ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: The Steady State Thermal Analysis Program (STEADY) provides the thermal designer with a quick and convenient method for calculating heat loads and temperatures. STEADY can be used on small nodal networks for conceptual or preliminary thermal design and analysis. STEADY will accept up to 20 nodes of fixed or variable temperature, with constant or temperature-dependent thermal conductivities, and any set of consistent units. In a steady state thermal network, the heat balance on each variable temperature node must sum to zero. The general heat transfer equations are solved with a Newton-Raphson technique and refined by a fourth order quartic solution. Input data includes the number of nodes, number of boundary nodes, the fixed temperatures at all boundary nodes, initial temperature guesses for variable nodes, impressed heat loads, conduction and radiation coefficients, and control parameters such as convergence criteria, maximum iterations, and damping factors. The output is stored in a print file and tabulates final temperatures and heat flows for all nodes. STEADY is menu driven and allows the user to save files for future modification. STEADY is written in FORTRAN 77 (Ryan McFarland's RMFORTRAN) for interactive execution and has been implemented on the IBM PC computer series under DOS with a central memory requirement of approximately 92K of 8 bit bytes using a math coprocessor, and 103K bytes without the coprocessor. This program was developed in 1987.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NPO-17179
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...