ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-11-07
    Description: DNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400-800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter reads are compared to a reference to identify intraspecies genetic variation. Here we report an approach that generates several billion bases of accurate nucleotide sequence per experiment at low cost. Single molecules of DNA are attached to a flat surface, amplified in situ and used as templates for synthetic sequencing with fluorescent reversible terminator deoxyribonucleotides. Images of the surface are analysed to generate high-quality sequence. We demonstrate application of this approach to human genome sequencing on flow-sorted X chromosomes and then scale the approach to determine the genome sequence of a male Yoruba from Ibadan, Nigeria. We build an accurate consensus sequence from 〉30x average depth of paired 35-base reads. We characterize four million single-nucleotide polymorphisms and four hundred thousand structural variants, many of which were previously unknown. Our approach is effective for accurate, rapid and economical whole-genome re-sequencing and many other biomedical applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581791/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581791/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bentley, David R -- Balasubramanian, Shankar -- Swerdlow, Harold P -- Smith, Geoffrey P -- Milton, John -- Brown, Clive G -- Hall, Kevin P -- Evers, Dirk J -- Barnes, Colin L -- Bignell, Helen R -- Boutell, Jonathan M -- Bryant, Jason -- Carter, Richard J -- Keira Cheetham, R -- Cox, Anthony J -- Ellis, Darren J -- Flatbush, Michael R -- Gormley, Niall A -- Humphray, Sean J -- Irving, Leslie J -- Karbelashvili, Mirian S -- Kirk, Scott M -- Li, Heng -- Liu, Xiaohai -- Maisinger, Klaus S -- Murray, Lisa J -- Obradovic, Bojan -- Ost, Tobias -- Parkinson, Michael L -- Pratt, Mark R -- Rasolonjatovo, Isabelle M J -- Reed, Mark T -- Rigatti, Roberto -- Rodighiero, Chiara -- Ross, Mark T -- Sabot, Andrea -- Sankar, Subramanian V -- Scally, Aylwyn -- Schroth, Gary P -- Smith, Mark E -- Smith, Vincent P -- Spiridou, Anastassia -- Torrance, Peta E -- Tzonev, Svilen S -- Vermaas, Eric H -- Walter, Klaudia -- Wu, Xiaolin -- Zhang, Lu -- Alam, Mohammed D -- Anastasi, Carole -- Aniebo, Ify C -- Bailey, David M D -- Bancarz, Iain R -- Banerjee, Saibal -- Barbour, Selena G -- Baybayan, Primo A -- Benoit, Vincent A -- Benson, Kevin F -- Bevis, Claire -- Black, Phillip J -- Boodhun, Asha -- Brennan, Joe S -- Bridgham, John A -- Brown, Rob C -- Brown, Andrew A -- Buermann, Dale H -- Bundu, Abass A -- Burrows, James C -- Carter, Nigel P -- Castillo, Nestor -- Chiara E Catenazzi, Maria -- Chang, Simon -- Neil Cooley, R -- Crake, Natasha R -- Dada, Olubunmi O -- Diakoumakos, Konstantinos D -- Dominguez-Fernandez, Belen -- Earnshaw, David J -- Egbujor, Ugonna C -- Elmore, David W -- Etchin, Sergey S -- Ewan, Mark R -- Fedurco, Milan -- Fraser, Louise J -- Fuentes Fajardo, Karin V -- Scott Furey, W -- George, David -- Gietzen, Kimberley J -- Goddard, Colin P -- Golda, George S -- Granieri, Philip A -- Green, David E -- Gustafson, David L -- Hansen, Nancy F -- Harnish, Kevin -- Haudenschild, Christian D -- Heyer, Narinder I -- Hims, Matthew M -- Ho, Johnny T -- Horgan, Adrian M -- Hoschler, Katya -- Hurwitz, Steve -- Ivanov, Denis V -- Johnson, Maria Q -- James, Terena -- Huw Jones, T A -- Kang, Gyoung-Dong -- Kerelska, Tzvetana H -- Kersey, Alan D -- Khrebtukova, Irina -- Kindwall, Alex P -- Kingsbury, Zoya -- Kokko-Gonzales, Paula I -- Kumar, Anil -- Laurent, Marc A -- Lawley, Cynthia T -- Lee, Sarah E -- Lee, Xavier -- Liao, Arnold K -- Loch, Jennifer A -- Lok, Mitch -- Luo, Shujun -- Mammen, Radhika M -- Martin, John W -- McCauley, Patrick G -- McNitt, Paul -- Mehta, Parul -- Moon, Keith W -- Mullens, Joe W -- Newington, Taksina -- Ning, Zemin -- Ling Ng, Bee -- Novo, Sonia M -- O'Neill, Michael J -- Osborne, Mark A -- Osnowski, Andrew -- Ostadan, Omead -- Paraschos, Lambros L -- Pickering, Lea -- Pike, Andrew C -- Pike, Alger C -- Chris Pinkard, D -- Pliskin, Daniel P -- Podhasky, Joe -- Quijano, Victor J -- Raczy, Come -- Rae, Vicki H -- Rawlings, Stephen R -- Chiva Rodriguez, Ana -- Roe, Phyllida M -- Rogers, John -- Rogert Bacigalupo, Maria C -- Romanov, Nikolai -- Romieu, Anthony -- Roth, Rithy K -- Rourke, Natalie J -- Ruediger, Silke T -- Rusman, Eli -- Sanches-Kuiper, Raquel M -- Schenker, Martin R -- Seoane, Josefina M -- Shaw, Richard J -- Shiver, Mitch K -- Short, Steven W -- Sizto, Ning L -- Sluis, Johannes P -- Smith, Melanie A -- Ernest Sohna Sohna, Jean -- Spence, Eric J -- Stevens, Kim -- Sutton, Neil -- Szajkowski, Lukasz -- Tregidgo, Carolyn L -- Turcatti, Gerardo -- Vandevondele, Stephanie -- Verhovsky, Yuli -- Virk, Selene M -- Wakelin, Suzanne -- Walcott, Gregory C -- Wang, Jingwen -- Worsley, Graham J -- Yan, Juying -- Yau, Ling -- Zuerlein, Mike -- Rogers, Jane -- Mullikin, James C -- Hurles, Matthew E -- McCooke, Nick J -- West, John S -- Oaks, Frank L -- Lundberg, Peter L -- Klenerman, David -- Durbin, Richard -- Smith, Anthony J -- B05823/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0701805/Medical Research Council/United Kingdom -- MOL04534/Biotechnology and Biological Sciences Research Council/United Kingdom -- Z01 HG200330-03/Intramural NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2008 Nov 6;456(7218):53-9. doi: 10.1038/nature07517.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Illumina Cambridge Ltd. (Formerly Solexa Ltd), Chesterford Research Park, Little Chesterford, Nr Saffron Walden, Essex CB10 1XL, UK. dbentley@illumina.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18987734" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosomes, Human, X/genetics ; Consensus Sequence/genetics ; Genome, Human/*genetics ; Genomics/economics/*methods ; Genotype ; Humans ; Male ; Nigeria ; Polymorphism, Single Nucleotide/genetics ; Sensitivity and Specificity ; Sequence Analysis, DNA/economics/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-03-06
    Description: Sirtuins are NAD(+)-dependent protein deacetylases. They mediate adaptive responses to a variety of stresses, including calorie restriction and metabolic stress. Sirtuin 3 (SIRT3) is localized in the mitochondrial matrix, where it regulates the acetylation levels of metabolic enzymes, including acetyl coenzyme A synthetase 2 (refs 1, 2). Mice lacking both Sirt3 alleles appear phenotypically normal under basal conditions, but show marked hyperacetylation of several mitochondrial proteins. Here we report that SIRT3 expression is upregulated during fasting in liver and brown adipose tissues. During fasting, livers from mice lacking SIRT3 had higher levels of fatty-acid oxidation intermediate products and triglycerides, associated with decreased levels of fatty-acid oxidation, compared to livers from wild-type mice. Mass spectrometry of mitochondrial proteins shows that long-chain acyl coenzyme A dehydrogenase (LCAD) is hyperacetylated at lysine 42 in the absence of SIRT3. LCAD is deacetylated in wild-type mice under fasted conditions and by SIRT3 in vitro and in vivo; and hyperacetylation of LCAD reduces its enzymatic activity. Mice lacking SIRT3 exhibit hallmarks of fatty-acid oxidation disorders during fasting, including reduced ATP levels and intolerance to cold exposure. These findings identify acetylation as a novel regulatory mechanism for mitochondrial fatty-acid oxidation and demonstrate that SIRT3 modulates mitochondrial intermediary metabolism and fatty-acid use during fasting.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841477/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841477/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hirschey, Matthew D -- Shimazu, Tadahiro -- Goetzman, Eric -- Jing, Enxuan -- Schwer, Bjoern -- Lombard, David B -- Grueter, Carrie A -- Harris, Charles -- Biddinger, Sudha -- Ilkayeva, Olga R -- Stevens, Robert D -- Li, Yu -- Saha, Asish K -- Ruderman, Neil B -- Bain, James R -- Newgard, Christopher B -- Farese, Robert V Jr -- Alt, Frederick W -- Kahn, C Ronald -- Verdin, Eric -- DK019514-29/DK/NIDDK NIH HHS/ -- DK59637/DK/NIDDK NIH HHS/ -- K01 DK076573/DK/NIDDK NIH HHS/ -- K08 AG022325/AG/NIA NIH HHS/ -- K08 AG022325-01A1/AG/NIA NIH HHS/ -- P01 HL068758/HL/NHLBI NIH HHS/ -- P01 HL068758-06A1/HL/NHLBI NIH HHS/ -- P30 DK026743/DK/NIDDK NIH HHS/ -- P30 DK026743-26A1/DK/NIDDK NIH HHS/ -- R01 DK019514/DK/NIDDK NIH HHS/ -- R01 DK019514-29/DK/NIDDK NIH HHS/ -- R01 DK067509/DK/NIDDK NIH HHS/ -- R01 DK067509-04/DK/NIDDK NIH HHS/ -- U24 DK059637/DK/NIDDK NIH HHS/ -- U24 DK059637-01/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Mar 4;464(7285):121-5. doi: 10.1038/nature08778.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gladstone Institute of Virology and Immunology, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20203611" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Acyl-CoA Dehydrogenase, Long-Chain/chemistry/*metabolism ; Adenosine Triphosphate/biosynthesis/metabolism ; Adipose Tissue, Brown/enzymology/metabolism ; Animals ; Body Temperature Regulation ; Caloric Restriction ; Carnitine/analogs & derivatives/metabolism ; Cell Line ; Cold Temperature ; Fasting/metabolism ; Fatty Acids/*metabolism ; Humans ; Hypoglycemia/metabolism ; Liver/enzymology/metabolism ; Male ; Mass Spectrometry ; Mice ; Mitochondria/*enzymology/*metabolism ; Oxidation-Reduction ; Sirtuin 3/deficiency/genetics/*metabolism ; Triglycerides/metabolism ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1992-07-10
    Description: As a first step in a program to use genetically altered mice in the study of memory mechanisms, mutant mice were produced that do not express the alpha-calcium-calmodulin-dependent kinase II (alpha-CaMKII). The alpha-CaMKII is highly enriched in postsynaptic densities of hippocampus and neocortex and may be involved in the regulation of long-term potentiation (LTP). Such mutant mice exhibited mostly normal behaviors and presented no obvious neuroanatomical defects. Whole cell recordings reveal that postsynaptic mechanisms, including N-methyl-D-aspartate (NMDA) receptor function, are intact. Despite normal postsynaptic mechanisms, these mice are deficient in their ability to produce LTP and are therefore a suitable model for studying the relation between LTP and learning processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Silva, A J -- Stevens, C F -- Tonegawa, S -- Wang, Y -- 5 R01 NS 12961-17/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1992 Jul 10;257(5067):201-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Center for Cancer Research, Cambridge, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1378648" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/physiology ; Blotting, Northern ; Blotting, Southern ; Calcium-Calmodulin-Dependent Protein Kinases ; Chromosome Mapping ; DNA/analysis ; Electrophysiology ; Female ; Hippocampus/*physiology ; Learning/physiology ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Mutant Strains/*genetics ; Mutagenesis, Site-Directed ; Plasmids ; Protein Kinases/*deficiency/*physiology ; RNA/analysis ; Receptors, N-Methyl-D-Aspartate ; Synapses/physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-03-31
    Description: Rapamycin, an inhibitor of mechanistic target of rapamycin complex 1 (mTORC1), extends the life spans of yeast, flies, and mice. Calorie restriction, which increases life span and insulin sensitivity, is proposed to function by inhibition of mTORC1, yet paradoxically, chronic administration of rapamycin substantially impairs glucose tolerance and insulin action. We demonstrate that rapamycin disrupted a second mTOR complex, mTORC2, in vivo and that mTORC2 was required for the insulin-mediated suppression of hepatic gluconeogenesis. Further, decreased mTORC1 signaling was sufficient to extend life span independently from changes in glucose homeostasis, as female mice heterozygous for both mTOR and mLST8 exhibited decreased mTORC1 activity and extended life span but had normal glucose tolerance and insulin sensitivity. Thus, mTORC2 disruption is an important mediator of the effects of rapamycin in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324089/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324089/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamming, Dudley W -- Ye, Lan -- Katajisto, Pekka -- Goncalves, Marcus D -- Saitoh, Maki -- Stevens, Deanna M -- Davis, James G -- Salmon, Adam B -- Richardson, Arlan -- Ahima, Rexford S -- Guertin, David A -- Sabatini, David M -- Baur, Joseph A -- 1F32AG032833-01A1/AG/NIA NIH HHS/ -- CA129105/CA/NCI NIH HHS/ -- F32 AG032833/AG/NIA NIH HHS/ -- P30DK19525/DK/NIDDK NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R01 CA129105-05/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Mar 30;335(6076):1638-43. doi: 10.1126/science.1215135.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22461615" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, White/metabolism ; Animals ; Carrier Proteins/genetics/metabolism ; Female ; Gluconeogenesis ; Glucose/metabolism ; Glucose Clamp Technique ; Homeostasis ; Insulin/administration & dosage/blood ; *Insulin Resistance ; Liver/metabolism ; *Longevity ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes ; Muscle, Skeletal/metabolism ; Phosphorylation ; Proteins/antagonists & inhibitors/metabolism ; Proto-Oncogene Proteins c-akt/metabolism ; Signal Transduction ; Sirolimus/*pharmacology ; TOR Serine-Threonine Kinases/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-11-05
    Description: To create mice expressing exclusively human sickle hemoglobin (HbS), transgenic mice expressing human alpha-, gamma-, and betaS-globin were generated and bred with knockout mice that had deletions of the murine alpha- and beta-globin genes. These sickle cell mice have the major features (irreversibly sickled red cells, anemia, multiorgan pathology) found in humans with sickle cell disease and, as such, represent a useful in vivo system to accelerate the development of improved therapies for this common genetic disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paszty, C -- Brion, C M -- Manci, E -- Witkowska, H E -- Stevens, M E -- Mohandas, N -- Rubin, E M -- HL20985/HL/NHLBI NIH HHS/ -- HL31579/HL/NHLBI NIH HHS/ -- N01-HB-07086/HB/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1997 Oct 31;278(5339):876-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genome Center and Department of Subcellular Structure, Lawrence Berkeley National Laboratory, 1 Cyclotron Road (MS 74-157), University of California, Berkeley, CA 94720, USA. c_paszty@csa2.lbl.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9346488" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia, Sickle Cell/*genetics/pathology ; Animals ; Disease Models, Animal ; Female ; Globins/genetics ; Hemoglobin, Sickle/genetics ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-07
    Description: Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Correia, Bruno E -- Bates, John T -- Loomis, Rebecca J -- Baneyx, Gretchen -- Carrico, Chris -- Jardine, Joseph G -- Rupert, Peter -- Correnti, Colin -- Kalyuzhniy, Oleksandr -- Vittal, Vinayak -- Connell, Mary J -- Stevens, Eric -- Schroeter, Alexandria -- Chen, Man -- Macpherson, Skye -- Serra, Andreia M -- Adachi, Yumiko -- Holmes, Margaret A -- Li, Yuxing -- Klevit, Rachel E -- Graham, Barney S -- Wyatt, Richard T -- Baker, David -- Strong, Roland K -- Crowe, James E Jr -- Johnson, Philip R -- Schief, William R -- 1R01AI102766-01A1/AI/NIAID NIH HHS/ -- 1UM1AI100663/AI/NIAID NIH HHS/ -- 2T32GM007270/GM/NIGMS NIH HHS/ -- 5R21AI088554/AI/NIAID NIH HHS/ -- P01 AI094419/AI/NIAID NIH HHS/ -- P01AI094419/AI/NIAID NIH HHS/ -- P30 AI036214/AI/NIAID NIH HHS/ -- P30 AI045008/AI/NIAID NIH HHS/ -- P30AI36214/AI/NIAID NIH HHS/ -- R01 AI102766/AI/NIAID NIH HHS/ -- R21 AI088554/AI/NIAID NIH HHS/ -- T32 CA080416/CA/NCI NIH HHS/ -- T32 GM007270/GM/NIGMS NIH HHS/ -- T32CA080416/CA/NCI NIH HHS/ -- U54 AI 005714/AI/NIAID NIH HHS/ -- U54 AI057141/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2014 Mar 13;507(7491):201-6. doi: 10.1038/nature12966. Epub 2014 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] PhD Program in Computational Biology, Instituto Gulbenkian Ciencia and Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal [3] Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA. ; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA. ; The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania 19104, USA. ; Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA. ; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA [3] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [4] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [3] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA [2]. ; 1] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA [2] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [3] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA [2] Department of Pathology, Microbiology and Immunology, Vanderbilt Medical Center, Nashville, Tennessee 37232, USA [3] Department of Pediatrics, Vanderbilt Medical Center, Nashville, Tennessee 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24499818" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Antibodies, Monoclonal/analysis/immunology ; Antibodies, Neutralizing/analysis/immunology ; Antibodies, Viral/analysis/immunology ; Antigens, Viral/chemistry/immunology ; Crystallography, X-Ray ; *Drug Design ; Enzyme-Linked Immunosorbent Assay ; Epitopes/*chemistry/*immunology ; Macaca mulatta/immunology ; Male ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Neutralization Tests ; Protein Conformation ; *Protein Stability ; Respiratory Syncytial Virus Vaccines/*chemistry/*immunology ; Respiratory Syncytial Viruses/chemistry/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-27
    Description: Large-scale chromosome structure and spatial nuclear arrangement have been linked to control of gene expression and DNA replication and repair. Genomic techniques based on chromosome conformation capture (3C) assess contacts for millions of loci simultaneously, but do so by averaging chromosome conformations from millions of nuclei. Here we introduce single-cell Hi-C, combined with genome-wide statistical analysis and structural modelling of single-copy X chromosomes, to show that individual chromosomes maintain domain organization at the megabase scale, but show variable cell-to-cell chromosome structures at larger scales. Despite this structural stochasticity, localization of active gene domains to boundaries of chromosome territories is a hallmark of chromosomal conformation. Single-cell Hi-C data bridge current gaps between genomics and microscopy studies of chromosomes, demonstrating how modular organization underlies dynamic chromosome structure, and how this structure is probabilistically linked with genome activity patterns.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869051/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869051/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nagano, Takashi -- Lubling, Yaniv -- Stevens, Tim J -- Schoenfelder, Stefan -- Yaffe, Eitan -- Dean, Wendy -- Laue, Ernest D -- Tanay, Amos -- Fraser, Peter -- BBS/E/B/0000M241/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/E/B/000C0404/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0800036/Medical Research Council/United Kingdom -- G117/530/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2013 Oct 3;502(7469):59-64. doi: 10.1038/nature12593. Epub 2013 Sep 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nuclear Dynamics Programme, The Babraham Institute, Cambridge CB22 3AT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24067610" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Nucleus/genetics ; Chromatin/chemistry ; Chromosomes/*chemistry/genetics ; *Genetic Techniques ; Male ; Mice ; *Models, Molecular ; Molecular Conformation ; Single-Cell Analysis ; X Chromosome/chemistry/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-04-19
    Description: Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703927/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703927/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Howe, Kerstin -- Clark, Matthew D -- Torroja, Carlos F -- Torrance, James -- Berthelot, Camille -- Muffato, Matthieu -- Collins, John E -- Humphray, Sean -- McLaren, Karen -- Matthews, Lucy -- McLaren, Stuart -- Sealy, Ian -- Caccamo, Mario -- Churcher, Carol -- Scott, Carol -- Barrett, Jeffrey C -- Koch, Romke -- Rauch, Gerd-Jorg -- White, Simon -- Chow, William -- Kilian, Britt -- Quintais, Leonor T -- Guerra-Assuncao, Jose A -- Zhou, Yi -- Gu, Yong -- Yen, Jennifer -- Vogel, Jan-Hinnerk -- Eyre, Tina -- Redmond, Seth -- Banerjee, Ruby -- Chi, Jianxiang -- Fu, Beiyuan -- Langley, Elizabeth -- Maguire, Sean F -- Laird, Gavin K -- Lloyd, David -- Kenyon, Emma -- Donaldson, Sarah -- Sehra, Harminder -- Almeida-King, Jeff -- Loveland, Jane -- Trevanion, Stephen -- Jones, Matt -- Quail, Mike -- Willey, Dave -- Hunt, Adrienne -- Burton, John -- Sims, Sarah -- McLay, Kirsten -- Plumb, Bob -- Davis, Joy -- Clee, Chris -- Oliver, Karen -- Clark, Richard -- Riddle, Clare -- Elliot, David -- Threadgold, Glen -- Harden, Glenn -- Ware, Darren -- Begum, Sharmin -- Mortimore, Beverley -- Kerry, Giselle -- Heath, Paul -- Phillimore, Benjamin -- Tracey, Alan -- Corby, Nicole -- Dunn, Matthew -- Johnson, Christopher -- Wood, Jonathan -- Clark, Susan -- Pelan, Sarah -- Griffiths, Guy -- Smith, Michelle -- Glithero, Rebecca -- Howden, Philip -- Barker, Nicholas -- Lloyd, Christine -- Stevens, Christopher -- Harley, Joanna -- Holt, Karen -- Panagiotidis, Georgios -- Lovell, Jamieson -- Beasley, Helen -- Henderson, Carl -- Gordon, Daria -- Auger, Katherine -- Wright, Deborah -- Collins, Joanna -- Raisen, Claire -- Dyer, Lauren -- Leung, Kenric -- Robertson, Lauren -- Ambridge, Kirsty -- Leongamornlert, Daniel -- McGuire, Sarah -- Gilderthorp, Ruth -- Griffiths, Coline -- Manthravadi, Deepa -- Nichol, Sarah -- Barker, Gary -- Whitehead, Siobhan -- Kay, Michael -- Brown, Jacqueline -- Murnane, Clare -- Gray, Emma -- Humphries, Matthew -- Sycamore, Neil -- Barker, Darren -- Saunders, David -- Wallis, Justene -- Babbage, Anne -- Hammond, Sian -- Mashreghi-Mohammadi, Maryam -- Barr, Lucy -- Martin, Sancha -- Wray, Paul -- Ellington, Andrew -- Matthews, Nicholas -- Ellwood, Matthew -- Woodmansey, Rebecca -- Clark, Graham -- Cooper, James D -- Tromans, Anthony -- Grafham, Darren -- Skuce, Carl -- Pandian, Richard -- Andrews, Robert -- Harrison, Elliot -- Kimberley, Andrew -- Garnett, Jane -- Fosker, Nigel -- Hall, Rebekah -- Garner, Patrick -- Kelly, Daniel -- Bird, Christine -- Palmer, Sophie -- Gehring, Ines -- Berger, Andrea -- Dooley, Christopher M -- Ersan-Urun, Zubeyde -- Eser, Cigdem -- Geiger, Horst -- Geisler, Maria -- Karotki, Lena -- Kirn, Anette -- Konantz, Judith -- Konantz, Martina -- Oberlander, Martina -- Rudolph-Geiger, Silke -- Teucke, Mathias -- Lanz, Christa -- Raddatz, Gunter -- Osoegawa, Kazutoyo -- Zhu, Baoli -- Rapp, Amanda -- Widaa, Sara -- Langford, Cordelia -- Yang, Fengtang -- Schuster, Stephan C -- Carter, Nigel P -- Harrow, Jennifer -- Ning, Zemin -- Herrero, Javier -- Searle, Steve M J -- Enright, Anton -- Geisler, Robert -- Plasterk, Ronald H A -- Lee, Charles -- Westerfield, Monte -- de Jong, Pieter J -- Zon, Leonard I -- Postlethwait, John H -- Nusslein-Volhard, Christiane -- Hubbard, Tim J P -- Roest Crollius, Hugues -- Rogers, Jane -- Stemple, Derek L -- 095908/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- 1 R01 DK55377-01A1/DK/NIDDK NIH HHS/ -- P01 HD022486/HD/NICHD NIH HHS/ -- P01 HD22486/HD/NICHD NIH HHS/ -- R01 GM085318/GM/NIGMS NIH HHS/ -- R01 OD011116/OD/NIH HHS/ -- R01 RR010715/RR/NCRR NIH HHS/ -- R01 RR020833/RR/NCRR NIH HHS/ -- England -- Nature. 2013 Apr 25;496(7446):498-503. doi: 10.1038/nature12111. Epub 2013 Apr 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23594743" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes/genetics ; Conserved Sequence/*genetics ; Evolution, Molecular ; Female ; Genes/genetics ; Genome/*genetics ; Genome, Human/genetics ; Genomics ; Humans ; Male ; Meiosis/genetics ; Molecular Sequence Annotation ; Pseudogenes/genetics ; Reference Standards ; Sex Determination Processes/genetics ; Zebrafish/*genetics ; Zebrafish Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-11-05
    Description: The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) 〈 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR 〈 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodellers-most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402723/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402723/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De Rubeis, Silvia -- He, Xin -- Goldberg, Arthur P -- Poultney, Christopher S -- Samocha, Kaitlin -- Cicek, A Erucment -- Kou, Yan -- Liu, Li -- Fromer, Menachem -- Walker, Susan -- Singh, Tarinder -- Klei, Lambertus -- Kosmicki, Jack -- Shih-Chen, Fu -- Aleksic, Branko -- Biscaldi, Monica -- Bolton, Patrick F -- Brownfeld, Jessica M -- Cai, Jinlu -- Campbell, Nicholas G -- Carracedo, Angel -- Chahrour, Maria H -- Chiocchetti, Andreas G -- Coon, Hilary -- Crawford, Emily L -- Curran, Sarah R -- Dawson, Geraldine -- Duketis, Eftichia -- Fernandez, Bridget A -- Gallagher, Louise -- Geller, Evan -- Guter, Stephen J -- Hill, R Sean -- Ionita-Laza, Juliana -- Jimenz Gonzalez, Patricia -- Kilpinen, Helena -- Klauck, Sabine M -- Kolevzon, Alexander -- Lee, Irene -- Lei, Irene -- Lei, Jing -- Lehtimaki, Terho -- Lin, Chiao-Feng -- Ma'ayan, Avi -- Marshall, Christian R -- McInnes, Alison L -- Neale, Benjamin -- Owen, Michael J -- Ozaki, Noriio -- Parellada, Mara -- Parr, Jeremy R -- Purcell, Shaun -- Puura, Kaija -- Rajagopalan, Deepthi -- Rehnstrom, Karola -- Reichenberg, Abraham -- Sabo, Aniko -- Sachse, Michael -- Sanders, Stephan J -- Schafer, Chad -- Schulte-Ruther, Martin -- Skuse, David -- Stevens, Christine -- Szatmari, Peter -- Tammimies, Kristiina -- Valladares, Otto -- Voran, Annette -- Li-San, Wang -- Weiss, Lauren A -- Willsey, A Jeremy -- Yu, Timothy W -- Yuen, Ryan K C -- DDD Study -- Homozygosity Mapping Collaborative for Autism -- UK10K Consortium -- Cook, Edwin H -- Freitag, Christine M -- Gill, Michael -- Hultman, Christina M -- Lehner, Thomas -- Palotie, Aaarno -- Schellenberg, Gerard D -- Sklar, Pamela -- State, Matthew W -- Sutcliffe, James S -- Walsh, Christiopher A -- Scherer, Stephen W -- Zwick, Michael E -- Barett, Jeffrey C -- Cutler, David J -- Roeder, Kathryn -- Devlin, Bernie -- Daly, Mark J -- Buxbaum, Joseph D -- 5UL1 RR024975/RR/NCRR NIH HHS/ -- MH077139/MH/NIMH NIH HHS/ -- MH089482/MH/NIMH NIH HHS/ -- MH095034/MH/NIMH NIH HHS/ -- P30 HD15052/HD/NICHD NIH HHS/ -- P50 HD055751/HD/NICHD NIH HHS/ -- R01 MH061009/MH/NIMH NIH HHS/ -- R01 MH083565/MH/NIMH NIH HHS/ -- R01 MH089482/MH/NIMH NIH HHS/ -- R01 MH094400/MH/NIMH NIH HHS/ -- R01 MH095797/MH/NIMH NIH HHS/ -- R01 MH097849/MH/NIMH NIH HHS/ -- R01 MH100229/MH/NIMH NIH HHS/ -- R01 NS073601/NS/NINDS NIH HHS/ -- R01MH083565/MH/NIMH NIH HHS/ -- R01MH089208/MH/NIMH NIH HHS/ -- R37 MH057881/MH/NIMH NIH HHS/ -- RC2MH089952/MH/NIMH NIH HHS/ -- T32 HG002295/HG/NHGRI NIH HHS/ -- U01 MH100209/MH/NIMH NIH HHS/ -- U01 MH100229/MH/NIMH NIH HHS/ -- U01 MH100233/MH/NIMH NIH HHS/ -- U01 MH100239/MH/NIMH NIH HHS/ -- U01MH100209/MH/NIMH NIH HHS/ -- U01MH100229/MH/NIMH NIH HHS/ -- U01MH100233/MH/NIMH NIH HHS/ -- U01MH100239/MH/NIMH NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- UL1TR000445/TR/NCATS NIH HHS/ -- WT091310/Wellcome Trust/United Kingdom -- WT098051/Wellcome Trust/United Kingdom -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Nov 13;515(7526):209-15. doi: 10.1038/nature13772. Epub 2014 Oct 29.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25363760" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Child Development Disorders, Pervasive/*genetics/pathology ; Chromatin/*genetics/metabolism ; Chromatin Assembly and Disassembly ; Exome/genetics ; Female ; Genetic Predisposition to Disease/*genetics ; Germ-Line Mutation/genetics ; Humans ; Male ; Molecular Sequence Data ; Mutation/*genetics ; Mutation, Missense/genetics ; Nerve Net/metabolism ; Odds Ratio ; Synapses/*metabolism ; Transcription, Genetic/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-07-12
    Description: On 29 March 2013, the Chinese Center for Disease Control and Prevention confirmed the first reported case of human infection with an avian influenza A(H7N9) virus. The recent human infections with H7N9 virus, totalling over 130 cases with 39 fatalities to date, have been characterized by severe pulmonary disease and acute respiratory distress syndrome (ARDS). This is concerning because H7 viruses have typically been associated with ocular disease in humans, rather than severe respiratory disease. This recent outbreak underscores the need to better understand the pathogenesis and transmission of these viruses in mammals. Here we assess the ability of A/Anhui/1/2013 and A/Shanghai/1/2013 (H7N9) viruses, isolated from fatal human cases, to cause disease in mice and ferrets and to transmit to naive animals. Both H7N9 viruses replicated to higher titre in human airway epithelial cells and in the respiratory tract of ferrets compared to a seasonal H3N2 virus. Moreover, the H7N9 viruses showed greater infectivity and lethality in mice compared to genetically related H7N9 and H9N2 viruses. The H7N9 viruses were readily transmitted to naive ferrets through direct contact but, unlike the seasonal H3N2 virus, did not transmit readily by respiratory droplets. The lack of efficient respiratory droplet transmission was corroborated by low receptor-binding specificity for human-like alpha2,6-linked sialosides. Our results indicate that H7N9 viruses have the capacity for efficient replication in mammals and human airway cells and highlight the need for continued public health surveillance of this emerging virus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Belser, Jessica A -- Gustin, Kortney M -- Pearce, Melissa B -- Maines, Taronna R -- Zeng, Hui -- Pappas, Claudia -- Sun, Xiangjie -- Carney, Paul J -- Villanueva, Julie M -- Stevens, James -- Katz, Jacqueline M -- Tumpey, Terrence M -- GM62116/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Sep 26;501(7468):556-9. doi: 10.1038/nature12391. Epub 2013 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23842497" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Polarity ; Disease Models, Animal ; Epithelial Cells/virology ; Female ; Ferrets/*virology ; Humans ; Influenza A Virus, H3N2 Subtype/growth & development/pathogenicity ; Influenza A Virus, H9N2 Subtype/growth & development/pathogenicity ; Influenza A virus/growth & development/isolation & ; purification/metabolism/*pathogenicity ; Influenza, Human/virology ; Madin Darby Canine Kidney Cells ; Male ; Mice/*virology ; Mice, Inbred BALB C ; Orthomyxoviridae Infections/*transmission/*virology ; Polysaccharides/chemistry/metabolism ; Receptors, Virus/chemistry/metabolism ; Respiratory System/cytology ; Substrate Specificity ; Virus Replication/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...