ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The Simplified Shuttle Payload Thermal Analyzer program (SSPTA) was developed to aid in the evaluation of thermal design concepts of instruments to be flown in the Space Shuttle cargo bay. SSPTA consists of a collection of programs that are currently used in the thermal analysis of spacecraft and have been modified for quick, preliminary analysis of payloads. SSPTA includes a reduced math model of the Shuttle cargo bay to simplify use of the program for payload analysis. One of the prime objectives in developing SSPTA was to create a program which was easy to use. With SSPTA, the user required input is simple and the user is free from many of the concerns of computer usage such as disk space handling, tape usage, and complicated program control. Although SSPTA was designed primarily to analyze Shuttle payloads, it can easily be used to perform thermal analysis in other situations. SSPTA is comprised of a system of data files called 'bins', a master program, and a set of thermal subprograms. The bin system is a collection of disk files which contain data required by or computed by the thermal subprograms. SSPTA currently has the capability of handling 50 bins. The master program serves primarily as a manager for the bin system and its interaction with the thermal subprograms. Input to the master program consists of simple user commands which direct the data manipulation procedures, prepare the data for these procedures, and call the appropriate thermal subprograms. The subprograms of SSPTA are all based on programs which have been used extensively in the analysis of orbiting spacecraft and space hardware. Subprogram CONSHAD uses the user supplied geometric radiation model to compute black body view factors, shadow factors, and a description of the surface model. The subprogram WORKSHEET uses the surface model description, optical property data, and node assignment data to prepare input for SCRIPTF. Subprogram SCRIPTF computes the inverses of the infrared (IR) and ultraviolet (UV) radiation transfer equations; it also computes the radiation coupling between nodes in the thermal model. Subprogram ORBITAL uses the shadow tables to compute incident flux intensities on each surface in the geometric model. Subprogram ABSORB uses these flux intensities combined with the IR and UV inverses to compute the IR and UV fluxes absorbed by each surface. The radiation couplings from SCRIPTF and the absorbed fluxes from ABSORB are used by subprogram TTA to compute the temperature and power balance for each node in the thermal model. Output consists of tabulated data from each of the subprograms executed during a particular analysis. Due to the modular form of SSPTA, analyses may be run in whole or in part, and new subprograms may be added by the user. SSPTA is written in FORTRAN for use on a DEC VAX-11/780. SSPTA was originally developed in 1977 for use on IBM 370 series computers. This version is an update which was ported to the VAX in 1980.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: GSC-12698
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...