ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far-field boundaries. Three machine versions of INS3D are available. INS3D for the CRAY is written in CRAY FORTRAN for execution on a CRAY X-MP under COS, INS3D for the IBM is written in FORTRAN 77 for execution on an IBM 3090 under the VM or MVS operating system, and INS3D for DEC RISC-based systems is written in RISC FORTRAN for execution on a DEC workstation running RISC ULTRIX 3.1 or later. The CRAY version has a central memory requirement of 730279 words. The central memory requirement for the IBM is 150Mb. The memory requirement for the DEC RISC ULTRIX version is 3Mb of main memory. INS3D was developed in 1987. The port to the IBM was done in 1990. The port to the DECstation 3100 was done in 1991. CRAY is a registered trademark of Cray Research Inc. IBM is a registered trademark of International Business Machines. DEC, DECstation, and ULTRIX are trademarks of the Digital Equipment Corporation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: COS-10030
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...