ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: A potential flow based three-dimensional panel method was modified to treat time-dependent conditions in which several submerged bodies can move within the fluid along different trajectories. This modification was accomplished by formulating the momentary solution in an inertial frame of reference, attached to the undisturbed stationary fluid. Consequently, the numerical interpretation of the multiple-body, solid-surface boundary condition and the viscous wake rollup was considerably simplified. The usteady capability of this code was calibrated and validated by comparing computed results with closed-form analytical results available for an airfoil, which was impulsively set into a constant speed forward motion. To demonstrate the multicomponent capability, computations were made for two wings following closely intersecting paths (i.e., simulations aimed at avoiding mid-air collisions) and for a flowfield with relative rotation (i.e., the case of a helicopter rotor rotating relative to the fuselage). Computed results for the cases were compared to experimental data, when such data was available.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 1; p. 62-68
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: An experimental and computational investigation of the effect of lift-enhancing tabs on a two-element airfoil has been conducted. The objective of the study was to develop an understanding of the flow physics associated with lift-enhancing tabs on a multi-element airfoil. An NACA 63(2)-215 ModB airfoil with a 30% chord fowler flap was tested in the NASA Ames 7- by 10-Foot Wind Tunnel. Lift-enhancing tabs of various heights were tested on both the main element and the flap for a variety of flap riggings. A combination of tabs located at the main element and flap trailing edges increased the airfoil lift coefficient by 11% relative to the highest lift coefficient achieved by any baseline configuration at an angle of attack of 0 deg, and C(sub 1max) was increased by 3%. Computations of the flow over the two-element airfoil were performed using the two-dimensional incompressible Navier-Stokes code INS2D-UP. The computed results predicted all of the trends observed in the experimental data quite well. In addition, a simple analytic model based on potential flow was developed to provide a more detailed understanding of how lift-enhancing tabs work. The tabs were modeled by a point vortex at the air-foil or flap trailing edge. Sensitivity relationships were derived which provide a mathematical basis for explaining the effects of lift-enhancing tabs on a multi-element airfoil. Results of the modeling effort indicate that the dominant effects of the tabs on the pressure distribution of each element of the airfoil can be captured with a potential flow model for cases with no flow separation.
    Keywords: Aerodynamics
    Type: NASA-TM-110432 , NAS 1.15:110432 , A-975624
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: A technique for determining wind tunnel wall effects for complex models using the low-order, three dimensional panel method PMARC (Panel Method Ames Research Center) has been developed. Initial validation of the technique was performed using lift-coefficient data in the linear lift range from tests of a large-scale STOVL fighter model in the National Full-Scale Aerodynamics Complex (NFAC) facility. The data from these tests served as an ideal database for validating the technique because the same model was tested in two wind tunnel test sections with widely different dimensions. The lift-coefficient data obtained for the same model configuration in the two test sections were different, indicating a significant influence of the presence of the tunnel walls and mounting hardware on the lift coefficient in at least one of the two test sections. The wind tunnel wall effects were computed using PMARC and then subtracted from the measured data to yield corrected lift-coefficient versus angle-of-attack curves. The corrected lift-coefficient curves from the two wind tunnel test sections matched very well. Detailed pressure distributions computed by PMARC on the wing lower surface helped identify the source of large strut interference effects in one of the wind tunnel test sections. Extension of the technique to analysis of wind tunnel wall effects on the lift coefficient in the nonlinear lift range and on drag coefficient will require the addition of boundary-layer and separated-flow models to PMARC.
    Keywords: AERODYNAMICS
    Type: NASA-TM-104019 , A-93077 , NAS 1.15:104019
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: A potential flow based three-dimensional panel method was modified to treat time dependent flow conditions in which the body's geometry may vary with time. The main objective of this effort was the study of a flow field due to a propeller rotating relative to a nonrotating body which is otherwise moving at a constant forward speed. Calculated surface pressure, thrust and torque coefficient data for a four-bladed marine propeller/body compared favorably with previously published experimental results.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 91-1664
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: The theoretical basis for PMARC, a low-order potential-flow panel code for modeling complex three-dimensional geometries, is outlined. Several of the advanced features currently included in the code, such as internal flow modeling, a simple jet model, and a time-stepping wake model, are discussed in some detail. The code is written using adjustable size arrays so that it can be easily redimensioned for the size problem being solved and the computer hardware being used. An overview of the program input is presented, with a detailed description of the input available in the appendices. Finally, PMARC results for a generic wing/body configuration are compared with experimental data to demonstrate the accuracy of the code. The input file for this test case is given in the appendices.
    Keywords: AERODYNAMICS
    Type: NASA-TM-102851 , A-90244 , NAS 1.15:102851
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: A low-order potential-flow panel code, PMARC, for modeling complex three-dimensional geometries, is currently being developed at NASA Ames Research Center. The PMARC code was derived from a code named VSAERO that was developed for Ames Research Center by Analytical Methods, Inc. In addition to modeling potential flow over three-dimensional geometries, the present version of PMARC includes several advanced features such as an internal flow model, a simple jet wake model, and a time-stepping wake model. Data management within the code was optimized by the use of adjustable size arrays for rapidly changing the size capability of the code, reorganization of the output file and adopting a new plot file format. Preliminary versions of a geometry preprocessor and a geometry/aerodynamic data postprocessor are also available for use with PMARC. Several test cases are discussed to highlight the capabilities of the internal flow model, the jet wake model, and the time-stepping wake model.
    Keywords: AERODYNAMICS
    Type: NASA-TM-101024 , A-88275 , NAS 1.15:101024
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: A study was conducted to determine the effectiveness of using a low-order panel code to estimate wind tunnel wall corrections. The corrections were found by two computations. The first computation included the test model and the surrounding wind tunnel walls, while in the second computation the wind tunnel walls were removed. The difference between the force and moment coefficients obtained by comparing these two cases allowed the determination of the wall corrections. The technique was verified by matching the test-section, wall-pressure signature from a wind tunnel test with the signature predicted by the panel code. To prove the viability of the technique, two cases were considered. The first was a two-dimensional high-lift wing with a flap that was tested in the 7- by 10-foot wind tunnel at NASA Ames Research Center. The second was a 1/32-scale model of the F/A-18 aircraft which was tested in the low-speed wind tunnel at San Diego State University. The panel code used was PMARC (Panel Method Ames Research Center). Results of this study indicate that the proposed wind tunnel wall correction method is comparable to other methods and that it also inherently includes the corrections due to model blockage and wing lift.
    Keywords: AERODYNAMICS
    Type: NASA-TM-102196 , A-89148 , NAS 1.15:102196
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: A full-scale model of a supersonic STOVL single engine flighter aircraft employing an ejector to augment lift in hover and in low-speed flight was tested in the 40- by 80-ft and 80- by 120-ft test sections of the National Full-Scale Aerodynamics Complex located at the NASA Ames Research Center. The measured ejector augmentation ratio in hover met the design requirement of 1.6 and continued to provide the lift necessary in forward flight for good transition qualities. The up-and-away aerodynamics (ejector system stowed) were found to be conventional for this class of vehicle. The pitch control provided by the full-span blown flaps is sufficient to control the large pitching moments generated by ventral exhaust nozzle vectoring and propulsion induced aerodynamic effects such as the turning of the flow entrained into the ejectors.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: International Powered Lift Conference; Aug 29, 1990 - Aug 31, 1990; London
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: Panel code PMARC_12 (Panel Method Ames Research Center, version 12) computes potential-flow fields around complex three-dimensional bodies such as complete aircraft models. Contains several advanced features, including internal mathematical modeling of flow, time-stepping wake model for simulating either steady or unsteady motions, capability for Trefftz computation of drag induced by plane, and capability for computation of off-body and on-body streamlines, and capability of computation of boundary-layer parameters by use of two-dimensional integral boundary-layer method along surface streamlines. Investigators interested in visual representations of phenomena, may want to consider obtaining program GVS (ARC-13361), General visualization System. GVS is Silicon Graphics IRIS program created to support scientific-visualization needs of PMARC_12. GVS available separately from COSMIC. PMARC_12 written in standard FORTRAN 77, with exception of NAMELIST extension used for input.
    Keywords: MECHANICS
    Type: ARC-13362 , NASA Tech Briefs (ISSN 0145-319X); 19; 7; P. 60
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A potential flow based three-dimensional panel method was modified to treat time dependent conditions in which several submerged bodies can move within the fluid along different trajectories. This modification was accomplished by formulating the momentary solution in an inertial frame-of-reference, attached to the undisturbed stationary fluid. Consequently, the numerical interpretation of the multiple-body, solid-surface boundary condition and the viscous wake rollup was considerably simplified. The unsteady capability of this code was validated by comparing computed and experimental results for a finite wing undergoing pitch oscillations. In order to demonstrate the multicomponent capability, computations were made for two wings following closely intersecting paths (e.g., to avoid mid air collisions) and for a flow field with relative rotation (e.g., helicopter-rotor/fuselage interaction). Results were compared to experimental data when such data was available.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 93-0640 , AIAA, Aerospace Sciences Meeting and Exhibit; Jan 11, 1993 - Jan 14, 1993; Reno, NV; United States|; 10 p.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...