ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • General Chemistry  (13,693)
  • Cell & Developmental Biology  (7,517)
  • INSTRUMENTATION AND PHOTOGRAPHY  (3,942)
  • FLUID MECHANICS AND HEAT TRANSFER  (3,470)
  • PROPULSION SYSTEMS
  • 1990-1994  (17,275)
  • 1970-1974  (9,871)
  • 1910-1914  (2,932)
Collection
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2004-12-03
    Description: Basic algorithms for unstructured mesh generation and fluid flow calculation are discussed. In particular the following are addressed: preliminaries of graphs and meshes; duality and data structures; basic graph operations important in CFD (Computational Fluid Dynamics); triangulation methods, including Varonoi diagrams and Delaunay triangulation; maximum principle analysis; finite volume schemes for scalar conservation law equations; finite volume schemes for the Euler and Navier-Stokes equations; and convergence acceleration for steady state calculations.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: VKI, Computational Fluid Dynamics, Volume 1; 141 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: It is shown that to satisfy the general accepted compressible law of the wall derived from the Van Driest transformation, turbulence modeling coefficients must actually be functions of density gradients. The transformed velocity profiles obtained by using standard turbulence model constants have too small a value of the effective von Karman constant kappa in the log-law region (inner layer). Thus, if the model is otherwise accurate, the wake component is overpredicted and the predicted skin friction is lower than the expected value.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 4; p. 735-740
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: High-resolution (0.01/cm) absorption spectra of lean mixtures of CH4 in dry air were recorded with the McMath-Pierce Fourier transform spectrometer (FTS) of the National Solar Observatory on Kitt Peak at various temperatures between 24 and -61 C. The spectra have been analyzed to determine the values at room temperature of pressure-broadened widths and pressure-induced shifts of more than 740 transitions. The temperature dependence of air-broadened widths and pressure-induced shifts was deduced for approx. 370 transitions in the nu(sub 1) + nu(sub 4), nu(sub 3) + nu(sub 4), and nu(sub 2) + nu(sub 3) bands of (12)CH4 located between 4118 and 4615/cm. These results were obtained by analyzing a total of 29 spectra simultaneously using a multi-spectral non-linear least-squares fitting technique. This new technique allowed the determination of correlated spectral line parameters (e.g. intensity and broadening coefficient) better than the procedure of averaging values obtained by fitting the spectra individually. This method also provided a direct determination of the uncertainties in the retrieved parameters due to random errors. For each band analysed in this study the dependence of the various spectral line parameters upon the tetrahedral symmetry species and the rotational quantum numbers of the transitions is also presented.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Journal of Quantitative Spectroscopy & Radiative Transfer (ISSN 0022-4073); 51; 3; p. 439-465
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: The multigrid method has been applied to an existing three-dimensional compressible Euler solver to accelerate the convergence of the implicit symmetric relaxation scheme. This lower-upper symmetric Gauss-Seidel implicit scheme is shown to be an effective multigrid driver in three dimensions. A grid refinement study is performed including the effects of large cell aspect ratio meshes. Performance figures of the present multigrid code on Cray computers including the new C90 are presented. A reduction of three orders of magnitude in the residual for a three-dimensional transonic inviscid flow using 920 k grid points is obtained in less than 4 min on a Cray C90.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 5; p. 950-955
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: The present paper explores the use of large-eddy simulations as a tool for predicting noise from first principles. A high-order numerical scheme is used to perform large-eddy simulations of a supersonic jet flow with emphasis on capturing the time-dependent flow structure representating the sound source. The wavelike nature of this structure under random inflow disturbances is demonstrated. This wavelike structure is then enhanced by taking the inflow disturbances to be purely harmonic. Application of Lighthill's theory to calculate the far-field noise, with the sound source obtained from the calculated time-dependent near field, is demonstrated. Alternative approaches to coupling the near-field sound source to the far-field sound are discussed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 5; p. 897-906
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: The steady state solution of the system of equations consisting of the full Navier-Stokes equations and two turbulence equations has been obtained using a multigrid strategy of unstructured meshes. The flow equations and turbulence equations are solved in a loosely coupled manner. The flow equations are advanced in time using a multistage Runge-Kutta time-stepping scheme with a stability-bound local time step, while turbulence equations are advanced in a point-implicit scheme with a time step which guarantees stability and positivity. Low-Reynolds-number modifications to the original two-equation model are incorporated in a manner which results in well-behaved equations for arbitrarily small wall distances. A variety of aerodynamic flows are solved, initializing all quantities with uniform freestream values. Rapid and uniform convergence rates for the flow and turbulence equations are observed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: International Journal for Numerical Methods in Fluids (ISSN 0271-2091); 18; 10; p. 887-914
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: Numerical results obtained with direct simulation Monte Carlo and Navier-Stokes methods are presented for a Mach-20 nitrogen flow about a 70-deg blunted cone. The flow conditions simuulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are considered with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is on the wake structure: how the wake structure changes as a function of rarefaction, what the afterbody levels of heating are, and to what limits the continuum models are realistic as rarefaction in the wake is progressively increased. Calculations are made with and without an afterbody sting. Results for the after body sting are emphasizes in anticipation of an experimental study for the current flow conditions and model configuration. The Navier-Stokes calculations were made with and without slip boundary conditions. Comparisons of the results obtained with the two simulation methodologies are made for both flowfield structure and surface quantities.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 7; p. 1399-1406
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: The transformation validity question utilizing resulting data from direct numerical simulations (DNS) of supersonic, isothermal cold wall channel flow was investigated. The DNS results stood for a wide scope of parameter and were suitable for the purpose of examining the generality of Van Driest transformation. The Van Driest law of the wall can be obtained from the inner-layer similarity arguments. It was demonstrated that the Van Driest transformation cannot be incorporated to collapse the sublayer and log-layer velocity profiles simultaneously. Velocity and temperature predictions according to the preceding composite mixing-length model were presented. Despite satisfactory congruity with the DNS data, the model must be perceived as an engineering guide and not as a rigorous analysis.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 10; p. 2110-2113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: A Monte Carlo solution technique has been formulated to predict the radiative heat transfer in three-dimensional, inhomogeneous participating media which exhibit spectrally dependent emission and absorption and anisotropic scattering. Details of the technique and selected numerical sensitivities are discussed. The technique was applied to a problem involving a medium composed of a gas mixture of carbon dioxide and nitrogen and suspended carbon particles. A homogeneous medium was modeled to examine the effect of total pressure and carbon-particle concentration on radiative heat transfer. Variation in total pressure, over the range studied, had minimal effect on the amount of heat radiated to the enclosure walls and on the radiative-flux distribution within the medium. Increases in the carbon particle concentration produced significantly higher heat fluxes at the boundaries and altered the radiative flux distribution. The technique was then applied to an inhomogeneous medium to examine effects of specific temperature and carbon particle concentration distributions on radiative heat transfer. For the inhomogeneous conditions examined, the largest radiative flux divergence occurs near the center of the medium and the regions near some enclosure walls act as energy sinks.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Thermophysics and Heat Transfer (ISSN 0887-8722); 8; 1; p. 133-139
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: Numerical results obtained with direct simulation Monte Carlo and Navier-Stokes methods are presented for a Mach-20 nitrogen flow about a 70-deg blunted cone. The flow conditions simulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are considered with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is on the wake structure: how the wake structure changes as a function of rare faction, what the afterbody levels of heating are, and to what limits the continuum models are realistic as rarefunction in the wake is progressively increased. Calculations are made with and without an afterbody sting. Results for the afterbody sting are emphasized in anticipation of an experimental study for the current flow conditions and model configuration. The Navier-Stokes calculations were made with and without slip boundary conditions. Comparisons of the results obtained with the two simulation methodologies are made for both flowfield structure and surface quantities.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 7; p. 1399-1406
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The Simplified Shuttle Payload Thermal Analyzer program (SSPTA) was developed to aid in the evaluation of thermal design concepts of instruments to be flown in the Space Shuttle cargo bay. SSPTA consists of a collection of programs that are currently used in the thermal analysis of spacecraft and have been modified for quick, preliminary analysis of payloads. SSPTA includes a reduced math model of the Shuttle cargo bay to simplify use of the program for payload analysis. One of the prime objectives in developing SSPTA was to create a program which was easy to use. With SSPTA, the user required input is simple and the user is free from many of the concerns of computer usage such as disk space handling, tape usage, and complicated program control. Although SSPTA was designed primarily to analyze Shuttle payloads, it can easily be used to perform thermal analysis in other situations. SSPTA is comprised of a system of data files called 'bins', a master program, and a set of thermal subprograms. The bin system is a collection of disk files which contain data required by or computed by the thermal subprograms. SSPTA currently has the capability of handling 50 bins. The master program serves primarily as a manager for the bin system and its interaction with the thermal subprograms. Input to the master program consists of simple user commands which direct the data manipulation procedures, prepare the data for these procedures, and call the appropriate thermal subprograms. The subprograms of SSPTA are all based on programs which have been used extensively in the analysis of orbiting spacecraft and space hardware. Subprogram CONSHAD uses the user supplied geometric radiation model to compute black body view factors, shadow factors, and a description of the surface model. The subprogram WORKSHEET uses the surface model description, optical property data, and node assignment data to prepare input for SCRIPTF. Subprogram SCRIPTF computes the inverses of the infrared (IR) and ultraviolet (UV) radiation transfer equations; it also computes the radiation coupling between nodes in the thermal model. Subprogram ORBITAL uses the shadow tables to compute incident flux intensities on each surface in the geometric model. Subprogram ABSORB uses these flux intensities combined with the IR and UV inverses to compute the IR and UV fluxes absorbed by each surface. The radiation couplings from SCRIPTF and the absorbed fluxes from ABSORB are used by subprogram TTA to compute the temperature and power balance for each node in the thermal model. Output consists of tabulated data from each of the subprograms executed during a particular analysis. Due to the modular form of SSPTA, analyses may be run in whole or in part, and new subprograms may be added by the user. SSPTA is written in FORTRAN for use on a DEC VAX-11/780. SSPTA was originally developed in 1977 for use on IBM 370 series computers. This version is an update which was ported to the VAX in 1980.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: GSC-12698
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: There is no simple and perfect way to measure residual stresses in metal parts that have been welded or deformed to make complex structures such as pressure vessels and aircraft, yet these locked-in stresses can contribute to structural failure by fatigue and fracture. However, one proven and tested technique for determining the internal stress of a metal part is to drill a test hole while measuring the relieved strains around the hole, such as the hole-drilling strain gage method described in ASTM E 837. The program HOLEGAGE processes strain gage data and provides additional calculations of internal stress variations that are not obtained with standard E 837 analysis methods. The typical application of the technique uses a three gage rosette with a special hole-drilling fixture for drilling a hole through the center of the rosette to produce a hole with very small gage pattern eccentricity error. Another device is used to control the drilling and halt the drill at controlled depth steps. At each step, strains from all three strain gages are recorded. The influence coefficients used by HOLEGAGE to compute stresses from relieved hole strains were developed by published finite element method studies of thick plates for specific hole sizes and depths. The program uses a parabolic fit and an interpolating scheme to project the coefficients to other hole sizes and depths. Additionally, published experimental data are used to extend the coefficients to relatively thin plates. These influence coefficients are used to compute the stresses in the original part from the strain data. HOLEGAGE will compute interior planar stresses using strain data from each drilled hole depth layer. Planar stresses may be computed in three ways including: a least squares fit for a linear variation with depth, an integral method to give incremental stress data for each layer, or by a linear fit to the integral data (with some surface data points omitted) to predict surface stresses before strain gage sanding preparations introduced additional residual stresses. Options are included for estimating the effect of hole eccentricity on calculations, smoothing noise from the strain data, and inputting the program data either interactively or from a data file. HOLEGAGE was written in FORTRAN 77 for DEC VAX computers under VMS, and is transportable except for system-unique TIME and DATE system calls. The program requires 54K of main memory and was developed in 1990. The program is available on a 9-track 1600 BPI VAX BACKUP format magnetic tape (standard media) or a TK50 tape cartridge. The documentation is included on the tape. DEC VAX and VMS are trademarks of Digital Equipment Corporation.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: ARC-12807
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Remote Interactive Particle-tracing (RIP) is a distributed-graphics program which computes particle traces for computational fluid dynamics (CFD) solution data sets. A particle trace is a line which shows the path a massless particle in a fluid will take; it is a visual image of where the fluid is going. The program is able to compute and display particle traces at a speed of about one trace per second because it runs on two machines concurrently. The data used by the program is contained in two files. The solution file contains data on density, momentum and energy quantities of a flow field at discrete points in three-dimensional space, while the grid file contains the physical coordinates of each of the discrete points. RIP requires two computers. A local graphics workstation interfaces with the user for program control and graphics manipulation, and a remote machine interfaces with the solution data set and performs time-intensive computations. The program utilizes two machines in a distributed mode for two reasons. First, the data to be used by the program is usually generated on the supercomputer. RIP avoids having to convert and transfer the data, eliminating any memory limitations of the local machine. Second, as computing the particle traces can be computationally expensive, RIP utilizes the power of the supercomputer for this task. Although the remote site code was developed on a CRAY, it is possible to port this to any supercomputer class machine with a UNIX-like operating system. Integration of a velocity field from a starting physical location produces the particle trace. The remote machine computes the particle traces using the particle-tracing subroutines from PLOT3D/AMES, a CFD post-processing graphics program available from COSMIC (ARC-12779). These routines use a second-order predictor-corrector method to integrate the velocity field. Then the remote program sends graphics tokens to the local machine via a remote-graphics library. The local machine interprets the graphics tokens and draws the particle traces. The program is menu driven. RIP is implemented on the silicon graphics IRIS 3000 (local workstation) with an IRIX operating system and on the CRAY2 (remote station) with a UNICOS 1.0 or 2.0 operating system. The IRIS 4D can be used in place of the IRIS 3000. The program is written in C (67%) and FORTRAN 77 (43%) and has an IRIS memory requirement of 4 MB. The remote and local stations must use the same user ID. PLOT3D/AMES unformatted data sets are required for the remote machine. The program was developed in 1988.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ARC-12430
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: This software package includes two programs, the KPD12 and the KPD12P. Both programs utilizes the vortex-blob method to simulate flow around solid bodies, in an unbounded domain using the KPD12, with periodicity in one direction using the KPD12P. The main advantage of the vortex-blob method is the ability to handle situations involving arbitrary shapes including multiple bodies. The user just supplies points on the solid boundaries; there is no grid. The KPD12 program has worked successfully on bluff bodies, stalled wings, and multiple-element airfoils. The KPD12P program has been used successfully on high-solidity separated cascades and on cases of rotating stall in cascades of thin airfoils. However, they do not capture subtle viscous effects such as incipient separation and friction drag. The KPD12 and the KPD12P programs apply the vortex-blob method to time-dependent, high-Reynolds-number flows around solid bodies. Both programs solve the two-dimensional incompressible Navier-Stokes equations, neglecting the viscous effects away from the walls. By creating new vortices along the wall at every time step, they treat the no-penetration and no-slip boundary conditions while using an influence matrix. The code automatically controls the number of vortices. Furthermore, the code has the option of treating the boundary layers by simple integral methods to determine the separation points. The KPD12 outputs forces, moments, and pressure distributions on the bodies. The KPD12P also outputs the turning angle and loss of total pressure. The source code is in Cray FORTRAN and contains a few calls to Cray vector functions which are vectorized with the Cray compiler. However, substitutes for these vector functions are provided. The code is set up to plot the bodies, vortex positions, and streamlines using the DISSPLA graphics software. The software requires a mainframe computer with at least 589k of memory available running under COS 1.16. KPD12 was developed in 1988.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ARC-12119
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: The Steady State Thermal Analysis Program (STEADY) provides the thermal designer with a quick and convenient method for calculating heat loads and temperatures. STEADY can be used on small nodal networks for conceptual or preliminary thermal design and analysis. STEADY will accept up to 20 nodes of fixed or variable temperature, with constant or temperature-dependent thermal conductivities, and any set of consistent units. In a steady state thermal network, the heat balance on each variable temperature node must sum to zero. The general heat transfer equations are solved with a Newton-Raphson technique and refined by a fourth order quartic solution. Input data includes the number of nodes, number of boundary nodes, the fixed temperatures at all boundary nodes, initial temperature guesses for variable nodes, impressed heat loads, conduction and radiation coefficients, and control parameters such as convergence criteria, maximum iterations, and damping factors. The output is stored in a print file and tabulates final temperatures and heat flows for all nodes. STEADY is menu driven and allows the user to save files for future modification. STEADY is written in FORTRAN 77 (Ryan McFarland's RMFORTRAN) for interactive execution and has been implemented on the IBM PC computer series under DOS with a central memory requirement of approximately 92K of 8 bit bytes using a math coprocessor, and 103K bytes without the coprocessor. This program was developed in 1987.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NPO-17179
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-24
    Description: The Thermal Radiation Analyzer System, TRASYS, is a computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems. TRASYS computes the total thermal radiation environment for a spacecraft in orbit. The software calculates internode radiation interchange data as well as incident and absorbed heat rate data originating from environmental radiant heat sources. TRASYS provides data of both types in a format directly usable by such thermal analyzer programs as SINDA/FLUINT (available from COSMIC, program number MSC-21528). One primary feature of TRASYS is that it allows users to write their own driver programs to organize and direct the preprocessor and processor library routines in solving specific thermal radiation problems. The preprocessor first reads and converts the user's geometry input data into the form used by the processor library routines. Then, the preprocessor accepts the user's driving logic, written in the TRASYS modified FORTRAN language. In many cases, the user has a choice of routines to solve a given problem. Users may also provide their own routines where desirable. In particular, the user may write output routines to provide for an interface between TRASYS and any thermal analyzer program using the R-C network concept. Input to the TRASYS program consists of Options and Edit data, Model data, and Logic Flow and Operations data. Options and Edit data provide for basic program control and user edit capability. The Model data describe the problem in terms of geometry and other properties. This information includes surface geometry data, documentation data, nodal data, block coordinate system data, form factor data, and flux data. Logic Flow and Operations data house the user's driver logic, including the sequence of subroutine calls and the subroutine library. Output from TRASYS consists of two basic types of data: internode radiation interchange data, and incident and absorbed heat rate data. The flexible structure of TRASYS allows considerable freedom in the definition and choice of solution method for a thermal radiation problem. The program's flexible structure has also allowed TRASYS to retain the same basic input structure as the authors update it in order to keep up with changing requirements. Among its other important features are the following: 1) up to 3200 node problem size capability with shadowing by intervening opaque or semi-transparent surfaces; 2) choice of diffuse, specular, or diffuse/specular radiant interchange solutions; 3) a restart capability that minimizes recomputing; 4) macroinstructions that automatically provide the executive logic for orbit generation that optimizes the use of previously completed computations; 5) a time variable geometry package that provides automatic pointing of the various parts of an articulated spacecraft and an automatic look-back feature that eliminates redundant form factor calculations; 6) capability to specify submodel names to identify sets of surfaces or components as an entity; and 7) subroutines to perform functions which save and recall the internodal and/or space form factors in subsequent steps for nodes with fixed geometry during a variable geometry run. There are two machine versions of TRASYS v27: a DEC VAX version and a Cray UNICOS version. Both versions require installation of the NASADIG library (MSC-21801 for DEC VAX or COS-10049 for CRAY), which is available from COSMIC either separately or bundled with TRASYS. The NASADIG (NASA Device Independent Graphics Library) plot package provides a pictorial representation of input geometry, orbital/orientation parameters, and heating rate output as a function of time. NASADIG supports Tektronix terminals. The CRAY version of TRASYS v27 is written in FORTRAN 77 for batch or interactive execution and has been implemented on CRAY X-MP and CRAY Y-MP series computers running UNICOS. The standard distribution medium for MSC-21959 (CRAY version without NASADIG) is a 1600 BPI 9-track magnetic tape in UNIX tar format. The standard distribution medium for COS-10040 (CRAY version with NASADIG) is a set of two 6250 BPI 9-track magnetic tapes in UNIX tar format. Alternate distribution media and formats are available upon request. The DEC VAX version of TRASYS v27 is written in FORTRAN 77 for batch execution (only the plotting driver program is interactive) and has been implemented on a DEC VAX 8650 computer under VMS. Since the source codes for MSC-21030 and COS-10026 are in VAX/VMS text library files and DEC Command Language files, COSMIC will only provide these programs in the following formats: MSC-21030, TRASYS (DEC VAX version without NASADIG) is available on a 1600 BPI 9-track magnetic tape in VAX BACKUP format (standard distribution medium) or in VAX BACKUP format on a TK50 tape cartridge; COS-10026, TRASYS (DEC VAX version with NASADIG), is available in VAX BACKUP format on a set of three 6250 BPI 9-track magnetic tapes (standard distribution medium) or a set of three TK50 tape cartridges in VAX BACKUP format. TRASYS was last updated in 1993.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: MSC-21030
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: TDIGG is a fast and versatile program for generating two-dimensional computational grids for use with finite-difference flow-solvers. Both algebraic and elliptic grid generation systems are included. The method for grid generation by algebraic transformation is based on an interpolation algorithm and the elliptic grid generation is established by solving the partial differential equation (PDE). Non-uniform grid distributions are carried out using a hyperbolic tangent stretching function. For algebraic grid systems, interpolations in one direction (univariate) and two directions (bivariate) are considered. These interpolations are associated with linear or cubic Lagrangian/Hermite/Bezier polynomial functions. The algebraic grids can subsequently be smoothed using an elliptic solver. For elliptic grid systems, the PDE can be in the form of Laplace (zero forcing function) or Poisson. The forcing functions in the Poisson equation come from the boundary or the entire domain of the initial algebraic grids. A graphics interface procedure using the Silicon Graphics (GL) Library is included to allow users to visualize the grid variations at each iteration. This will allow users to interactively modify the grid to match their applications. TDIGG is written in FORTRAN 77 for Silicon Graphics IRIS series computers running IRIX. This package requires either MIT's X Window System, Version 11 Revision 4 or SGI (Motif) Window System. A sample executable is provided on the distribution medium. It requires 148K of RAM for execution. The standard distribution medium is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. This program was developed in 1992.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: MFS-28848
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The PYROLASER package is an operating system for the Pyrometer Instrument Company's Pyrolaser. There are 6 individual programs in the PYROLASER package: two main programs, two lower level subprograms, and two programs which, although independent, function predominantly as macros. The package provides a quick and easy way to setup, control, and program a standard Pyrolaser. Temperature and emissivity measurements may be either collected as if the Pyrolaser were in the manual operations mode, or displayed on real time strip charts and stored in standard spreadsheet format for post-test analysis. A shell is supplied to allow macros, which are test-specific, to be easily added to the system. The Pyrolaser Simple Operation program provides full on-screen remote operation capabilities, thus allowing the user to operate the Pyrolaser from the computer just as it would be operated manually. The Pyrolaser Simple Operation program also allows the use of "quick starts". Quick starts provide an easy way to permit routines to be used as setup macros for specific applications or tests. The specific procedures required for a test may be ordered in a sequence structure and then the sequence structure can be started with a simple button in the cluster structure provided. One quick start macro is provided for continuous Pyrolaser operation. A subprogram, Display Continuous Pyr Data, is used to display and store the resulting data output. Using this macro, the system is set up for continuous operation and the subprogram is called to display the data in real time on strip charts. The data is simultaneously stored in a spreadsheet format. The resulting spreadsheet file can be opened in any one of a number of commercially available spreadsheet programs. The Read Continuous Pyrometer program is provided as a continuously run subprogram for incorporation of the Pyrolaser software into a process control or feedback control scheme in a multi-component system. The program requires the Pyrolaser to be set up using the Pyrometer String Transfer macro. It requires no inputs and provides temperature and emissivity as outputs. The Read Continuous Pyrometer program can be run continuously and the data can be sampled as often or as seldom as updates of temperature and emissivity are required. PYROLASER is written using the Labview software for use on Macintosh series computers running System 6.0.3 or later, Sun Sparc series computers running OpenWindows 3.0 or MIT's X Window System (X11R4 or X11R5), and IBM PC or compatibles running Microsoft Windows 3.1 or later. Labview requires a minimum of 5Mb of RAM on a Macintosh, 24Mb of RAM on a Sun, and 8Mb of RAM on an IBM PC or compatible. The Labview software is a product of National Instruments (Austin,TX; 800-433-3488), and is not included with this program. The standard distribution medium for PYROLASER is a 3.5 inch 800K Macintosh format diskette. It is also available on a 3.5 inch 720K MS-DOS format diskette, a 3.5 inch diskette in UNIX tar format, and a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in Macintosh WordPerfect version 2.0.4 format is included on the distribution medium. Printed documentation is included in the price of the program. PYROLASER was developed in 1992.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: MFS-28819
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The Systems Improved Numerical Fluids Analysis Code, SINFAC, consists of additional routines added to the April 1983 revision of SINDA, a general thermal analyzer program. The purpose of the additional routines is to allow for the modeling of active heat transfer loops. The modeler can simulate the steady-state and pseudo-transient operations of 16 different heat transfer loop components including radiators, evaporators, condensers, mechanical pumps, reservoirs and many types of valves and fittings. In addition, the program contains a property analysis routine that can be used to compute the thermodynamic properties of 20 different refrigerants. SINFAC can simulate the response to transient boundary conditions. SINFAC was first developed as a method for computing the steady-state performance of two phase systems. It was then modified using CNFRWD, SINDA's explicit time-integration scheme, to accommodate transient thermal models. However, SINFAC cannot simulate pressure drops due to time-dependent fluid acceleration, transient boil-out, or transient fill-up, except in the accumulator. SINFAC also requires the user to be familiar with SINDA. The solution procedure used by SINFAC is similar to that which an engineer would use to solve a system manually. The solution to a system requires the determination of all of the outlet conditions of each component such as the flow rate, pressure, and enthalpy. To obtain these values, the user first estimates the inlet conditions to the first component of the system, then computes the outlet conditions from the data supplied by the manufacturer of the first component. The user then estimates the temperature at the outlet of the third component and computes the corresponding flow resistance of the second component. With the flow resistance of the second component, the user computes the conditions down stream, namely the inlet conditions of the third. The computations follow for the rest of the system, back to the first component. On the first pass, the user finds that the calculated outlet conditions of the last component do not match the estimated inlet conditions of the first. The user then modifies the estimated inlet conditions of the first component in an attempt to match the calculated values. The user estimated values are called State Variables. The differences between the user estimated values and calculated values are called the Error Variables. The procedure systematically changes the State Variables until all of the Error Variables are less than the user-specified iteration limits. The solution procedure is referred to as SCX. It consists of two phases, the Systems phase and the Controller phase. The X is to imply experimental. SCX computes each next set of State Variables in two phases. In the first phase, SCX fixes the controller positions and modifies the other State Variables by the Newton-Raphson method. This first phase is the Systems phase. Once the Newton-Raphson method has solved the problem for the fixed controller positions, SCX next calculates new controller positions based on Newton's method while treating each sensor-controller pair independently but allowing all to change in one iteration. This phase is the Controller phase. SINFAC is available by license for a period of ten (10) years to approved licensees. The licenced program product includes the source code for the additional routines to SINDA, the SINDA object code, command procedures, sample data and supporting documentation. Additional documentation may be purchased at the price below. SINFAC was created for use on a DEC VAX under VMS. Source code is written in FORTRAN 77, requires 180k of memory, and should be fully transportable. The program was developed in 1988.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: GSC-13231
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-24
    Description: The Thermal Radiation Analyzer System, TRASYS, is a computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems. TRASYS computes the total thermal radiation environment for a spacecraft in orbit. The software calculates internode radiation interchange data as well as incident and absorbed heat rate data originating from environmental radiant heat sources. TRASYS provides data of both types in a format directly usable by such thermal analyzer programs as SINDA/FLUINT (available from COSMIC, program number MSC-21528). One primary feature of TRASYS is that it allows users to write their own driver programs to organize and direct the preprocessor and processor library routines in solving specific thermal radiation problems. The preprocessor first reads and converts the user's geometry input data into the form used by the processor library routines. Then, the preprocessor accepts the user's driving logic, written in the TRASYS modified FORTRAN language. In many cases, the user has a choice of routines to solve a given problem. Users may also provide their own routines where desirable. In particular, the user may write output routines to provide for an interface between TRASYS and any thermal analyzer program using the R-C network concept. Input to the TRASYS program consists of Options and Edit data, Model data, and Logic Flow and Operations data. Options and Edit data provide for basic program control and user edit capability. The Model data describe the problem in terms of geometry and other properties. This information includes surface geometry data, documentation data, nodal data, block coordinate system data, form factor data, and flux data. Logic Flow and Operations data house the user's driver logic, including the sequence of subroutine calls and the subroutine library. Output from TRASYS consists of two basic types of data: internode radiation interchange data, and incident and absorbed heat rate data. The flexible structure of TRASYS allows considerable freedom in the definition and choice of solution method for a thermal radiation problem. The program's flexible structure has also allowed TRASYS to retain the same basic input structure as the authors update it in order to keep up with changing requirements. Among its other important features are the following: 1) up to 3200 node problem size capability with shadowing by intervening opaque or semi-transparent surfaces; 2) choice of diffuse, specular, or diffuse/specular radiant interchange solutions; 3) a restart capability that minimizes recomputing; 4) macroinstructions that automatically provide the executive logic for orbit generation that optimizes the use of previously completed computations; 5) a time variable geometry package that provides automatic pointing of the various parts of an articulated spacecraft and an automatic look-back feature that eliminates redundant form factor calculations; 6) capability to specify submodel names to identify sets of surfaces or components as an entity; and 7) subroutines to perform functions which save and recall the internodal and/or space form factors in subsequent steps for nodes with fixed geometry during a variable geometry run. There are two machine versions of TRASYS v27: a DEC VAX version and a Cray UNICOS version. Both versions require installation of the NASADIG library (MSC-21801 for DEC VAX or COS-10049 for CRAY), which is available from COSMIC either separately or bundled with TRASYS. The NASADIG (NASA Device Independent Graphics Library) plot package provides a pictorial representation of input geometry, orbital/orientation parameters, and heating rate output as a function of time. NASADIG supports Tektronix terminals. The CRAY version of TRASYS v27 is written in FORTRAN 77 for batch or interactive execution and has been implemented on CRAY X-MP and CRAY Y-MP series computers running UNICOS. The standard distribution medium for MSC-21959 (CRAY version without NASADIG) is a 1600 BPI 9-track magnetic tape in UNIX tar format. The standard distribution medium for COS-10040 (CRAY version with NASADIG) is a set of two 6250 BPI 9-track magnetic tapes in UNIX tar format. Alternate distribution media and formats are available upon request. The DEC VAX version of TRASYS v27 is written in FORTRAN 77 for batch execution (only the plotting driver program is interactive) and has been implemented on a DEC VAX 8650 computer under VMS. Since the source codes for MSC-21030 and COS-10026 are in VAX/VMS text library files and DEC Command Language files, COSMIC will only provide these programs in the following formats: MSC-21030, TRASYS (DEC VAX version without NASADIG) is available on a 1600 BPI 9-track magnetic tape in VAX BACKUP format (standard distribution medium) or in VAX BACKUP format on a TK50 tape cartridge; COS-10026, TRASYS (DEC VAX version with NASADIG), is available in VAX BACKUP format on a set of three 6250 BPI 9-track magnetic tapes (standard distribution medium) or a set of three TK50 tape cartridges in VAX BACKUP format. TRASYS was last updated in 1993.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: COS-10026
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-24
    Description: INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far-field boundaries. Three machine versions of INS3D are available. INS3D for the CRAY is written in CRAY FORTRAN for execution on a CRAY X-MP under COS, INS3D for the IBM is written in FORTRAN 77 for execution on an IBM 3090 under the VM or MVS operating system, and INS3D for DEC RISC-based systems is written in RISC FORTRAN for execution on a DEC workstation running RISC ULTRIX 3.1 or later. The CRAY version has a central memory requirement of 730279 words. The central memory requirement for the IBM is 150Mb. The memory requirement for the DEC RISC ULTRIX version is 3Mb of main memory. INS3D was developed in 1987. The port to the IBM was done in 1990. The port to the DECstation 3100 was done in 1991. CRAY is a registered trademark of Cray Research Inc. IBM is a registered trademark of International Business Machines. DEC, DECstation, and ULTRIX are trademarks of the Digital Equipment Corporation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: COS-10019
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: SAGE, Self Adaptive Grid codE, is a flexible tool for adapting and restructuring both 2D and 3D grids. Solution-adaptive grid methods are useful tools for efficient and accurate flow predictions. In supersonic and hypersonic flows, strong gradient regions such as shocks, contact discontinuities, shear layers, etc., require careful distribution of grid points to minimize grid error and produce accurate flow-field predictions. SAGE helps the user obtain more accurate solutions by intelligently redistributing (i.e. adapting) the original grid points based on an initial or interim flow-field solution. The user then computes a new solution using the adapted grid as input to the flow solver. The adaptive-grid methodology poses the problem in an algebraic, unidirectional manner for multi-dimensional adaptations. The procedure is analogous to applying tension and torsion spring forces proportional to the local flow gradient at every grid point and finding the equilibrium position of the resulting system of grid points. The multi-dimensional problem of grid adaption is split into a series of one-dimensional problems along the computational coordinate lines. The reduced one dimensional problem then requires a tridiagonal solver to find the location of grid points along a coordinate line. Multi-directional adaption is achieved by the sequential application of the method in each coordinate direction. The tension forces direct the redistribution of points to the strong gradient region. To maintain smoothness and a measure of orthogonality of grid lines, torsional forces are introduced that relate information between the family of lines adjacent to one another. The smoothness and orthogonality constraints are direction-dependent, since they relate only the coordinate lines that are being adapted to the neighboring lines that have already been adapted. Therefore the solutions are non-unique and depend on the order and direction of adaption. Non-uniqueness of the adapted grid is acceptable since it makes possible an overall and local error reduction through grid redistribution. SAGE includes the ability to modify the adaption techniques in boundary regions, which substantially improves the flexibility of the adaptive scheme. The vectorial approach used in the analysis also provides flexibility. The user has complete choice of adaption direction and order of sequential adaptions without concern for the computational data structure. Multiple passes are available with no restraint on stepping directions; for each adaptive pass the user can choose a completely new set of adaptive parameters. This facility, combined with the capability of edge boundary control, enables the code to individually adapt multi-dimensional multiple grids. Zonal grids can be adapted while maintaining continuity along the common boundaries. For patched grids, the multiple-pass capability enables complete adaption. SAGE is written in FORTRAN 77 and is intended to be machine independent; however, it requires a FORTRAN compiler which supports NAMELIST input. It has been successfully implemented on Sun series computers, SGI IRIS's, DEC MicroVAX computers, HP series computers, the Cray YMP, and IBM PC compatibles. Source code is provided, but no sample input and output files are provided. The code reads three datafiles: one that contains the initial grid coordinates (x,y,z), one that contains corresponding flow-field variables, and one that contains the user control parameters. It is assumed that the first two datasets are formatted as defined in the plotting software package PLOT3D. Several machine versions of PLOT3D are available from COSMIC. The amount of main memory is dependent on the size of the matrix. The standard distribution medium for SAGE is a 5.25 inch 360K MS-DOS format diskette. It is also available on a .25 inch streaming magnetic tape cartridge in UNIX tar format or on a 9-track 1600 BPI ASCII CARD IMAGE format magnetic tape. SAGE was developed in 1989, first released as a 2D version in 1991 and updated to 3D in 1993.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ARC-13359
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-08-24
    Description: INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far-field boundaries. Three machine versions of INS3D are available. INS3D for the CRAY is written in CRAY FORTRAN for execution on a CRAY X-MP under COS, INS3D for the IBM is written in FORTRAN 77 for execution on an IBM 3090 under the VM or MVS operating system, and INS3D for DEC RISC-based systems is written in RISC FORTRAN for execution on a DEC workstation running RISC ULTRIX 3.1 or later. The CRAY version has a central memory requirement of 730279 words. The central memory requirement for the IBM is 150Mb. The memory requirement for the DEC RISC ULTRIX version is 3Mb of main memory. INS3D was developed in 1987. The port to the IBM was done in 1990. The port to the DECstation 3100 was done in 1991. CRAY is a registered trademark of Cray Research Inc. IBM is a registered trademark of International Business Machines. DEC, DECstation, and ULTRIX are trademarks of the Digital Equipment Corporation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: COS-10030
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Scale-space filtering is used to screen information obtained from signals that produce a complex curve (such as that in geographic and thermal analysis) to gain a truer representation of the area under analysis. PSF extends this technique to extract non-periodic hills and valleys from a signal. Because the signal's information is sometimes too complex to determine with certainty if some features are real or artificial, PSF calculates probabilities, with the extracted features corresponding to real events, in order to aid in determining the signal's accuracy. Since the probabilities associated with the features are derived from domain-specific statistics, it is (most likely) necessary to modify the program code to correspond to the user's particular domain. PSF also provides a standard scale-space filtering algorithm for use when the desired features can be identified with certainty or when it is not practical to get the domain-specific statistics. The PSF algorithm is based on Witkin's scale-space filtering theory. The program detects signal variations by finding the points of inflection in the input signal. The number and position of these points are dependent upon the scale of the derivative operators used to detect them. Therefore, instead of assuming any single scale to be correct, PSF identifies points of inflection in a large number of different scales. It then describes the curve according to the groups of points of inflection, across all scales, caused by the same physical process. PSF provides an output table giving the following information: the abscissa of the first inflection of the peak, the type of peak, the distance between the first and second inflection points, the abscissa of the peak, and the probability of the feature corresponding to a real event in the curve. The program will also list points representing a graphical image of the signal and detected peaks. This data can be used with a standard plotting program (not included) to display the signal and its features graphically. PSF is written in C language (49%) and Common LISP (51%) for use on a Sun SPARC workstation running the UNIX operating system. PSF requires 4Mb of RAM. The standard distribution medium for this program is a .25 streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. PSF was developed in 1991. Sun and SPARC are trademarks of Sun Microsystems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: ARC-13198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-24
    Description: The ability to treat arbitrary boundary shapes is one of the most desirable characteristics of a method for generating grids, including those about airfoils. In a grid used for computing aerodynamic flow over an airfoil, or any other body shape, the surface of the body is usually treated as an inner boundary and often cannot be easily represented as an analytic function. The GRAPE computer program was developed to incorporate a method for generating two-dimensional finite-difference grids about airfoils and other shapes by the use of the Poisson differential equation. GRAPE can be used with any boundary shape, even one specified by tabulated points and including a limited number of sharp corners. The GRAPE program has been developed to be numerically stable and computationally fast. GRAPE can provide the aerodynamic analyst with an efficient and consistent means of grid generation. The GRAPE procedure generates a grid between an inner and an outer boundary by utilizing an iterative procedure to solve the Poisson differential equation subject to geometrical restraints. In this method, the inhomogeneous terms of the equation are automatically chosen such that two important effects are imposed on the grid. The first effect is control of the spacing between mesh points along mesh lines intersecting the boundaries. The second effect is control of the angles with which mesh lines intersect the boundaries. Along with the iterative solution to Poisson's equation, a technique of coarse-fine sequencing is employed to accelerate numerical convergence. GRAPE program control cards and input data are entered via the NAMELIST feature. Each variable has a default value such that user supplied data is kept to a minimum. Basic input data consists of the boundary specification, mesh point spacings on the boundaries, and mesh line angles at the boundaries. Output consists of a dataset containing the grid data and, if requested, a plot of the generated mesh. The GRAPE program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series computer with a central memory requirement of approximately 135K (octal) of 60 bit words. For plotted output the commercially available DISSPLA graphics software package is required. The GRAPE program was developed in 1980.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ARC-11379
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-24
    Description: The complex environment of the typical research laboratory requires flexible process control. This program provides natural language process control from an IBM PC or compatible machine. Sometimes process control schedules require changes frequently, even several times per day. These changes may include adding, deleting, and rearranging steps in a process. This program sets up a process control system that can either run without an operator, or be run by workers with limited programming skills. The software system includes three programs. Two of the programs, written in FORTRAN77, record data and control research processes. The third program, written in Pascal, generates the FORTRAN subroutines used by the other two programs to identify the user commands with the user-written device drivers. The software system also includes an input data set which allows the user to define the user commands which are to be executed by the computer. To set the system up the operator writes device driver routines for all of the controlled devices. Once set up, this system requires only an input file containing natural language command lines which tell the system what to do and when to do it. The operator can make up custom commands for operating and taking data from external research equipment at any time of the day or night without the operator in attendance. This process control system requires a personal computer operating under MS-DOS with suitable hardware interfaces to all controlled devices. The program requires a FORTRAN77 compiler and user-written device drivers. This program was developed in 1989 and has a memory requirement of about 62 Kbytes.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: LEW-14907
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-24
    Description: The Thermal Radiation Analyzer System, TRASYS, is a computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems. TRASYS computes the total thermal radiation environment for a spacecraft in orbit. The software calculates internode radiation interchange data as well as incident and absorbed heat rate data originating from environmental radiant heat sources. TRASYS provides data of both types in a format directly usable by such thermal analyzer programs as SINDA/FLUINT (available from COSMIC, program number MSC-21528). One primary feature of TRASYS is that it allows users to write their own driver programs to organize and direct the preprocessor and processor library routines in solving specific thermal radiation problems. The preprocessor first reads and converts the user's geometry input data into the form used by the processor library routines. Then, the preprocessor accepts the user's driving logic, written in the TRASYS modified FORTRAN language. In many cases, the user has a choice of routines to solve a given problem. Users may also provide their own routines where desirable. In particular, the user may write output routines to provide for an interface between TRASYS and any thermal analyzer program using the R-C network concept. Input to the TRASYS program consists of Options and Edit data, Model data, and Logic Flow and Operations data. Options and Edit data provide for basic program control and user edit capability. The Model data describe the problem in terms of geometry and other properties. This information includes surface geometry data, documentation data, nodal data, block coordinate system data, form factor data, and flux data. Logic Flow and Operations data house the user's driver logic, including the sequence of subroutine calls and the subroutine library. Output from TRASYS consists of two basic types of data: internode radiation interchange data, and incident and absorbed heat rate data. The flexible structure of TRASYS allows considerable freedom in the definition and choice of solution method for a thermal radiation problem. The program's flexible structure has also allowed TRASYS to retain the same basic input structure as the authors update it in order to keep up with changing requirements. Among its other important features are the following: 1) up to 3200 node problem size capability with shadowing by intervening opaque or semi-transparent surfaces; 2) choice of diffuse, specular, or diffuse/specular radiant interchange solutions; 3) a restart capability that minimizes recomputing; 4) macroinstructions that automatically provide the executive logic for orbit generation that optimizes the use of previously completed computations; 5) a time variable geometry package that provides automatic pointing of the various parts of an articulated spacecraft and an automatic look-back feature that eliminates redundant form factor calculations; 6) capability to specify submodel names to identify sets of surfaces or components as an entity; and 7) subroutines to perform functions which save and recall the internodal and/or space form factors in subsequent steps for nodes with fixed geometry during a variable geometry run. There are two machine versions of TRASYS v27: a DEC VAX version and a Cray UNICOS version. Both versions require installation of the NASADIG library (MSC-21801 for DEC VAX or COS-10049 for CRAY), which is available from COSMIC either separately or bundled with TRASYS. The NASADIG (NASA Device Independent Graphics Library) plot package provides a pictorial representation of input geometry, orbital/orientation parameters, and heating rate output as a function of time. NASADIG supports Tektronix terminals. The CRAY version of TRASYS v27 is written in FORTRAN 77 for batch or interactive execution and has been implemented on CRAY X-MP and CRAY Y-MP series computers running UNICOS. The standard distribution medium for MSC-21959 (CRAY version without NASADIG) is a 1600 BPI 9-track magnetic tape in UNIX tar format. The standard distribution medium for COS-10040 (CRAY version with NASADIG) is a set of two 6250 BPI 9-track magnetic tapes in UNIX tar format. Alternate distribution media and formats are available upon request. The DEC VAX version of TRASYS v27 is written in FORTRAN 77 for batch execution (only the plotting driver program is interactive) and has been implemented on a DEC VAX 8650 computer under VMS. Since the source codes for MSC-21030 and COS-10026 are in VAX/VMS text library files and DEC Command Language files, COSMIC will only provide these programs in the following formats: MSC-21030, TRASYS (DEC VAX version without NASADIG) is available on a 1600 BPI 9-track magnetic tape in VAX BACKUP format (standard distribution medium) or in VAX BACKUP format on a TK50 tape cartridge; COS-10026, TRASYS (DEC VAX version with NASADIG), is available in VAX BACKUP format on a set of three 6250 BPI 9-track magnetic tapes (standard distribution medium) or a set of three TK50 tape cartridges in VAX BACKUP format. TRASYS was last updated in 1993.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: COS-10040
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-24
    Description: INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far-field boundaries. Three machine versions of INS3D are available. INS3D for the CRAY is written in CRAY FORTRAN for execution on a CRAY X-MP under COS, INS3D for the IBM is written in FORTRAN 77 for execution on an IBM 3090 under the VM or MVS operating system, and INS3D for DEC RISC-based systems is written in RISC FORTRAN for execution on a DEC workstation running RISC ULTRIX 3.1 or later. The CRAY version has a central memory requirement of 730279 words. The central memory requirement for the IBM is 150Mb. The memory requirement for the DEC RISC ULTRIX version is 3Mb of main memory. INS3D was developed in 1987. The port to the IBM was done in 1990. The port to the DECstation 3100 was done in 1991. CRAY is a registered trademark of Cray Research Inc. IBM is a registered trademark of International Business Machines. DEC, DECstation, and ULTRIX are trademarks of the Digital Equipment Corporation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ARC-11794
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-24
    Description: The Vibration Pattern Imager (VPI) system was designed to control and acquire data from laser vibrometer sensors. The PC computer based system uses a digital signal processing (DSP) board and an analog I/O board to control the sensor and to process the data. The VPI system was originally developed for use with the Ometron VPI Sensor (Ometron Limited, Kelvin House, Worsley Bridge Road, London, SE26 5BX, England), but can be readily adapted to any commercially available sensor which provides an analog output signal and requires analog inputs for control of mirror positioning. VPI's graphical user interface allows the operation of the program to be controlled interactively through keyboard and mouse-selected menu options. The main menu controls all functions for setup, data acquisition, display, file operations, and exiting the program. Two types of data may be acquired with the VPI system: single point or "full field". In the single point mode, time series data is sampled by the A/D converter on the I/O board at a user-defined rate for the selected number of samples. The position of the measuring point, adjusted by mirrors in the sensor, is controlled via a mouse input. In the "full field" mode, the measurement point is moved over a user-selected rectangular area with up to 256 positions in both x and y directions. The time series data is sampled by the A/D converter on the I/O board and converted to a root-mean-square (rms) value by the DSP board. The rms "full field" velocity distribution is then uploaded for display and storage. VPI is written in C language and Texas Instruments' TMS320C30 assembly language for IBM PC series and compatible computers running MS-DOS. The program requires 640K of RAM for execution, and a hard disk with 10Mb or more of disk space is recommended. The program also requires a mouse, a VGA graphics display, a Four Channel analog I/O board (Spectrum Signal Processing, Inc.; Westborough, MA), a break-out box and a Spirit-30 board (Sonitech International, Inc.; Wellesley, MA) which includes a TMS320C30 DSP processor, 256Kb zero wait state SRAM, and a daughter board with 8Mb one wait state DRAM. Please contact COSMIC for additional information on required hardware and software. In order to compile the provided VPI source code, a Microsoft C version 6.0 compiler, a Texas Instruments' TMS320C30 assembly language compiler, and the Spirit 30 run time libraries are required. A math co-processor is highly recommended. A sample MS-DOS executable is provided on the distribution medium. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. VPI was developed in 1991-1992.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: LAR-14897
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-24
    Description: The ability to treat arbitrary boundary shapes is one of the most desirable characteristics of a method for generating grids. 3DGRAPE is designed to make computational grids in or about almost any shape. These grids are generated by the solution of Poisson's differential equations in three dimensions. The program automatically finds its own values for inhomogeneous terms which give near-orthogonality and controlled grid cell height at boundaries. Grids generated by 3DGRAPE have been applied to both viscous and inviscid aerodynamic problems, and to problems in other fluid-dynamic areas. 3DGRAPE uses zones to solve the problem of warping one cube into the physical domain in real-world computational fluid dynamics problems. In a zonal approach, a physical domain is divided into regions, each of which maps into its own computational cube. It is believed that even the most complicated physical region can be divided into zones, and since it is possible to warp a cube into each zone, a grid generator which is oriented to zones and allows communication across zonal boundaries (where appropriate) solves the problem of topological complexity. 3DGRAPE expects to read in already-distributed x,y,z coordinates on the bodies of interest, coordinates which will remain fixed during the entire grid-generation process. The 3DGRAPE code makes no attempt to fit given body shapes and redistribute points thereon. Body-fitting is a formidable problem in itself. The user must either be working with some simple analytical body shape, upon which a simple analytical distribution can be easily effected, or must have available some sophisticated stand-alone body-fitting software. 3DGRAPE does not require the user to supply the block-to-block boundaries nor the shapes of the distribution of points. 3DGRAPE will typically supply those block-to-block boundaries simply as surfaces in the elliptic grid. Thus at block-to-block boundaries the following conditions are obtained: (1) grids lines will match up as they approach the block-to-block boundary from either side, (2) grid lines will cross the boundary with no slope discontinuity, (3) the spacing of points along the line piercing the boundary will be continuous, (4) the shape of the boundary will be consistent with the surrounding grid, and (5) the distribution of points on the boundary will be reasonable in view of the surrounding grid. 3DGRAPE offers a powerful building-block approach to complex 3-D grid generation, but is a low-level tool. Users may build each face of each block as they wish, from a wide variety of resources. 3DGRAPE uses point-successive-over-relaxation (point-SOR) to solve the Poisson equations. This method is slow, although it does vectorize nicely. Any number of sophisticated graphics programs may be used on the stored output file of 3DGRAPE though it lacks interactive graphics. Versatility was a prominent consideration in developing the code. The block structure allows a great latitude in the problems it can treat. As the acronym implies, this program should be able to handle just about any physical region into which a computational cube or cubes can be warped. 3DGRAPE was written in FORTRAN 77 and should be machine independent. It was originally developed on a Cray under COS and tested on a MicroVAX 3200 under VMS 5.1.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ARC-12620
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-24
    Description: This algorithm has been developed for calculating both the quantity of compressor bleed flow required to cool a turbine and the resulting decrease in efficiency due to cooling air injected into the gas stream. Because of the trend toward higher turbine inlet temperatures, it is important to accurately predict the required cooling flow. This program is intended for use with axial flow, air-breathing jet propulsion engines with a variety of airfoil cooling configurations. The algorithm results have compared extremely well with figures given by major engine manufacturers for given bulk metal temperatures and cooling configurations. The program calculates the required cooling flow and corresponding decrease in stage efficiency for each row of airfoils throughout the turbine. These values are combined with the thermodynamic efficiency of the uncooled turbine to predict the total bleed airflow required and the altered turbine efficiency. There are ten airfoil cooling configurations and the algorithm allows a different option for each row of cooled airfoils. Materials technology is incorporated and requires the date of the first year of service for the turbine stator vane and rotor blade. The user must specify pressure, temperatures, and gas flows into the turbine. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 3080 series computer with a central memory requirement of approximately 61K of 8 bit bytes. This program was developed in 1980.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LEW-13999
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-08-24
    Description: A fast algorithm has been developed for accurately generating boundary-conforming, three-dimensional consecutively refined computational grids applicable to arbitrary wing-body and axial turbomachinery geometries. This algorithm has been incorporated into the GRID3O computer program. The method employed in GRID3O is based on using an analytic function to generate two-dimensional grids on a number of coaxial axisymmetric surfaces positioned between the centerbody and the outer radial boundary. These grids are of the O-type and are characterized by quasi-orthogonality, geometric periodicity, and an adequate resolution throughout the flow field. Because the built-in nonorthogonal coordinate stretching and shearing cause the grid lines leaving the blade or wing trailing-edge to end at downstream infinity, use of the generated grid simplifies the numerical treatment of three-dimensional trailing vortex sheets. The GRID3O program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 450K of 8 bit bytes. The GRID3O program was developed in 1981.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LEW-13818
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-24
    Description: As turbine-engine core operating conditions become more severe, designers must develop more effective means of cooling blades and vanes. In order to design reliable, cooled turbine blades, advanced transient thermal calculation techniques are required. The TACT1 computer program was developed to perform transient and steady-state heat-transfer and coolant-flow analyses for cooled blades, given the outside hot-gas boundary condition, the coolant inlet conditions, the geometry of the blade shell, and the cooling configuration. TACT1 can analyze turbine blades, or vanes, equipped with a central coolant-plenum insert from which coolant-air impinges on the inner surface of the blade shell. Coolant-side heat-transfer coefficients are calculated with the heat transfer mode at each station being user specified as either impingement with crossflow, forced convection channel flow, or forced convection over pin fins. A limited capability to handle film cooling is also available in the program. The TACT1 program solves for the blade temperature distribution using a transient energy equation for each node. The nodal energy balances are linearized, one-dimensional, heat-conduction equations which are applied at the wall-outer-surface node, at the junction of the cladding and the metal node, and at the wall-inner-surface node. At the mid-metal node a linear, three-dimensional, heat-conduction equation is used. Similarly, the coolant pressure distribution is determined by solving the set of transfer momentum equations for the one-dimensional flow between adjacent fluid nodes. In the coolant channel, energy and momentum equations for one-dimensional compressible flow, including friction and heat transfer, are used for the elemental channel length between two coolant nodes. The TACT1 program first obtains a steady-state solution using iterative calculations to obtain convergence of stable temperatures, pressures, coolant-flow split, and overall coolant mass balance. Transient calculations are based on the steady-state solutions obtained. Input to the TACT1 program includes a geometrical description of the blade and insert, the nodal spacing to be used, and the boundary conditions describing the outside hot-gas and the coolant-inlet conditions. The program output includes the value of nodal temperatures and pressures at each iteration. The final solution output includes the temperature at each coolant node, and the coolant flow rates and Reynolds numbers. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 480K of 8 bit bytes. The TACT1 program was developed in 1978.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LEW-13293
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-24
    Description: This is a finite-difference program for calculating the viscous compressible boundary layer flow over either planar or axisymmetric surfaces. The flow may be initially laminar and progress through a transitional zone to a fully turbulent flow, or it may remain laminar, depending on the imposed boundary conditions, laws of viscosity, and numerical solution of the momentum and energy equations. The flow may also be forced into a turbulent flow at a chosen spot by the data input. The input may contain factors of arbitrary Reynolds number, free-stream Mach number, free stream turbulence, wall heating or cooling, longitudinal wall curvature, wall suction or blowing, and wall roughness. The solution may start from an initial Falkner-Skan similarity profile, an approximate equilibrium turbulent profile, or an initial arbitrary input profile. This program has been implemented on the IBM 7094/7044 Direct Couple System. This program is written in FORTRAN IV and was developed in 1974.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LEW-12178
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-24
    Description: A computer program has been developed for the design of sharp-edged throat supersonic nozzles where losses are accounted for by correcting the ideal nozzle geometry for boundary layer displacement thickness. The ideal nozzle is designed by the method of characteristics to produce uniform parallel flow at the nozzle exit in the smallest possible distance. Boundary-layer parameters (displacement and momentum thicknesses) are calculated for the ideal nozzle, and the final nozzle geometry is obtained by adding the displacement thickness to the ideal nozzle coordinates. The boundary layer parameters are also used to calculate the aftermixing conditions downstream of the nozzle assuming the flow mixes to a uniform state. The computer program input consists essentially of the nozzle-exit Mach number, specific-heat ratio, nozzle angle, throat half-height, nozzle subsonic section coordinates and corresponding pressure ratios, total temperature and pressure, gas constant, and initial momentum or displacement thickness. The program gas properties are set up for air; for other gases, changes are required to the program. The computer program output consists of the corrected nozzle coordinates, the principal boundary-layer parameters, and the aftermixing conditions. This program has been implemented on the IBM 7094/7044 Direct Couple System.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LEW-11636
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: A computer program has been developed which analyzes by means of mathematical models the temperature profiles in the contents of a filled propellant tank. In designing space vehicles using cryogenic liquid propellants, it is necessary to know how heat transferred from the tank walls and heat absorbed internally affect the temperature distribution with the tank contents. The mathematical flow model is based on results from small-scale experiments. The results showed that when a subcooled fluid is subject to both nonuniform internal heating and wall heating, two distinct temperature regions are developed. In the lower region, the fluid is thoroughly mixed and maintains a uniform temperature profile. In the upper region, a stratified layer develops, and a temperature gradient is formed from the accumulation of warm fluid from the boundary layer along the tank walls; it also indicated that the temperature profiles in the stratified layer exhibited similarity. This concept was developed primarily for internal heating caused by nuclear radiation. However, the theory and computer program are applicable for any form of internal or bulk heating. This program is written in FORTRAN IV for batch execution and has been implemented on the IBM 7094. This program was developed in 1970.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LEW-11034
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-24
    Description: This program solves the two-dimensional, compressible laminar or turbulent boundary-layer equations in an arbitrary pressure gradient. Cohen and Reshotko's method is used for the laminar boundary layer, Sasman and Cresci's method for the turbulent boundary layer, and the Schlichting-Ulrich-Granville method to predict transition. Transition may also be forced at any point by the user. Separation, if it occurs, is predicted for both laminar and turbulent flow. The user may begin values for displacement thickness and momentum thickness in either laminar or turbulent flow. This program was implemented on the IBM 7094.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LEW-11097
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: New research on hypersonic vehicles, such as the National Aero-Space Plane (NASP), has raised concerns about the effects of shock-wave interference on various structural components of the craft. State-of-the-art aerothermal analysis software is inadequate to predict local flow and heat flux in areas of extremely high heat transfer, such as the surface impingement of an Edney-type supersonic jet. EASI revives and updates older computational methods for calculating inviscid flow field and maximum heating from shock wave interference. The program expands these methods to solve problems involving the six shock-wave interference patterns on a two-dimensional cylindrical leading edge with an equilibrium chemically reacting gas mixture (representing, for example, the scramjet cowl of the NASP). The inclusion of gas chemistry allows for a more accurate prediction of the maximum pressure and heating loads by accounting for the effects of high temperature on the air mixture. Caloric imperfections and specie dissociation of high-temperature air cause shock-wave angles, flow deflection angles, and thermodynamic properties to differ from those calculated by a calorically perfect gas model. EASI contains pressure- and temperature-dependent thermodynamic and transport properties to determine heating rates, and uses either a calorically perfect air model or an 11-specie, 7-reaction reacting air model at equilibrium with temperatures up to 15,000 K for the inviscid flowfield calculations. EASI solves the flow field and the associated maximum surface pressure and heat flux for the six common types of shock wave interference. Depending on the type of interference, the program solves for shock-wave/boundary-layer interaction, expansion-fan/boundary-layer interaction, attaching shear layer or supersonic jet impingement. Heat flux predictions require a knowledge (from experimental data or relevant calculations) of a pertinent length scale of the interaction. Output files contain flow-field information for the various shock-wave interference patterns and their associated maximum surface pressure and heat flux predictions. EASI is written in FORTRAN 77 for a DEC VAX 8500 series computer using the VAX/VMS operating system, and requires 75K of memory. The program is available on a 9-track 1600 BPI magnetic tape in DEC VAX BACKUP format. EASI was developed in 1989. DEC, VAX, and VMS are registered trademarks of the Digital Equipment Corporation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LAR-14532
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Current investigations of the hydrogen-fueled supersonic combustion ramjet engine have delineated several technological problem areas. One area, the analysis of the injection, turbulent mixing, and combusiton of hydrogen, requires the accurate calculation of the supersonic combustion flow fields. This calculation has proven difficult because of an interesting phenomena which makes possible the transition from supersonic to subsonic flow in the combustion field, due to the temperature transitions which occur in the flow field. This computer program was developed to use viscous characteristics theory to analyze supersonic combustion flow fields with imbedded subsonic regions. Intended to be used as a practical design tool for two-dimensional and axisymmetric supersonic combustor development, this program has proven useful in the analysis of such problems as determining the flow field of a single underexpanded hydrogen jet, the internal flow of a gas sampling probe, the effects of fuel-injector strut shape, and the effects of changes in combustor configuration. Both combustion and diffusive effects can significantly alter the wave pattern in a supersonic field and generate significant pressure gradients in both the axial and radial directions. The induced pressure, in turn, substantially influences the ignition delay and reaction times as well as the velocity distribution. To accurately analyze the flow fields, the effects of finite rate chemistry, mixing, and wave propagation must be properly linked to one another. The viscous characteristics theory has been used in the past to describe flows that are purely supersonic; however, the interacting pressure effects in the combustor often allow for the development of shock waves and imbedded subsonic regions. Numerical investigation of these transonic situations has required the development of a new viscous characteristics procedure which is valid within the subsonic region and can be coupled with the standard viscous characteristics procedure in the supersonic region. The basic governing equations used are the 'viscous-inviscid' equations, similar to those employed in higher-order boundary layer analyses, with finite rate chemistry terms included. In addition, the Rankine-Hugoniot and Prandtl-Meyer relations are used to compute shock and expansion conditions. The program can handle up to 20 simultaneous shock waves. Chemistry terms are computed for a 7-species 8-mechanism hydrogen-air reaction scheme. The user input consists of a physical description of the combustor and flow determination parameters. Output includes detail flow parameter values at selected points within the flow field. This computer program is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 175 with a central memory requirement of approximately 114K (octal) of 60 bit words. The program was developed in 1978.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LAR-12598
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-08-24
    Description: SINDA, the Systems Improved Numerical Differencing Analyzer, is a software system for solving lumped parameter representations of physical problems governed by diffusion-type equations. SINDA was originally designed for analyzing thermal systems represented in electrical analog, lumped parameter form, although its use may be extended to include other classes of physical systems which can be modeled in this form. As a thermal analyzer, SINDA can handle such interrelated phenomena as sublimation, diffuse radiation within enclosures, transport delay effects, and sensitivity analysis. FLUINT, the FLUid INTegrator, is an advanced one-dimensional fluid analysis program that solves arbitrary fluid flow networks. The working fluids can be single phase vapor, single phase liquid, or two phase. The SINDA'85/FLUINT system permits the mutual influences of thermal and fluid problems to be analyzed. The SINDA system consists of a programming language, a preprocessor, and a subroutine library. The SINDA language is designed for working with lumped parameter representations and finite difference solution techniques. The preprocessor accepts programs written in the SINDA language and converts them into standard FORTRAN. The SINDA library consists of a large number of FORTRAN subroutines that perform a variety of commonly needed actions. The use of these subroutines can greatly reduce the programming effort required to solve many problems. A complete run of a SINDA'85/FLUINT model is a four step process. First, the user's desired model is run through the preprocessor which writes out data files for the processor to read and translates the user's program code. Second, the translated code is compiled. The third step requires linking the user's code with the processor library. Finally, the processor is executed. SINDA'85/FLUINT program features include 20,000 nodes, 100,000 conductors, 100 thermal submodels, and 10 fluid submodels. SINDA'85/FLUINT can also model two phase flow, capillary devices, user defined fluids, gravity and acceleration body forces on a fluid, and variable volumes. SINDA'85/FLUINT offers the following numerical solution techniques. The Finite difference formulation of the explicit method is the Forward-difference explicit approximation. The formulation of the implicit method is the Crank-Nicolson approximation. The program allows simulation of non-uniform heating and facilitates modeling thin-walled heat exchangers. The ability to model non-equilibrium behavior within two-phase volumes is included. Recent improvements to the program were made in modeling real evaporator-pumps and other capillary-assist evaporators. SINDA'85/FLUINT is available by license for a period of ten (10) years to approved licensees. The licensed program product includes the source code and one copy of the supporting documentation. Additional copies of the documentation may be purchased separately at any time. SINDA'85/FLUINT is written in FORTRAN 77. Version 2.3 has been implemented on Cray series computers running UNICOS, CONVEX computers running CONVEX OS, and DEC RISC computers running ULTRIX. Binaries are included with the Cray version only. The Cray version of SINDA'85/FLUINT also contains SINGE, an additional graphics program developed at Johnson Space Flight Center. Both source and executable code are provided for SINGE. Users wishing to create their own SINGE executable will also need the NASA Device Independent Graphics Library (NASADIG, previously known as SMDDIG; UNIX version, MSC-22001). The Cray and CONVEX versions of SINDA'85/FLUINT are available on 9-track 1600 BPI UNIX tar format magnetic tapes. The CONVEX version is also available on a .25 inch streaming magnetic tape cartridge in UNIX tar format. The DEC RISC ULTRIX version is available on a TK50 magnetic tape cartridge in UNIX tar format. SINDA was developed in 1971, and first had fluid capability added in 1975. SINDA'85/FLUINT version 2.3 was released in 1990.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: HQN-11035
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-08-24
    Description: The transient response of a thermal protection material to heat applied to the surface can be calculated using the CHAP III computer program. CHAP III can be used to analyze pyrolysis gas chemical kinetics in detail and examine pyrolysis reactions-indepth. The analysis includes the deposition of solid products produced by chemical reactions in the gas phase. CHAP III uses a modelling technique which can approximate a wide range of ablation problems. The energy equation used in CHAP III incorporates pyrolysis (both solid and gas reactions), convection, conduction, storage, work, kinetic energy, and viscous dissipation. The chemically reacting components of the solid are allowed to vary as a function of position and time. CHAP III employs a finite difference method to approximate the energy equations. Input values include specific heat, thermal conductivity, thermocouple locations, enthalpy, heating rates, and a description of the chemical reactions expected. The output tabulates the temperature at locations throughout the ablator, gas flow within the solid, density of the solid, weight of pyrolysis gases, and rate of carbon deposition. A sample case is included, which analyzes an ablator material containing several pyrolysis reactions subjected to an environment typical of entry at lunar return velocity. CHAP III is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 170 series computer operating under NOS with a central memory requirement of approximately 102K (octal) of 60 bit words. This program was developed in 1985.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LAR-13502
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-08-24
    Description: This program performs a one-dimensional numerical analysis of the transient thermal response of multi-layer insulative systems. The analysis can determine the temperature distribution through a system consisting of from one to four layers, one of which can be an air gap. Concentrated heat sinks at any interface can be included. The computer program based on the analysis will determine the thickness of a specified layer that will satisfy a temperature limit criterion at any point in the insulative system. The program will also automatically calculate the thickness at several points on a system and determine the total system mass. This program was developed as a tool for designing thermal protection systems for high-speed aerospace vehicles but could be adapted to many areas of industry involved in thermal insulation systems. In this package, the equations describing the transient thermal response of a system are developed. The governing differential equation for each layer and boundary condition are put in finite-difference form using a Taylor's series expansion. These equations yield an essentially tridiagonal matrix of unknown temperatures. A procedure based on Gauss' elimination method is used to solve the matrix. This program is written in FORTRAN IV for the CDC RUN compiler and has been implemented on a CDC 6000 series machine operating under SCOPE 3.0. This program requires a minimum of 44K (octal) of 60 bit words of memory.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LAR-12057
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-08-24
    Description: A computer program has been developed to analyze the transient response of an ablating axisymmetric body, including the effect of shape change. The governing differential equation, the boundary conditions for the analysis on which the computer program is based, and the method of solution of the resulting finite-difference equations are discussed in the documentation. Some of the features of the analysis and the associated program are (1) the ablation material is considered to be orthotropic with temperature-dependent thermal properties; (2) the thermal response of the entire body is considered simultaneously; (3) the heat transfer and pressure distribution over the body are adjusted to the new geometry as ablation occurs; (4) the governing equations and several boundary-condition options are formulated in terms of generalized orthogonal coordinates for fixed points in a moving coordinate system; (5) the finite-difference equations are solved implicitly; and (6) other instantaneous body shapes can be displayed with a user-supplied plotting routine. The physical problem to be modeled with the analysis is described by FORTRAN input variables. For example, the external body geometry is described in the W, Z coordinates; material density is given; and the stagnation cold-wall heating rate is given in a time-dependent array. Other input variables are required which control the solution, specify boundary conditions, and determine output from the program. The equations have been programmed so that either the International System of Units or the U. S. Customary Units may be used. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 Series computer. This program was developed in 1972.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LAR-11049
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The GTRAN program was developed to solve transient, as well as steady state, problems for gas piping systems. GTRAN capabilities allow for the analysis of a variety of system configurations and components. These include: multiple pipe junctions; valves that change position with time; fixed restrictions (orifices, manual valves, filters, etc.); relief valves; constant pressure sources; and heat transfer for insulated piping and piping subjected to free or forced convection. In addition, boundary conditions can be incorporated to simulate specific components. The governing equations of GTRAN are the one-dimensional transient gas dynamic equations. The three equations for pressure, velocity, and density are reduced to numerical equations using an implicit Crank-Nicholson finite difference technique. Input to GTRAN includes a description of the piping network, the initial conditions, and any events (e.g. valve closings) occuring during the period of analysis. Output includes pressure, velocity, and density versus time. GTRAN is written in FORTRAN 77 for batch execution and has been implemented on a DEC VAX series computer. GTRAN was developed in 1983.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: KSC-11288
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-08-24
    Description: Results are presented for the numerical simulation of unsteady viscous incompressible flow past thick airfoils. Specifically, flow past a NACA 4424 at an angle of attack of 2.5 deg and Reynolds numbers in the range of 1700-4000 has been simulated using the spectral element method. At these conditions the flow is separatedd and an unsteady wake is formed. Application of the method of empirical eigenfunction reveals the structure of the most energetic components of the flow. These are found to occur in pairs that, through phase exchange, are responsible for the vortex shedding. A set of ordinary differential equations is obtained for the amplitudes of these eigenfunctions by a Galerkin projection of the Navier-Stokes equations. The solutions of the model system are compared with the full simulation. The work is of relevance to the transition process and observed routes to chaos in airfoil wakes.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 6; p. 1222-1227
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-08-24
    Description: The objective of this study is to develop a reduced mechanism for ethylene oxidation. The authors are interested in a model with a minimum number of species and reactions that still models the chemistry with reasonable accuracy for the expected combustor conditions. The model will be validated by comparing the results to those calculated with a detailed kinetic model that has been validated against the experimental data.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 1; p. 213-216
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-08-24
    Description: Artificial viscosity is added either implicity or explicitly in practically every numerical scheme for suppressing spurious oscillations in the solution of fluid-dynamics equations. In the present central-difference scheme, artificial viscosity is added explicitly for suppressing high-frequency oscillations and achieving good convergence properties. The amount of artificial viscosity added is controlled through the use of preselected coefficients. In the standard scheme, scalar coefficients based on the spectral radii of the Jacobian of the convective fluxes are used. However, this can add too much viscosity to the slower waves. Hence, the use of matrix-valued coefficients, which give appropriate viscosity for each wave component, is suggested. With the matrix-valued coefficients, the central-difference scheme produces more accurate solutions on a given grid, particularly in the vicinity of shocks and boundary layers, while still maintaining good convergence properties.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 1; p. 39-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-08-24
    Description: A potential flow based three-dimensional panel method was modified to treat time-dependent conditions in which several submerged bodies can move within the fluid along different trajectories. This modification was accomplished by formulating the momentary solution in an inertial frame of reference, attached to the undisturbed stationary fluid. Consequently, the numerical interpretation of the multiple-body, solid-surface boundary condition and the viscous wake rollup was considerably simplified. The usteady capability of this code was calibrated and validated by comparing computed results with closed-form analytical results available for an airfoil, which was impulsively set into a constant speed forward motion. To demonstrate the multicomponent capability, computations were made for two wings following closely intersecting paths (i.e., simulations aimed at avoiding mid-air collisions) and for a flowfield with relative rotation (i.e., the case of a helicopter rotor rotating relative to the fuselage). Computed results for the cases were compared to experimental data, when such data was available.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 1; p. 62-68
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-08-24
    Description: The objective of this work is to validate mathematically derived clock synchronization theories and their associated algorithms through experiment. Two theories are considered, the Interactive Convergence Clock Synchronization Algorithm and the Mid-Point Algorithm. Special clock circuitry was designed and built so that several operating conditions and failure modes (including malicious failures) could be tested. Both theories are shown to predict conservative upper bounds (i.e., measured values of clock skew were always less than the theory prediction). Insight gained during experimentation led to alternative derivations of the theories. These new theories accurately predict the clock system's behavior. It is found that a 100% penalty is paid to tolerate worst case failures. It is also shown that under optimal conditions (with minimum error and no failures) the clock skew can be as much as 3 clock ticks. Clock skew grows to 6 clock ticks when failures are present. Finally, it is concluded that one cannot rely solely on test procedures or theoretical analysis to predict worst case conditions. conditions.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: IEEE Transactions on Computers (ISSN 0018-9340); 43; 6; p. 676-686
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-08-24
    Description: An approximate method for calculating heating rates on three-dimensional vehicles at angle of attack is presented. The method is based on the axisymmetric analog for three-dimensional boundary layers and uses a generalized body-fitted coordinate system. Edge conditions for the boundary-layer solution are obtained from an inviscid flowfield solution, and because of the coordinate system used, the method is applicable to any blunt body geometry for which an inviscid flowfield solution can be obtained. The method is validated by comparing with experimental heating data and with thin-layer Navier-Stokes calculations on the shuttle orbiter at both wind-tunnel and flight conditions and with thin-layer Navier-Stokes calculations on the HL-20 at wind-tunnel conditions.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4650); 31; 3; p. 345-354
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: This paper presents the results of a study on the variation of the critical Marangoni number (Ma(sub c)) for the onset of Benard convection in a finite liquid layer bounded horizontally as well as from below. A direct-numerical-simulation procedure is devised to determine the Ma(sub c) for aspect ratios (Ar) ranging from 0.8 to 10. The results predict a strong increase of Ma(sub c) as Ar decreases to below 2. A dip of Ma(sub c) occurs between Ar = 1.45 and 1.3, which is accompanied by a pattern transition from a two-cell convection to a unicellular flow. For Ar above 4, the calculated Ma(sub c) shows little change and asymptotically approach a value of 116.15, with Biot number (Bi) equal to 1.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Microgravity Science and Technology (ISSN 0938-0108); 7; 2; p. 98-109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-08-24
    Description: An experimental investigation carried out to determine aerodynamic and acoustic characteristics of a low area ratio rectangular jet ejector is reported. A supersonic primary jet issuing from a rectangular convergent-divergent nozzle of aspect ratio 4, into a rectangular duct of area ratio 3, was used. Improved performance was found when the ejector screech tone is most intense and appears to match the most unstable Strouhal number of the free rectangular jet. When the primary jet was operating at over and ideally expanded conditions, significant noise reduction was obtained with the ejector as compared to a corresponding free jet. Application of particle image velocimetry to high speed ejector flows was demonstrated through the measurement of instantaneous two dimensional velocity fields.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: VKI, Non-Intrusive Measurement Techniques, Volume 2; 13 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Particle imaging velocimetry, which is rapidly becoming an essential tool for the synoptic measurement of two dimensional velocity fields, is addressed. This rapid development is carried out by a growing number of fluid mechanics experimentalists who recognize the unique capabilities of the technique to measure velocity fields in both space and time, and is supported by the concomitant development and availability of microcomputer hardware and software. Various applications of the technique to map different flow regimes are described and illustrated. Hardware implementations of the technique which utilize both conventional photography for image acquisition as well as digital 'online' methods for integrated image acquisition and processing are discussed. Recommendations to further enhance the technique and make it possible to map the three velocity components in three dimensional flow regions are given.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: VKI, Non-Intrusive Measurement Techniques, Volume 1; 68 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2011-08-24
    Description: One of the key technical elements in NASA's high speed research program is reducing the noise level to meet the federal noise regulation. The dominant noise source is associated with the supersonic jet discharged from the engine exhaust system. Whereas the turbulence mixing is largely responsible for the generation of the jet noise, a broadband shock-associated noise is also generated when the nozzle operates at conditions other than its design. For both mixing and shock noise components, because the source of the noise is embedded in the jet plume, one can expect that jet noise can be predicted from the jet flowfield computation. Mani et al. developed a unified aerodynamic/acoustic prediction scheme by applying an extension of Reichardt's aerodynamic model to compute turbulent shear stresses which are utilized in estimating the strength of the noise source. Although this method produces a fast and practical estimate of the jet noise, a modification by Khavaran et al. has led to an improvement in aerodynamic solution. The most notable feature in this work is that Reichardt's model is replaced with the computational fluid dynamics (CFD) solution of Reynolds-averaged Navier-Stokes equations. The major advantage of this work is that the essential, noise-related flow quantities such as turbulence intensity and shock strength can be better predicted. The predictions were limited to a shock-free design condition and the effect of shock structure on the jet mixing noise was not addressed. The present work is aimed at investigating this issue. Under imperfectly expanded conditions the existence of the shock cell structure and its interaction with the convecting turbulence structure may not only generate a broadband shock-associated noise but also change the turbulence structure, and thus the strength of the mixing noise source. Failure in capturing shock structures properly could lead to incorrect aeroacoustic predictions.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 9; p. 1920-1923
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2011-08-24
    Description: A dimensionless group, called a pressure loss modulus (N(sub PL)), is introduced that, in conjunction with an appropriately defined Reynolds number, is of considerable engineering utility in correlating steady-state Delta p vs flow calibration data and subsequently as a predictor, using the same or a different fluid, in uniformly distributed pressure loss devices. It is particularly useful under operation in the transition regime. Applications of this simple bivariate correlation to three diverse devices of particular interest for small liquid rocket engine fluid systems are discussed: large L/D capillary tube restrictors, packed granular catalyst beds, and stacked vortex-loss disk restrictors.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 9; p. 1890-1894
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-08-24
    Description: A numerical study of axisymmetric overexpanded nozzle is presented. The flow structure of the startup and throttle-down processes are examined. During the impulsive startup process, observed flow features include the Mach disk, separation shock, Mach stem, vortex core, contact surface, slip stream, initial shock front, and shocklet. Also the movement of the Mach disk is not monotonical in the downstream direction. For a range of pressure ratios, hysteresis phenomenon occurs; different solutions were obtained depending on different processes. Three types of flow structures were observed. The location of separation point and the lower end turning point of hysteresis are closely predicted. A high peak of pressure is associated with the nozzle flow reattachment. The reversed vortical structure and affects engine performance.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 9; p. 1836-1843
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2011-08-24
    Description: Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 6; p. 1325-1328
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2011-08-24
    Description: The transition of an incompressible three-dimensional boundary layer with strong cross-flow is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two lower-branch Tollmien-Schlichting waves which mutually interact nonlinearly to induce a longitudinal vortex flow. The vortex motion in turn gives rise to significant wave modulation via wall-shear forcing. The characteristic Reynolds number is large and, as a consequence, the waves' and the vortex motion are governed primarily by triple deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Following analysis and computation over a wide range of parameters, three distinct responses are found to emerge in the nonlinear behavior of the flow solution downstream: an algebraic finite-distance singularity, far-downstream saturation or far-downstream wave decay leaving pure vortex flow. These depend on the input conditions, the wave angles and the size of the cross flow.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Royal Society (London) Proceedings, Series A - Mathematical and Physical Sciences (ISSN 0962-8444); 446; 1927; p. 319-340
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2011-08-24
    Description: A preliminary investigation has been conducted on instrumented fasteners for use as sensors to measure the shear loads transmitted by individual fasteners installed in double-splice joints. Calibration and load verification tests were conducted for instrumented fasteners installed at three fastener torque levels. Results from calibration tests show that the shear strains obtained from the instrumented fasteners vary linearly with the applied load and that the instrumented fasteners can be effectively used to measure shear loads transmitted by individual fasteners installed in double-splice joints. Tests were also conducted with three instumented fasteners installed in a typical double-splice joint. The test results showed that the load distribution between individual fasteners is dependent on the location of the fastener in the joint and the fastener torque level.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Experimental Mechanics (ISSN 0014-4851); 34; 1; p. 16-22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2011-08-24
    Description: A computational method for predicting the two-phase transient fluid flow and heat transfer characteristics within a reservoir of the capillary-pumped-loop, intended to be used for spacecraft thermal management, has been developed. The model is based on the enthalpy formulation in an axisymmetric configuration. The reservoir operates under a constant thermodynamic pressure by allowing mass exchange between the reservoir and the outside loop. Both 1 g and 0 g environments have been considered to assess the effects of gravity on the reservoir performance. Depending on the gravity level, the power input and the reservoir orientation, three different convection modes have been identified, namely, the thermocapillary mode, the buoyancy mode, and the rapid-expansion mode (caused by interface movement). The impact of these modes on the performance of the reservoir and the associated physical phenomena have been discussed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Microgravity Science and Technology (ISSN 0938-0108); 7; 3; p. 219-227
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2011-08-24
    Description: A preconditioned Krylov subspace method (GMRES) is used to solve the linear systems of equations formed at each time-integration step of the unsteady, two-dimensional, compressible Navier-Stokes equations of fluid flow. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux-split formulation. Several preconditioning techniques are investigated to enhance the efficiency and convergence rate of the implicit solver based on the GMRES algorithm. The superiority of the new solver is established by comparisons with a conventional implicit solver, namely line Gauss-Seidel relaxation (LGSR). Computational test results for low-speed (incompressible flow over a backward-facing step at Mach 0.1), transonic flow (trailing edge flow in a transonic turbine cascade), and hypersonic flow (shock-on-shock interactions on a cylindrical leading edge at Mach 6.0) are presented. For the Mach 0.1 case, overall speedup factors of up to 17 (in terms of time-steps) and 15 (in terms of CPU time on a CRAY-YMP/8) are found in favor of the preconditioned GMRES solver, when compared with the LGSR solver. The corresponding speedup factors for the transonic flow case are 17 and 23, respectively. The hypersonic flow case shows slightly lower speedup factors of 9 and 13, respectively. The study of preconditioners conducted in this research reveals that a new LUSGS-type preconditioner is much more efficient than a conventional incomplete LU-type preconditioner.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Computational Physics (ISSN 0021-9991); 110; 1; p. 68-81
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2011-08-24
    Description: A grid generation and flow solution algorithm for the Euler equations on unstructured grids is presented. The grid generation scheme utilizes Delaunay triangulation and self-generates the field points for the mesh based on cell aspect ratios and allows for clustering near solid surfaces. The flow solution method is an implicit algorithm in which the linear set of equations arising at each time step is solved using a Gauss Seidel procedure which is completely vectorizable. In addition, a study is conducted to examine the number of subiterations required for good convergence of the overall algorithm. Grid generation results are shown in two dimensions for a National Advisory Committee for Aeronautics (NACA) 0012 airfoil as well as a two-element configuration. Flow solution results are shown for two-dimensional flow over the NACA 0012 airfoil and for a two-element configuration in which the solution has been obtained through an adaptation procedure and compared to an exact solution. Preliminary three-dimensional results are also shown in which subsonic flow over a business jet is computed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Computational Physics (ISSN 0021-9991); 110; 1; p. 23-38
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2011-08-24
    Description: ELM is a simple computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in nuclear thermal rockets. Written for the nuclear propulsion project of the Space Exploration Initiative, ELM evaluates the various heat transfer coefficient and friction factor correlations available for turbulent pipe flow with heat addition. In the past, these correlations were found in different reactor analysis codes, but now comparisons are possible within one program. The logic of ELM is based on the one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature across a control volume. Since the control volume is an incremental length of tube, the corresponding pressure drop is determined by application of the Law of Conservation of Momentum. The size, speed, and accuracy of ELM make it a simple tool for use in fuel element parametric studies. ELM is a machine independent program written in FORTRAN 77. It has been successfully compiled on an IBM PC compatible running MS-DOS using Lahey FORTRAN 77, a DEC VAX series computer running VMS, and a Sun4 series computer running SunOS UNIX. ELM requires 565K of RAM under SunOS 4.1, 360K of RAM under VMS 5.4, and 406K of RAM under MS-DOS. Because this program is machine independent, no executable is provided on the distribution media. The standard distribution medium for ELM is one 5.25 inch 360K MS-DOS format diskette. ELM was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LEW-15423
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The Jet Propulsion Laboratory Contamination Analysis Program (CAP) is a generalized transient executive analysis computer code which solves realistic mass transport problems in the free molecular flow environment. These transport problems involve mass flux from surface source emission and re-emission, venting, and engine emission. CAP solution capability allows for one-bounce mass reflections if required. CAP was developed to solve thin-film contamination problems in the free molecular flow environment, the intent being to provide a powerful analytic tool for evaluating spacecraft contamination problems. The solution procedure uses an enclosure method based on a lumped-parameter multinodal approach with mass exchange between nodes. Transient solutions are computed by the finite difference Euler method. First-order rate theory is used to represent surface emission and reemission (user care must be taken to insure the problem is appropriate for such behavior), and all surface emission and reflections are assumed diffuse. CAP does not include the effects of post-deposition chemistry or interaction with the ambient atmosphere. CAP reads in a model represented by a multiple-block data stream. CAP allows the user to edit the input data stream and stack sequential editing operations (or cases) in order to make complex changes in behavior (surface temperatures, engine start-up and shut-down, etc.) in a single run if desired. The eight data blocks which make up the input data stream consist of problem control parameters, nodal data (area, temperature, mass, etc.), engine or vent distribution factors (based upon plume definitions), geometric configuration factors (diffuse surface emission), surface capture coefficient tables, source emission rate constant tables, reemission rate constant tables, and partial node to body collapse capability (for deposition rates only). The user must generate this data stream, since neither the problem-specific geometric relationships, the constituents involved, nor plume distribution functions are a part of CAP. Instead, these are used to generate the data stream model CAP solves. Outputs vary from individual deposition rates of exchange, on an internodal basis and on a constituent basis as a function of time, to deposition on each surface on a constituent basis as a function of time. The type of outputs may be user-specified by control parameters. CAP allows the user to select output intervals within the solution interval and to generate restart nodal data blocks. CAP is composed of several FORTRAN subroutines which serve specific functions and can be easily edited. The code is relatively small (2152 statements), and contains comment statements for all operations. It is written in relatively generic FORTRAN to be adaptable to a variety of computers. CAP was implemented on a DEC VAX 11/780 computer, and is distributed on a 9-track DEC VAX BACKUP format magnetic tape. Virtual memory required is 4.6 MB, which corresponds to a 900 node model capacity. CAP was originally developed under contract for NASA/Goddard Space Flight Center in 1979 by JPL, and was subsequently modified as required for project support at JPL. CAP is a copyrighted work with all copyright vested in NASA.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NPO-17982
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2011-08-24
    Description: A robust and efficient technique is discussed for surface-grid generation on a general curvilinear surface. This technique is based on a nonuniform parameter space and allows for the generation of surface grids on highly skewed and nonuniform spaced background surface-grids. This method has been successfully integrated into the GRIDGEN software system.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Computational Physics (ISSN 0021-9991); 113; 1; p. 112-121
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: JTMIX was written to allow the prediction of both ideal and realistic properties of mixed gases in the 65-80K temperature range. It allows mixed gas J-T analysis for any fluid combination of neon, nitrogen, various hydrocarbons, argon, oxygen, carbon monoxide, carbon dioxide, and hydrogen sulfide. When used in conjunction with the NIST computer program DDMIX, JTMIX has accurately predicted order-of-magnitude increases in J-T cooling capacities when various hydrocarbons are added to nitrogen, and it predicts nitrogen normal boiling point depressions to as low as 60K when neon is added. JTMIX searches for heat exchanger "pinch points" that can result from insolubility of various components in each other. These points result in numerical solutions that cannot exist. The length of the heat exchanger is searched for such points and, if they exist, the user is warned and the temperatures and heat exchanger effectiveness are corrected to provide a real solution. JTMIX gives very good correlation (within data accuracy) to mixed gas data published by the USSR and data taken by APD for the U.S. Naval Weapons Lab. Data taken at JPL also confirms JTMIX for all cases tested. JTMIX is written in Turbo C for IBM PC compatible computers running MS-DOS. The National Institute of Standards and Technology's (NIST, Gaithersburg, MD, 301-975-2208) computer code DDMIX is required to provide mixed-fluid enthalpy data which is input into JTMIX. The standard distribution medium for this program is a 5.25 inch 360K MS-DOS format diskette. JTMIX was developed in 1991 and is a copyrighted work with all copyright vested in NASA.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NPO-19097
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Pixel Pusher is a Macintosh application used for viewing and performing minor enhancements on imagery. It will read image files in JPL's two primary image formats- VICAR and PDS - as well as the Macintosh PICT format. VICAR (NPO-18076) handles an array of image processing capabilities which may be used for a variety of applications including biomedical image processing, cartography, earth resources, and geological exploration. Pixel Pusher can also import VICAR format color lookup tables for viewing images in pseudocolor (256 colors). This program currently supports only eight bit images but will work on monitors with any number of colors. Arbitrarily large image files may be viewed in a normal Macintosh window. Color and contrast enhancement can be performed with a graphical "stretch" editor (as in contrast stretch). In addition, VICAR images may be saved as Macintosh PICT files for exporting into other Macintosh programs, and individual pixels can be queried to determine their locations and actual data values. Pixel Pusher is written in Symantec's Think C and was developed for use on a Macintosh SE30, LC, or II series computer running System Software 6.0.3 or later and 32 bit QuickDraw. Pixel Pusher will only run on a Macintosh which supports color (whether a color monitor is being used or not). The standard distribution medium for this program is a set of three 3.5 inch Macintosh format diskettes. The program price includes documentation. Pixel Pusher was developed in 1991 and is a copyrighted work with all copyright vested in NASA. Think C is a trademark of Symantec Corporation. Macintosh is a registered trademark of Apple Computer, Inc.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NPO-18635
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2011-08-24
    Description: The S3 Data Acquisition and Control System, S3DACS, was developed for the Environmental Test Laboratory and Space Simulator at NASA's Jet Propulsion Laboratory. The program is used for monitoring, controlling, and recording information acquired during tests and presenting this information in various formats for easy access by a large number of users. All testing is initiated by a setup procedure that defines what will be tested, limits to be checked, formulas to use, etc. Test results (e.g. temperature, resistance) are then automatically stored in a database for real time display and for future reference. Measurements obtained may be used in various computations defined for the test and selectively presented in tabular, graphical, or electronic representation. Reports may show current or historical events. The S3DACS network software is written in FoxPro/LAN 1.02 and 80386 Assembler for IBM PC and compatibles running MS-DOS 3.31 or higher. Machine requirements include: an 80386 33MHz machine with 10Mb RAM set up as a file server; an 80386 33MHz machine with 4Mb RAM connected to a FLUKE 2240B or 2280 data acquisition device; and an 80386 20MHz machine with 5Mb RAM used as a workstation. Also needed is a National Instruments General Purpose Interface Bus-compatible (GP-IB) Board to enable S3DACS to communicate with IEEE-488 control instruments. Software requirements include: Novell Netware 386 for network management; FoxPro/LAN 1.02 for database management; QEMM 386 version 5.0 for memory management; and DGE version 4, Saywhat, Viewlib, and DBSHOW for graphics and screen displays. The previous list of hardware is the minimum configuration which will allow installation of S3DACS. The addition of workstations and data acquisition devices can occur transparently. S3DACS is distributed on one 5.25 inch 1.2Mb MS-DOS format diskette. The extensive documentation includes a Quick Reference Guide, a Software User's Manual, a Computer Systems Operator's Manual, and a Software Programmer's Manual. The source code is provided in PKZIP format, and the PKUNZIP utility is included. Compiling the assembler source requires Microsoft's Assembler version 5.10. Due to the complexity of this software package, COSMIC strongly recommends the purchase and review of the documentation prior to the purchase of the program. S3DACS was developed in 1990. S3DACS is a copyrighted work with all copyright vested in NASA. All tradenames used are the property of their respective corporate owners.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NPO-18508
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-08-31
    Description: The goal of this work is development of fully electrostatically suspended and rebalancing angular rate sensing micro-gyroscope fabricated according to standard VLSI techniques. Fabrication of test structures is proceeding. Off chip electronics for the electrostatic sensing and driving circuits has been tested. The prototype device will be assembled in a hybrid construction including the FET input stages of the sensors.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA. Langley Research Center, Second International Symposium on Magnetic Suspension Technology, Part 2; p 513-525
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: A recording density of 10 Gbit/sq. in. is being pursued by a number of companies and universities in the National Storage Industry Consortium. It is widely accepted that this goal will be achieved in the laboratory within a few years. In this paper approaches to achieving 100 Gbit/sq. in. storage densities are considered. A major obstacle to continued scaling of magnetic recording to higher densities is that as the bit size is reduced, the grain size in the magnetic media must be reduced in order that media noise does not become so large that the signal to noise ratio (SNR) degrades sufficiently to make detection impossible. At 100 Gbit/sq. in., the bit size is only 0.006 square micrometers, which, in order to achieve 30 dB SNR, requires a grain size of about 2.5 nm. Such small grains are subject to thermal instability, and the recorded information will degrade over time unless the magnetic anisotropy of the materials used is increased significantly, or the media thickness is made much larger than expected on the basis of scaling today's longitudinal media thickness.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA. Goddard Space Flight Center, Fourth NASA Goddard Conference on Mass Storage Systems and Technologies; p 253-254
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-08-31
    Description: A new containerless image furnace with a microwave discharge plasma lamp and electrostatic positioning device was developed for the use of the microgravity experiment on the Japanese experimental module (JEM). The electrostatic positioning system was tested under the reduced gravity environment in the MU-300 aircraft. Solid specimens (maximum weight is 1.3 gr and 10 mm in diameter) and water drops (maximum weight is 0.11 gr and 6 mm in diameter) were successfully controlled under the 0.02G environment. Rotation control of the dielectric specimen was also possible by means of supplying a rotating electric field while the specimen is levitating. The measured rotation speed of the glass shell specimen (0.08 gr, 10 mm) was up to 110 rpm, when the rotating field frequency was 6Hz.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: JPL, Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994; p 15-18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The Hydroblast Research Cell at Marshall Space Flight Center is used to investigate the use of high pressure waterjets to strip paint, grease, adhesive and thermal spray coatings from various substrates. Current methods of cleaning often use ozone depleting chemicals (ODC) such as chlorinated solvents. High pressure waterjet cleaning has proven to be a viable alternative to the use of solvents. A popular method of waterjet cleaning involves the use of a rotating, multijet, high pressure water nozzle which is robotically controlled. This method enables rapid cleaning of a large area, but problems such as incomplete coverage and damage to the substrate from the waterjet have been observed. This report summarizes research consisting of identifying and investigating the basic properties of rotating, multijet, high pressure water nozzles, and how particular designs and modes of operation affect such things as stripping rate, standoff distance and completeness of coverage. The study involved computer simulations, an extensive literature review, and experimental studies of different nozzle designs.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Alabama Univ., Research Reports: 1994 NASA(ASEE Summer Faculty Fellowship Program; 6 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-08-31
    Description: There are available today many data storage devices that serve the diverse application requirements of the consumer, professional entertainment, and computer data processing industries. Storage technologies include semiconductors, several varieties of optical disk, optical tape, magnetic disk, and many varieties of magnetic tape. In some cases, devices are developed with specific characteristics to meet specification requirements. In other cases, an existing storage device is modified and adapted to a different application. For magnetic tape storage devices, examples of the former case are 3480/3490 and QIC device types developed for the high end and low end segments of the data processing industry respectively, VHS, Beta, and 8 mm formats developed for consumer video applications, and D-1, D-2, D-3 formats developed for professional video applications. Examples of modified and adapted devices include 4 mm, 8 mm, 12.7 mm and 19 mm computer data storage devices derived from consumer and professional audio and video applications. With the conversion of the consumer and professional entertainment industries from analog to digital storage and signal processing, there have been increasing references to the 'convergence' of the computer data processing and entertainment industry technologies. There has yet to be seen, however, any evidence of convergence of data storage device types. There are several reasons for this. The diversity of application requirements results in varying degrees of importance for each of the tape storage characteristics.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA. Goddard Space Flight Center, Fourth NASA Goddard Conference on Mass Storage Systems and Technologies; p 237-251
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-08-31
    Description: Current operational capabilities of tape recording for Very Long Baseline Interferometry (VLBI) at the Haystack Observatory allow 0.7 terabytes (12 hours at 128 Mb/s) of data to be stored in a 128 cu. inch volume. On-going efforts are aimed at full time 1 Gb/s operation with two 36-channel headstacks. Applications for linear digital tape recording, with suitable development of thin-film head arrays, suggest a volume density exceeding 1 TB/cu. inch to be achievable in the future.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA. Goddard Space Flight Center, Fourth NASA Goddard Conference on Mass Storage Systems and Technologies; p 115-121
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: A plan has been formulated and selected for a NASA Phase 2 SBIR award for using the VLBA tape recorder for recording general data. The VLBA tape recorder is a high-speed, high-density linear tape recorder developed for Very Long Baseline Interferometry (VLBI) which is presently capable of recording at rates up to 2 Gbit/sec and holding up to 1 Terabyte of data on one tape, using a special interface and not employing error correction. A general-purpose interface and error correction will be added so that the recorder can be used in other high-speed, high-capacity applications.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA. Goddard Space Flight Center, Fourth NASA Goddard Conference on Mass Storage Systems and Technologies; p 393-397
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-08-31
    Description: A flow geometry and flow rate for mixed flowing gas testing is proposed. Use of an impinging jet of humid polluted air can provide a uniform and reproducible exposure of coupons of metal-based magnetic media. Numerical analysis of the fluid flow and mass transfer in such as system has shown that samples confined within a distance equal to the nozzle radius on the surface of impingement are uniformly accessible to pollutants in the impinging gas phase. The critical factor is the nozzle height above the surface of impingement. In particular, the uniformity of exposure is less than plus/minus 2% for a volumetric flow rate of 1600 cm(exp 3)/minute total flow with the following specifications: For a one inch nozzle, the height of the nozzle opening above the stage should be 0.177 inches; for a 2 inch nozzle - 0.390 inches. Not only is the distribution uniform, but one can calculate the maximum delivery rate of pollutants to the samples for comparison with the observed deterioration.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA. Goddard Space Flight Center, Fourth NASA Goddard Conference on Mass Storage Systems and Technologies; p 255-264
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-08-31
    Description: Digital recording may take advantage of many types of media, but usually a preferred type of drive or transport emerges for each. In magnetic tape recording, two approaches have emerged in which essentially the same medium is tracked in two radically different ways. This paper compares the characteristics of Rotary- and Stationary-Head transports in an attempt to establish which approach might be considered for a given application. The conclusion is that in many cases there is no obvious choice based on recording physics and that often the choice will be made on the experimental knowledge of the designer.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA. Goddard Space Flight Center, Fourth NASA Goddard Conference on Mass Storage Systems and Technologies; p 177-183
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-08-31
    Description: A new model for the two-point vector stream function correlation has been developed using tensor invariant arguments and evaluated by the comparison of model predictions with DNS data for incompressible homogeneous turbulent shear flow. This two-point vector stream function model correlation can then be used to calculate the two-point velocity correlation function and other quantities useful in turbulence modeling. The model assumes that the two-point vector stream function correlation can be written in terms of the separation vector and a new tensor function that depends only on the magnitude of the separation vector. The model has a single free model coefficient, which has been chosen by comparison with the DNS data. The relative error of the model predictions of the two-point vector stream function correlation is only a few percent for a broad range of the model coefficient. Predictions of the derivatives of this correlation, which are of interest in turbulence modeling, may not be this accurate.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Stanford Univ., Studying Turbulence Using Numerical Simulation Databases. 5: Proceedings of the 1994 Summer Program; p 339-352
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-08-31
    Description: A non-local model is presented for approximating the pressure diffusion in calculations of turbulent free shear and boundary layer flows. It is based on the solution of an elliptic relaxation equation which enables local diffusion sources to be distributed over lengths of the order of the integral scale. The pressure diffusion model was implemented in a boundary layer code within the framework of turbulence models based on both the kappa-epsilon-(bar)upsilon(exp 2) system of equations and the full Reynolds stress equations. Model computations were performed for mixing layers and boundary layer flows. In each case, the pressure diffusion model enabled the well-known free-stream edge singularity problem to be eliminated. There was little effect on near-wall properties. Computed results agreed very well with experimental and DNS data for the mean flow velocity, the turbulent kinetic energy, and the skin-friction coefficient.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Stanford Univ., Studying Turbulence Using Numerical Simulation Databases. 5: Proceedings of the 1994 Summer Program; p 313-321
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-08-31
    Description: The structure of the separated flow region over a 20 degree compression corner at a free-stream Mach number of 2.84 is investigated computationally using a Reynolds averaged Navier Stokes (R.A.N.S.) solver and kappa-epsilon model. At this Mach number and ramp angle, a steady-state recirculation region of order delta(sub o) is observed, with onset of a 'plateau' in the wall pressure distribution near the corner. At lower ramp angles, separation is negligible, while at an angle of 24 degrees, separation regions of length 2 delta(sub o) are expected. Of interest here is the response of the mathematical model to inclusion of the pressure dilatation term for turbulent kinetic energy. Compared with the experimental data of Smits and Muck (1987), steady-state computations show improvement when the pressure dilatation term is included. Unsteady computations, using both unforced and then forced inlet conditions, did not predict the oscillatory motion of the separation bubble as observed in laboratory experiments. An analysis of the separation bubble oscillation and the turbulent boundary layer (T.B.L.) frequencies for this flow suggests that the bubble oscillations are of nearly the same order as the turbulent frequencies, and therefore difficult for the model to separate and resolve.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Stanford Univ., Studying Turbulence Using Numerical Simulation Databases. 5: Proceedings of the 1994 Summer Program; p 301-311
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-08-31
    Description: A direct numerical approach has been developed to simulate supersonic turbulent boundary layers. The mean flow quantities are obtained by solving the parabolized Reynolds-averaged Navier-Stokes equations (globally). Fluctuating quantities are computed locally with a temporal direct numerical simulation approach, in which nonparallel effects of boundary layers are partially modeled. Preliminary numerical results obtained at the free-stream Mach numbers 3, 4.5, and 6 with hot-wall conditions are presented. Approximately 5 million grid points are used in all three cases. The numerical results indicate that compressibility effects on turbulent kinetic energy, in terms of dilatational dissipation and pressure-dilatation correlation, are small. Due to the hot-wall conditions the results show significant low Reynolds number effects and large streamwise streaks. Further simulations with a bigger computational box or a cold-wall condition are desirable.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Stanford Univ., Studying Turbulence Using Numerical Simulation Databases. 5: Proceedings of the 1994 Summer Program; p 245-267
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-08-31
    Description: A major problem in modeling of turbulent supersonic flows is the correct assessment of viscous-inviscid interaction problems. Of particular interest is the interaction of boundary layers with shocks. Present turbulence models give in most cases unsatisfactory results in the region of rapid distortion and in the separation region (if one is present) in particular with regard to mean flow profiles and turbulence quantities. The objective of the present work is the direct numerical simulation of shock boundary layer interaction. This report summarizes the first phase during which a numerical method suitable for this problem has been developed and a computer code has been written and tested.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1994; p 339-356
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-08-31
    Description: Since high resolution numerical simulations of turbulent flows, or experiments at high Reynolds numbers, represent a substantial investment in resources, the estimation of the minimum resolution required for the study of a given property has been the subject of continued interest. Different properties require, in general, different resolutions, and the present paper is dedicated to the requirements for the measurement of the probability distribution functions of the velocity gradients and, in particular, of their low order moments. The deviation of these quantities from the values corresponding to a Gaussian distribution was one of the first indications of the presence of Reynolds number-dependent intermittency and has been the object of recent interest as numerical simulations have become able to explore the distribution of gradients in the low Reynolds number range, while new experiments have extended the range to increasingly high Reynolds numbers. We will use progressive filtering of the results of numerical simulations of isotropic turbulence as a model for the effect of a sensor of finite size. The numerical issues will be addressed first to ensure that the simulations are fully resolved from the point of view of the velocity gradients. This will also give us an estimate for the numerical resolution required for the different quantities.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1994; p 357-364
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-08-31
    Description: The MSU compact four-wire transverse vorticity probe permits omega(sub z)(t) measurements in a nominally 1 sq mm domain. Note that a conventional coordinate system is used with x and y in the streamwise and normal directions respectively. The purpose of this investigation was to acquire time series data in the same access port at the ceiling of the 80 ft x 120 ft wind tunnel (NASA Ames Research Center) as earlier used by the Wallace group from the University of Maryland and to compare the present results with those of the three-component vorticity probe used in that earlier study.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Stanford Univ. Annual Research Briefs, 1994; p 263-268
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Boundary layer flow transition has long been suggested as a potential noise source in both marine (sonar-dome self noise) and aeronautical (aircraft cabin noise) applications, owing to the highly transient nature of process. The design of effective noise control strategies relies upon a clear understanding of the source mechanisms associated with the unsteady flow dynamics during transition. Due to formidable mathematical difficulties, theoretical predictions either are limited to early linear and weakly nonlinear stages of transition, or employ acoustic analogy theories based on approximate source field data, often in the form of empirical correlation. In the present work, an approach which combines direct numerical simulation of the source field with the Lighthill acoustic analogy is utilized. This approach takes advantage of the recent advancement in computational capabilities to obtain detailed information about the flow-induced acoustic sources. The transitional boundary layer flow is computed by solving the incompressible Navier-Stokes equations without model assumptions, thus allowing a direct evaluation of the pseudosound as well as source functions, including the Lighthill stress tensor and the wall shear stress. The latter are used for calculating the radiated pressure field based on the Curle-Powell solution of the Lighthill equation. This procedure allows a quantitative assessment of noise source mechanisms and the associated radiation characteristics during transition from primary instability up to the laminar breakdown stage. In particular, one is interested in comparing the roles played by the fluctuating volume Reynolds stress and the wall-shear-stresses, and in identifying specific flow processes and structures that are effective noise generators.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1994; p 225-242
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-08-31
    Description: Turbulence modeling continues to be one of the most difficult problems in fluid mechanics. Existing prediction methods are well developed for certain classes of simple equilibrium flows, but are still not entirely satisfactory for a large category of complex non-equilibrium flows found in engineering practice. Direct and large-eddy simulation (LES) approaches have long been believed to have great potential for the accurate prediction of difficult turbulent flows, but the associated computational cost has been prohibitive for practical problems. This remains true for direct simulation but is no longer clear for large-eddy simulation. Advances in computer hardware, numerical methods, and subgrid-scale modeling have made it possible to conduct LES for flows or practical interest at Reynolds numbers in the range of laboratory experiments. The objective of this work is to apply ES and the dynamic subgrid-scale model to the flow of a boundary layer over a concave surface.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1994; p 185-195
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-08-31
    Description: Previously the theoretical development leading to the dynamic localization model (DLM) for large-eddy simulation (LES) was presented. The method has been successfully applied to isotropic turbulence, channel flow, and the flow over a backward-facing step. Here we apply the model to the computation of the temporally developing place wake. The two main objectives of this project are: (1) Use the model to perform an LES of a time developing plane wake and compare the results with direction numerical simulation (DNS) data to see if important statistical measures can be readily predicted, and to provide a relative evaluation of the several versions of the model in terms of predictive capability and cost; and (2) If the tests in (1) show that the model generates reliable predictions, then use the LES to study various aspects of the physics of turbulent wakes and mixing layers.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Stanford Univ., Annual Research Briefs, 1994; p 127-141
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-08-31
    Description: The modeling of subgrid scales in large-eddy simulation (LES) has been rationalized by the introduction of the dynamic localization procedure. This method allows one to compute rather than prescribe the unknown coefficients in the subgrid-scale model. Formally, the LES equations are supposed to be obtained by applying to the Navier-Stokes equations a 'grid filter' operation. Though the subgrid stress itself is unknown, an identity between subgrid stresses generated by different filters has been derived. Although preliminary tests of the Dynamic Localization Model (DLM) with k-equation have been satisfactory, the use of a negative eddy viscosity to describe backscatter is probably a crude representation of the physics of reverse transfer of energy. Indeed, the model is fully deterministic. Knowing the filtered velocity field and the subgrid-scale energy, the subgrid stress is automatically determined. We know that the LES equations cannot be fully deterministic since the small scales are not resolved. This stems from an important distinction between equilibrium hydrodynamics and turbulence. In equilibrium hydrodynamics, the molecular motions are also not resolved. However, there is a clear separation of scale between these unresolved motions and the relevant hydrodynamic scales. The result of molecular motions can then be separated into an average effect (the molecular viscosity) and some fluctuations. Due to the large number of molecules present in a box with size of the order of the hydrodynamic scale, the ratio between fluctuations and the average effect should be very small (as a result of the 'law of large numbers'). For that reason, the hydrodynamic balance equations are usually purely deterministic. In turbulence, however, there is no clear separation of scale between small and large eddies. In that case, the fluctuations around a deterministic eddy viscosity term could be significant. An eddy noise would then appear through a stochastic term in the subgrid-scale model and could be the source of backscatter.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1994; p 115-125
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-08-31
    Description: The elliptic relaxation model of Durbin (1993) for modeling near-wall turbulence using second moment closures (SMC) is compared to DNS data for a channel flow at Re(sub t) = 395. The agreement for second order statistics and even the terms in their balance equation is quite satisfactory, confirming that very little viscous effects (via Kolmogoroff scales) need to be added to the high Reynolds versions of SMC for near-wall-turbulence. The essential near-wall feature is thus the kinematic blocking effect that a solid wall exerts on the turbulence through the fluctuating pressure, which is best modeled by an elliptic operator. Above the transition layer, the effect of the original elliptic operator decays rapidly, and it is suggested that the log-layer is better reproduced by adding a non-homogeneous reduction of the return to isotropy, the gradient of the turbulent length scale being used as a measure of the inhomogeneity of the log-layer. The elliptic operator was quite easily applied to the non-linear Craft & Launder pressure-strain model yielding an improved distinction between the spanwise and wall normal stresses, although at higher Reynolds number (Re) and away from the wall, the streamwise component is severely underpredicted, as well as the transition in the mean velocity from the log to the wake profiles. In this area a significant change of behavior was observed in the DNS pressure-strain term, entirely ignored in the models.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Stanford Univ., Studying Turbulence Using Numerical Simulation Databases. 5: Proceedings of the 1994 Summer Program; p 323-338
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: This work carries earlier finite-difference calculations of the Widnall instability of vortex rings into the late non-linear stage. Plots of energy in azimuthal Fourier modes indicate that low-order modes dominate at large times; their structure and dynamics remain unexplored, however. An attempt was made to calculate the acoustic signal using the theory of Mohring (1978), valid for unbounded flow. This theory shows that only low-order azimuthal modes contribute to the sound. As a check on the effects of axial periodicity and a slip wall at large radius imposed by the numerical scheme, the acoustic integrals were also computed in a truncated region. Half of the terms contributing to the sound have large differences between the two regions, and the results are therefore unreliable. The error is less severe for a contribution involving only the m = 2 mode, and its low frequency is consistent with a free elliptic bending wave on a thin ring.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Stanford Univ., Studying Turbulence Using Numerical Simulation Databases. 5: Proceedings of the 1994 Summer Program; p 221-228
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-08-31
    Description: The spectra of the pressure, and other higher-order quantities including the dissipation, the enstrophy, and the square of the longitudinal velocity derivative are computed using data obtained from direct numerical simulation of homogeneous isotropic turbulence at Taylor-Reynolds numbers R(sub lambda) in the range 38 - 170. For the pressure spectra we find reasonable collapse in the dissipation range (of the velocity spectrum) when scaled in Kolmogorov variables and some evidence, which is not conclusive, for the existence of a k(exp -7/3) inertial range where k = absolute value of K, is the modulus of the wavenumber. The power spectra of the dissipation, the enstrophy, and the square of the longitudinal velocity derivative separate in the dissipation range, but appear to converge together in the short inertial range of the simulations. A least-squares curve-fit in the dissipation range for one value of R(sub lambda) = 96 gives a form for the spectrum of the dissipation as k(exp 0)exp(-Ck eta), for k(eta) greater than 0.2, where eta is the Kolmogorov length and C is approximately equal to 2.5.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Stanford Univ., Studying Turbulence Using Numerical Simulation Databases. 5: Proceedings of the 1994 Summer Program; p 177-187
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-08-31
    Description: Panel methods are commonly used in computational fluid dynamics for the solution of potential flow problems. The methods are a numerical technique based on the surface distribution of singularity elements. The solution is the process of finding the strength of the singularity elements distributed over the body's surface. This process involves the solution of the matrix problem Pq = p' for a set of unknowns q. The Fast Multipole Method is used to directly compute q without using matrix solvers. The algorithm works in O(N) time for N points, a great improvement over standard matrix solvers. In panel methods, the surface of a body is divided into a series of quadrilateral panels. The methods involve the computation of the influence of all other panels on each individual panel. The influence is based on the surface distribution, though this can be approximated by the area for distant panels. An alternative approximation, though with arbitrary accuracy, is to develop a multipole expansion about the center of the panel to describe the effect of a given panel on distant points in space. The expansion is based on the moments of the panel, thus allow the use of various surface distributions without changing the basic algorithm, just the computation of the various moments. The expansions are then manipulated in a tree walk to develop Taylor series expansions about a point in space which describe the effect of all distant panels on any point within a volume of convergence. The effect of near panels then needs to be computed directly, but the effect of all distant panels can be computed by simply evaluating the resulting expansion. The Fast Multipole Method has been applied to panel methods for the solution of source and doublet distributions. A major feature of the algorithm is that the algorithm does not change to derive the potential and velocity for sources and doublets. The same expansions can be used for both sources and doublets. Since the velocity is related to the potential, and the doublet potential is related to the z-component of the source velocity, all values can be derived from the same expansion by taking a series of partial derivatives. This requires more expansion terms to be kept since terms are lost in the process of taking partial derivatives. Thus to maintain accuracy for the doublet computation, more terms are required than if just evaluating for sources. The resulting Fast Multipole code should then parallelize better than classical panel methods due to the locality of data dependencies found in the Fast Multipole Method. Theoretically the parallelized code should execute in O(log N) time with O(N) processors, though this is not practical. Ongoing work includes implementing the parallel accelerated panel method, including methods to improve the load balancing of the problem by taking advantage of the known geometry of panels, and to encorporate sensitivity analysis into the algorithm.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Hampton Univ., 1994 NASA-HU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program; p 89
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-08-31
    Description: Asymptotic similarity states at large Reynolds numbers and small Rossby numbers in rotating homogeneous turbulence are investigated using the database obtained from large-eddy simulations of the incompressible Navier-Stokes equations. Previous work has shown that the turbulence kinetic energy and integral length scales are accurately described by simple scaling laws based on the low wavenumbers part of the three-dimensional energy spectrum. The primary interest of the present study is to search for spectrum similarity in the asymptotic state. Four independent energy spectra are defined. It is shown that rescaling of these energy spectra in the asymptotic regime will collapse three out of the four spectra. The spectrum which does not collapse is a function only of the vertical wavenumber and corresponds to two-component motions in the plane normal to the rotation axis. Detailed investigation of the cause of this anomalous behavior reveals the existence of a strong reverse cascade of energy from small-to-large scales of the two-dimensional, two-component motions. This feature of the rotating flow is presumably linked to the lack of a complete similarity state, though further study of this issue is required.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Stanford Univ., Studying Turbulence Using Numerical Simulation Databases. 5: Proceedings of the 1994 Summer Program; p 383-395
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-08-31
    Description: The field of photography began a metamorphosis several years ago which promises to fundamentally change how images are captured, transmitted, and output. At this time the metamorphosis is still in the early stages, but already new processes, hardware, and software are allowing many individuals and organizations to explore the entry of imaging into the information revolution. Exploration at this time is prerequisite to leading expertise in the future, and a number of branches at LaRC have ventured into electronic and digital imaging. Their progress until recently has been limited by two factors: the lack of an integrated approach and the lack of an electronic photographic capability. The purpose of the research conducted was to address these two items. In some respects, the lack of electronic photographs has prevented application of an integrated imaging approach. Since everything could not be electronic, the tendency was to work with hard copy. Over the summer, the Photographics Section has set up an Electronic Photography Laboratory. This laboratory now has the capability to scan film images, process the images, and output the images in a variety of forms. Future plans also include electronic capture capability. The current forms of image processing available include sharpening, noise reduction, dust removal, tone correction, color balancing, image editing, cropping, electronic separations, and halftoning. Output choices include customer specified electronic file formats which can be output on magnetic or optical disks or over the network, 4400 line photographic quality prints and transparencies to 8.5 by 11 inches, and 8000 line film negatives and transparencies to 4 by 5 inches. The problem of integrated imaging involves a number of branches at LaRC including Visual Imaging, Research Printing and Publishing, Data Visualization and Animation, Advanced Computing, and various research groups. These units must work together to develop common approaches to image processing and archiving. The ultimate goal is to be able to search for images using an on-line database and image catalog. These images could then be retrieved over the network as needed, along with information on the acquisition and processing prior to storage. For this goal to be realized, a number of standard processing protocols must be developed to allow the classification of images into categories. Standard series of processing algorithms can then be applied to each category (although many of these may be adaptive between images). Since the archived image files would be standardized, it should also be possible to develop standard output processing protocols for a number of output devices. If LaRC continues the research effort begun this summer, it may be one of the first organizations to develop an integrated approach to imaging. As such, it could serve as a model for other organizations in government and the private sector.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Hampton Univ., 1994 NASA-HU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program; p 80
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-08-31
    Description: As part of my assignment connected with the Scientific and Technical Photography & Lab (STPL) at the NASA Langley Research Center I conducted a series of interviews and observed the day to day operations of the STPL with the ultimate objective of becoming exposed first hand to a scientific and technical photo/imaging department for which my school prepares its graduates. I was also asked to share my observations with the staff in order that these comments and observations might assist the STPL to better serve its customers. Meetings with several individuals responsible for various wind tunnels and with a group that provides photo-optical instrumentation services at the Center gave me an overview of the services provided by the Lab and possible areas for development. In summary form these are some of the observations that resulted from the interviews and daily contact with the STPL facility. (1) The STPL is perceived as a valuable and almost indispensable service group within the organization. This comment was invariably made by everyone. Everyone also seemed to support the idea that the STPL continue to provide its current level of service and quality. (2) The STPL generally is not perceived to be a highly technically oriented group but rather as a provider of high quality photographic illustration and documentation services. In spite of the importance and high marks assigned to the STPL there are several observations that merit consideration and evaluation for possible inclusion into the STPL's scope of expertise and future operating practices. (1) While the care and concern for artistic rendition of subjects is seen as laudable and sometimes valuable, the time that this often requires is seen as interfering with keeping the tunnels operating at maximum productivity. Tunnel managers would like to shorten down-time due to photography, have services available during evening hours and on short notice. It may be of interest to the STPL that tunnel managers are incorporating ever greater imaging capabilities in their facilities. To some extent this could mean a reduced demand for traditional photographic services. (2) The photographic archive is seen as a Center resource. Archiving of images, as well as data, is a matter of concern to the investigators. The early holdings of the Photographic Archives are quickly deteriorating. The relative inaccessibility of the material held in the archives is problematic. (3) In certain cases delivery or preparation of digital image files instead of, or along with, hardcopy is already being perceived by the STPL's customers as desirable. The STPL should make this option available, and the fact that it has, or will have this capability widely known. (4) The STPL needs to continue to provide expert advice and technical imaging support in terms of application information to users of traditional photographic and new electronic imaging systems. Cooperative demo projects might be undertaken to maintain or improve the capabilities of the Lab. (5) STPL personnel do not yet have significant electronic imaging or electronic communication skills and improvements in this is an area could potentially have a positive impact on the Center. (6) High speed photographic or imaging services are often mentioned by the STPL as being of primary importance to their mission but the lab supports very few projects calling for high speed imaging services. Much high speed equipment is in poor state of repair. It is interesting to note that when the operation of lasers, digital imaging or quantitative techniques are requested these are directed to another NASA department. Could joint activities be initiated to solve problems? (7). The STPL could acquire more technical assignments if examples of the areas where they posses expertise would be circulated around the center. The fact that the STPL owns high speed video capability could be 'advertised' among its customer base if there truly was an interest in building up a customer base in this area. The STPL could participate in events like TOPS as an exhibitor, as well as a documenter, of the event.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Hampton Univ., 1994 NASA-HU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program (SEE N95-23276 07-99); Hampton Univ., 1994
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-08-31
    Description: The long-term goal of the current research is the study of Large-Eddy Simulation (LES) as a tool for aeroacoustics. New algorithms and developments in computer hardware are making possible a new generation of tools for aeroacoustic predictions, which rely on the physics of the flow rather than empirical knowledge. LES, in conjunction with an acoustic analogy, holds the promise of predicting the statistics of noise radiated to the far-field of a turbulent flow. LES's predictive ability will be tested through extensive comparison of acoustic predictions based on a Direct Numerical Simulation (DNS) and LES of the same flow, as well as a priori testing of DNS results. The method presented here is aimed at allowing simulation of a turbulent flow field that is both simple and amenable to acoustic predictions. A free shear flow is homogeneous in both the streamwise and spanwise directions and which is statistically stationary will be simulated using equations based on the Navier-Stokes equations with a small number of added terms. Studying a free shear flow eliminates the need to consider flow-surface interactions as an acoustic source. The homogeneous directions and the flow's statistically stationary nature greatly simplify the application of an acoustic analogy.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1994; p 365-371
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Detailed three-dimensional three-component phase averaged measurements of the spanwise and streamwise vorticity formation and evolution in acoustically forced plane free-shear flows have been obtained. For the first time, phase-averaged measurements of all three velocity components have been obtained in both a mixing layer and a wake on three-dimensional grids, yielding the spanwise and streamwise vorticity distributions without invoking Taylor's hypothesis. Initially, two-frequency forcing was used to phase-lock the roll-up and first pairing of the spanwise vortical structures in a plane mixing layer. The objective of this study was to measure the near-field vortical structure morphology in a mixing layer with 'natural' laminar initial boundary layers. For the second experiment the second and third subharmonics of the fundamental roll-up frequency were added to the previous two-frequency forcing in order to phase-lock the roll-up and first three pairings of the spanwise rollers in the mixing layer. The objective of this study was to determine the details of spanwise scale changes observed in previous time-averaged measurements and flow visualization of unforced mixing layers. For the final experiment, single-frequency forcing was used to phase-lock the Karman vortex street in a plane wake developing from nominally two-dimensional laminar initial boundary layers. The objective of this study was to compare measurements of the three-dimensional structure in a wake developing from 'natural' initial boundary layers to existing models of wake vortical structure.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1994; p 313-338
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-08-31
    Description: It was previously shown that the strong vorticity in isotropic turbulence is organized into tubular vortices ('worms') whose properties were characterized through the use of full numerical simulations at several Reynolds numbers. At the time most of the observations were kinematic, and several scaling laws were discovered for which there was no theoretical explanation. In the meantime, further analysis of the same fields yielded new information on the generation of the vortices, and it was realized that even if they had to be formed by stretching, they were at any given moment actually compressed at many points of their axes. This apparent contradiction was partially explained by postulating axial inertial waves induced by the nonuniformity of the vortex cores, which helped to 'spread' the axial strain and allowed the vortices to remain compact even if not uniformly stretched. The existence of such solutions was recently proved numerically. The present report discusses a set of new numerical simulations of isotropic turbulence, and a reanalysis of the old ones, in an effort to prove or disprove the presence of these waves in actual turbulent flows and to understand the dynamics, as opposed to the kinematics, of the vortices.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Stanford Univ., Annual Research Briefs, 1994; p 287-312
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: A method for active fluid flow control based on control theory is discussed. Dynamic programming and fixed point successive approximations are used to accommodate the nonlinear control problem. The long-term goal of this project is to establish an effective method applicable to complex flows such as turbulence and jets. However, in this report, the method is applied to stochastic Burgers equation as an intermediate step towards this goal. Numerical results are compared with those obtained by gradient search methods.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Stanford Univ., Annual Research Briefs, 1994; p 219-224
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-08-31
    Description: The objective of the present research is the development and application of efficient adaptive numerical algorithms for the study, via direct numerical simulations, of active vortex generators. We are using innovative computational schemes to investigate flows past complex configurations undergoing arbitrary motions. Some of the questions we try to answer are: Can and how may we control the dynamics of the wake? What is the importance of body shape and motion in the active control of the flow? What is the effect of three-dimensionality in laboratory experiments? We are interested not only in coupling our results to ongoing, related experimental work, but furthermore to develop an extensive database relating the above mechanisms to the vortical wake structures with the long-range objective of developing feedback control mechanisms. This technology is very important to aircraft, ship, automotive, and other industries that require predictive capability for fluid mechanical problems. The results would have an impact in high angle of attack aerodynamics and help design ways to improve the efficiency of ships and submarines (maneuverability, vortex induced vibration, and noise).
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1994; p 205-214
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...