ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: It was previously shown that the strong vorticity in isotropic turbulence is organized into tubular vortices ('worms') whose properties were characterized through the use of full numerical simulations at several Reynolds numbers. At the time most of the observations were kinematic, and several scaling laws were discovered for which there was no theoretical explanation. In the meantime, further analysis of the same fields yielded new information on the generation of the vortices, and it was realized that even if they had to be formed by stretching, they were at any given moment actually compressed at many points of their axes. This apparent contradiction was partially explained by postulating axial inertial waves induced by the nonuniformity of the vortex cores, which helped to 'spread' the axial strain and allowed the vortices to remain compact even if not uniformly stretched. The existence of such solutions was recently proved numerically. The present report discusses a set of new numerical simulations of isotropic turbulence, and a reanalysis of the old ones, in an effort to prove or disprove the presence of these waves in actual turbulent flows and to understand the dynamics, as opposed to the kinematics, of the vortices.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Stanford Univ., Annual Research Briefs, 1994; p 287-312
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...