;527(7578):283-4. doi: 10.1038/527283a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26581268" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Migration/physiology ; Animals ; Circadian Rhythm/physiology ; Cryptochromes/metabolism ; Drosophila Proteins/chemistry/*metabolism ; Drosophila melanogaster/*physiology ; *Earth (Planet) ; Humans ; Iron/metabolism ; Iron-Sulfur Proteins/chemistry/*metabolism ; *Magnetic Fields ; Models, Molecular ; Protein Conformation ; Spatial Navigation/*physiology ; Whales/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-08-11
    Description: G-protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors in eukaryotes. Crystal structures have provided insight into GPCR interactions with ligands and G proteins, but our understanding of the conformational dynamics of activation is incomplete. Metabotropic glutamate receptors (mGluRs) are dimeric class C GPCRs that modulate neuronal excitability, synaptic plasticity, and serve as drug targets for neurological disorders. A 'clamshell' ligand-binding domain (LBD), which contains the ligand-binding site, is coupled to the transmembrane domain via a cysteine-rich domain, and LBD closure seems to be the first step in activation. Crystal structures of isolated mGluR LBD dimers led to the suggestion that activation also involves a reorientation of the dimer interface from a 'relaxed' to an 'active' state, but the relationship between ligand binding, LBD closure and dimer interface rearrangement in activation remains unclear. Here we use single-molecule fluorescence resonance energy transfer to probe the activation mechanism of full-length mammalian group II mGluRs. We show that the LBDs interconvert between three conformations: resting, activated and a short-lived intermediate state. Orthosteric agonists induce transitions between these conformational states, with efficacy determined by occupancy of the active conformation. Unlike mGluR2, mGluR3 displays basal dynamics, which are Ca(2+)-dependent and lead to basal protein activation. Our results support a general mechanism for the activation of mGluRs in which agonist binding induces closure of the LBDs, followed by dimer interface reorientation. Our experimental strategy should be widely applicable to study conformational dynamics in GPCRs and other membrane proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597782/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597782/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vafabakhsh, Reza -- Levitz, Joshua -- Isacoff, Ehud Y -- 2PN2EY018241/EY/NEI NIH HHS/ -- PN2 EY018241/EY/NEI NIH HHS/ -- England -- Nature. 2015 Aug 27;524(7566):497-501. doi: 10.1038/nature14679. Epub 2015 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA. ; Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA. ; Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26258295" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Drug Partial Agonism ; *Fluorescence Resonance Energy Transfer ; Humans ; Ligands ; Models, Biological ; Models, Molecular ; Protein Binding ; Protein Conformation ; Rats ; Receptors, Metabotropic Glutamate/*chemistry/*classification/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-08-11
    Description: The plant hormone jasmonate plays crucial roles in regulating plant responses to herbivorous insects and microbial pathogens and is an important regulator of plant growth and development. Key mediators of jasmonate signalling include MYC transcription factors, which are repressed by jasmonate ZIM-domain (JAZ) transcriptional repressors in the resting state. In the presence of active jasmonate, JAZ proteins function as jasmonate co-receptors by forming a hormone-dependent complex with COI1, the F-box subunit of an SCF-type ubiquitin E3 ligase. The hormone-dependent formation of the COI1-JAZ co-receptor complex leads to ubiquitination and proteasome-dependent degradation of JAZ repressors and release of MYC proteins from transcriptional repression. The mechanism by which JAZ proteins repress MYC transcription factors and how JAZ proteins switch between the repressor function in the absence of hormone and the co-receptor function in the presence of hormone remain enigmatic. Here we show that Arabidopsis MYC3 undergoes pronounced conformational changes when bound to the conserved Jas motif of the JAZ9 repressor. The Jas motif, previously shown to bind to hormone as a partly unwound helix, forms a complete alpha-helix that displaces the amino (N)-terminal helix of MYC3 and becomes an integral part of the MYC N-terminal fold. In this position, the Jas helix competitively inhibits MYC3 interaction with the MED25 subunit of the transcriptional Mediator complex. Our structural and functional studies elucidate a dynamic molecular switch mechanism that governs the repression and activation of a major plant hormone pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4567411/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4567411/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Feng -- Yao, Jian -- Ke, Jiyuan -- Zhang, Li -- Lam, Vinh Q -- Xin, Xiu-Fang -- Zhou, X Edward -- Chen, Jian -- Brunzelle, Joseph -- Griffin, Patrick R -- Zhou, Mingguo -- Xu, H Eric -- Melcher, Karsten -- He, Sheng Yang -- R01 AI068718/AI/NIAID NIH HHS/ -- R01 GM102545/GM/NIGMS NIH HHS/ -- R01AI060761/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Sep 10;525(7568):269-73. doi: 10.1038/nature14661. Epub 2015 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Sciences and Laboratory of Structural Biology and Biochemistry, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA. ; DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA. ; College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang, 210095, Nanjing, Jiangsu Province, China. ; Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008, USA. ; Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA. ; Department of Molecular Therapeutics, Translational Research Institute, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, USA. ; College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. ; Department of Molecular Pharmacology and Biological Chemistry, Life Sciences Collaborative Access Team, Synchrotron Research Center, Northwestern University, Argonne, Illinois 60439, USA. ; Key Laboratory of Receptor Research, VARI-SIMM Center, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China. ; Howard Hughes Medical Institute, Michigan State University, East Lansing, Michigan 48824, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26258305" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Apoproteins/chemistry/metabolism ; *Arabidopsis/chemistry/metabolism ; Arabidopsis Proteins/*antagonists & inhibitors/*chemistry/genetics/*metabolism ; Binding, Competitive/genetics ; Crystallography, X-Ray ; Cyclopentanes/*metabolism ; Models, Molecular ; Nuclear Proteins/metabolism ; Oxylipins/*metabolism ; Plant Growth Regulators/*metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein Binding/genetics ; Protein Conformation ; Repressor Proteins/*chemistry/genetics/*metabolism ; *Signal Transduction ; Trans-Activators/*antagonists & inhibitors/*chemistry/genetics/metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-05-15
    Description: Eukaryotic vacuolar H(+)-ATPases (V-ATPases) are rotary enzymes that use energy from hydrolysis of ATP to ADP to pump protons across membranes and control the pH of many intracellular compartments. ATP hydrolysis in the soluble catalytic region of the enzyme is coupled to proton translocation through the membrane-bound region by rotation of a central rotor subcomplex, with peripheral stalks preventing the entire membrane-bound region from turning with the rotor. The eukaryotic V-ATPase is the most complex rotary ATPase: it has three peripheral stalks, a hetero-oligomeric proton-conducting proteolipid ring, several subunits not found in other rotary ATPases, and is regulated by reversible dissociation of its catalytic and proton-conducting regions. Studies of ATP synthases, V-ATPases, and bacterial/archaeal V/A-ATPases have suggested that flexibility is necessary for the catalytic mechanism of rotary ATPases, but the structures of different rotational states have never been observed experimentally. Here we use electron cryomicroscopy to obtain structures for three rotational states of the V-ATPase from the yeast Saccharomyces cerevisiae. The resulting series of structures shows ten proteolipid subunits in the c-ring, setting the ATP:H(+) ratio for proton pumping by the V-ATPase at 3:10, and reveals long and highly tilted transmembrane alpha-helices in the a-subunit that interact with the c-ring. The three different maps reveal the conformational changes that occur to couple rotation in the symmetry-mismatched soluble catalytic region to the membrane-bound proton-translocating region. Almost all of the subunits of the enzyme undergo conformational changes during the transitions between these three rotational states. The structures of these states provide direct evidence that deformation during rotation enables the smooth transmission of power through rotary ATPases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Jianhua -- Benlekbir, Samir -- Rubinstein, John L -- MOP 81294/Canadian Institutes of Health Research/Canada -- England -- Nature. 2015 May 14;521(7551):241-5. doi: 10.1038/nature14365.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada [2] Department of Medical Biophysics, The University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada. ; Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada. ; 1] Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada [2] Department of Medical Biophysics, The University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada [3] Department of Biochemistry, The University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25971514" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Biocatalysis ; Cell Membrane/chemistry/enzymology/metabolism ; *Cryoelectron Microscopy ; Lipid Bilayers/metabolism ; Models, Molecular ; Pliability ; Protein Conformation ; Protein Subunits/chemistry/metabolism ; Protons ; *Rotation ; Saccharomyces cerevisiae/*enzymology ; Solubility ; Vacuolar Proton-Translocating ATPases/*chemistry/metabolism/*ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-08-13
    Description: The flipping of membrane-embedded lipids containing large, polar head groups is slow and energetically unfavourable, and is therefore catalysed by flippases, the mechanisms of which are unknown. A prominent example of a flipping reaction is the translocation of lipid-linked oligosaccharides that serve as donors in N-linked protein glycosylation. In Campylobacter jejuni, this process is catalysed by the ABC transporter PglK. Here we present a mechanism of PglK-catalysed lipid-linked oligosaccharide flipping based on crystal structures in distinct states, a newly devised in vitro flipping assay, and in vivo studies. PglK can adopt inward- and outward-facing conformations in vitro, but only outward-facing states are required for flipping. While the pyrophosphate-oligosaccharide head group of lipid-linked oligosaccharides enters the translocation cavity and interacts with positively charged side chains, the lipidic polyprenyl tail binds and activates the transporter but remains exposed to the lipid bilayer during the reaction. The proposed mechanism is distinct from the classical alternating-access model applied to other transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perez, Camilo -- Gerber, Sabina -- Boilevin, Jeremy -- Bucher, Monika -- Darbre, Tamis -- Aebi, Markus -- Reymond, Jean-Louis -- Locher, Kaspar P -- England -- Nature. 2015 Aug 27;524(7566):433-8. doi: 10.1038/nature14953. Epub 2015 Aug 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland. ; Department of Chemistry and Biochemistry, University of Berne, CH-3012 Berne, Switzerland. ; Institute of Microbiology, ETH Zurich, CH-8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26266984" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/*metabolism ; Adenosine Triphosphatases/chemistry/metabolism ; Adenosine Triphosphate/metabolism ; *Biocatalysis ; Campylobacter jejuni/cytology/*enzymology/metabolism ; Crystallography, X-Ray ; Hydrolysis ; Lipid Bilayers/metabolism ; Lipopolysaccharides/*metabolism ; Models, Molecular ; Protein Conformation ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-09-30
    Description: Nuclear pore complexes are fundamental components of all eukaryotic cells that mediate nucleocytoplasmic exchange. Determining their 110-megadalton structure imposes a formidable challenge and requires in situ structural biology approaches. Of approximately 30 nucleoporins (Nups), 15 are structured and form the Y and inner-ring complexes. These two major scaffolding modules assemble in multiple copies into an eight-fold rotationally symmetric structure that fuses the inner and outer nuclear membranes to form a central channel of ~60 nm in diameter. The scaffold is decorated with transport-channel Nups that often contain phenylalanine-repeat sequences and mediate the interaction with cargo complexes. Although the architectural arrangement of parts of the Y complex has been elucidated, it is unclear how exactly it oligomerizes in situ. Here we combine cryo-electron tomography with mass spectrometry, biochemical analysis, perturbation experiments and structural modelling to generate, to our knowledge, the most comprehensive architectural model of the human nuclear pore complex to date. Our data suggest previously unknown protein interfaces across Y complexes and to inner-ring complex members. We show that the transport-channel Nup358 (also known as Ranbp2) has a previously unanticipated role in Y-complex oligomerization. Our findings blur the established boundaries between scaffold and transport-channel Nups. We conclude that, similar to coated vesicles, several copies of the same structural building block--although compositionally identical--engage in different local sets of interactions and conformations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Appen, Alexander -- Kosinski, Jan -- Sparks, Lenore -- Ori, Alessandro -- DiGuilio, Amanda L -- Vollmer, Benjamin -- Mackmull, Marie-Therese -- Banterle, Niccolo -- Parca, Luca -- Kastritis, Panagiotis -- Buczak, Katarzyna -- Mosalaganti, Shyamal -- Hagen, Wim -- Andres-Pons, Amparo -- Lemke, Edward A -- Bork, Peer -- Antonin, Wolfram -- Glavy, Joseph S -- Bui, Khanh Huy -- Beck, Martin -- 1R21AG047433-01/AG/NIA NIH HHS/ -- England -- Nature. 2015 Oct 1;526(7571):140-3. doi: 10.1038/nature15381. Epub 2015 Sep 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany. ; Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, 507 River St., Hoboken, New Jersey 07030, USA. ; Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, 72076 Tubingen, Germany. ; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26416747" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; *Cryoelectron Microscopy ; HeLa Cells ; Humans ; Mass Spectrometry ; Models, Molecular ; Molecular Chaperones/chemistry/metabolism/ultrastructure ; Nuclear Envelope/metabolism ; Nuclear Pore/*chemistry/metabolism/*ultrastructure ; Nuclear Pore Complex Proteins/*chemistry/metabolism/*ultrastructure ; Protein Conformation ; Protein Multimerization ; Protein Stability
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-09-08
    Description: To contend with hazards posed by environmental fluoride, microorganisms export this anion through F(-)-specific ion channels of the Fluc family. Since the recent discovery of Fluc channels, numerous idiosyncratic features of these proteins have been unearthed, including strong selectivity for F(-) over Cl(-) and dual-topology dimeric assembly. To understand the chemical basis for F(-) permeation and how the antiparallel subunits convene to form a F(-)-selective pore, here we solve the crystal structures of two bacterial Fluc homologues in complex with three different monobody inhibitors, with and without F(-) present, to a maximum resolution of 2.1 A. The structures reveal a surprising 'double-barrelled' channel architecture in which two F(-) ion pathways span the membrane, and the dual-topology arrangement includes a centrally coordinated cation, most likely Na(+). F(-) selectivity is proposed to arise from the very narrow pores and an unusual anion coordination that exploits the quadrupolar edges of conserved phenylalanine rings.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stockbridge, Randy B -- Kolmakova-Partensky, Ludmila -- Shane, Tania -- Koide, Akiko -- Koide, Shohei -- Miller, Christopher -- Newstead, Simon -- 102890/Z/13/Z/Wellcome Trust/United Kingdom -- K99 GM111767/GM/NIGMS NIH HHS/ -- K99-GM-111767/GM/NIGMS NIH HHS/ -- R01 GM107023/GM/NIGMS NIH HHS/ -- R01-GM107023/GM/NIGMS NIH HHS/ -- U54 GM087519/GM/NIGMS NIH HHS/ -- U54-GM087519/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Sep 24;525(7570):548-51. doi: 10.1038/nature14981. Epub 2015 Sep 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA. ; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA. ; Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QU, UK. ; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26344196" target="_blank"〉PubMed〈/a〉
    Keywords: Anions/chemistry/metabolism/pharmacology ; Bacterial Proteins/*chemistry/*metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Fluorides/chemistry/*metabolism/*pharmacology ; Ion Channels/*chemistry/*metabolism ; Models, Biological ; Models, Molecular ; Phenylalanine/metabolism ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-04-10
    Description: Adiponectin stimulation of its receptors, AdipoR1 and AdipoR2, increases the activities of 5' AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR), respectively, thereby contributing to healthy longevity as key anti-diabetic molecules. AdipoR1 and AdipoR2 were predicted to contain seven transmembrane helices with the opposite topology to G-protein-coupled receptors. Here we report the crystal structures of human AdipoR1 and AdipoR2 at 2.9 and 2.4 A resolution, respectively, which represent a novel class of receptor structure. The seven-transmembrane helices, conformationally distinct from those of G-protein-coupled receptors, enclose a large cavity where three conserved histidine residues coordinate a zinc ion. The zinc-binding structure may have a role in the adiponectin-stimulated AMPK phosphorylation and UCP2 upregulation. Adiponectin may broadly interact with the extracellular face, rather than the carboxy-terminal tail, of the receptors. The present information will facilitate the understanding of novel structure-function relationships and the development and optimization of AdipoR agonists for the treatment of obesity-related diseases, such as type 2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477036/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477036/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanabe, Hiroaki -- Fujii, Yoshifumi -- Okada-Iwabu, Miki -- Iwabu, Masato -- Nakamura, Yoshihiro -- Hosaka, Toshiaki -- Motoyama, Kanna -- Ikeda, Mariko -- Wakiyama, Motoaki -- Terada, Takaho -- Ohsawa, Noboru -- Hato, Masakatsu -- Ogasawara, Satoshi -- Hino, Tomoya -- Murata, Takeshi -- Iwata, So -- Hirata, Kunio -- Kawano, Yoshiaki -- Yamamoto, Masaki -- Kimura-Someya, Tomomi -- Shirouzu, Mikako -- Yamauchi, Toshimasa -- Kadowaki, Takashi -- Yokoyama, Shigeyuki -- 062164/Z/00/Z/Wellcome Trust/United Kingdom -- 089809/Wellcome Trust/United Kingdom -- BB/G02325/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G023425/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2015 Apr 16;520(7547):312-6. doi: 10.1038/nature14301. Epub 2015 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [4] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; 1] Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] Department of Integrated Molecular Science on Metabolic Diseases, 22nd Century Medical and Research Center, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; 1] Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] Department of Integrated Molecular Science on Metabolic Diseases, 22nd Century Medical and Research Center, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [3] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan. ; Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. ; 1] Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [2] JST, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [3] JST, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan [4] Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage, Chiba 263-8522, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [3] JST, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan [4] Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK [5] Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK [6] RIKEN SPring-8 Center, Harima Institute, Kouto, Sayo, Hyogo 679-5148, Japan. ; RIKEN SPring-8 Center, Harima Institute, Kouto, Sayo, Hyogo 679-5148, Japan. ; 1] Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] Department of Integrated Molecular Science on Metabolic Diseases, 22nd Century Medical and Research Center, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan. ; 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25855295" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Histidine/chemistry/metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Receptors, Adiponectin/*chemistry/metabolism ; Structure-Activity Relationship ; Zinc/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-08-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Teichmann, Sarah -- Pain, Elisabeth -- New York, N.Y. -- Science. 2015 Aug 7;349(6248):662. doi: 10.1126/science.349.6248.662.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Elisabeth Pain is Science Careers contributing editor for Europe. Send your story to SciCareerEditor@aaas.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26250686" target="_blank"〉PubMed〈/a〉
    Keywords: *Career Choice ; *Computational Biology ; Molecular Biology ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-08-22
    Description: Splicing of precursor messenger RNA is performed by the spliceosome. In the cryogenic electron microscopy structure of the yeast spliceosome, U5 small nuclear ribonucleoprotein acts as a central scaffold onto which U6 and U2 small nuclear RNAs (snRNAs) are intertwined to form a catalytic center next to Loop I of U5 snRNA. Magnesium ions are coordinated by conserved nucleotides in U6 snRNA. The intron lariat is held in place through base-pairing interactions with both U2 and U6 snRNAs, leaving the variable-length middle portion on the solvent-accessible surface of the catalytic center. The protein components of the spliceosome anchor both 5' and 3' ends of the U2 and U6 snRNAs away from the active site, direct the RNA sequences, and allow sufficient flexibility between the ends and the catalytic center. Thus, the spliceosome is in essence a protein-directed ribozyme, with the protein components essential for the delivery of critical RNA molecules into close proximity of one another at the right time for the splicing reaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hang, Jing -- Wan, Ruixue -- Yan, Chuangye -- Shi, Yigong -- New York, N.Y. -- Science. 2015 Sep 11;349(6253):1191-8. doi: 10.1126/science.aac8159. Epub 2015 Aug 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. shi-lab@tsinghua.edu.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26292705" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Exons ; Introns ; Nucleic Acid Conformation ; Protein Conformation ; RNA Precursors/*genetics ; *RNA Splicing ; RNA, Messenger/*biosynthesis/genetics ; RNA, Small Nuclear/chemistry ; Ribonucleoprotein, U5 Small Nuclear/chemistry ; Spliceosomes/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-03-15
    Description: TREK-2 (KCNK10/K2P10), a two-pore domain potassium (K2P) channel, is gated by multiple stimuli such as stretch, fatty acids, and pH and by several drugs. However, the mechanisms that control channel gating are unclear. Here we present crystal structures of the human TREK-2 channel (up to 3.4 angstrom resolution) in two conformations and in complex with norfluoxetine, the active metabolite of fluoxetine (Prozac) and a state-dependent blocker of TREK channels. Norfluoxetine binds within intramembrane fenestrations found in only one of these two conformations. Channel activation by arachidonic acid and mechanical stretch involves conversion between these states through movement of the pore-lining helices. These results provide an explanation for TREK channel mechanosensitivity, regulation by diverse stimuli, and possible off-target effects of the serotonin reuptake inhibitor Prozac.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, Yin Yao -- Pike, Ashley C W -- Mackenzie, Alexandra -- McClenaghan, Conor -- Aryal, Prafulla -- Dong, Liang -- Quigley, Andrew -- Grieben, Mariana -- Goubin, Solenne -- Mukhopadhyay, Shubhashish -- Ruda, Gian Filippo -- Clausen, Michael V -- Cao, Lishuang -- Brennan, Paul E -- Burgess-Brown, Nicola A -- Sansom, Mark S P -- Tucker, Stephen J -- Carpenter, Elisabeth P -- 084655/Wellcome Trust/United Kingdom -- 092809/Z/10/Z/Wellcome Trust/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):1256-9. doi: 10.1126/science.1261512.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. ; Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. ; Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. ; Pfizer Neusentis, Granta Park, Cambridge CB21 6GS, UK. ; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. liz.carpenter@sgc.ox.ac.uk stephen.tucker@physics.ox.ac.uk. ; Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. liz.carpenter@sgc.ox.ac.uk stephen.tucker@physics.ox.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25766236" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arachidonic Acid/pharmacology ; Binding Sites ; Crystallography, X-Ray ; Fluoxetine/analogs & derivatives/chemistry/metabolism/pharmacology ; Humans ; *Ion Channel Gating ; Models, Molecular ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Potassium/metabolism ; Potassium Channels, Tandem Pore Domain/antagonists & ; inhibitors/*chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leslie, Mitch -- New York, N.Y. -- Science. 2015 Mar 6;347(6226):1058-9, 1061. doi: 10.1126/science.347.6226.1058.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25745143" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/chemistry/immunology/*therapeutic use ; Clinical Trials as Topic ; Drug Approval ; Humans ; Immune System/immunology ; Mice ; Multiple Sclerosis/*therapy ; Myelin Sheath/immunology ; Protein Conformation ; Recombinant Proteins/immunology/*therapeutic use ; United States ; United States Food and Drug Administration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-01-31
    Description: The 18-kilodalton translocator protein (TSPO), proposed to be a key player in cholesterol transport into mitochondria, is highly expressed in steroidogenic tissues, metastatic cancer, and inflammatory and neurological diseases such as Alzheimer's and Parkinson's. TSPO ligands, including benzodiazepine drugs, are implicated in regulating apoptosis and are extensively used in diagnostic imaging. We report crystal structures (at 1.8, 2.4, and 2.5 angstrom resolution) of TSPO from Rhodobacter sphaeroides and a mutant that mimics the human Ala(147)--〉Thr(147) polymorphism associated with psychiatric disorders and reduced pregnenolone production. Crystals obtained in the lipidic cubic phase reveal the binding site of an endogenous porphyrin ligand and conformational effects of the mutation. The three crystal structures show the same tightly interacting dimer and provide insights into the controversial physiological role of TSPO and how the mutation affects cholesterol binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Fei -- Liu, Jian -- Zheng, Yi -- Garavito, R Michael -- Ferguson-Miller, Shelagh -- ACB-12002/PHS HHS/ -- AGM-12006/PHS HHS/ -- GM094625/GM/NIGMS NIH HHS/ -- GM26916/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 30;347(6221):555-8. doi: 10.1126/science.1260590.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. fergus20@msu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25635101" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Cholesterol/metabolism ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Isoquinolines/metabolism ; Ligands ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry ; Polymorphism, Single Nucleotide ; Porphyrins/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protoporphyrins/metabolism ; Receptors, GABA/chemistry/genetics ; Rhodobacter sphaeroides/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-09-19
    Description: Double-stranded RNA (dsRNA) viruses possess a segmented dsRNA genome and a number of RNA-dependent RNA polymerases (RdRps) enclosed in a capsid. Until now, the precise structures of genomes and RdRps within the capsids have been unknown. Here we report the structures of RdRps and associated RNAs within nontranscribing and transcribing cypoviruses (NCPV and TCPV, respectively), using a combination of cryo-electron microscopy (cryo-EM) and a symmetry-mismatch reconstruction method. The RdRps and associated RNAs appear to exhibit a pseudo-D3 symmetric organization in both NCPV and TCPV. However, the molecular interactions between RdRps and the genomic RNA were found to differ in these states. Our work provides insight into the mechanisms of the replication and transcription in dsRNA viruses and paves a way for structural determination of lower-symmetry complexes enclosed in higher-symmetry structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Hongrong -- Cheng, Lingpeng -- New York, N.Y. -- Science. 2015 Sep 18;349(6254):1347-50. doi: 10.1126/science.aaa4938.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Physics and Information Science, Hunan Normal University, Changsha, Hunan 410081, China. hrliu@hunnu.edu.cn lingpengcheng@mail.tsinghua.edu.cn. ; School of Life Sciences, Tsinghua University, Beijing 100084, China. hrliu@hunnu.edu.cn lingpengcheng@mail.tsinghua.edu.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26383954" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Capsid/enzymology/ultrastructure ; Capsid Proteins/*ultrastructure ; Cryoelectron Microscopy ; Genome, Viral ; Humans ; Protein Conformation ; RNA Replicase/*ultrastructure ; RNA, Double-Stranded/genetics/*ultrastructure ; RNA, Viral/genetics/*ultrastructure ; *Reoviridae/enzymology/genetics/ultrastructure ; Transcription, Genetic ; Virus Assembly
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-01-03
    Description: In Eukarya, stalled translation induces 40S dissociation and recruitment of the ribosome quality control complex (RQC) to the 60S subunit, which mediates nascent chain degradation. Here we report cryo-electron microscopy structures revealing that the RQC components Rqc2p (YPL009C/Tae2) and Ltn1p (YMR247C/Rkr1) bind to the 60S subunit at sites exposed after 40S dissociation, placing the Ltn1p RING (Really Interesting New Gene) domain near the exit channel and Rqc2p over the P-site transfer RNA (tRNA). We further demonstrate that Rqc2p recruits alanine- and threonine-charged tRNA to the A site and directs the elongation of nascent chains independently of mRNA or 40S subunits. Our work uncovers an unexpected mechanism of protein synthesis, in which a protein--not an mRNA--determines tRNA recruitment and the tagging of nascent chains with carboxy-terminal Ala and Thr extensions ("CAT tails").〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4451101/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4451101/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, Peter S -- Park, Joseph -- Qin, Yidan -- Li, Xueming -- Parsawar, Krishna -- Larson, Matthew H -- Cox, James -- Cheng, Yifan -- Lambowitz, Alan M -- Weissman, Jonathan S -- Brandman, Onn -- Frost, Adam -- 1DP2GM110772-01/DP/NCCDPHP CDC HHS/ -- DP2 GM110772/GM/NIGMS NIH HHS/ -- GM37949/GM/NIGMS NIH HHS/ -- GM37951/GM/NIGMS NIH HHS/ -- P50 GM102706/GM/NIGMS NIH HHS/ -- R01 GM037949/GM/NIGMS NIH HHS/ -- R01 GM037951/GM/NIGMS NIH HHS/ -- U01 GM098254/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Jan 2;347(6217):75-8. doi: 10.1126/science.1259724.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Utah, UT 84112, USA. ; Department of Biochemistry, Stanford University, Palo Alto, CA 94305, USA. ; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA. Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA. ; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA. ; Mass Spectrometry and Proteomics Core Facility, University of Utah, UT 84112, USA. ; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA. California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA. Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA. ; Department of Biochemistry, University of Utah, UT 84112, USA. Mass Spectrometry and Proteomics Core Facility, University of Utah, UT 84112, USA. ; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA. California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA. Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA. jonathan.weissman@ucsf.edu onn@stanford.edu adam.frost@ucsf.edu. ; Department of Biochemistry, Stanford University, Palo Alto, CA 94305, USA. jonathan.weissman@ucsf.edu onn@stanford.edu adam.frost@ucsf.edu. ; Department of Biochemistry, University of Utah, UT 84112, USA. Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA. jonathan.weissman@ucsf.edu onn@stanford.edu adam.frost@ucsf.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25554787" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; Nucleic Acid Conformation ; *Peptide Biosynthesis, Nucleic Acid-Independent ; Protein Conformation ; RNA, Messenger/metabolism ; RNA, Transfer, Ala/chemistry/metabolism ; RNA, Transfer, Thr/chemistry/metabolism ; Ribosome Subunits, Large, Eukaryotic/chemistry/*metabolism/ultrastructure ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/*metabolism/ultrastructure ; Ubiquitin-Protein Ligases/*metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-10-17
    Description: Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). We report the cryo-electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunit interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Our findings provide structural and mechanistic insights into telomerase holoenzyme function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687456/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687456/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Jiansen -- Chan, Henry -- Cash, Darian D -- Miracco, Edward J -- Ogorzalek Loo, Rachel R -- Upton, Heather E -- Cascio, Duilio -- O'Brien Johnson, Reid -- Collins, Kathleen -- Loo, Joseph A -- Zhou, Z Hong -- Feigon, Juli -- GM007185/GM/NIGMS NIH HHS/ -- GM048123/GM/NIGMS NIH HHS/ -- GM071940/GM/NIGMS NIH HHS/ -- GM101874/GM/NIGMS NIH HHS/ -- GM103479/GM/NIGMS NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- P41 RR015301/RR/NCRR NIH HHS/ -- R01 GM048123/GM/NIGMS NIH HHS/ -- R01 GM054198/GM/NIGMS NIH HHS/ -- R01 GM071940/GM/NIGMS NIH HHS/ -- R01 GM103479/GM/NIGMS NIH HHS/ -- R01GM054198/GM/NIGMS NIH HHS/ -- S10OD018111/OD/NIH HHS/ -- S10RR23057/RR/NCRR NIH HHS/ -- UL1TR000124/TR/NCATS NIH HHS/ -- New York, N.Y. -- Science. 2015 Oct 30;350(6260):aab4070. doi: 10.1126/science.aab4070. Epub 2015 Oct 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA. California Nanosystems Institute, UCLA, Los Angeles, CA 90095, USA. ; Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. ; Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA. ; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. ; Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. UCLA-U.S. Department of Energy (DOE) Institute of Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA. ; Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA. UCLA-U.S. Department of Energy (DOE) Institute of Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA. ; Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA. California Nanosystems Institute, UCLA, Los Angeles, CA 90095, USA. ; Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. California Nanosystems Institute, UCLA, Los Angeles, CA 90095, USA. UCLA-U.S. Department of Energy (DOE) Institute of Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA. feigon@mbi.ucla.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26472759" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Cryoelectron Microscopy ; Crystallography, X-Ray ; DNA, Single-Stranded/chemistry ; Holoenzymes/chemistry ; Protein Binding ; Protein Conformation ; Protein Subunits/chemistry ; RNA/*chemistry ; Replication Protein A/chemistry ; Telomerase/*chemistry ; Telomere/chemistry ; Telomere Homeostasis ; Telomere-Binding Proteins ; Tetrahymena/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-01-24
    Description: The 26S proteasome is a key player in eukaryotic protein quality control and in the regulation of numerous cellular processes. Here, we describe quantitative in situ structural studies of this highly dynamic molecular machine in intact hippocampal neurons. We used electron cryotomography with the Volta phase plate, which allowed high fidelity and nanometer precision localization of 26S proteasomes. We undertook a molecular census of single- and double-capped proteasomes and assessed the conformational states of individual complexes. Under the conditions of the experiment-that is, in the absence of proteotoxic stress-only 20% of the 26S proteasomes were engaged in substrate processing. The remainder was in the substrate-accepting ground state. These findings suggest that in the absence of stress, the capacity of the proteasome system is not fully used.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Asano, Shoh -- Fukuda, Yoshiyuki -- Beck, Florian -- Aufderheide, Antje -- Forster, Friedrich -- Danev, Radostin -- Baumeister, Wolfgang -- New York, N.Y. -- Science. 2015 Jan 23;347(6220):439-42. doi: 10.1126/science.1261197.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany. ; Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany. baumeist@biochem.mpg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25613890" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Hippocampus/*cytology/enzymology ; Neurons/*enzymology/*ultrastructure ; Proteasome Endopeptidase Complex/*chemistry ; Protein Conformation ; Rats ; Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-04-18
    Description: Conformational control of biomolecular activities can reveal functional insights and enable the engineering of novel activities. Here we show that conformational control through intramolecular cross-linking of a helicase monomer with undetectable unwinding activity converts it into a superhelicase that can unwind thousands of base pairs processively, even against a large opposing force. A natural partner that enhances the helicase activity is shown to achieve its stimulating role also by selectively stabilizing the active conformation. Our work provides insight into the regulation of nucleic acid unwinding activity and introduces a monomeric superhelicase without nuclease activities, which may be useful for biotechnological applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417355/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417355/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arslan, Sinan -- Khafizov, Rustem -- Thomas, Christopher D -- Chemla, Yann R -- Ha, Taekjip -- GM065367/GM/NIGMS NIH HHS/ -- R01 GM065367/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):344-7. doi: 10.1126/science.aaa0445.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physics Department and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. ; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK. ; Physics Department and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Howard Hughes Medical Institute, University of Illinois, Urbana, IL 61801, USA. tjha@illinois.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25883358" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/genetics ; Cross-Linking Reagents/chemistry ; Crystallography, X-Ray ; DNA Helicases/*chemistry/genetics ; *DNA Replication ; DNA, Single-Stranded/*chemistry ; Deoxyribonucleases/chemistry/genetics ; Enzyme Stability ; Escherichia coli Proteins/*chemistry/genetics ; Protein Conformation ; Protein Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-04-18
    Description: The relationship between protein three-dimensional structure and function is essential for mechanism determination. Unfortunately, most techniques do not provide a direct measurement of this relationship. Structural data are typically limited to static pictures, and function must be inferred. Conversely, functional assays usually provide little information on structural conformation. We developed a single-molecule technique combining optical tweezers and fluorescence microscopy that allows for both measurements simultaneously. Here we present measurements of UvrD, a DNA repair helicase, that directly and unambiguously reveal the connection between its structure and function. Our data reveal that UvrD exhibits two distinct types of unwinding activity regulated by its stoichiometry. Furthermore, two UvrD conformational states, termed "closed" and "open," correlate with movement toward or away from the DNA fork.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424897/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424897/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Comstock, Matthew J -- Whitley, Kevin D -- Jia, Haifeng -- Sokoloski, Joshua -- Lohman, Timothy M -- Ha, Taekjip -- Chemla, Yann R -- R01 GM045948/GM/NIGMS NIH HHS/ -- R01 GM065367/GM/NIGMS NIH HHS/ -- R21 RR025341/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):352-4. doi: 10.1126/science.aaa0130. Epub 2015 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Center for the Physics of Living Cells, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. ; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Department of Physics, Center for the Physics of Living Cells, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Howard Hughes Medical Institute, Urbana, IL 61801, USA. Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. ; Department of Physics, Center for the Physics of Living Cells, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. ychemla@illinois.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25883359" target="_blank"〉PubMed〈/a〉
    Keywords: DNA Helicases/*chemistry/*physiology ; DNA Repair ; *DNA Replication ; Escherichia coli Proteins/*chemistry/*physiology ; Microscopy, Fluorescence/methods ; Optical Tweezers ; Protein Conformation ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-08-22
    Description: Transcription by RNA polymerase (RNAP) in bacteria requires specific promoter recognition by sigma factors. The major variant sigma factor (sigma(54)) initially forms a transcriptionally silent complex requiring specialized adenosine triphosphate-dependent activators for initiation. Our crystal structure of the 450-kilodalton RNAP-sigma(54) holoenzyme at 3.8 angstroms reveals molecular details of sigma(54) and its interactions with RNAP. The structure explains how sigma(54) targets different regions in RNAP to exert its inhibitory function. Although sigma(54) and the major sigma factor, sigma(70), have similar functional domains and contact similar regions of RNAP, unanticipated differences are observed in their domain arrangement and interactions with RNAP, explaining their distinct properties. Furthermore, we observe evolutionarily conserved regulatory hotspots in RNAPs that can be targeted by a diverse range of mechanisms to fine tune transcription.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681505/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681505/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Yun -- Darbari, Vidya C -- Zhang, Nan -- Lu, Duo -- Glyde, Robert -- Wang, Yi-Ping -- Winkelman, Jared T -- Gourse, Richard L -- Murakami, Katsuhiko S -- Buck, Martin -- Zhang, Xiaodong -- 098412/Wellcome Trust/United Kingdom -- BB/C504700/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- GM087350/GM/NIGMS NIH HHS/ -- R01 GM087350/GM/NIGMS NIH HHS/ -- R37 GM37048/GM/NIGMS NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Aug 21;349(6250):882-5. doi: 10.1126/science.aab1478.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Structural Biology, Imperial College London, South Kensington SW7 2AZ, UK. State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, China. ; Centre for Structural Biology, Imperial College London, South Kensington SW7 2AZ, UK. Department of Medicine, Imperial College London, South Kensington SW7 2AZ, UK. ; Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK. ; Centre for Structural Biology, Imperial College London, South Kensington SW7 2AZ, UK. ; State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, China. ; Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA. ; Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA. ; Centre for Structural Biology, Imperial College London, South Kensington SW7 2AZ, UK. Department of Medicine, Imperial College London, South Kensington SW7 2AZ, UK. xiaodong.zhang@imperial.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26293966" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Enzyme Stability ; *Evolution, Molecular ; *Gene Expression Regulation ; Holoenzymes/chemistry ; Protein Conformation ; Protein Structure, Tertiary ; RNA Polymerase Sigma 54/*chemistry/genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-01-31
    Description: Translocator proteins (TSPOs) bind steroids and porphyrins, and they are implicated in many human diseases, for which they serve as biomarkers and therapeutic targets. TSPOs have tryptophan-rich sequences that are highly conserved from bacteria to mammals. Here we report crystal structures for Bacillus cereus TSPO (BcTSPO) down to 1.7 A resolution, including a complex with the benzodiazepine-like inhibitor PK11195. We also describe BcTSPO-mediated protoporphyrin IX (PpIX) reactions, including catalytic degradation to a previously undescribed heme derivative. We used structure-inspired mutations to investigate reaction mechanisms, and we showed that TSPOs from Xenopus and man have similar PpIX-directed activities. Although TSPOs have been regarded as transporters, the catalytic activity in PpIX degradation suggests physiological importance for TSPOs in protection against oxidative stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341906/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341906/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Youzhong -- Kalathur, Ravi C -- Liu, Qun -- Kloss, Brian -- Bruni, Renato -- Ginter, Christopher -- Kloppmann, Edda -- Rost, Burkhard -- Hendrickson, Wayne A -- GM095315/GM/NIGMS NIH HHS/ -- GM107462/GM/NIGMS NIH HHS/ -- R01 GM107462/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 30;347(6221):551-5. doi: 10.1126/science.aaa1534.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. ; The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. ; The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. New York Structural Biology Center, Synchrotron Beamlines, Brookhaven National Laboratory, Upton, NY 11973, USA. ; The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. Department of Informatics, Bioinformatics and Computational Biology, Technische Universitat Munchen, Garching 85748, Germany. ; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. New York Structural Biology Center, Synchrotron Beamlines, Brookhaven National Laboratory, Upton, NY 11973, USA. Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA. wayne@xtl.cumc.columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25635100" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacillus cereus/*chemistry ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Isoquinolines/metabolism ; Ligands ; Membrane Transport Proteins/*chemistry/*metabolism ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Subunits/chemistry ; Protoporphyrins/metabolism ; Reactive Oxygen Species/metabolism ; Tryptophan/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-12-03
    Description: The RNA-guided endonuclease Cas9 is a versatile genome-editing tool with a broad range of applications from therapeutics to functional annotation of genes. Cas9 creates double-strand breaks (DSBs) at targeted genomic loci complementary to a short RNA guide. However, Cas9 can cleave off-target sites that are not fully complementary to the guide, which poses a major challenge for genome editing. Here, we use structure-guided protein engineering to improve the specificity of Streptococcus pyogenes Cas9 (SpCas9). Using targeted deep sequencing and unbiased whole-genome off-target analysis to assess Cas9-mediated DNA cleavage in human cells, we demonstrate that "enhanced specificity" SpCas9 (eSpCas9) variants reduce off-target effects and maintain robust on-target cleavage. Thus, eSpCas9 could be broadly useful for genome-editing applications requiring a high level of specificity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4714946/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4714946/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Slaymaker, Ian M -- Gao, Linyi -- Zetsche, Bernd -- Scott, David A -- Yan, Winston X -- Zhang, Feng -- 1R01MH110049/MH/NIMH NIH HHS/ -- 5DP1-MH100706/DP/NCCDPHP CDC HHS/ -- 5R01DK097768-03/DK/NIDDK NIH HHS/ -- DP1 MH100706/MH/NIMH NIH HHS/ -- T32GM007753/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Jan 1;351(6268):84-8. doi: 10.1126/science.aad5227. Epub 2015 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Graduate Program in Biophysics, Harvard Medical School, Boston, MA 02115, USA. Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. zhang@broadinstitute.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26628643" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/genetics ; *DNA Cleavage ; Endonucleases/*chemistry/genetics ; Humans ; Mutagenesis ; Point Mutation ; Protein Conformation ; *Protein Engineering ; RNA, Guide/genetics ; Streptococcus pyogenes/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-09-01
    Description: In all domains of life, DNA synthesis occurs bidirectionally from replication origins. Despite variable rates of replication fork progression, fork convergence often occurs at specific sites. Escherichia coli sets a 'replication fork trap' that allows the first arriving fork to enter but not to leave the terminus region. The trap is set by oppositely oriented Tus-bound Ter sites that block forks on approach from only one direction. However, the efficiency of fork blockage by Tus-Ter does not exceed 50% in vivo despite its apparent ability to almost permanently arrest replication forks in vitro. Here we use data from single-molecule DNA replication assays and structural studies to show that both polarity and fork-arrest efficiency are determined by a competition between rates of Tus displacement and rearrangement of Tus-Ter interactions that leads to blockage of slower moving replisomes by two distinct mechanisms. To our knowledge this is the first example where intrinsic differences in rates of individual replisomes have different biological outcomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elshenawy, Mohamed M -- Jergic, Slobodan -- Xu, Zhi-Qiang -- Sobhy, Mohamed A -- Takahashi, Masateru -- Oakley, Aaron J -- Dixon, Nicholas E -- Hamdan, Samir M -- England -- Nature. 2015 Sep 17;525(7569):394-8. doi: 10.1038/nature14866. Epub 2015 Aug 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia. ; Centre for Medical &Molecular Bioscience, Illawarra Health &Medical Research Institute and University of Wollongong, New South Wales 2522, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26322585" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding, Competitive ; Chromosomes, Bacterial/genetics/metabolism ; Crystallography, X-Ray ; *DNA Replication ; DNA-Directed DNA Polymerase/chemistry/*metabolism ; Escherichia coli/*genetics/metabolism ; Escherichia coli Proteins/chemistry/*metabolism ; Kinetics ; Models, Biological ; Models, Molecular ; Movement ; Multienzyme Complexes/chemistry/*metabolism ; Protein Conformation ; Regulatory Sequences, Nucleic Acid/*genetics ; Surface Plasmon Resonance ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-01-13
    Description: Dengue disease is caused by four different flavivirus serotypes, which infect 390 million people yearly with 25% symptomatic cases and for which no licensed vaccine is available. Recent phase III vaccine trials showed partial protection, and in particular no protection for dengue virus serotype 2 (refs 3, 4). Structural studies so far have characterized only epitopes recognized by serotype-specific human antibodies. We recently isolated human antibodies potently neutralizing all four dengue virus serotypes. Here we describe the X-ray structures of four of these broadly neutralizing antibodies in complex with the envelope glycoprotein E from dengue virus serotype 2, revealing that the recognition determinants are at a serotype-invariant site at the E-dimer interface, including the exposed main chain of the E fusion loop and the two conserved glycan chains. This 'E-dimer-dependent epitope' is also the binding site for the viral glycoprotein prM during virus maturation in the secretory pathway of the infected cell, explaining its conservation across serotypes and highlighting an Achilles' heel of the virus with respect to antibody neutralization. These findings will be instrumental for devising novel immunogens to protect simultaneously against all four serotypes of dengue virus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rouvinski, Alexander -- Guardado-Calvo, Pablo -- Barba-Spaeth, Giovanna -- Duquerroy, Stephane -- Vaney, Marie-Christine -- Kikuti, Carlos M -- Navarro Sanchez, M Erika -- Dejnirattisai, Wanwisa -- Wongwiwat, Wiyada -- Haouz, Ahmed -- Girard-Blanc, Christine -- Petres, Stephane -- Shepard, William E -- Despres, Philippe -- Arenzana-Seisdedos, Fernando -- Dussart, Philippe -- Mongkolsapaya, Juthathip -- Screaton, Gavin R -- Rey, Felix A -- 095541/Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2015 Apr 2;520(7545):109-13. doi: 10.1038/nature14130. Epub 2015 Jan 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institut Pasteur, Departement de Virologie, Unite de Virologie Structurale, 75724 Paris Cedex 15, France [2] CNRS UMR 3569 Virologie, 75724 Paris Cedex 15, France. ; 1] Institut Pasteur, Departement de Virologie, Unite de Virologie Structurale, 75724 Paris Cedex 15, France [2] CNRS UMR 3569 Virologie, 75724 Paris Cedex 15, France [3] Universite Paris-Sud, Faculte des Sciences, 91405 Orsay, France. ; Division of Immunology and Inflammation, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK. ; Institut Pasteur, Proteopole, CNRS UMR 3528, 75724 Paris Cedex 15, France. ; Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, 91192 Gif-sur-Yvette, France. ; Institut Pasteur, Departement de Virologie, Unite des Interactions Moleculaires Flavivirus-Hotes, 75724 Paris Cedex 15, France. ; Institut Pasteur, Departement de Virologie, Unite de Pathogenie Virale, INSERM U1108, 75724 Paris Cedex 15, France. ; Institut Pasteur de Guyane, BP 6010, 97306 Cayenne, French Guiana. ; 1] Division of Immunology and Inflammation, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK [2] Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand. ; 1] Institut Pasteur, Departement de Virologie, Unite de Virologie Structurale, 75724 Paris Cedex 15, France [2] CNRS UMR 3569 Virologie, 75724 Paris Cedex 15, France [3] Institut Pasteur, Proteopole, CNRS UMR 3528, 75724 Paris Cedex 15, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25581790" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Neutralizing/*chemistry/genetics/*immunology ; Antibodies, Viral/*chemistry/genetics/*immunology ; Cross Reactions/immunology ; Crystallography, X-Ray ; Dengue Virus/*chemistry/classification/*immunology ; Epitopes/chemistry/immunology ; Humans ; Models, Molecular ; Molecular Sequence Data ; Mutation/genetics ; Protein Conformation ; Protein Multimerization ; Solubility ; Species Specificity ; Viral Envelope Proteins/chemistry/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-03-18
    Description: Anthrax toxin, comprising protective antigen, lethal factor, and oedema factor, is the major virulence factor of Bacillus anthracis, an agent that causes high mortality in humans and animals. Protective antigen forms oligomeric prepores that undergo conversion to membrane-spanning pores by endosomal acidification, and these pores translocate the enzymes lethal factor and oedema factor into the cytosol of target cells. Protective antigen is not only a vaccine component and therapeutic target for anthrax infections but also an excellent model system for understanding the mechanism of protein translocation. On the basis of biochemical and electrophysiological results, researchers have proposed that a phi (Phi)-clamp composed of phenylalanine (Phe)427 residues of protective antigen catalyses protein translocation via a charge-state-dependent Brownian ratchet. Although atomic structures of protective antigen prepores are available, how protective antigen senses low pH, converts to active pore, and translocates lethal factor and oedema factor are not well defined without an atomic model of its pore. Here, by cryo-electron microscopy with direct electron counting, we determine the protective antigen pore structure at 2.9-A resolution. The structure reveals the long-sought-after catalytic Phi-clamp and the membrane-spanning translocation channel, and supports the Brownian ratchet model for protein translocation. Comparisons of four structures reveal conformational changes in prepore to pore conversion that support a multi-step mechanism by which low pH is sensed and the membrane-spanning channel is formed.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519040/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519040/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Jiansen -- Pentelute, Bradley L -- Collier, R John -- Zhou, Z Hong -- 1S10OD018111/OD/NIH HHS/ -- 1S10RR23057/RR/NCRR NIH HHS/ -- AI022021/AI/NIAID NIH HHS/ -- AI046420/AI/NIAID NIH HHS/ -- AI057159/AI/NIAID NIH HHS/ -- AI094386/AI/NIAID NIH HHS/ -- GM071940/GM/NIGMS NIH HHS/ -- R01 AI094386/AI/NIAID NIH HHS/ -- R01 GM071940/GM/NIGMS NIH HHS/ -- S10 OD018111/OD/NIH HHS/ -- S10 RR023057/RR/NCRR NIH HHS/ -- England -- Nature. 2015 May 28;521(7553):545-9. doi: 10.1038/nature14247. Epub 2015 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA [2] California NanoSystems Institute, University of California, Los Angeles, California 90095, USA. ; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25778700" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Bacterial/chemistry/*metabolism/*ultrastructure ; Bacillus anthracis/*chemistry/*ultrastructure ; Bacterial Toxins/chemistry/*metabolism ; Biocatalysis ; *Cryoelectron Microscopy ; Hydrogen-Ion Concentration ; Ion Channels/chemistry/metabolism/ultrastructure ; Models, Molecular ; Phenylalanine/metabolism ; Protein Conformation ; Protein Transport ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-08-08
    Description: Termination of protein synthesis occurs when a translating ribosome encounters one of three universally conserved stop codons: UAA, UAG or UGA. Release factors recognize stop codons in the ribosomal A-site to mediate release of the nascent chain and recycling of the ribosome. Bacteria decode stop codons using two separate release factors with differing specificities for the second and third bases. By contrast, eukaryotes rely on an evolutionarily unrelated omnipotent release factor (eRF1) to recognize all three stop codons. The molecular basis of eRF1 discrimination for stop codons over sense codons is not known. Here we present cryo-electron microscopy (cryo-EM) structures at 3.5-3.8 A resolution of mammalian ribosomal complexes containing eRF1 interacting with each of the three stop codons in the A-site. Binding of eRF1 flips nucleotide A1825 of 18S ribosomal RNA so that it stacks on the second and third stop codon bases. This configuration pulls the fourth position base into the A-site, where it is stabilized by stacking against G626 of 18S rRNA. Thus, eRF1 exploits two rRNA nucleotides also used during transfer RNA selection to drive messenger RNA compaction. In this compacted mRNA conformation, stop codons are favoured by a hydrogen-bonding network formed between rRNA and essential eRF1 residues that constrains the identity of the bases. These results provide a molecular framework for eukaryotic stop codon recognition and have implications for future studies on the mechanisms of canonical and premature translation termination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591471/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591471/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, Alan -- Shao, Sichen -- Murray, Jason -- Hegde, Ramanujan S -- Ramakrishnan, V -- 096570/Wellcome Trust/United Kingdom -- MC_U105184332/Medical Research Council/United Kingdom -- MC_UP_A022_1007/Medical Research Council/United Kingdom -- WT096570/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Aug 27;524(7566):493-6. doi: 10.1038/nature14896. Epub 2015 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26245381" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Codon/chemistry/genetics/metabolism ; Codon, Terminator/*chemistry/genetics/*metabolism ; Cryoelectron Microscopy ; Eukaryota ; Humans ; Hydrogen Bonding ; Models, Molecular ; Nucleic Acid Conformation ; Nucleotides/chemistry/metabolism ; Peptide Termination Factors/*chemistry/*metabolism ; Protein Biosynthesis ; Protein Conformation ; RNA, Messenger/chemistry/genetics/metabolism ; RNA, Ribosomal, 18S/genetics ; Ribosomes/chemistry/metabolism ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1994-04-01
    Description: The crystal structure of a ternary protein complex has been determined at 2.4 angstrom resolution. The complex is composed of three electron transfer proteins from Paracoccus denitrificans, the quinoprotein methylamine dehydrogenase, the blue copper protein amicyanin, and the cytochrome c551i. The central region of the c551i is folded similarly to several small bacterial c-type cytochromes; there is a 45-residue extension at the amino terminus and a 25-residue extension at the carboxyl terminus. The methylamine dehydrogenase-amicyanin interface is largely hydrophobic, whereas the amicyanin-cytochrome interface is more polar, with several charged groups present on each surface. Analysis of the simplest electron transfer pathways between the redox partners points out the importance of other factors such as energetics in determining the electron transfer rates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, L -- Durley, R C -- Mathews, F S -- Davidson, V L -- GM41574/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Apr 1;264(5155):86-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8140419" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Computer Graphics ; Cytochrome c Group/*chemistry/metabolism ; Electron Transport ; Hydrogen Bonding ; *Indolequinones ; Models, Molecular ; Oxidation-Reduction ; Oxidoreductases Acting on CH-NH Group Donors/*chemistry/metabolism ; Paracoccus denitrificans/*chemistry/enzymology ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Quinones/chemistry/metabolism ; Software ; Tryptophan/analogs & derivatives/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1994-10-21
    Description: The structure of the heterodimeric flavocytochrome c sulfide dehydrogenase from Chromatium vinosum was determined at a resolution of 2.53 angstroms. It contains a glutathione reductase-like flavin-binding subunit and a diheme cytochrome subunit. The diheme cytochrome folds as two domains, each resembling mitochondrial cytochrome c, and has an unusual interpropionic acid linkage joining the two heme groups in the interior of the subunit. The active site of the flavoprotein subunit contains a catalytically important disulfide bridge located above the pyrimidine portion of the flavin ring. A tryptophan, threonine, or tyrosine side chain may provide a partial conduit for electron transfer to one of the heme groups located 10 angstroms from the flavin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Z W -- Koh, M -- Van Driessche, G -- Van Beeumen, J J -- Bartsch, R G -- Meyer, T E -- Cusanovich, M A -- Mathews, F S -- GM-20530/GM/NIGMS NIH HHS/ -- GM-21277/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Oct 21;266(5184):430-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939681" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chromatium/*enzymology ; Computer Graphics ; Crystallography, X-Ray ; Cytochrome c Group/*chemistry ; Electron Transport ; Flavin-Adenine Dinucleotide/metabolism ; Hydrogen Bonding ; Models, Molecular ; Oxidoreductases/*chemistry ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 1994-06-24
    Description: The structure of the leech protein decorsin, a potent 39-residue antagonist of glycoprotein IIb-IIIa and inhibitor of platelet aggregation, was determined by nuclear magnetic resonance. In contrast to other disintegrins, the Arg-Gly-Asp (RGD)-containing region of decorsin is well defined. The three-dimensional structure of decorsin is similar to that of hirudin, an anticoagulant leech protein that potently inhibits thrombin. Amino acid sequence comparisons suggest that ornatin, another glycoprotein IIb-IIIa antagonist, and antistasin, a potent Factor Xa inhibitor and anticoagulant found in leeches, share the same structural motif. Although decorsin, hirudin, and antistasin all affect the blood clotting process and appear similar in structure, their mechanisms of action and epitopes important for binding to their respective targets are distinct.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krezel, A M -- Wagner, G -- Seymour-Ulmer, J -- Lazarus, R A -- New York, N.Y. -- Science. 1994 Jun 24;264(5167):1944-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8009227" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Hirudins/chemistry ; Invertebrate Hormones/chemistry ; *Leeches ; Magnetic Resonance Spectroscopy ; Molecular Sequence Data ; Oligopeptides/chemistry ; Platelet Membrane Glycoproteins/*antagonists & inhibitors ; Protein Conformation ; Protein Structure, Secondary ; Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-04-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, F E -- Pan, K M -- Huang, Z -- Baldwin, M -- Fletterick, R J -- Prusiner, S B -- New York, N.Y. -- Science. 1994 Apr 22;264(5158):530-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, San Francisco 94143-0518.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7909169" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Mice ; Mice, Transgenic ; Models, Biological ; Mutation ; PrPSc Proteins ; Prion Diseases/*metabolism/transmission ; Prions/*biosynthesis/chemistry/genetics/metabolism ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-04-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weissmann, C -- New York, N.Y. -- Science. 1994 Apr 22;264(5158):528-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Molecularbiologie I, Universitat Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7909168" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid/analogs & derivatives/metabolism ; Fungal Proteins/chemistry/*genetics ; Genes, Fungal ; Glutathione Peroxidase ; Mutation ; PrPSc Proteins ; Prions/chemistry/genetics ; Protein Conformation ; Saccharomyces cerevisiae/*genetics/metabolism ; *Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-11
    Description: Protein tyrosine phosphatases (PTPs) constitute a family of receptor-like and cytoplasmic signal transducing enzymes that catalyze the dephosphorylation of phosphotyrosine residues and are characterized by homologous catalytic domains. The crystal structure of a representative member of this family, the 37-kilodalton form (residues 1 to 321) of PTP1B, has been determined at 2.8 A resolution. The enzyme consists of a single domain with the catalytic site located at the base of a shallow cleft. The phosphate recognition site is created from a loop that is located at the amino-terminus of an alpha helix. This site is formed from an 11-residue sequence motif that is diagnostic of PTPs and the dual specificity phosphatases, and that contains the catalytically essential cysteine and arginine residues. The position of the invariant cysteine residue within the phosphate binding site is consistent with its role as a nucleophile in the catalytic reaction. The structure of PTP1B should serve as a model for other members of the PTP family and as a framework for understanding the mechanism of tyrosine dephosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barford, D -- Flint, A J -- Tonks, N K -- CA53840/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1397-404.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, NY 11724.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128219" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Molecular Sequence Data ; Phosphates/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Tyrosine Phosphatases/*chemistry/isolation & purification/metabolism ; Substrate Specificity ; Tungsten Compounds/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-14
    Description: The trimeric protein hemagglutinin (HA) of the influenza viral envelope is essential for cell entry. To investigate the interaction of HA with membranes, two 40-residue, cysteine-substituted peptides comprising the loop region and the first part of the coiled-coil stem were synthesized and modified with a nitroxide spin label. Electron paramagnetic resonance analysis revealed that the peptide inserts reversibly into phospholipid vesicles under endosomal pH conditions. This result suggests that some or all of the long coiled-coil trimer of HA may insert into membranes, which could bring the viral and cell membranes closer together and facilitate fusion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Y G -- King, D S -- Shin, Y K -- New York, N.Y. -- Science. 1994 Oct 14;266(5183):274-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939662" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Electron Spin Resonance Spectroscopy ; Endocytosis ; Hemagglutinin Glycoproteins, Influenza Virus ; Hemagglutinins, Viral/chemistry/*metabolism ; Hydrogen-Ion Concentration ; Lipid Bilayers/*metabolism ; *Membrane Fusion ; Molecular Sequence Data ; Orthomyxoviridae/physiology ; Protein Conformation ; Protein Structure, Secondary ; Temperature ; Viral Envelope Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1994-06-10
    Description: Specific protein-ligand interactions are critical for cellular function, and most proteins select their partners with sharp discrimination. However, the oligopeptide-binding protein of Salmonella typhimurium (OppA) binds peptides of two to five amino acid residues without regard to sequence. The crystal structure of OppA reveals a three-domain organization, unlike other periplasmic binding proteins. In OppA-peptide complexes, the ligands are completely enclosed in the protein interior, a mode of binding that normally imposes tight specificity. The protein fulfills the hydrogen bonding and electrostatic potential of the ligand main chain and accommodates the peptide side chains in voluminous hydrated cavities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tame, J R -- Murshudov, G N -- Dodson, E J -- Neil, T K -- Dodson, G G -- Higgins, C F -- Wilkinson, A J -- New York, N.Y. -- Science. 1994 Jun 10;264(5165):1578-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of York, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8202710" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/chemistry/*metabolism ; Binding Sites ; Carrier Proteins/chemistry/*metabolism ; Crystallography, X-Ray ; Hydrogen Bonding ; Ligands ; Lipoproteins/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Oligopeptides/chemistry/*metabolism ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1994-11-04
    Description: The three-dimensional structure of a ternary complex of the purine repressor, PurR, bound to both its corepressor, hypoxanthine, and the 16-base pair purF operator site has been solved at 2.7 A resolution by x-ray crystallography. The bipartite structure of PurR consists of an amino-terminal DNA-binding domain and a larger carboxyl-terminal corepressor binding and dimerization domain that is similar to that of the bacterial periplasmic binding proteins. The DNA-binding domain contains a helix-turn-helix motif that makes base-specific contacts in the major groove of the DNA. Base contacts are also made by residues of symmetry-related alpha helices, the "hinge" helices, which bind deeply in the minor groove. Critical to hinge helix-minor groove binding is the intercalation of the side chains of Leu54 and its symmetry-related mate, Leu54', into the central CpG-base pair step. These residues thereby act as "leucine levers" to pry open the minor groove and kink the purF operator by 45 degrees.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schumacher, M A -- Choi, K Y -- Zalkin, H -- Brennan, R G -- GM 24658/GM/NIGMS NIH HHS/ -- GM 49244/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Nov 4;266(5186):763-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland 97201-3098.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973627" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/genetics/metabolism ; Base Sequence ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA-Binding Proteins/*chemistry/genetics/metabolism ; *Escherichia coli Proteins ; Hydrogen Bonding ; Hypoxanthine ; Hypoxanthines/metabolism ; Lac Repressors ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; *Operator Regions, Genetic ; Protein Conformation ; Protein Structure, Secondary ; Repressor Proteins/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carr, C M -- Kim, P S -- New York, N.Y. -- Science. 1994 Oct 14;266(5183):234-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Cambridge, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939658" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/metabolism/virology ; Endocytosis ; Endosomes/virology ; Hemagglutinin Glycoproteins, Influenza Virus ; Hemagglutinins, Viral/chemistry/*physiology ; Hydrogen-Ion Concentration ; *Membrane Fusion ; Models, Biological ; Models, Molecular ; Orthomyxoviridae/immunology/*physiology ; Protein Conformation ; Viral Envelope Proteins/chemistry/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-02-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Hippel, P H -- GM-15792/GM/NIGMS NIH HHS/ -- GM-29158/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Feb 11;263(5148):769-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, University of Oregon, Eugene 97403.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8303292" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; Models, Molecular ; Protein Binding ; Protein Conformation ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1994-04-15
    Description: The most frequently occurring resistance of Gram-negative bacteria against tetracyclines is triggered by drug recognition of the Tet repressor. This causes dissociation of the repressor-operator DNA complex and enables expression of the resistance protein TetA, which is responsible for active efflux of tetracycline. The 2.5 angstrom resolution crystal structure of the homodimeric Tet repressor complexed with tetracycline-magnesium reveals detailed drug recognition. The orientation of the operator-binding helix-turn-helix motifs of the repressor is inverted in comparison with other DNA binding proteins. The repressor-drug complex is unable to interact with DNA because the separation of the DNA binding motifs is 5 angstroms wider than usually observed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hinrichs, W -- Kisker, C -- Duvel, M -- Muller, A -- Tovar, K -- Hillen, W -- Saenger, W -- New York, N.Y. -- Science. 1994 Apr 15;264(5157):418-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Kristallographie, Freie Universitat Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8153629" target="_blank"〉PubMed〈/a〉
    Keywords: Antiporters/*chemistry/genetics/metabolism ; Bacterial Proteins/*chemistry/genetics/metabolism ; Crystallography, X-Ray ; DNA, Bacterial/metabolism ; Helix-Loop-Helix Motifs ; Hydrogen Bonding ; Magnesium/chemistry ; Models, Molecular ; Mutation ; Operator Regions, Genetic ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Repressor Proteins/*chemistry/genetics/metabolism ; Tetracycline/*chemistry/metabolism ; *Tetracycline Resistance/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flam, F -- New York, N.Y. -- Science. 1994 Mar 18;263(5153):1563-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128241" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Models, Molecular ; Protein Conformation ; *Protein Engineering ; *Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-02-11
    Description: Thermodynamic studies have demonstrated the central importance of a large negative heat capacity change (delta C degree assoc) in site-specific protein-DNA recognition. Dissection of the large negative delta C degree assoc and the entropy change of protein-ligand and protein-DNA complexation provide a thermodynamic signature identifying processes in which local folding is coupled to binding. Estimates of the number of residues that fold on binding obtained from this analysis agree with structural data. Structural comparisons indicate that these local folding transitions create key parts of the protein-DNA interface. The energetic implications of this "induced fit" model for DNA site recognition are considered.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spolar, R S -- Record, M T Jr -- GM23467/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Feb 11;263(5148):777-84.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Wisconsin-Madison 53706.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8303294" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; *Protein Folding ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1994-04-01
    Description: Interleukin-8 (IL-8), a pro-inflammatory protein, has been shown by nuclear magnetic resonance (NMR) and x-ray techniques to exist as a homodimer. An IL-8 analog was chemically synthesized, with the amide nitrogen of leucine-25 methylated to selectivity block formation of hydrogen bonds between monomers and thereby prevent dimerization. This analog was shown to be a monomer, as assessed by analytical ultracentrifugation and NMR. Nevertheless, it was equivalent to IL-8 in assays of neutrophil activation, which indicates that the monomer is a functional form of IL-8.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rajarathnam, K -- Sykes, B D -- Kay, C M -- Dewald, B -- Geiser, T -- Baggiolini, M -- Clark-Lewis, I -- New York, N.Y. -- Science. 1994 Apr 1;264(5155):90-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Protein Engineering Network of Centres of Excellence (PENCE), University of Alberta, Edmonton, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8140420" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium/metabolism ; Chemotaxis, Leukocyte ; Humans ; Hydrogen Bonding ; Interleukin-8/analogs & derivatives/chemistry/metabolism/*pharmacology ; Leukocyte Elastase ; Models, Chemical ; Neutrophils/drug effects/*physiology ; Pancreatic Elastase/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Interleukin/chemistry/metabolism ; Receptors, Interleukin-8A
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1994-07-15
    Description: The tailspike protein (TSP) of Salmonella typhimurium phage P22 is a part of the apparatus by which the phage attaches to the bacterial host and hydrolyzes the O antigen. It has served as a model system for genetic and biochemical analysis of protein folding. The x-ray structure of a shortened TSP (residues 109 to 666) was determined to a 2.0 angstrom resolution. Each subunit of the homotrimer contains a large parallel beta helix. The interdigitation of the polypeptide chains at the carboxyl termini is important to protrimer formation in the folding pathway and to thermostability of the mature protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steinbacher, S -- Seckler, R -- Miller, S -- Steipe, B -- Huber, R -- Reinemer, P -- New York, N.Y. -- Science. 1994 Jul 15;265(5170):383-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biochemie, Abteilung Strukturforschung, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8023158" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacteriophage P22 ; Computer Graphics ; Crystallization ; Crystallography, X-Ray ; Glycoside Hydrolases/*chemistry/genetics ; Models, Molecular ; Point Mutation ; Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; *Protein Structure, Tertiary ; Viral Proteins/*chemistry/genetics ; *Viral Tail Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 1994-06-10
    Description: Trans-activator (Tat) proteins regulate the transcription of lentiviral DNA in the host cell genome. These RNA binding proteins participate in the life cycle of all known lentiviruses, such as the human immunodeficiency viruses (HIV) or the equine infectious anemia virus (EIAV). The consensus RNA binding motifs [the trans-activation responsive element (TAR)] of HIV-1 as well as EIAV Tat proteins are well characterized. The structure of the 75-amino acid EIAV Tat protein in solution was determined by two- and three-dimensional nuclear magnetic resonance methods and molecular dynamics calculations. The protein structure exhibits a well-defined hydrophobic core of 15 amino acids that serves as a scaffold for two flexible domains corresponding to the NH2- and COOH-terminal regions. The core region is a strictly conserved sequence region among the known Tat proteins. The structural data can be used to explain several of the observed features of Tat proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Willbold, D -- Rosin-Arbesfeld, R -- Sticht, H -- Frank, R -- Rosch, P -- New York, N.Y. -- Science. 1994 Jun 10;264(5165):1584-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lehrstuhl fur Biopolymere, Universitat Bayreuth, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7515512" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Gene Products, tat/*chemistry/metabolism ; Infectious Anemia Virus, Equine/*chemistry ; Magnetic Resonance Spectroscopy ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; RNA/metabolism ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-28
    Description: A four-ring tripeptide containing alternating imidazole and pyrrole carboxamides specifically binds six-base pair 5'-(A,T)GCGC(A,T)-3' sites in the minor groove of DNA. The designed peptide has a specificity completely reversed from that of the tripyrrole distamycin, which binds A,T sequences. Structural studies with nuclear magnetic resonance revealed that two peptides bound side-by-side and in an antiparallel orientation in the minor groove. Each of the four imidazoles in the 2:1 ligand-DNA complex recognized a specific guanine amino group in the GCGC core through a hydrogen bond. Targeting a designated four-base pair G.C tract by this synthetic ligand supports the generality of the 2:1 peptide-DNA motif for sequence-specific minor groove recognition of DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geierstanger, B H -- Mrksich, M -- Dervan, P B -- Wemmer, D E -- GM-27681/GM/NIGMS NIH HHS/ -- GM-43129/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Oct 28;266(5185):646-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Group in Biophysics, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939719" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; Computer Graphics ; DNA/chemistry/*metabolism ; Drug Design ; Hydrogen Bonding ; Imidazoles/chemical synthesis/*chemistry/metabolism ; Ligands ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; Oligopeptides/chemical synthesis/*chemistry/metabolism ; Protein Conformation ; Pyrroles/chemical synthesis/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 1994-04-01
    Description: The crystal structure of a complex between a 24-amino acid peptide from the third variable (V3) loop of human immunodeficiency virus-type 1 (HIV-1) gp 120 and the Fab fragment of a broadly neutralizing antibody (59.1) was determined to 3 angstrom resolution. The tip of the V3 loop containing the Gly-Pro-Gly-Arg-Ala-Phe sequence adopts a double-turn conformation, which may be the basis of its conservation in many HIV-1 isolates. A complete map of the HIV-1 principal neutralizing determinant was constructed by stitching together structures of V3 loop peptides bound to 59.1 and to an isolate-specific (MN) neutralizing antibody (50.1). Structural conservation of the overlapping epitopes suggests that this biologically relevant conformation could be of use in the design of synthetic vaccines and drugs to inhibit HIV-1 entry and virus-related cellular fusion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghiara, J B -- Stura, E A -- Stanfield, R L -- Profy, A T -- Wilson, I A -- GM-46192/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Apr 1;264(5155):82-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7511253" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/immunology ; Antigen-Antibody Complex/*chemistry/immunology ; Antigen-Antibody Reactions ; Computer Graphics ; Crystallography, X-Ray ; Epitopes/chemistry/immunology ; HIV Antibodies/*chemistry/immunology ; HIV Envelope Protein gp120/*chemistry/immunology ; HIV-1/*chemistry/immunology ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/*chemistry/immunology ; Models, Molecular ; Molecular Sequence Data ; Neutralization Tests ; Peptide Fragments/*chemistry/immunology ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1994-08-19
    Description: The three-dimensional structure of an unusually active hydrolytic antibody with a phosphonate transition state analog (hapten) bound to the active site has been solved to 2.5 A resolution. The antibody (17E8) catalyzes the hydrolysis of norleucine and methionine phenyl esters and is selective for amino acid esters that have the natural alpha-carbon L configuration. A plot of the pH-dependence of the antibody-catalyzed reaction is bell-shaped with an activity maximum at pH 9.5; experiments on mechanism lend support to the formation of a covalent acyl-antibody intermediate. The structural and kinetic data are complementary and support a hydrolytic mechanism for the antibody that is remarkably similar to that of the serine proteases. The antibody active site contains a Ser-His dyad structure proximal to the phosphorous atom of the bound hapten that resembles two of the three components of the Ser-His-Asp catalytic triad of serine proteases. The antibody active site also contains a Lys residue to stabilize oxyanion formation, and a hydrophobic binding pocket for specific substrate recognition of norleucine and methionine side chains. The structure identifies active site residues that mediate catalysis and suggests specific mutations that may improve the catalytic efficiency of the antibody. This high resolution structure of a catalytic antibody-hapten complex shows that antibodies can converge on active site structures that have arisen through natural enzyme evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, G W -- Guo, J -- Huang, W -- Fletterick, R J -- Scanlan, T S -- DK39304/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1994 Aug 19;265(5175):1059-64.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8066444" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Catalytic/*chemistry/immunology/metabolism ; Binding Sites ; Computer Graphics ; Crystallization ; Crystallography, X-Ray ; Haptens/metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Hydrolysis ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Serine Endopeptidases/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1994-12-23
    Description: A synthetic combinatorial library containing 52,128,400 D-amino acid hexapeptides was used to identify a ligand for the mu opioid receptor. The peptide, Ac-rfwink-NH2, bears no resemblance to any known opioid peptide. Simulations using molecular dynamics, however, showed that three amino acid moieties have the same spatial orientation as the corresponding pharmacophoric groups of the opioid peptide PLO17. Ac-rfwink-NH2 was shown to be a potent agonist at the mu receptor and induced long-lasting analgesia in mice. Analgesia produced by intraperitoneally administered Ac-rfwink-NH2 was blocked by intracerebroventricular administration of naloxone, demonstrating that this peptide may cross the blood-brain barrier.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dooley, C T -- Chung, N N -- Wilkes, B C -- Schiller, P W -- Bidlack, J M -- Pasternak, G W -- Houghten, R A -- DA-000138/DA/NIDA NIH HHS/ -- DA-02615/DA/NIDA NIH HHS/ -- DA-03742/DA/NIDA NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):2019-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Torrey Pines Institute for Molecular Studies, San Diego, CA 92121.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7801131" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Analgesics/chemistry/metabolism/*pharmacology ; Animals ; Brain/metabolism ; Dose-Response Relationship, Drug ; Endorphins/pharmacology ; Enkephalin, Ala(2)-MePhe(4)-Gly(5)- ; Enkephalin, D-Penicillamine (2,5)- ; Enkephalins/metabolism ; Guinea Pigs ; Injections, Intraventricular ; Male ; Mice ; Models, Molecular ; Molecular Sequence Data ; Naloxone/administration & dosage/pharmacology ; Opioid Peptides/chemistry/metabolism/*pharmacology ; Pain Measurement ; Protein Conformation ; Rats ; Receptors, Opioid, mu/agonists/metabolism ; Stereoisomerism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1994-12-09
    Description: The crystal structure of a 27-kilodalton methylcobalamin-containing fragment of methionine synthase from Escherichia coli was determined at 3.0 A resolution. This structure depicts cobalamin-protein interactions and reveals that the corrin macrocycle lies between a helical amino-terminal domain and an alpha/beta carboxyl-terminal domain that is a variant of the Rossmann fold. Methylcobalamin undergoes a conformational change on binding the protein; the dimethylbenzimidazole group, which is coordinated to the cobalt in the free cofactor, moves away from the corrin and is replaced by a histidine contributed by the protein. The sequence Asp-X-His-X-X-Gly, which contains this histidine ligand, is conserved in the adenosylcobalamin-dependent enzymes methylmalonyl-coenzyme A mutase and glutamate mutase, suggesting that displacement of the dimethylbenzimidazole will be a feature common to many cobalamin-binding proteins. Thus the cobalt ligand, His759, and the neighboring residues Asp757 and Ser810, may form a catalytic quartet, Co-His-Asp-Ser, that modulates the reactivity of the B12 prosthetic group in methionine synthase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drennan, C L -- Huang, S -- Drummond, J T -- Matthews, R G -- Lidwig, M L -- GM08570/GM/NIGMS NIH HHS/ -- GM16429/GM/NIGMS NIH HHS/ -- GM24908/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Dec 9;266(5191):1669-74.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Research Division, University of Michigan, Ann Arbor 48109-1055.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7992050" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/*chemistry/metabolism ; Amino Acid Isomerases/chemistry ; Amino Acid Sequence ; Benzimidazoles ; Catalysis ; Computer Graphics ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Escherichia coli/*enzymology ; Histidine/metabolism ; *Intramolecular Transferases ; Ligands ; Methylation ; Methylmalonyl-CoA Mutase/chemistry ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Vitamin B 12/*analogs & derivatives/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1994-01-21
    Description: The structure of the 52-amino acid DNA-binding domain of the prokaryotic Hin recombinase, complexed with a DNA recombination half-site, has been solved by x-ray crystallography at 2.3 angstrom resolution. The Hin domain consists of a three-alpha-helix bundle, with the carboxyl-terminal helix inserted into the major groove of DNA, and two flanking extended polypeptide chains that contact bases in the minor groove. The overall structure displays features resembling both a prototypical bacterial helix-turn-helix and the eukaryotic homeodomain, and in many respects is an intermediate between these two DNA-binding motifs. In addition, a new structural motif is seen: the six-amino acid carboxyl-terminal peptide of the Hin domain runs along the minor groove at the edge of the recombination site, with the peptide backbone facing the floor of the groove and side chains extending away toward the exterior. The x-ray structure provides an almost complete explanation for DNA mutant binding studies in the Hin system and for DNA specificity observed in the Hin-related family of DNA invertases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, J A -- Johnson, R C -- Dickerson, R E -- GM-31299/GM/NIGMS NIH HHS/ -- GM-38509/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Jan 21;263(5145):348-55.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Institute, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8278807" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Composition ; Base Sequence ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA Nucleotidyltransferases/chemistry/*metabolism ; Helix-Loop-Helix Motifs ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; *Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1994-12-16
    Description: The three-dimensional structure of a Staphylococcus aureus superantigen, toxic shock syndrome toxin-1 (TSST-1), complexed with a human class II major histocompatibility molecule (DR1), was determined by x-ray crystallography. The TSST-1 binding site on DR1 overlaps that of the superantigen S. aureus enterotoxin B (SEB), but the two binding modes differ. Whereas SEB binds primarily off one edge of the peptide binding site of DR1, TSST-1 extends over almost one-half of the binding site and contacts both the flanking alpha helices of the histocompatibility antigen and the bound peptide. This difference suggests that the T cell receptor (TCR) would bind to TSST-1:DR1 very differently than to DR1:peptide or SEB:DR1. It also suggests that TSST-1 binding may be dependent on the peptide, though less so than TCR binding, providing a possible explanation for the inability of TSST-1 to competitively block SEB binding to all DR1 molecules on cells (even though the binding sites of TSST-1 and SEB on DR1 overlap almost completely) and suggesting the possibility that T cell activation by superantigen could be directed by peptide antigen.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, J -- Urban, R G -- Strominger, J L -- Wiley, D C -- New York, N.Y. -- Science. 1994 Dec 16;266(5192):1870-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Children's Hospital, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7997880" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacterial Toxins ; Binding Sites ; Crystallography, X-Ray ; Enterotoxins/*chemistry/metabolism ; HLA-DR1 Antigen/*chemistry/metabolism ; Humans ; Hydrogen Bonding ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Antigen, T-Cell/metabolism ; *Staphylococcus aureus ; Superantigens/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1994-12-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steitz, T A -- Smerdon, S J -- Jager, J -- Joyce, C M -- GM28550/GM/NIGMS NIH HHS/ -- GM39546/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):2022-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7528445" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA Polymerase I/*chemistry/metabolism ; DNA-Directed RNA Polymerases/*chemistry/metabolism ; HIV Reverse Transcriptase ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; RNA-Directed DNA Polymerase/*chemistry/metabolism ; Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1994-10-07
    Description: Para-hydroxybenzoate hydroxylase inserts oxygen into substrates by means of the labile intermediate, flavin C(4a)-hydroperoxide. This reaction requires transient isolation of the flavin and substrate from the bulk solvent. Previous crystal structures have revealed the position of the substrate para-hydroxybenzoate during oxygenation but not how it enters the active site. In this study, enzyme structures with the flavin ring displaced relative to the protein were determined, and it was established that these or similar flavin conformations also occur in solution. Movement of the flavin appears to be essential for the translocation of substrates and products into the solvent-shielded active site during catalysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gatti, D L -- Palfey, B A -- Lah, M S -- Entsch, B -- Massey, V -- Ballou, D P -- Ludwig, M L -- GM 11106/GM/NIGMS NIH HHS/ -- GM 16429/GM/NIGMS NIH HHS/ -- GM 20877/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Oct 7;266(5182):110-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of Michigan, Ann Arbor 48109.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939628" target="_blank"〉PubMed〈/a〉
    Keywords: Benzoate 4-Monooxygenase ; Binding Sites ; Catalysis ; Computer Graphics ; Flavin-Adenine Dinucleotide/chemistry/metabolism ; Flavins/*chemistry/metabolism ; Hydrogen Bonding ; Mixed Function Oxygenases/*chemistry/metabolism ; Models, Molecular ; Molecular Conformation ; Oxidation-Reduction ; Parabens/metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 1994-03-11
    Description: Crystal structures of seryl-tRNA synthetase from Thermus thermophilus complexed with two different analogs of seryl adenylate have been determined at 2.5 A resolution. The first complex is between the enzyme and seryl-hydroxamate-AMP (adenosine monophosphate), produced enzymatically in the crystal from adenosine triphosphate (ATP) and serine hydroxamate, and the second is with a synthetic analog of seryl adenylate (5'-O-[N-(L-seryl)-sulfamoyl]adenosine), which is a strong inhibitor of the enzyme. Both molecules are bound in a similar fashion by a network of hydrogen bond interactions in a deep hydrophilic cleft formed by the antiparallel beta sheet and surrounding loops of the synthetase catalytic domain. Four regions in the primary sequence are involved in the interactions, including the motif 2 and 3 regions of class 2 synthetases. Apart from the specific recognition of the serine side chain, the interactions are likely to be similar in all class 2 synthetases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Belrhali, H -- Yaremchuk, A -- Tukalo, M -- Larsen, K -- Berthet-Colominas, C -- Leberman, R -- Beijer, B -- Sproat, B -- Als-Nielsen, J -- Grubel, G -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1432-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉EMBL Grenoble Outstation, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128224" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/chemical synthesis/metabolism ; Adenosine Monophosphate/*analogs & derivatives/chemical synthesis/metabolism ; Amino Acid Sequence ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Sequence Alignment ; Serine/*analogs & derivatives/chemical synthesis/metabolism ; Serine-tRNA Ligase/*chemistry/metabolism ; Thermus thermophilus/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-09-16
    Description: Pulse-probe transient Raman spectroscopy, with probe excitation at 230 nanometers, reveals changes in signals arising from tyrosine and tryptophan residues of the hemoglobin molecule as it moves from the relaxed (R) to the tense (T) state after photodeligation. Signals associated with intersubunit contacts in the T state develop in about 10 microseconds but are preceded by quite different signals, which reach maximum amplitude in about 50 nanoseconds. These signals involve the interior tryptophan residues that bridge the A and E helices by means of H bonds between the indole rings and serine or threonine side chains. Alterations of the H bond strengths, as a result of interhelix motions, can account for the signals. A model is proposed here in which loss of the ligand from the heme binding pocket is concerted with inward motion of the adjacent E helix; this motion, along with a complementary motion of the proximal F helix, transmits the energy associated with heme deligation to the subunit interfaces, leading to the T state rearrangement.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodgers, K R -- Spiro, T G -- GM 25158/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Sep 16;265(5179):1697-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, North Dakota State University, Fargo 58105.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8085153" target="_blank"〉PubMed〈/a〉
    Keywords: Carboxyhemoglobin/chemistry ; Heme/chemistry ; Hemoglobins/*chemistry ; Hydrogen Bonding ; Protein Conformation ; Protein Structure, Secondary ; Spectrum Analysis, Raman
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 1994-03-11
    Description: The crystal structure of Thermus thermophilus seryl-transfer RNA synthetase, a class 2 aminoacyl-tRNA synthetase, complexed with a single tRNA(Ser) molecule was solved at 2.9 A resolution. The structure revealed how insertion of conserved base G20b from the D loop into the core of the tRNA determines the orientation of the long variable arm, which is a characteristic feature of most serine specific tRNAs. On tRNA binding, the antiparallel coiled-coil domain of one subunit of the synthetase makes contacts with the variable arm and T psi C loop of the tRNA and directs the acceptor stem of the tRNA into the active site of the other subunit. Specificity depends principally on recognition of the shape of tRNA(Ser) through backbone contacts and secondarily on sequence specific interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biou, V -- Yaremchuk, A -- Tukalo, M -- Cusack, S -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1404-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Grenoble Outstation, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128220" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Base Composition ; Base Sequence ; Binding Sites ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Secondary ; RNA, Transfer, Amino Acyl/*chemistry/metabolism ; Serine-tRNA Ligase/*chemistry/metabolism ; Substrate Specificity ; Thermus thermophilus/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 1994-03-25
    Description: The three-dimensional structure of a member of the beta subfamily of chemokines, human macrophage inflammatory protein-1 beta (hMIP-1 beta), has been determined with the use of solution multidimensional heteronuclear magnetic resonance spectroscopy. Human MIP-1 beta is a symmetric homodimer with a relative molecular mass of approximately 16 kilodaltons. The structure of the hMIP-1 beta monomer is similar to that of the related alpha chemokine interleukin-8 (IL-8). However, the quaternary structures of the two proteins are entirely distinct, and the dimer interface is formed by a completely different set of residues. Whereas the IL-8 dimer is globular, the hMIP-1 beta dimer is elongated and cylindrical. This provides a rational explanation for the absence of cross-binding and reactivity between the alpha and beta chemokine subfamilies. Calculation of the solvation free energies of dimerization suggests that the formation and stabilization of the two different types of dimers arise from the burial of hydrophobic residues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lodi, P J -- Garrett, D S -- Kuszewski, J -- Tsang, M L -- Weatherbee, J A -- Leonard, W J -- Gronenborn, A M -- Clore, G M -- New York, N.Y. -- Science. 1994 Mar 25;263(5154):1762-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8134838" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chemokine CCL4 ; Computer Graphics ; Cytokines/*chemistry ; Humans ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Interleukin-8/chemistry ; Macrophage Inflammatory Proteins ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Monokines/*chemistry ; Protein Conformation ; Protein Structure, Secondary ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-11-04
    Description: A simple technique has been devised that allows the direct synthesis of native backbone proteins of moderate size. Chemoselective reaction of two unprotected peptide segments gives an initial thioester-linked species. Spontaneous rearrangement of this transient intermediate yields a full-length product with a native peptide bond at the ligation site. The utility of native chemical ligation was demonstrated by the one-step preparation of a cytokine containing multiple disulfides. The polypeptide ligation product was folded and oxidized to form the native disulfide-containing protein molecule. Native chemical ligation is an important step toward the general application of chemistry to proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawson, P E -- Muir, T W -- Clark-Lewis, I -- Kent, S B -- GM 50969-01/GM/NIGMS NIH HHS/ -- GM48870-03/GM/NIGMS NIH HHS/ -- GM48897-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Nov 4;266(5186):776-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973629" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Humans ; Interleukin-8/*chemical synthesis/chemistry ; Molecular Sequence Data ; Oxidation-Reduction ; Protein Conformation ; *Protein Folding ; Proteins/*chemical synthesis/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-05
    Description: During transcription elongation, three flexibly connected parts of RNA polymerase of Escherichia coli advance along the template so that the front-end domain is followed by the catalytic site which in turn is followed by the RNA product binding site. The advancing enzyme was found to maintain the same conformation throughout extended segments of the transcribed region. However, when the polymerase traveled across certain DNA sites that seemed to briefly anchor the front-end domain, cyclic shifting of the three parts, accompanied by buildup and relief of internal strain, was observed. Thus, elongation proceeded in alternating laps of monotonous and inchworm-like movement with the flexible RNA polymerase configuration being subject to direct sequence control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nudler, E -- Goldfarb, A -- Kashlev, M -- GM49242/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Aug 5;265(5173):793-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Public Health Research Institute, New York, NY 10016.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8047884" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; DNA-Directed RNA Polymerases/*metabolism ; *Escherichia coli Proteins ; *Models, Genetic ; Molecular Sequence Data ; Movement ; Peptide Elongation Factors/metabolism ; Protein Conformation ; RNA, Messenger/metabolism ; RNA-Binding Proteins/metabolism ; Templates, Genetic ; Transcription Factors/metabolism ; Transcription, Genetic/*physiology ; Transcriptional Elongation Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Brien, C -- New York, N.Y. -- Science. 1994 Aug 26;265(5176):1176-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8066459" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/biosynthesis ; Crystallization ; Crystallography, X-Ray ; Intracellular Membranes/enzymology ; Mitochondria/enzymology ; Models, Molecular ; Protein Conformation ; Proton-Translocating ATPases/*chemistry/metabolism ; Protons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-12
    Description: Scalable parallel computer architectures provide the computational performance needed for advanced biomedical computing problems. The National Institutes of Health have developed a number of parallel algorithms and techniques useful in determining biological structure and function. These applications include processing electron micrographs to determine the three-dimensional structure of viruses, calculating the solvent-accessible surface area of proteins to help predict the three-dimensional conformation of these molecules from their primary structures, and searching for homologous DNA or amino acid sequences in large biological databases. Timing results demonstrate substantial performance improvements with parallel implementations compared with conventional sequential systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martino, R L -- Johnson, C A -- Suh, E B -- Trus, B L -- Yap, T K -- New York, N.Y. -- Science. 1994 Aug 12;265(5174):902-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Computational Bioscience and Engineering Laboratory, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8052847" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Capsid/ultrastructure ; *Computer Simulation ; *Computers ; Databases, Factual ; Image Processing, Computer-Assisted ; National Institutes of Health (U.S.) ; Protein Conformation ; Protein Folding ; *Research ; Sequence Homology, Nucleic Acid ; Simplexvirus/ultrastructure ; Tomography, Emission-Computed ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1373.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128216" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Phosphates/metabolism ; Protein Conformation ; Protein Folding ; Protein Tyrosine Phosphatases/*chemistry/metabolism ; Tungsten Compounds/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1994-11-18
    Description: Solution structures of two Src homology 3 (SH3) domain-ligand complexes have been determined by nuclear magnetic resonance. Each complex consists of the SH3 domain and a nine-residue proline-rich peptide selected from a large library of ligands prepared by combinatorial synthesis. The bound ligands adopt a left-handed polyproline type II (PPII) helix, although the amino to carboxyl directionalities of their helices are opposite. The peptide orientation is determined by a salt bridge formed by the terminal arginine residues of the ligands and the conserved aspartate-99 of the SH3 domain. Residues at positions 3, 4, 6, and 7 of both peptides also intercalate into the ligand-binding site; however, the respective proline and nonproline residues show exchanged binding positions in the two complexes. These structural results led to a model for the interactions of SH3 domains with proline-rich peptides that can be used to predict critical residues in complexes of unknown structure. The model was used to identify correctly both the binding orientation and the contact and noncontact residues of a peptide derived from the nucleotide exchange factor Sos in association with the amino-terminal SH3 domain of the adaptor protein Grb2.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, S -- Chen, J K -- Yu, H -- Simon, J A -- Schreiber, S L -- GM44993/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Nov 18;266(5188):1241-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7526465" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Alanine/chemistry ; Amino Acid Sequence ; Arginine/chemistry ; Binding Sites ; GRB2 Adaptor Protein ; Glycine/chemistry ; Guanine Nucleotide Exchange Factors ; Ligands ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Oligopeptides/chemistry/*metabolism ; Peptides/chemistry/metabolism ; Proline/chemistry ; Proline-Rich Protein Domains ; Protein Conformation ; Protein Structure, Secondary ; Protein-Tyrosine Kinases/chemistry/*metabolism ; Proteins/chemistry/metabolism ; Proto-Oncogene Proteins pp60(c-src)/chemistry/*metabolism ; src-Family Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 1993-10-22
    Description: Glycogen storage disease (GSD) type 1a is caused by the deficiency of D-glucose-6-phosphatase (G6Pase), the key enzyme in glucose homeostasis. Despite both a high incidence and morbidity, the molecular mechanisms underlying this deficiency have eluded characterization. In the present study, the molecular and biochemical characterization of the human G6Pase complementary DNA, its gene, and the expressed protein, which is indistinguishable from human microsomal G6Pase, are reported. Several mutations in the G6Pase gene of affected individuals that completely inactivate the enzyme have been identified. These results establish the molecular basis of this disease and open the way for future gene therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lei, K J -- Shelly, L L -- Pan, C J -- Sidbury, J B -- Chou, J Y -- New York, N.Y. -- Science. 1993 Oct 22;262(5133):580-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genetics Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211187" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; DNA, Complementary/genetics ; Exons ; Glucose-6-Phosphatase/*genetics/metabolism ; Glycogen Storage Disease Type I/enzymology/*genetics ; Glycosylation ; Humans ; Liver/enzymology ; Mice ; Molecular Sequence Data ; *Mutation ; Protein Conformation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 1993-08-06
    Description: The structure of the bifunctional, pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase was determined to 2.1-angstrom resolution. Model building suggests that a single cleavage site catalyzes both decarboxylation and transamination by maximizing stereoelectronic advantages and providing electrostatic and general base catalysis. The enzyme contains two binding sites for alkali metal ions. One is located near the active site and accounts for the dependence of activity on potassium ions. The other is located at the carboxyl terminus of an alpha helix. These sites help show how proteins can specifically bind alkali metals and how these ions can exert functional effects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Toney, M D -- Hohenester, E -- Cowan, S W -- Jansonius, J N -- GM13854/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Aug 6;261(5122):756-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, University of Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8342040" target="_blank"〉PubMed〈/a〉
    Keywords: Amination ; Amino Acid Sequence ; Binding Sites ; Carboxy-Lyases/*chemistry/metabolism ; Catalysis ; Computer Graphics ; Decarboxylation ; Metals, Alkali/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-04-16
    Description: Klenow fragment of Escherichia coli DNA polymerase I, which was cocrystallized with duplex DNA, positioned 11 base pairs of DNA in a groove that lies at right angles to the cleft that contains the polymerase active site and is adjacent to the 3' to 5' exonuclease domain. When the fragment bound DNA, a region previously referred to as the "disordered domain" became more ordered and moved along with two helices toward the 3' to 5' exonuclease domain to form the binding groove. A single-stranded, 3' extension of three nucleotides bound to the 3' to 5' exonuclease active site. Although this cocrystal structure appears to be an editing complex, it suggests that the primer strand approaches the catalytic site of the polymerase from the direction of the 3' to 5' exonuclease domain and that the duplex DNA product may bend to enter the cleft that contains the polymerase catalytic site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beese, L S -- Derbyshire, V -- Steitz, T A -- GM28550/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Apr 16;260(5106):352-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8469987" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Crystallization ; DNA/chemistry/*metabolism ; DNA Polymerase I/*chemistry/metabolism ; DNA Replication ; DNA, Single-Stranded/chemistry/metabolism ; Escherichia coli/*enzymology ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1993-12-24
    Description: The elongated proteins of the spectrin family (dystrophin, alpha-actinin, and spectrin) contain tandemly repeated segments and form resilient cellular meshworks by cross-linking actin filaments. The structure of one of the repetitive segments of alpha-spectrin was determined at a 1.8 angstrom resolution. A segment consists of a three-helix bundle. A model of the interface between two tandem segments suggests that hydrophobic interactions between segments may constrain intersegment flexibility. The helix side chain interactions explain how mutations that are known to produce hemolytic anemias disrupt spectrin associations that sustain the integrity of the erythrocyte membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, Y -- Winograd, E -- Viel, A -- Cronin, T -- Harrison, S C -- Branton, D -- CA 13202/CA/NCI NIH HHS/ -- HL 17411/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 24;262(5142):2027-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266097" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Crystallization ; Drosophila ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Spectrin/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 1993-05-21
    Description: The three-dimensional solution structure of the DNA binding domain (DBD) of the retinoid X receptor alpha (RXR alpha) was determined by nuclear magnetic resonance spectroscopy. The two zinc fingers of the RXR DBD fold to form a single structural domain that consists of two perpendicularly oriented helices and that resembles the corresponding regions of the glucocorticoid and estrogen receptors (GR and ER, respectively). However, in contrast to the DBDs of the GR and ER, the RXR DBD contains an additional helix immediately after the second zinc finger. This third helix mediates both protein-protein and protein-DNA interactions required for cooperative, dimeric binding of the RXR DBD to DNA. Identification of the third helix in the RXR DBD thus defines a structural feature required for selective dimerization of the RXR on hormone response elements composed of half-sites (5'-AGGTCA-3') arranged as tandem repeats.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, M S -- Kliewer, S A -- Provencal, J -- Wright, P E -- Evans, R M -- New York, N.Y. -- Science. 1993 May 21;260(5111):1117-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8388124" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; DNA/*metabolism ; DNA-Binding Proteins/*chemistry/metabolism ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/*chemistry/metabolism ; Oligodeoxyribonucleotides ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Cell Surface/*chemistry/metabolism ; *Receptors, Retinoic Acid ; Repetitive Sequences, Nucleic Acid ; Retinoid X Receptors ; *Transcription Factors ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1993-01-15
    Description: Endotoxin [lipopolysaccharide (LPS)], the major antigen of the outer membrane of Gram-negative bacteria, consists of a variable-size carbohydrate chain that is covalently linked to N,O-acylated beta-1,6-D-glucosamine disaccharide 1,4'-bisphosphate (lipid A). The toxic activity of LPS resides in the lipid A structure. The structural features of synthetic peptides that bind to lipid A with high affinity, detoxify LPS in vitro, and prevent LPS-induced cytokine release and lethality in vivo were defined. The binding thermodynamics were comparable to that of an antigen-antibody reaction. Such synthetic peptides may provide a strategy for prophylaxis and treatment of LPS-mediated diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rustici, A -- Velucchi, M -- Faggioni, R -- Sironi, M -- Ghezzi, P -- Quataert, S -- Green, B -- Porro, M -- New York, N.Y. -- Science. 1993 Jan 15;259(5093):361-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biosynth Research Laboratories, Siena, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8420003" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding, Competitive ; Bordetella pertussis/chemistry ; Escherichia coli/chemistry ; Hydrogen-Ion Concentration ; Limulus Test ; Lipid A/chemistry/*metabolism/toxicity ; Lipopolysaccharides/chemistry/*metabolism/toxicity ; Mice ; Mice, Inbred BALB C ; Micelles ; Microscopy, Electron ; Molecular Sequence Data ; Peptides/chemical synthesis/chemistry/*metabolism ; Polymyxin B/chemistry/*metabolism ; Protein Conformation ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1993-10-29
    Description: A 24-amino acid peptide designed to solubilize integral membrane proteins has been synthesized. The design was for an amphipathic alpha helix with a "flat" hydrophobic surface that would interact with a transmembrane protein as a detergent. When mixed with peptide, 85 percent of bacteriorhodopsin and 60 percent of rhodopsin remained in solution over a period of 2 days in their native forms. The crystal structure of peptide alone showed it to form an antiparallel four-helix bundle in which monomers interact, flat surface to flat surface, as predicted.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schafmeister, C E -- Miercke, L J -- Stroud, R M -- GM24485/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Oct 29;262(5134):734-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235592" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriorhodopsins/chemistry ; Crystallography, X-Ray ; Detergents/chemical synthesis/*chemistry ; Drug Design ; Membrane Proteins/*chemistry ; Models, Molecular ; Molecular Sequence Data ; Peptides/chemical synthesis/*chemistry ; Protein Conformation ; Protein Structure, Secondary ; Rhodopsin/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1993-09-03
    Description: Annexins are a family of calcium- and phospholipid-binding proteins implicated in mediating membrane-related processes such as secretion, signal transduction, and ion channel activity. The crystal structure of rat annexin V was solved to 1.9 angstrom resolution by multiple isomorphous replacement. Unlike previously solved annexin V structures, all four domains bound calcium in this structure. Calcium binding in the third domain induced a large relocation of the calcium-binding loop regions, exposing the single tryptophan residue to the solvent. These alterations in annexin V suggest a role for domain 3 in calcium-triggered interaction with phospholipid membranes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Concha, N O -- Head, J F -- Kaetzel, M A -- Dedman, J R -- Seaton, B A -- R01-DK-41740/DK/NIDDK NIH HHS/ -- R01-NS-20357/NS/NINDS NIH HHS/ -- R29-GM-44554/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 3;261(5126):1321-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Boston University School of Medicine, MA 02118.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8362244" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Annexin A5/*chemistry/metabolism ; Binding Sites ; Calcium/*metabolism ; Computer Graphics ; Crystallization ; Humans ; Hydrogen Bonding ; Molecular Sequence Data ; Protein Conformation ; Rats ; Sequence Alignment ; Tryptophan/chemistry ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-07-09
    Description: The regulation of transcription requires complex interactions between proteins bound to DNA sequences that are often separated by hundreds of base pairs. As demonstrated by a nuclear ligation assay, the distal enhancer and the proximal promoter regions of the rat prolactin gene were found to be juxtaposed. By acting through its receptor bound to the distal enhancer, estrogen stimulated the interaction between the distal and proximal regulatory regions two- to threefold compared to control values. Thus, the chromatin structure of the prolactin gene may facilitate the occurrence of protein-protein interactions between transcription factors bound to widely separated regulatory elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cullen, K E -- Kladde, M P -- Seyfred, M A -- DK42731/DK/NIDDK NIH HHS/ -- T32HD07048/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 9;261(5118):203-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Vanderbilt University, Nashville, TN 37235.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8327891" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line ; Cell Nucleus/metabolism ; Chromatin/*chemistry/metabolism ; DNA/chemistry/metabolism ; Deoxyribonucleases, Type II Site-Specific ; *Enhancer Elements, Genetic ; Estrogens/metabolism ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Polymerase Chain Reaction ; Prolactin/*genetics ; *Promoter Regions, Genetic ; Protein Conformation ; Protein Folding ; Rats ; Receptors, Estrogen/metabolism ; Regulatory Sequences, Nucleic Acid ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-03-19
    Description: The eukaryotic cell exhibits compartmentalization of functions to various membrane-bound organelles and to specific domains within each membrane. The spatial distribution of the membrane chemoreceptors and associated cytoplasmic chemotaxis proteins in Escherichia coli were examined as a prototypic functional aggregate in bacterial cells. Bacterial chemotaxis involves a phospho-relay system brought about by ligand association with a membrane receptor, culminating in a switch in the direction of flagellar rotation. The transduction of the chemotaxis signal is initiated by a chemoreceptor-CheW-CheA ternary complex at the inner membrane. These ternary complexes aggregate predominantly at the cell poles. Polar localization of the cytoplasmic CheA and CheW proteins is dependent on membrane-bound chemoreceptor. Chemoreceptors are not confined to the cell poles in strains lacking both CheA and CheW. The chemoreceptor-CheW binary complex is polarly localized in the absence of CheA, whereas the chemoreceptor-CheA binary complex is not confined to the cell poles in strains lacking CheW. The subcellular localization of the chemotaxis proteins may reflect a general mechanism by which the bacterial cell sequesters different regions of the cell for specialized functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maddock, J R -- Shapiro, L -- GM13929/GM/NIGMS NIH HHS/ -- GM32506/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Mar 19;259(5102):1717-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, CA 94305-5427.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8456299" target="_blank"〉PubMed〈/a〉
    Keywords: *ATP-Binding Cassette Transporters ; Bacterial Proteins/analysis/metabolism ; Carrier Proteins/metabolism ; Cell Membrane/ultrastructure ; Chemoreceptor Cells/physiology/*ultrastructure ; Chemotactic Factors/metabolism ; Chemotaxis/physiology ; Cytoplasm/metabolism ; Escherichia coli/chemistry/physiology/*ultrastructure ; *Escherichia coli Proteins ; Flagella/physiology/ultrastructure ; Fluorescent Antibody Technique ; Maltose-Binding Proteins ; Membrane Proteins/analysis/metabolism ; Microscopy, Immunoelectron ; *Monosaccharide Transport Proteins ; Phosphorylation ; Protein Conformation ; Signal Transduction/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-06-04
    Description: In mammals, the hydroperoxidation of arachidonic acid by lipoxygenases leads to the formation of leukotrienes and lipoxins, compounds that mediate inflammatory responses. Lipoxygenases are dioxygenases that contain a nonheme iron and are present in many animal cells. Soybean lipoxygenase-1 is a single-chain, 839-residue protein closely related to mammalian lipoxygenases. The structure of soybean lipoxygenase-1 solved to 2.6 angstrom resolution shows that the enzyme has two domains: a 146-residue beta barrel and a 693-residue helical bundle. The iron atom is in the center of the larger domain and is coordinated by three histidines and the COO- of the carboxyl terminus. The coordination geometry is nonregular and appears to be a distorted octahedron in which two adjacent positions are not occupied by ligands. Two cavities, in the shapes of a bent cylinder and a frustum, connect the unoccupied positions to the surface of the enzyme. The iron, with two adjacent and unoccupied positions, is poised to interact with the 1,4-diene system of the substrate and with molecular oxygen during catalysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boyington, J C -- Gaffney, B J -- Amzel, L M -- GM36232/GM/NIGMS NIH HHS/ -- R01 GM036232/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jun 4;260(5113):1482-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8502991" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arachidonate 15-Lipoxygenase/*chemistry/metabolism ; Iron/chemistry ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Soybeans/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-12-17
    Description: Most members of the guanosine triphosphatase (GTPase) superfamily hydrolyze guanosine triphosphate (GTP) quite slowly unless stimulated by a GTPase activating protein or GAP. The alpha subunits (G alpha) of the heterotrimeric G proteins hydrolyze GTP much more rapidly and contain an approximately 120-residue insert not found in other GTPases. Interactions between a G alpha insert domain and a G alpha GTP-binding core domain, both expressed as recombinant proteins, show that the insert acts biochemically as a GAP. The results suggest a general mechanism for GAP-dependent hydrolysis of GTP by other GTPases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Markby, D W -- Onrust, R -- Bourne, H R -- 5F32-GM13918/GM/NIGMS NIH HHS/ -- CA54427/CA/NCI NIH HHS/ -- GM27800/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 17;262(5141):1895-901.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmcology, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266082" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Colforsin/pharmacology ; Cyclic AMP/metabolism ; GTP Phosphohydrolases/*metabolism ; GTP-Binding Proteins/chemistry/*metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism/pharmacology ; Guanosine Triphosphate/*metabolism ; Hydrolysis ; Kinetics ; Molecular Sequence Data ; Mutation ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 1993-05-14
    Description: The CD4 antigen is a membrane glycoprotein of T lymphocytes that interacts with major histocompatibility complex class II antigens and is also a receptor for the human immunodeficiency virus. the extracellular portion of CD4 is predicted to fold into four immunoglobulin-like domains. The crystal structure of the third and fourth domains of rat CD4 was solved at 2.8 angstrom resolution and shows that both domains have immunoglobulin folds. Domain 3, however, lacks the disulfide between the beta sheets; this results in an expansion of the domain. There is a difference of 30 degrees in the orientation between domains 3 and 4 when compared with domains 1 and 2. The two CD4 fragment structures provide a basis from which models of the overall receptor can be proposed. These models suggest an extended structure comprising two rigid portions joined by a short and possibly flexible linker region.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brady, R L -- Dodson, E J -- Dodson, G G -- Lange, G -- Davis, S J -- Williams, A F -- Barclay, A N -- New York, N.Y. -- Science. 1993 May 14;260(5110):979-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of York, United Kingdom.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493535" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD4/*chemistry ; Crystallization ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Rats ; Sequence Alignment ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-09-24
    Description: Zinc finger proteins, of the type first discovered in transcription factor IIIA (TFIIIA), are one of the largest and most important families of DNA-binding proteins. The crystal structure of a complex containing the five Zn fingers from the human GLI oncogene and a high-affinity DNA binding site has been determined at 2.6 A resolution. Finger one does not contact the DNA. Fingers two through five bind in the major groove and wrap around the DNA, but lack the simple, strictly periodic arrangement observed in the Zif268 complex. Fingers four and five of GLI make extensive base contacts in a conserved nine base-pair region, and this section of the DNA has a conformation intermediate between B-DNA and A-DNA. Analyzing the GLI complex and comparing it with Zif268 offers new perspectives on Zn finger-DNA recognition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pavletich, N P -- Pabo, C O -- GM-31471/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 24;261(5129):1701-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8378770" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Computer Graphics ; DNA/*chemistry/metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oncogene Proteins/*chemistry/genetics/metabolism ; Oncogenes ; Protein Conformation ; Trans-Activators ; Transcription Factors/*chemistry/genetics/metabolism ; X-Ray Diffraction ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1993-05-21
    Description: The folding of the all-beta sheet protein, interleukin-1 beta, was studied with nuclear magnetic resonance (NMR) spectroscopy, circular dichroism, and fluorescence. Ninety percent of the beta structure present in the native protein, as monitored by far-ultraviolet circular dichroism, was attained within 25 milliseconds, correlating with the first kinetic phase determined by tryptophan and 1-anilinonaphthalene-8-sulfonate fluorescence. In contrast, formation of stable native secondary structure, as measured by quenched-flow deuterium-hydrogen exchange experiments, began after only 1 second. Results from the NMR experiments indicated the formation of at least two intermediates with half-lives of 0.7 to 1.5 and 15 to 25 seconds. The final stabilization of the secondary structure, however, occurs on a time scale much greater than 25 seconds. These results differ from previous results on mixed alpha helix-beta sheet proteins in which both the alpha helices and beta sheets were stabilized very rapidly (less than 10 to 20 milliseconds).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Varley, P -- Gronenborn, A M -- Christensen, H -- Wingfield, P T -- Pain, R H -- Clore, G M -- New York, N.Y. -- Science. 1993 May 21;260(5111):1110-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8493553" target="_blank"〉PubMed〈/a〉
    Keywords: Circular Dichroism ; Hydrogen Bonding ; Interleukin-1/*chemistry ; Kinetics ; Magnetic Resonance Spectroscopy ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Spectrometry, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-07-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perona, J J -- Craik, C S -- Fletterick, R J -- DK-39304/DK/NIDDK NIH HHS/ -- GM13818-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 30;261(5121):620-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8342029" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Crystallization ; Hydrogen Bonding ; Protein Conformation ; Serine Endopeptidases/*chemistry ; Trypsin/chemistry ; Water/*analysis ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 1993-06-04
    Description: Biological variability of human immunodeficiency virus type-1 (HIV-1) is involved in the pathogenesis of acquired immunodeficiency syndrome (AIDS). Syncytium-inducing (SI) HIV-1 variants emerge in 50 percent of infected individuals during infection, preceding accelerated CD4+ T cell loss and rapid progression to AIDS. The V1 to V2 and V3 region of the viral envelope glycoprotein gp120 contained the major determinants of SI capacity. The configuration of a hypervariable locus in the V2 domain appeared to be predictive for non-SI to SI phenotype conversion. Early prediction of HIV-1 phenotype evolution may be useful for clinical monitoring and treatment of asymptomatic infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Groenink, M -- Fouchier, R A -- Broersen, S -- Baker, C H -- Koot, M -- van't Wout, A B -- Huisman, H G -- Miedema, F -- Tersmette, M -- Schuitemaker, H -- New York, N.Y. -- Science. 1993 Jun 4;260(5113):1513-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Clinical Viro-Immunology, Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8502996" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/microbiology ; Amino Acid Sequence ; Base Sequence ; Biological Evolution ; Consensus Sequence ; Genetic Variation ; Giant Cells/microbiology ; HIV Envelope Protein gp120/*chemistry ; HIV Seropositivity/microbiology ; HIV-1/*chemistry/*genetics/pathogenicity ; Humans ; Male ; Molecular Sequence Data ; Phenotype ; Protein Conformation ; Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 1993-11-26
    Description: Coiled-coil sequences in proteins consist of heptad repeats containing two characteristic hydrophobic positions. The role of these buried hydrophobic residues in determining the structures of coiled coils was investigated by studying mutants of the GCN4 leucine zipper. When sets of buried residues were altered, two-, three-, and four-helix structures were formed. The x-ray crystal structure of the tetramer revealed a parallel, four-stranded coiled coil. In the tetramer conformation, the local packing geometry of the two hydrophobic positions in the heptad repeat is reversed relative to that in the dimer. These studies demonstrate that conserved, buried residues in the GCN4 leucine zipper direct dimer formation. In contrast to proposals that the pattern of hydrophobic and polar amino acids in a protein sequence is sufficient to determine three-dimensional structure, the shapes of buried side chains in coiled coils are essential determinants of the global fold.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harbury, P B -- Zhang, T -- Kim, P S -- Alber, T -- GM44162/GM/NIGMS NIH HHS/ -- GM48958/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 26;262(5138):1401-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8248779" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; *DNA-Binding Proteins ; Fungal Proteins/*chemistry/genetics ; Hydrogen Bonding ; *Leucine Zippers ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Kinases/*chemistry/genetics ; Protein Structure, Secondary ; *Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-11-05
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432308/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432308/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Englander, S W -- R01 GM031847/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 5;262(5135):848-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6059.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235606" target="_blank"〉PubMed〈/a〉
    Keywords: Hydrogen-Ion Concentration ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Models, Molecular ; Muramidase/*chemistry ; Myoglobin/*chemistry ; Protein Conformation ; *Protein Folding ; Ribonuclease, Pancreatic/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1993-11-26
    Description: Rhodopsin has been selectively spin-labeled near the cytoplasmic termini of helices C and G. Photoactivation with a light flash induces an electron paramagnetic resonance spectral change in the millisecond time domain, coincident with the appearance of the active metarhodopsin II intermediate. The spectral change is consistent with a small movement near the cytoplasmic termination of the C helix and reverses upon formation of the MIII state. These results provide an important link between the optical changes associated with the retinal chromophore and protein conformational states.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farahbakhsh, Z T -- Hideg, K -- Hubbell, W L -- EY05216/EY/NEI NIH HHS/ -- EY07026/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 26;262(5138):1416-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jules Stein Eye Institute, Los Angeles, CA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8248781" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Electron Spin Resonance Spectroscopy ; Light ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Rhodopsin/*chemistry ; Spin Labels ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-10-08
    Description: The affinity of a flexible ligand that adopts a specific conformation when bound to its receptor should be increased with the appropriate use of conformational restraints. By determining the structure of protein-ligand complexes, such restraints can in principle be designed into the bound ligand in a rational way. A tricyclic variant (TCsA) of the immunosuppressant cyclosporin A (CsA), which inhibits the proliferation of T lymphocytes by forming a cyclophilin-CsA-calcineurin complex, was designed with the known three-dimensional structure of a cyclophilin-CsA complex. The conformational restraints in TCsA appear to be responsible for its greater affinity for cyclophilin and calcineurin relative to CsA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alberg, D G -- Schreiber, S L -- GM-38627/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Oct 8;262(5131):248-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211144" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/chemistry/*metabolism ; Amino Acid Sequence ; Calcineurin ; Calmodulin-Binding Proteins/chemistry/*metabolism ; Carrier Proteins/chemistry/*metabolism ; Cyclosporins/chemical synthesis/chemistry/*metabolism ; *Drug Design ; Ligands ; Magnetic Resonance Spectroscopy ; Molecular Sequence Data ; Peptidylprolyl Isomerase ; Phosphoprotein Phosphatases/chemistry/*metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 1993-07-23
    Description: The three-dimensional solution structure of a complex between the DNA binding domain of the chicken erythroid transcription factor GATA-1 and its cognate DNA site has been determined with multidimensional heteronuclear magnetic resonance spectroscopy. The DNA binding domain consists of a core which contains a zinc coordinated by four cysteines and a carboxyl-terminal tail. The core is composed of two irregular antiparallel beta sheets and an alpha helix, followed by a long loop that leads into the carboxyl-terminal tail. The amino-terminal part of the core, including the helix, is similar in structure, although not in sequence, to the amino-terminal zinc module of the glucocorticoid receptor DNA binding domain. In the other regions, the structures of these two DNA binding domains are entirely different. The DNA target site in contact with the protein spans eight base pairs. The helix and the loop connecting the two antiparallel beta sheets interact with the major groove of the DNA. The carboxyl-terminal tail, which is an essential determinant of specific binding, wraps around into the minor groove. The complex resembles a hand holding a rope with the palm and fingers representing the protein core and the thumb, the carboxyl-terminal tail. The specific interactions between GATA-1 and DNA in the major groove are mainly hydrophobic in nature, which accounts for the preponderance of thymines in the target site. A large number of interactions are observed with the phosphate backbone.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Omichinski, J G -- Clore, G M -- Schaad, O -- Felsenfeld, G -- Trainor, C -- Appella, E -- Stahl, S J -- Gronenborn, A M -- New York, N.Y. -- Science. 1993 Jul 23;261(5120):438-46.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8332909" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Chickens ; DNA-Binding Proteins/*chemistry ; Erythroid-Specific DNA-Binding Factors ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Tertiary ; Transcription Factors/*chemistry ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 1993-11-12
    Description: Structures of the protein-chromophore complex and the apoprotein form of neocarzinostatin were determined at 1.8 angstrom resolution. Neocarzinostatin is composed of a labile chromophore with DNA-cleaving activity and a stabilizing protein. The chromophore displays marked nonlinearity of the triple bonds and is bound noncovalently in a pocket formed by the two protein domains. The chromophore pi-face interacts with the phenyl ring edges of Phe52 and Phe78. The amino sugar and carbonate groups of the chromophore are solvent exposed, whereas the epoxide, acetylene groups, and carbon C-12, the site of nucleophilic thiol addition during chromophore activation, are unexposed. The position of the amino group of the chromophore carbohydrate relative to C-12 supports the idea that the amino group plays a role in thiol activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, K H -- Kwon, B M -- Myers, A G -- Rees, D C -- CA47148/CA/NCI NIH HHS/ -- GM45162/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 12;262(5136):1042-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235619" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/chemistry ; Computer Graphics ; Computer Simulation ; Crystallography, X-Ray ; Hydrogen Bonding ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Zinostatin/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-10-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsou, C L -- New York, N.Y. -- Science. 1993 Oct 15;262(5132):380-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8211158" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Creatine Kinase/chemistry/metabolism ; Enzyme Inhibitors ; Enzymes/chemistry/*metabolism ; Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry/metabolism ; Guanidine ; Guanidines/pharmacology ; Papain/chemistry/metabolism ; Protein Conformation ; Protein Denaturation ; Protein Folding ; Ribonuclease, Pancreatic/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-04-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vale, R D -- New York, N.Y. -- Science. 1993 Apr 9;260(5105):169-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8469971" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/*metabolism ; Dyneins/*metabolism ; Kinesin/*metabolism ; Muscles/*metabolism ; Myosins/metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1993-11-05
    Description: Pre-steady state kinetics of misincorporation were used to investigate the addition of single nucleotides to nascent RNA by Escherichia coli RNA polymerase during transcription elongation. The results were fit with a branched kinetic mechanism that permits conformational switching, at each template position, between an activated and an unactivated enzyme complex, both of which can bind nucleotide triphosphates (NTPs) from solution. The complex exists most often in the long-lived activated state, and only becomes unactivated when transcription is slowed. This model permits multiple levels of nucleotide discrimination in transcription, since the complex can be "kinetically trapped" in the unactivated state in the absence of the correct NTP or if the 3' terminal residue is incorrectly matched. The transcription cleavage factor GreA (or an activity enhanced by GreA) increased the fidelity of transcription by preferential cleavage of transcripts containing misincorporated residues in the unactivated state of the elongation complex. This cleavage mechanism by GreA may prevent the formation of "dead-end" transcription complexes in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erie, D A -- Hajiseyedjavadi, O -- Young, M C -- von Hippel, P H -- GM-12915/GM/NIGMS NIH HHS/ -- GM-15792/GM/NIGMS NIH HHS/ -- GM-29158/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 5;262(5135):867-73.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, University of Oregon, Eugene 97403.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235608" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA-Directed RNA Polymerases/*chemistry/metabolism ; Endoribonucleases/metabolism ; Escherichia coli/enzymology ; *Escherichia coli Proteins ; Kinetics ; Models, Genetic ; Molecular Sequence Data ; Nucleotides/metabolism ; Peptide Elongation Factors/*metabolism ; Protein Conformation ; RNA, Messenger/*biosynthesis/metabolism ; Templates, Genetic ; Transcription Factors/*metabolism ; *Transcription, Genetic ; Uridine Triphosphate/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 1993-08-06
    Description: Cytochrome P450BM-3, a bacterial fatty acid monoxygenase, resembles the eukaryotic microsomal P450's and their flavoprotein reductase in primary structure and function. The three-dimensional structure of the hemoprotein domain of P450BM-3 was determined by x-ray diffraction and refined to an R factor of 16.9 percent at 2.0 angstrom resolution. The structure consists of an alph and a beta domain. The active site heme is accessible through a long hydrophobic channel formed primarily by the beta domain and the B' and F helices of the alpha domain. The two molecules in the asymmetric unit differ in conformation around the substrate binding pocket. Substantial differences between P450BM-3 and P450cam, the only other P450 structure available, are observed around the substrate binding pocket and the regions important for redox partner binding. A general mechanism for proton transfer in P450's is also proposed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravichandran, K G -- Boddupalli, S S -- Hasermann, C A -- Peterson, J A -- Deisenhofer, J -- GM43479/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Aug 6;261(5122):731-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75235-9050.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8342039" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Bacterial Proteins ; Binding Sites ; Computer Graphics ; Crystallization ; Cytochrome P-450 Enzyme System/*chemistry ; Heme/chemistry ; Mixed Function Oxygenases/*chemistry ; Models, Molecular ; Molecular Sequence Data ; NADPH-Ferrihemoprotein Reductase ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Alignment ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...