ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2,151,931)
  • Springer Nature  (1,067,165)
  • American Institute of Physics  (610,459)
  • American Institute of Physics (AIP)  (241,929)
  • American Geophysical Union  (232,378)
Collection
Publisher
Years
  • 1
    Publication Date: 2024-03-25
    Description: Enhancing ocean productivity by artificial upwelling is evaluated as a nature-based solution for food security and climate change mitigation. Fish production is intended through diatom-based plankton food webs as these are assumed to be short and efficient. However, our findings from mesocosm experiments on artificial upwelling in the oligotrophic ocean disagree with this classical food web model. Here, diatoms did not reduce trophic length and instead impaired the transfer of primary production to crustacean grazers and small pelagic fish. The diatom-driven decrease in trophic efficiency was likely mediated by changes in nutritional value for the copepod grazers. Whilst diatoms benefitted the availability of essential fatty acids, they also caused unfavorable elemental compositions via high carbon-to-nitrogen ratios (i.e. low protein content) to which the grazers were unable to adapt. This nutritional imbalance for grazers was most pronounced in systems optimized for CO2 uptake through carbon-to-nitrogen ratios well beyond Redfield. A simultaneous enhancement of fisheries production and carbon sequestration via artificial upwelling may thus be difficult to achieve given their opposing stoichiometric constraints. Our study suggest that food quality can be more critical than quantity to maximize food web productivity during shorter-term fertilization of the oligotrophic ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3International Journal of Biometeorology, Springer Nature, 68(4), pp. 1-17, ISSN: 0020-7128
    Publication Date: 2024-03-26
    Description: The Great Lakes region of North America has warmed by 1–2 °C on average since pre-industrial times, with the most pronounced changes observable during winter and spring. Interannual variability in temperatures remains high, however, due to the influence of ocean-atmosphere circulation patterns that modulate the warming trend across years. Variations in spring temperatures determine growing season length and plant phenology, with implications for whole ecosystem function. Studying how both internal climate variability and the “secular” warming trend interact to produce trends in temperature is necessary to estimate potential ecological responses to future warming scenarios. This study examines how external anthropogenic forcing and decadal-scale variability influence spring temperatures across the western Great Lakes region and estimates the sensitivity of regional forests to temperature using long-term growth records from tree-rings and satellite data. Using a modeling approach designed to test for regime shifts in dynamic time series, this work shows that mid-continent spring climatology was strongly influenced by the 1976/1977 phase change in North Pacific atmospheric circulation, and that regional forests show a strengthening response to spring temperatures during the last half-century.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-27
    Description: Interest in deep-sea mining for polymetallic nodules as an alternative source to onshore mines for various high-technology metals has risen in recent years, as demands and costs have increased. The need for studies to assess its short- and long-term consequences on polymetallic nodule ecosystems is therefore also increasingly prescient. Recent image-based expedition studies have described the temporal impacts on epi-/megafauna seafloor communities across these ecosystems at particular points in time. However, these studies have failed to capture information on large infauna within the sediments or give information on potential transient and temporally limited users of these areas, such as mobile surface deposit feeders or fauna responding to bloom events or food fall depositions. This study uses data from the Peru Basin polymetallic nodule province, where the seafloor was previously disturbed with a plough harrow in 1989 and with an epibenthic sled (EBS) in 2015, to simulate two contrasting possible impact forms of mining disturbance. To try and address the shortfall on information on transient epifauna and infauna use of these various disturbed and undisturbed areas of nodule-rich seafloor, images collected 6 months after the 2015 disturbance event were inspected and all Lebensspuren, ‘traces of life’, were characterized by type (epi- or infauna tracemakers, as well as forming fauna species where possible), along with whether they occurred on undisturbed seafloor or regions disturbed in 1989 or 2015. The results show that epi- and endobenthic Lebensspuren were at least 50% less abundant across both the ploughed and EBS disturbed seafloors. This indicates that even 26 years after disturbance, sediment use by fauna may remain depressed across these areas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Communications Earth & Environment, Springer Nature, 5(1), pp. 93-93, ISSN: 2662-4435
    Publication Date: 2024-04-03
    Description: Recently, seasonal pulses of modified Warm Deep Water have been observed near the Filchner Ice Shelf front in the Weddell Sea, Antarctica. Here, we investigate the temperature evolution of subsurface waters in the Filchner Trough under four future scenarios of carbon dioxide emissions using the climate model AWI-CM. Our model simulates these warm intrusions, suggests more frequent pulses in a warmer climate, and supports the potential for a regime shift from cold to warm Filchner Trough in two high-emission scenarios. The regime shift is governed in particular by decreasing local sea ice formation and a shoaling thermocline. Cavity circulation is not critical in triggering the change. Consequences would include increased ice shelf basal melting, reduced buttressing of fast-flowing ice streams, loss of grounded ice and an acceleration of global sea level rise. According to our simulations, the regime shift can be avoided and the Filchner Trough warming can be restricted to 0.5 ∘C by reaching the 2 ∘C climate goal.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Microbiology, Springer Nature, 9(3), pp. 830-847, ISSN: 2058-5276
    Publication Date: 2024-04-03
    Description: Plasmids alter microbial evolution and lifestyles by mobilizing genes that often confer fitness in changing environments across clades. Yet our ecological and evolutionary understanding of naturally occurring plasmids is far from complete. Here we developed a machine-learning model, PlasX, which identified 68,350 non-redundant plasmids across human gut metagenomes and organized them into 1,169 evolutionarily cohesive ‘plasmid systems’ using our sequence containment-aware network-partitioning algorithm, MobMess. Individual plasmids were often country specific, yet most plasmid systems spanned across geographically distinct human populations. Cargo genes in plasmid systems included well-known determinants of fitness, such as antibiotic resistance, but also many others including enzymes involved in the biosynthesis of essential nutrients and modification of transfer RNAs, revealing a wide repertoire of likely fitness determinants in complex environments. Our study introduces computational tools to recognize and organize plasmids, and uncovers the ecological and evolutionary patterns of diverse plasmids in naturally occurring habitats through plasmid systems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-03
    Description: Respiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode large arsenals of tens to hundreds of respiratory-like reductases per genome. Screening species from each family (Sutterella wadsworthensis, Eggerthella lenta and Holdemania filiformis), we discover 22 metabolites used as respiratory electron acceptors in a species-specific manner. Identified reactions transform multiple classes of dietary- and host-derived metabolites, including bioactive molecules resveratrol and itaconate. Products of identified respiratory metabolisms highlight poorly characterized compounds, such as the itaconate-derived 2-methylsuccinate. Reductase substrate profiling defines enzyme–substrate pairs and reveals a complex picture of reductase evolution, providing evidence that reductases with specificities for related cinnamate substrates independently emerged at least four times. These studies thus establish an exceptionally versatile form of anaerobic respiration that directly links microbial energy metabolism to the gut metabolome.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-15
    Description: We studied the potential of a recently introduced species, the Asian brush-clawed crab (Hemigrapsus takanoi), to expand its distribution range further into the Baltic Sea. H. takanoi has been documented in the southwestern Baltic Sea since 2014. The ability to persist and further expand into the Baltic Proper will depend on their potential to sustain all stages of their complex life cycle, including pelagic larvae, under the Baltic Sea's conditions. Range limits may be established by the tolerance to low salinity, which in addition may be affected by water temperature. A key question is whether local populations at the distribution limit (within the Baltic Sea) show increased tolerance to low salinities and hence promote further expansion. We quantified the combined effects of salinity (10–33 PSU) and temperature (15–24 °C) on larval development in four populations of H. takanoi (two from the Baltic and two from the North Sea). We found substantial differences in larval performance between the populations from the Baltic and North Seas. Larvae from the North Sea populations always showed higher survival and faster development compared with those from the Baltic Sea. Only weak evidence of elevated tolerance towards low salinity was found in the larvae from the Baltic Sea populations. In addition, larvae from the population located near the range limit showed very low survival under all tested salinity-temperature combinations and no evidence of increased tolerance to low salinity. There was no apparent genetic differentiation among the studied populations in the mitochondrial cytochrome c oxidase subunit one gene (COI) implying high connectivity among the populations. In conclusion, the weak evidence of low salinity tolerance in Baltic Sea populations, and poor larval performance for the population located near the range limit, coupled with limited genetic differentiation suggest that subsidies are needed for populations to persist near the range limit. Alternatively, ontogenetic migrations would be required to sustain those populations. Monitoring efforts are needed to elucidate the underlaying mechanisms and document potential future range expansions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-17
    Description: Plastics are persistent in the environment and may be ingested by organisms where they may cause physical harm or release plastic additives. Monitoring is a crucial mechanism to assess the risk of plastics to the marine and terrestrial ecosystem. Unfortunately, due to unharmonised procedures, it remains difficult to compare the results of different studies. This publication, as part of the Horizon project EUROqCHARM, aims to identify the properties of the available analytical processes and methods for the determination of plastics in biota. Based on a systematic review, reproducible analytical pipelines were examined and the technological readiness levels were assessed so that these methods may eventually (if not already) be incorporated into (harmonised) monitoring programs where biota are identified as indicators of plastic pollution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3Journal of Geophysical Research (JGR): Biogeosciences, American Geophysical Union, 129, ISSN: 2169-8953
    Publication Date: 2024-04-19
    Description: Arctic warming increases the degradation of permafrost soils but little is known about floodplain soils in the permafrost region. This study quantifies soil organic carbon (SOC) and soil nitrogen stocks, and the potential CH4 and CO2 production from seven cores in the active floodplains in the Lena River Delta, Russia. The soils were sandy but highly heterogeneous, containing deep, organic rich deposits with 〉60% SOC stored below 30 cm. The mean SOC stocks in the top 1 m were 12.9 ± 6.0 kg C m−2. Grain size analysis and radiocarbon ages indicated highly dynamic environments with sediment re-working. Potential CH4 and CO2 production from active floodplains was assessed using a 1-year incubation at 20°C under aerobic and anaerobic conditions. Cumulative aerobic CO2 production mineralized a mean 4.6 ± 2.8% of initial SOC. The mean cumulative aerobic:anaerobic C production ratio was 2.3 ± 0.9. Anaerobic CH4 production comprised 50 ± 9% of anaerobic C mineralization; rates were comparable or exceeded those for permafrost region organic soils. Potential C production from the incubations was correlated with total organic carbon and varied strongly over space (among cores) and depth (active layer vs. permafrost). This study provides valuable information on the carbon cycle dynamics from active floodplains in the Lena River Delta and highlights the key spatial variability, both among sites and with depth, and the need to include these dynamic permafrost environments in future estimates of the permafrost carbon-climate feedback.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Communications, Springer Nature, 15(1), pp. 3012-3012, ISSN: 2041-1723
    Publication Date: 2024-04-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-03-19
    Description: Background: Wildfires are recognized as an important ecological component of larch-dominated boreal forests in eastern Siberia. However, long-term fire-vegetation dynamics in this unique environment are poorly understood. Recent paleoecological research suggests that intensifying fire regimes may induce millennial-scale shifts in forest structure and composition. This may, in turn, result in positive feedback on intensifying wildfires and permafrost degradation, apart from threatening human livelihoods. Most common fire-vegetation models do not explicitly include detailed individual-based tree population dynamics, but a focus on patterns of forest structure emerging from interactions among individual trees may provide a beneficial perspective on the impacts of changing fire regimes in eastern Siberia. To simulate these impacts on forest structure at millennial timescales, we apply the individual-based, spatially explicit vegetation model LAVESI-FIRE, expanded with a new fire module. Satellite-based fire observations along with fieldwork data were used to inform the implementation of wildfire occurrence and adjust model parameters. Results: Simulations of annual forest development and wildfire activity at a study site in the Republic of Sakha (Yakutia) since the Last Glacial Maximum (c. 20,000 years BP) highlight the variable impacts of fire regimes on forest structure throughout time. Modeled annual fire probability and subsequent burned area in the Holocene compare well with a local reconstruction of charcoal influx in lake sediments. Wildfires can be followed by different forest regeneration pathways, depending on fire frequency and intensity and the pre-fire forest conditions. We find that medium-intensity wildfires at fire return intervals of 50 years or more benefit the dominance of fire-resisting Dahurian larch (Larix gmelinii (Rupr.) Rupr.), while stand-replacing fires tend to enable the establishment of evergreen conifers. Apart from post-fire mortality, wildfires modulate forest development mainly through competition effects and a reduction of the model’s litter layer. Conclusion: With its fine-scale population dynamics, LAVESI-FIRE can serve as a highly localized, spatially explicit tool to understand the long-term impacts of boreal wildfires on forest structure and to better constrain interpretations of paleoecological reconstructions of fire activity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Climate Change, Springer Nature, 14(2), pp. 1-7, ISSN: 1758-678X
    Publication Date: 2024-03-08
    Description: Ocean eddies play a critical role in climate and marine life. In the rapidly warming Arctic, little is known about how ocean eddy activity will change because existing climate models cannot resolve Arctic Ocean mesoscale eddies. Here, by employing a next-generation global sea ice–ocean model with kilometre-scale horizontal resolution in the Arctic, we find a surge of eddy kinetic energy in the upper Arctic Ocean, tripling on average in a four-degree-warmer world. The driving mechanism behind this surge is an increase in eddy generation due to enhanced baroclinic instability. Despite the decline of sea ice, eddy killing (a process in which eddies are dampened by sea ice and winds) will not weaken in its annual mean effect in the considered warming scenario. Our study suggests the importance of adequately representing Arctic eddy activity in climate models for understanding the impacts of its increase on climate and ecosystems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Analytical and Bioanalytical Chemistry, Springer Nature, 416(6), pp. 1311-1320, ISSN: 1618-2642
    Publication Date: 2024-03-04
    Description: FTIR spectral identification is today’s gold standard analytical procedure for plastic pollution material characterization. High-throughput FTIR techniques have been advanced for small microplastics (10–500 µm) but less so for large microplastics (500–5 mm) and macroplastics (〉 5 mm). These larger plastics are typically analyzed using ATR, which is highly manual and can sometimes destroy particles of interest. Furthermore, spectral libraries are often inadequate due to the limited variety of reference materials and spectral collection modes, resulting from expensive spectral data collection. We advance a new high-throughput technique to remedy these problems using FTIR microplate readers for measuring large particles (〉 500 µm). We created a new reference database of over 6000 spectra for transmission, ATR, and reflection spectral collection modes with over 600 plastic, organic, and mineral reference materials relevant to plastic pollution research. We also streamline future analysis in microplate readers by creating a new particle holder for transmission measurements using off-the-shelf parts and fabricating a nonplastic 96-well microplate for storing particles. We determined that particles should be presented to microplate readers as thin as possible due to thick particles causing poor-quality spectra and identifications. We validated the new database using Open Specy and demonstrated that additional transmission and reflection spectra reference data were needed in spectral libraries.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-04-09
    Description: Over the past 40 years, the significance of microzooplankton grazing in oceanic carbon cycling has been highlighted with the help of dilution experiments. The ecologically relevant Western Antarctic Peninsula (WAP) ecosystem in the Southern Ocean (SO), however, has not been well studied. Here we present data from dilution experiments, performed at three stations around the northern tip of the WAP to determine grazing rates of small zooplankton (hetero- and mixotrophic members of the 0.2–200 µm size fraction, SZP) on auto- and heterotrophic members of the 〈 200 µm plankton community as well as their gross growth. While variable impacts of SZP grazing on carbon cycling were measured, particulate organic carbon, not the traditionally used parameter chlorophyll a, provided the best interpretable results. Our results suggested that heterotrophic picoplankton played a significant role in the carbon turnover at all stations. Finally, a comparison of two stations with diverging characteristics highlights that SZP grazing eliminated 56–119% of gross particulate organic carbon production from the particulate fraction. Thus, SZP grazing eliminated 20–50 times more carbon from the particulate fraction compared to what was exported to depth, therefore significantly affecting the efficiency of the biological carbon pump at these SO sites.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-04-08
    Description: Understanding the genetic structure of populations and the processes responsible for its spatial and temporal dynamics is vital for assessing species’ adaptability and survival in changing environments. We investigate the genetic fingerprinting of blooming populations of the marine diatom Pseudo-nitzschia multistriata in the Gulf of Naples (Mediterranean Sea) from 2008 to 2020. Strains were genotyped using microsatellite fingerprinting and natural samples were also analysed with Microsatellite Pool-seq Barcoding based on Illumina sequencing of microsatellite loci. Both approaches revealed a clonal expansion event in 2013 and a more stable genetic structure during 2017–2020 compared to previous years. The identification of a mating type (MT) determination gene allowed to assign MT to strains isolated over the years. MTs were generally at equilibrium with two notable exceptions, including the clonal bloom of 2013. The populations exhibited linkage equilibrium in most blooms, indicating that sexual reproduction leads to genetic homogenization. Our findings show that P. multistriata blooms exhibit a dynamic genetic and demographic composition over time, most probably determined by deeper-layer cell inocula. Occasional clonal expansions and MT imbalances can potentially affect the persistence and ecological success of planktonic diatoms.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-04-08
    Description: Climate change is opening the Arctic Ocean to increasing human impact and ecosystem changes. Arctic fjords, the region’s most productive ecosystems, are sustained by a diverse microbial community at the base of the food web. Here we show that Arctic fjords become more prokaryotic in the picoplankton (0.2–3 µm) with increasing water temperatures. Across 21 fjords, we found that Arctic fjords had proportionally more trophically diverse (autotrophic, mixotrophic, and heterotrophic) picoeukaryotes, while subarctic and temperate fjords had relatively more diverse prokaryotic trophic groups. Modeled oceanographic connectivity between fjords suggested that transport alone would create a smooth gradient in beta diversity largely following the North Atlantic Current and East Greenland Current. Deviations from this suggested that picoeukaryotes had some strong regional patterns in beta diversity that reduced the effect of oceanographic connectivity, while prokaryotes were mainly stopped in their dispersal if strong temperature differences between sites were present. Fjords located in high Arctic regions also generally had very low prokaryotic alpha diversity. Ultimately, warming of Arctic fjords could induce a fundamental shift from more trophic diverse eukaryotic- to prokaryotic-dominated communities, with profound implications for Arctic ecosystem dynamics including their productivity patterns.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-04-05
    Description: Rayleigh wave ellipticity measurements from seismic ambient noise recorded on the Greenland Ice Sheet (GrIS) show complex and anomalous behavior at wave periods sensitive to ice (T 〈 3–4 s). To understand these complex observations, we compare them with synthetic ellipticity measurements obtained from synthetic ambient noise computed for various seismic velocity and attenuation models, including surface wave overtone effects. We find that in dry snow conditions within the interior of the GrIS, to first order the anomalous ellipticity observations can be explained by ice models associated with the accumulation and densification of snow into firn. We also show that the distribution of ellipticity measurements is strongly sensitive to seismic attenuation and the thermal structure of the ice. Our results suggest that Rayleigh wave ellipticity is well suited for monitoring changes in firn properties and thermal composition of the Greenland and Antarctic ice sheets in a changing climate.
    Description: Published
    Description: e2023GL103673
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-05-03
    Description: Diversity and its drivers and consequences are at the heart of ecological research. Mostly, studies have focused on different species, but if the causes for increases or decreases in diversity are general, the observed patterns should also be observable within genotypes. As previous research shows that there is higher variability in nitrogen to phosphorus ratios (N/P) between slow-growing unicellular algal populations, compared to fast-growing ones, we expected to observe similar patterns within genetically identical strains growing at different rates. We tested this hypothesis in a laboratory experiment performed with a monoculture of the diatom Phaeodactylum tricornutum. Using a growth rate gradient obtained with 10 chemostats, we were able to determine the effect of growth rate on the diatom’s elemental stoichiometry as well as on selected traits, such as cell size and shape. Our results showed indeed less intercellular variability (in the selected traits assessed on single-cell level) in the faster-growing populations, which was accompanied by a downward trend in bulk N/P ratios. We pose that this higher variability at lower growth rates potentially results in higher variability of the food sources available for higher trophic levels with potential consequences for the transfer efficiency of energy and matter in marine food webs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Geoscience, Springer Nature, pp. 1-10, ISSN: 1752-0894
    Publication Date: 2024-05-06
    Description: There has been extensive research into the nonlinear responses of the Earth system to astronomical forcing during the last glacial cycle. However, the speed and spatial geometry of ice sheet expansion to its largest extent at the Last Glacial Maximum 21 thousand years ago remains uncertain. Here we use an Earth system model with interactive ice sheets to show that distinct initial North American (Laurentide) ice sheets at 38 thousand years ago converge towards a configuration consistent with the Last Glacial Maximum due to feedbacks between atmospheric circulation and ice sheet geometry. Notably, ice advance speed and spatial pattern in our model are controlled by the amount of summer snowfall, which is dependent on moisture transport pathways from the North Atlantic warm pool linked to ice sheet geometry. The consequence of increased summer snowfall on the surface mass balance of the ice sheet is not only the direct increase in accumulation but the indirect reduction in melt through the snow/ice–albedo feedback. These feedbacks provide an effective mechanism for ice growth for a range of initial ice sheet states and may explain the rapid North American ice volume increase during the last ice age and potentially driving growth during previous glacial periods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Ecology & Evolution, Springer Nature, 7(7), pp. 994-1001, ISSN: 2397-334X
    Publication Date: 2023-09-21
    Description: The discrepancy between global loss and local constant species richness has led to debates over data quality, systematic biases in monitoring programmes and the adequacy of species richness to capture changes in biodiversity. We show that, more fundamentally, null expectations of stable richness can be wrong, despite independent yet equal colonization and extinction. We analysed fish and bird time series and found an overall richness increase. This increase reflects a systematic bias towards an earlier detection of colonizations than extinctions. To understand how much this bias influences richness trends, we simulated time series using a neutral model controlling for equilibrium richness and temporal autocorrelation (that is, no trend expected). These simulated time series showed significant changes in richness, highlighting the effect of temporal autocorrelation on the expected baseline for species richness changes. The finite nature of time series, the long persistence of declining populations and the potential strong dispersal limitation probably lead to richness changes when changing conditions promote compositional turnover. Temporal analyses of richness should incorporate this bias by considering appropriate neutral baselines for richness changes. Absence of richness trends over time, as previously reported, can actually reflect a negative deviation from the positive biodiversity trend expected by default.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2023-09-22
    Description: Thresholds and tipping points are frequently used concepts to address the risks of global change pressures and their mitigation. It is tempting to also consider them to understand biodiversity change and design measures to ensure biotic integrity. Here, we argue that thresholds and tipping points do not work well in the context of biodiversity change for conceptual, ethical, and empirical reasons. Defining a threshold for biodiversity change (a maximum tolerable degree of turnover or loss) neglects that ecosystem multifunctionality often relies on the complete entangled web of species interactions and invokes the ethical issue of declaring some biodiversity dispensable. Alternatively defining a threshold for pressures on biodiversity might seem more straightforward as it addresses the causes of biodiversity change. However, most biodiversity change appears to be gradual and accumulating over time rather than reflecting a disproportionate change when transgressing a pressure threshold. Moreover, biodiversity change is not in synchrony with environmental change, but massively delayed through inertia inflicted by population dynamics and demography. In consequence, formulating environmental management targets as preventing the transgression of thresholds is less useful in the context of biodiversity change, as such thresholds neither capture how biodiversity responds to anthropogenic pressures nor how it links to ecosystem functioning. Instead, addressing biodiversity change requires reflecting the spatiotemporal complexity of altered local community dynamics and temporal turnover in composition leading to shifts in distributional ranges and species interactions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Microbiome, Springer Nature, ISSN: 2049-2618
    Publication Date: 2023-11-25
    Description: Background The RCA (Roseobacter clade affiliated) cluster belongs to the family Roseobacteracea and represents a major Roseobacter lineage in temperate to polar oceans. Despite its prevalence and abundance, only a few genomes and one described species, Planktomarina temperata, exist. To gain more insights into our limited understanding of this cluster and its taxonomic and functional diversity and biogeography, we screened metagenomic datasets from the global oceans and reconstructed metagenome-assembled genomes (MAG) affiliated to this cluster. Results The total of 82 MAGs, plus five genomes of isolates, reveal an unexpected diversity and novel insights into the genomic features, the functional diversity, and greatly refined biogeographic patterns of the RCA cluster. This cluster is subdivided into three genera: Planktomarina, Pseudoplanktomarina, and the most deeply branching Candidatus Paraplanktomarina. Six of the eight Planktomarina species have larger genome sizes (2.44–3.12 Mbp) and higher G + C contents (46.36–53.70%) than the four Pseudoplanktomarina species (2.26–2.72 Mbp, 42.22–43.72 G + C%). Cand. Paraplanktomarina is represented only by one species with a genome size of 2.40 Mbp and a G + C content of 45.85%. Three novel species of the genera Planktomarina and Pseudoplanktomarina are validly described according to the SeqCode nomenclature for prokaryotic genomes. Aerobic anoxygenic photosynthesis (AAP) is encoded in three Planktomarina species. Unexpectedly, proteorhodopsin (PR) is encoded in the other Planktomarina and all Pseudoplanktomarina species, suggesting that this light-driven proton pump is the most important mode of acquiring complementary energy of the RCA cluster. The Pseudoplanktomarina species exhibit differences in functional traits compared to Planktomarina species and adaptations to more resource-limited conditions. An assessment of the global biogeography of the different species greatly expands the range of occurrence and shows that the different species exhibit distinct biogeographic patterns. They partially reflect the genomic features of the species. Conclusions Our detailed MAG-based analyses shed new light on the diversification, environmental adaptation, and global biogeography of a major lineage of pelagic bacteria. The taxonomic delineation and validation by the SeqCode nomenclature of prominent genera and species of the RCA cluster may be a promising way for a refined taxonomic identification of major prokaryotic lineages and sublineages in marine and other prokaryotic communities assessed by metagenomics approaches.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2023-10-30
    Description: With a focus on oceans, we collaborated across ecological, social and legal disciplines to respond to the United Nations call for transformation in the ‘2030 Agenda for Sustainable Development’. We developed a set of 13 principles that strategically and critically connect transformative ocean research to transformative ocean governance (complementing the UN Decade for Ocean Science). We used a rigorous, iterative and transparent consensus-building approach to define the principles, which can interact in supporting, neutral or sometimes conflicting ways. We recommend that the principles could be applied as a comprehensive set and discuss how to learn from their interactions, particularly those that reveal hidden tensions. The principles can bring and keep together partnerships for innovative ocean action. This action must respond to the many calls to reform current ocean-use practices which are based on economic growth models that have perpetuated inequities and fuelled conflict and environmental decline.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3The ISME Journal: Multidisciplinary Journal of Microbial Ecology, Springer Nature, 17(6), pp. 836-845, ISSN: 1751-7362
    Publication Date: 2023-11-14
    Description: Vitamin B12 (cobalamin, herein B12) is an essential cofactor involved in amino acid synthesis and carbon resupply to the TCA cycle for most prokaryotes, eukaryotic microorganisms, and animals. Despite being required by most, B12 is produced by only a minor fraction of prokaryotes and therefore leads to complex interaction between prototrophs and auxotrophs. However, it is unknown how B12 is provided by prototrophs to auxotrophs. In this study, 33 B12 prototrophic alphaproteobacterial strains were grown in co-culture with Thalassiosira pseudonana, a B12 auxotrophic diatom, to determine the bacterial ability to support the growth of the diatom by sharing B12. Among these strains, 18 were identified to share B12 with the diatom, while nine were identified to retain B12 and not support growth of the diatom. The other bacteria either shared B12 with the diatom only with the addition of substrate or inhibited the growth of the diatom. Extracellular B12 measurements of B12-provider and B12-retainer strains confirmed that the cofactor could only be detected in the environment of the tested B12-provider strains. Intracellular B12 was measured by LC-MS and showed that the concentrations of the different B12-provider as well as B12-retainer strains differed substantially. Although B12 is essential for the vast majority of microorganisms, mechanisms that export this essential cofactor are still unknown. Our results suggest that a large proportion of bacteria that can synthesise B12de novo cannot share the cofactor with their environment.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Communications, Springer Nature, 14(1), 15 p., pp. 6141-6141, ISSN: 2041-1723
    Publication Date: 2023-11-08
    Description: Major biogeographic features of the microbial seascape in the oceans have been established and their underlying ecological mechanisms in the (sub)tropical oceans and the Pacific Ocean identified. However, we still lack a unifying understanding of how prokaryotic communities and biogeographic patterns are affected by large-scale current systems in distinct ocean basins and how they are globally shaped in line with ecological mechanisms. Here we show that prokaryotic communities in the epipelagic Pacific and Atlantic Ocean, in the southern Indian Ocean, and the Mediterranean Sea are composed of modules of co-occurring taxa with similar environmental preferences. The relative partitioning of these modules varies along latitudinal and longitudinal gradients and are related to different hydrographic and biotic conditions. Homogeneous selection and dispersal limitation were identified as the major ecological mechanisms shaping these communities and their free-living (FL) and particle-associated (PA) fractions. Large-scale current systems govern the dispersal of prokaryotic modules leading to the highest diversity near subtropical fronts.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2023-11-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Marine Biodiversity, Springer Nature, 53(6), pp. 72-72, ISSN: 1867-1616
    Publication Date: 2023-12-06
    Description: One of the key challenges in managing eutrophication in coastal marine ecosystems is the harmonized cross-border assessment of phytoplankton. Some general understanding of the consequences of shifting nutrient regimes can be derived from the detailed investigation of the phytoplankton community and its biodiversity. Here, we combined long-term monitoring datasets of German and Dutch coastal stations and amended these with additional information on species biomass. Across the integrated and harmonized dataset, we used multiple biodiversity descriptors to analyse temporal trends in the Wadden Sea phytoplankton. Biodiversity, measured as the number of species (S) and the effective number of species (ENS), has decreased in the Dutch stations over the last 20 years, while biomass has increased, indicating that fewer species are becoming more dominant in the system. However, biodiversity and biomass did not show substantial changes in the German stations. Although there were some differences in trends between countries, shifts in community composition and relative abundance were consistent across stations and time. We emphasise the importance of continuous and harmonized monitoring programmes and multi-metric approaches that can detect changes in the communities that are indicative of changes in the environment.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2023-02-28
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Seltzer, A. M., & Tyne, R. L. Retrieving a “Weather Balloon” from the last Ice Age. AGU Advances, 3(4), (2022): e2022AV000747, https://doi.org/10.1029/2022AV000747.
    Description: “How cold was the last ice age?” is a question that paleoclimate scientists have been trying to answer for decades. Constraining the magnitude of climate change since the Last Glacial Maximum (∼20,000 years ago) can help improve our understanding of Earth's climate sensitivity and, therefore enhance our ability to predict future change (Tierney et al., 2020). Of course, there is no single answer to this question: there is spatial structure to LGM temperature change that is linked to fundamental climate system properties and processes. Consequently, paleoclimate scientists have focused on variations of this question, like “What was the latitudinal gradient of LGM temperature change?” (Chiang et al., 2003), “What was the land-sea contrast?” (Rind & Peteet, 1985) or “What was the change in ocean heat content?” (Bereiter et al., 2018). These questions inform large-scale atmospheric and oceanic circulation, the intensity of the water cycle, and planetary energy balance; the answers to these questions come from proxies like planktic and benthic foraminifera, speleothems, ice cores, pollen records, ancient groundwater, lake sediments, and glacial moraines, to name a few. In short, the paleoclimate community has developed a proxy “tool kit” equipped to map changes across the Earth's surface and into the ocean interior; but, until now, no “tool” existed for the upper atmosphere.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2023-02-28
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 36(8), (2022): e2022GB007320, https://doi.org/10.1029/2022GB007320.
    Description: Biogeochemical cycles in the Arctic Ocean are sensitive to the transport of materials from continental shelves into central basins by sea ice. However, it is difficult to assess the net effect of this supply mechanism due to the spatial heterogeneity of sea ice content. Manganese (Mn) is a micronutrient and tracer which integrates source fluctuations in space and time while retaining seasonal variability. The Arctic Ocean surface Mn maximum is attributed to freshwater, but studies struggle to distinguish sea ice and river contributions. Informed by observations from 2009 IPY and 2015 Canadian GEOTRACES cruises, we developed a three-dimensional dissolved Mn model within a 1/12° coupled ocean-ice model centered on the Canada Basin and the Canadian Arctic Archipelago (CAA). Simulations from 2002 to 2019 indicate that annually, 87%–93% of Mn contributed to the Canada Basin upper ocean is released by sea ice, while rivers, although locally significant, contribute only 2.2%–8.5%. Downstream, sea ice provides 34% of Mn transported from Parry Channel into Baffin Bay. While rivers are often considered the main source of Mn, our findings suggest that in the Canada Basin they are less important than sea ice. However, within the shelf-dominated CAA, both rivers and sediment resuspension are important. Climate-induced disruption of the transpolar drift may reduce the Canada Basin Mn maximum and supply downstream. Other micronutrients found in sediments, such as Fe, may be similarly affected. These results highlight the vulnerability of the biogeochemical supply mechanisms in the Arctic Ocean and the subpolar seas to climatic changes.
    Description: This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Climate Change and Atmospheric Research Grant: GEOTRACES (RGPCC 433848-12) and VITALS (RGPCC 433898), an NSERC Discovery Grant (RGPIN-2016-03865) to SEA, and by the University of British Columbia through a four year fellowship to BR. Computing resources were provided by Compute Canada (RRG 2648 RAC 2019, RRG 2969 RAC 2020, and RRG 1541 RAC 2021).
    Keywords: GEOTRACES ; Arctic Ocean ; Trace elements ; Canadian Arctic Archipelago ; Ocean modeling ; Micronutrients
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2023-02-28
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Shinevar, W., Jagoutz, O., & Behn, M. WISTFUL: whole‐rock interpretative seismic toolbox for ultramafic lithologies. Geochemistry, Geophysics, Geosystems, 23(8), (2022): e2022GC010329, https://doi.org/10.1029/2022gc010329.
    Description: To quantitatively convert upper mantle seismic wave speeds measured into temperature, density, composition, and corresponding and uncertainty, we introduce the Whole-rock Interpretative Seismic Toolbox For Ultramafic Lithologies (WISTFUL). WISTFUL is underpinned by a database of 4,485 ultramafic whole-rock compositions, their calculated mineral modes, elastic moduli, and seismic wave speeds over a range of pressure (P) and temperature (T) (P = 0.5–6 GPa, T = 200–1,600°C) using the Gibbs free energy minimization routine Perple_X. These data are interpreted with a toolbox of MATLAB® functions, scripts, and three general user interfaces: WISTFUL_relations, which plots relationships between calculated parameters and/or composition; WISTFUL_geotherms, which calculates seismic wave speeds along geotherms; and WISTFUL_inversion, which inverts seismic wave speeds for best-fit temperature, composition, and density. To evaluate our methodology and quantify the forward calculation error, we estimate two dominant sources of uncertainty: (a) the predicted mineral modes and compositions, and (b) the elastic properties and mixing equations. To constrain the first source of uncertainty, we compiled 122 well-studied ultramafic xenoliths with known whole-rock compositions, mineral modes, and estimated P-T conditions. We compared the observed mineral modes with modes predicted using five different thermodynamic solid solution models. The Holland et al. (2018, https://doi.org/10.1093/petrology/egy048) solution models best reproduce phase assemblages (∼12 vol. % phase root-mean-square error [RMSE]) and estimated wave speeds. To assess the second source of uncertainty, we compared wave speed measurements of 40 ultramafic rocks with calculated wave speeds, finding excellent agreement (Vp RMSE = 0.11 km/s). WISTFUL easily analyzes seismic datasets, integrates into modeling, and acts as an educational tool.
    Description: Funding for this study was provided by NSF Grants EAR-17-22935 (OJ) and EAR-18-44340 (MB).
    Keywords: Seismic velocity ; Seismic wave speed ; Thermodynamic modeling ; Density ; Composition ; Elastic moduli
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2023-01-18
    Description: The 2020 update of the European Seismic Hazard Model (ESHM20) is the most recent seismic hazard model of the Euro-Mediterranean region. It was built upon unified and homogenized datasets including earthquake catalogues, active faults, ground motion recordings and state-of-the-art modelling components, i.e. earthquake rates forecast and regionally variable ground motion characteristic models. ESHM20 replaces the 2013 European Seismic Hazard Model (ESHM13), and it is the first regional model to provide two informative hazard maps for the next update of the European Seismic Design Code (CEN EC8). ESHM20 is also one of the key components of the first publicly available seismic risk model for Europe. This chapter provides a short summary of ESHM20 by highlighting its main features and describing some lessons learned during the model’s development.
    Description: Published
    Description: 3-25
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 4IT. Banche dati
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2023-03-08
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sayani, H., Cobb, K., Monteleone, B., & Bridges, H. Accuracy and reproducibility of coral Sr/Ca SIMS timeseries in modern and fossil corals. Geochemistry, Geophysics, Geosystems, 23(9), (2022): e2021GC010068, https://doi.org/10.1029/2021gc010068.
    Description: Coral strontium-to-calcium ratios (Sr/Ca) provide quantitative estimates of past sea surface temperatures (SST) that allow for the reconstruction of changes in the mean state and climate variations, such as the El Nino-Southern Oscillation, through time. However, coral Sr/Ca ratios are highly susceptible to diagenesis, which can impart artifacts of 1–2°C that are typically on par with the tropical climate signals of interest. Microscale sampling via Secondary Ion Mass Spectrometry (SIMS) for the sampling of primary skeletal material in altered fossil corals, providing much-needed checks on fossil coral Sr/Ca-based paleotemperature estimates. In this study, we employ a set modern and fossil corals from Palmyra Atoll, in the central tropical Pacific, to quantify the accuracy and reproducibility of SIMS Sr/Ca analyses relative to bulk Sr/Ca analyses. In three overlapping modern coral samples, we reproduce bulk Sr/Ca estimates within ±0.3% (1σ). We demonstrate high fidelity between 3-month smoothed SIMS coral Sr/Ca timeseries and SST (R = −0.5 to −0.8; p 〈 0.5). For lightly-altered sections of a young fossil coral from the early-20th century, SIMS Sr/Ca timeseries reproduce bulk Sr/Ca timeseries, in line with our results from modern corals. Across a moderately-altered section of the same fossil coral, where diagenesis yields bulk Sr/Ca estimates that are 0.6 mmol too high (roughly equivalent to −6°C artifacts in SST), SIMS Sr/Ca timeseries track instrumental SST timeseries. We conclude that 3–4 SIMS analyses per month of coral growth can provide a much-needed quantitative check on the accuracy of fossil coral Sr/Ca-derived estimates of paleotemperature, even in moderately altered samples.
    Description: We'd also like to thank Yolande Berta and Georgia Tech's Center for Nanostructure Characterization for providing access to their SEM facilities, and the Khaled bin Sultan Living Ocean Foundation and The Nature Conservancy for financial and logistical support for field excursions to Palmyra. Funding for this work was provided by the National Science Foundation (Award Numbers 1502832 and 2002458 to K.M.C) and the National Oceanic and Atmospheric Administration (Award Number: NA11OAR4310165 to K.M.C).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2023-03-11
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tarry, D., Ruiz, S., Johnston, T., Poulain, P., Özgökmen, T., Centurioni, L., Berta, M., Esposito, G., Farrar, J., Mahadevan, A., & Pascual, A. Drifter observations reveal intense vertical velocity in a surface ocean front. Geophysical Research Letters, 49(18), (2022): e2022GL098969, https://doi.org/10.1029/2022gl098969.
    Description: Measuring vertical motions represent a challenge as they are typically 3–4 orders of magnitude smaller than the horizontal velocities. Here, we show that surface vertical velocities are intensified at submesoscales and are dominated by high frequency variability. We use drifter observations to calculate divergence and vertical velocities in the upper 15 m of the water column at two different horizontal scales. The drifters, deployed at the edge of a mesoscale eddy in the Alboran Sea, show an area of strong convergence (urn:x-wiley:00948276:media:grl64766:grl64766-math-0001(f)) associated with vertical velocities of −100 m day−1. This study shows that a multilayered-drifter array can be an effective tool for estimating vertical velocity near the ocean surface.
    Description: This research was supported by the Office of Naval Research (ONR) Departmental Research Initiative CALYPSO under program officers Terri Paluszkiewicz and Scott Harper. The authors' ONR Grant No. are as follows: DT, SR, AM, and AP N000141613130, TMSJ N000146101612470, PP N000141812418, TO N000141812138, LRC N000141712517, and N00014191269, MB and GE N000141812782 and N000141812039, and JTF N000141812431.
    Keywords: Drifters ; Vertical velocity ; Submesoscale ; Kinematic properties ; Fronts ; Alboran Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2023-03-11
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biasi, J., Tivey, M., & Fluegel, B. Volcano monitoring with magnetic measurements: a simulation of eruptions at axial seamount, Kilauea, Baroarbunga, and Mount Saint Helens. Geophysical Research Letters, 49(17), (2022): e2022GL100006, https://doi.org/10.1029/2022GL100006.
    Description: Monitoring of active volcanic systems is a challenging task due in part to the trade-offs between collection of high-quality data from multiple techniques and the high costs of acquiring such data. Here we show that magnetic data can be used to monitor volcanoes by producing similar data to gravimetric techniques at significantly lower cost. The premise of this technique is that magma and wall rock above the Curie temperature are magnetically “transparent,” but not stationary within the crust. Subsurface movements of magma can affect the crustal magnetic field measured at the surface. We construct highly simplified magnetic models of four volcanic systems: Mount Saint Helens (1980), Axial Seamount (2015–2020), Kīlauea (2018), and Bárðarbunga (2014). In all cases, observed or inferred changes to the magmatic system would have been detectable by modern magnetometers. Magnetic monitoring could become common practice at many volcanoes, particularly in developing nations with high volcanic risk.
    Description: This work was supported by the NSF Grant No 2052963 to J. Biasi and an internal Woods Hole Oceanographic Institution grant to M. Tivey.
    Keywords: Magnetism ; Volcanic hazards ; Hawaii ; Iceland ; Volcanology ; Monitoring
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2023-03-11
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bullock, E., Kipp, L., Moore, W., Brown, K., Mann, P., Vonk, J., Zimov, N., & Charette, M. Radium inputs into the Arctic Ocean from rivers a basin‐wide estimate. Journal of Geophysical Research: Oceans, 127(9), (2022): e2022JC018964, https://doi.org/10.1029/2022jc018964.
    Description: Radium isotopes have been used to trace nutrient, carbon, and trace metal fluxes inputs from ocean margins. However, these approaches require a full accounting of radium sources to the coastal ocean including rivers. Here, we aim to quantify river radium inputs into the Arctic Ocean for the first time for 226Ra and to refine the estimates for 228Ra. Using new and existing data, we find that the estimated combined (dissolved plus desorbed) annual 226Ra and 228Ra fluxes to the Arctic Ocean are [7.0–9.4] × 1014 dpm y−1 and [15–18] × 1014 dpm y−1, respectively. Of these totals, 44% and 60% of the river 226Ra and 228Ra, respectively are from suspended sediment desorption, which were estimated from laboratory incubation experiments. Using Ra isotope data from 20 major rivers around the world, we derived global annual 226Ra and 228Ra fluxes of [7.4–17] × 1015 and [15–27] × 1015 dpm y−1, respectively. As climate change spurs rapid Arctic warming, hydrological cycles are intensifying and coastal ice cover and permafrost are diminishing. These river radium inputs to the Arctic Ocean will serve as a valuable baseline as we attempt to understand the changes that warming temperatures are having on fluxes of biogeochemically important elements to the Arctic coastal zone.
    Description: This study was a broad, collaborative effort that would not have been possible without contributions from numerous funding sources, including the National Science Foundation (NSF-0751525, NSF-1736277, NSF-1458305, NSF-1938873, NSF-2048067, NSF-2134865), the NERC-BMBF project CACOON [NE/R012806/1] (UKRI NERC) and BMBF-03F0806A, and an EU Starting Grant (THAWSOME-676982).
    Keywords: Radium isotopes ; Arctic Ocean ; River fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2023-06-02
    Description: Satellite observations covering the last four decades reveal an ocean warming pattern resembling the negative phase of the Pacific Decadal Oscillation. This pattern has therefore been widely interpreted as a manifestation of natural climate variability. Here, we re-examine the observed warming pattern and find that the predominant warming over the subtropical oceans, while mild warming or even cooling over the subpolar ocean, is dynamically consistent with the convergence and divergence of surface water. By comparison of observations, paleo-reconstructions, and model simulations, we propose that the observed warming pattern is likely a short-term transient response to the increased CO2 forcing, which only emerges during the early stage of anthropogenic warming. On centennial to millennial timescales, the subpolar ocean warming is expected to exceed the temporally dominant warming of the subtropical ocean. This delayed but amplified subpolar ocean warming has the potential to reshape the ocean-atmosphere circulation and threaten the stability of marine-terminating ice sheets.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2023-02-07
    Description: Objective: To study the blood levels of selected trace elements (TE) in Multiple Sclerosis (MS) patients living in high-incidence cluster areas in the Etna volcano region. Methods: MS patients living in the province of Catania have been retrospectively enrolled among those followed by the Neurologic Clinic of the AOU Policlinico “G. Rodolico-San Marco” who had the disease onset between 2005 and 2020.Aserumsample was used for the determination of TE levels (As,Cd, Cr, Cu, Fe, Mg, Mn, Ni, Se, Zn). All the analyses have been conducted with an ICPMS with the standard addition technique, previous digestion of the samples with nitric acid. MS patients living the high incidence clusters were frequency matched with MS patients living outside the clusters. Comparisons of TE across the groups were conducted using the Mann-Whitney test. Results: A total of 86 (48 women; 55.8%) MS patients was recruited, with a mean age of 41.6±13.1 years, a mean disease duration of 2.0±2.6 years and a mean Expanded Disability Status Scale of 2.3±1.7. Of these patients, 40 belonged to high incidence clusters and 46 were outside the clusters. No differences were found in demographic characteristics between the groups. Concerning TE, we found a significant higher concentration of Mn in incluster patients (6.7±16.6 μg/L vs 2.5±5.9 μg/L). Discussion: Several environmental factors may modulate the pathogenesis of the disease, and among them TE play an important role. Our findings suggest that Manganese, which has several toxic effects, might contribute to the higher incidence of MS previously observed in a cluster of communalities in the south-eastern flank of the Etna volcano, where volcanic ashes rich in TE usually fall due to the prevailing winds. Conclusions: Exposition to high levels of Mn could be a cofactor in the pathogenesis of MS.
    Description: Published
    Description: Milano
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Keywords: Multiple Sclerosis ; Mt. Etna ; 05. General
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2023-02-07
    Description: We present measurements of soil CO2 effluxes combined with soil (222Rn) and (220Rn) from two high-degassing areas on the lower flanks of Mt. Etna volcano (ZE-SV on the E flank and PAT on the SW flank). Measurements were conducted periodically from June 2006 to January 2009 in the ZE-SV area and January 2007 to January 2009 in the PAT area. The results showed significant variations in discharge activity and style. Log values of (220Rn)/(222Rn) and CO2 efflux generally follow a negative correlation, herein parameterized as the Soil Gas Disequilibrium Index (SGDI). Deviations of the SGDI from this negative correlation provide insight into variance of localized and shallow system conditions, namely rock fracturing, residual magma degassing, and near surface interactions between magmatic gases and groundwater. Statistical analysis highlighted signal anomalies, both negative and positive, that were modeled according to the physical properties and the modes of transport for each of the SGDI gas components. The revealed anomalies show correspondence with episodes of magma ascent and eruption, thereby demonstrating the potential of using the SGDI as another instrument for forecasting volcanic activity. An important strength of the SGDI, compared to other magma gas proxies like CO2 or SO2, is that the very short and very different half-lives of 222Rn (t1/2 = 3.85 days) and 220Rn (t1/2 = 55 seconds) provide unique information on the timescales of soil gas transport. Coupling the SGDI with other pre-eruptive proxies enhances the volcanological community’s response capabilities, which is critical for effective hazard mitigation.
    Description: Published
    Description: 167-202
    Description: 4V. Processi pre-eruttivi
    Keywords: Soil gases ; radon ; carbon dioxide ; volcano monitoring ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2023-08-03
    Description: Dissimilatory iron reduction (DIR) is suggested to be one of the earliest forms of microbial respiration. It plays an important role in the biogeochemical cycling of iron in modern and ancient sediments. Since microbial iron cycling is typically accompanied by iron isotope fractionation, stable iron isotopes are used as tracer for biological activity. Here we present iron isotope data for dissolved and sequentially extracted sedimentary iron pools from deep and hot subseafloor sediments retrieved in the Nankai Trough off Japan. Dissolved iron (Fe(II)aq) is isotopically light throughout the ferruginous sediment interval but some samples have exceptionally light isotope values. Such light values have never been reported in natural marine environments and cannot be solely attributed to DIR. We show that the light isotope values are best explained by a Rayleigh distillation model where Fe(II)aq is continuously removed from the pore water by adsorption onto iron (oxyhydr)oxide surfaces. While the microbially mediated Fe(II)aq release has ceased due to an increase in temperature beyond the threshold of mesophilic microorganisms, the abiotic adsorptive Fe(II)aq removal continued, leading to uniquely light isotope values. These findings have important implications for the interpretation of dissolved iron isotope data especially in deep subseafloor sediments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2023-08-01
    Description: In the version of this article initially published, author Cora Hörstmann was wrongly listed with a second affiliation with the Department of Ecoscience–Applied Marine Ecology and Modelling, Aarhus University rather than the Mediterranean Institute of Oceanography (MIO), Marseille, France. Furthermore, references 83–97, now found in the Supplementary Tables caption, were wrongly cited in the Data Availability section. The errors have been corrected in the HTML and PDF versions of the article.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2023-08-01
    Description: Large amounts of atmospheric carbon can be exported and retained in the deep sea on millennial time scales, buffering global warming. However, while the Barents Sea is one of the most biologically productive areas of the Arctic Ocean, carbon retention times were thought to be short. Here we present observations, complemented by numerical model simulations, that revealed a deep and widespread lateral injection of approximately 2.33 kt C d−1 from the Barents Sea shelf to some 1,200 m of the Nansen Basin, driven by Barents Sea Bottom Water transport. With increasing distance from the outflow region, the plume expanded and penetrated into even deeper waters and the sediment. The seasonally fluctuating but continuous injection increases the carbon sequestration of the Barents Sea by 1/3 and feeds the deep sea community of the Nansen Basin. Our findings combined with those from other outflow regions of carbon-rich polar dense waters highlight the importance of lateral injection as a global carbon sink. Resolving uncertainties around negative feedbacks of global warming due to sea ice decline will necessitate observation of changes in bottom water formation and biological productivity at a resolution high enough to quantify future deep carbon injection.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2023-08-09
    Description: The Asian shore crab Hemigrapsus sanguineus has become invasive in North Europe and it co-occurs and competes with the native European shore crab Carcinus maenas. Both species develop through a feeding and dispersive larval phase characterised by several zoeal and a settling megalopa stage. Larvae of marine crabs are vulnerable to food limitation and warming has the potential to exacerbate the negative effects of food limitation on survival and growth. We quantified the combined effects of temperature and food limitation on larval performance (survival and growth) of H. sanguineus and we compared our results with those reported on performance of C. maenas larvae, under the same experimental design and methodology. Larvae from four females of H. sanguineus collected on Helgoland (North Sea) were experimentally reared from hatching to megalopa, at four temperatures (range 15–24 °C) and two food conditions (permanent vs. daily limited access to food). Larval survival of H. sanguineus was low at 15 °C and increased with temperature, in contrast to the high survival reported for C. maenas larvae in the range 15–24 °C. Food limitation reduced survival and body mass of H. sanguineus larvae at all temperatures, but without evidence of the exacerbating effect caused by high temperatures and reported for C. maenas. By contrast, high temperature (24 °C) mitigated the negative effect of food limitation on body mass on H. sanguineus larvae. Advantages of H. sanguineus over C. maenas appear especially under the increased temperatures expected from climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Reviews Earth & Environment, Springer Nature, 4(2), pp. 119-134, ISSN: 2662-138X
    Publication Date: 2023-09-04
    Description: The ocean has absorbed 25 ± 2% of the total anthropogenic CO2 emissions from the early 1960s to the late 2010s, with rates more than tripling over this period and with a mean uptake of –2.7 ± 0.3 Pg C year–1 for the period 1990 through 2019. This growth of the ocean sink matches expectations based on the increase in atmospheric CO2, but research has shown that the sink is more variable than long assumed. In this Review, we discuss trends and variations in the ocean carbon sink. The sink stagnated during the 1990s with rates hovering around –2 Pg C year–1, but strengthened again after approximately 2000, taking up around –3 Pg C year–1 for 2010–2019. The most conspicuous changes in uptake occurred in the high latitudes, especially the Southern Ocean. These variations are caused by changes in weather and climate, but a volcanic eruption-induced reduction in the atmospheric CO2 growth rate and the associated global cooling contributed as well. Understanding the variability of the ocean carbon sink is crucial for policy making and projecting its future evolution, especially in the context of the UN Framework Convention on Climate Change stocktaking activities and the deployment of CO2 removal methods. This goal will require a global-level effort to sustain and expand the current observational networks and to better integrate these observations with models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2023-09-06
    Description: As calcareous foraminifera precipitate their shells from the surrounding water mass, they are the basis of most marine radiocarbon chronologies and paleo-proxies. Nevertheless, post-mortem alteration of shells, especially addition of authigenic calcite, impact proxy records. In the Arctic Ocean, authigenic calcite overgrowth on foraminifera has been attributed to hydrocarbon release, with a single report on 13C-enriched authigenic calcite, indicating a different carbon source. Here, we use comparative radiocarbon, carbon and oxygen isotope measurements to show that this 13C-enriched authigenic calcite impacts a large proportion of Holocene and the majority of last glacial planktonic foraminifera in the Arctic Basin. This authigenic precipitated calcite is 14C-depleted, so overgrowth results in invariably older 14C-ages. We show that, in comparison with published data, the true chronology of Arctic basin sediments can deviate by more than 10,000 years in critical parts of the last deglaciation and that stable oxygen and carbon isotopes, as likely all calcite-based proxy-records are affected with potential implications for paleoclimate models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2023-03-02
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 36(9), (2022): e2021GB007145, https://doi.org/10.1029/2021gb007145.
    Description: In this study, we compare mechanistic and empirical approaches to reconstruct the air-sea flux of biological oxygen (F[O2]bio-as) by parameterizing the physical oxygen saturation anomaly (ΔO2[phy]) in order to separate the biological contribution from total oxygen. The first approach matches ΔO2[phy] to the monthly climatology of the argon saturation anomaly from a global ocean circulation model's output. The second approach derives ΔO2[phy] from an iterative mass balance model forced by satellite-based physical drivers of ΔO2[phy] prior to the sampling day by assuming that air-sea interactions are the dominant factors driving the surface ΔO2[phy]. The final approach leverages the machine-learning technique of Genetic Programming (GP) to search for the functional relationship between ΔO2[phy] and biophysicochemical parameters. We compile simultaneous measurements of O2/Ar and O2 concentration from 14 cruises to train the GP algorithm and test the validity and applicability of our modeled ΔO2[phy] and F[O2]bio-as. Among the approaches, the GP approach, which incorporates ship-based measurements and historical records of physical parameters from the reanalysis products, provides the most robust predictions (R2 = 0.74 for ΔO2[phy] and 0.72 for F[O2]bio-as; RMSE = 1.4% for ΔO2[phy] and 7.1 mmol O2 m−2 d−1 for F[O2]bio-as). We use the empirical formulation derived from GP approach to reconstruct regional, inter-annual, and decadal variability of F[O2]bio-as based on historical oxygen records. Overall, our study represents a first attempt at deriving F[O2]bio-as from snapshot measurements of oxygen, thereby paving the way toward using historical O2 data and a rapidly growing number of O2 measurements on autonomous platforms for independent insight into the biological pump.
    Description: N. Cassar was supported by the “Laboratoire d'Excellence” LabexMER (ANR-10-LABX-19) and co-funded by a grant from the French government under the program “Investissements d'Avenir.” Y. Huang was supported by grants from the China NSF (Nos. 42130401 and 42141002). Y. Huang was also partly supported by Chinese State Scholarship Fund to study at Duke University as a joint PhD student (No. 201806310052). R. Eveleth was supported by the NSF GRFP under grant (No. 1106401). D. Nicholson was supported by the NSF OCE-1129973 and OCE-1923915.
    Keywords: Air-sea gas biological oxygen flux ; Physical oxygen saturation anomaly ; Total dissolved oxygen ; Mechanistic and empirical models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2023-02-21
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49(15), (2022): e2022GL099185, https://doi.org/10.1029/2022gl099185.
    Description: Several large strike slip faults in central and northern California accommodate plate motions through aseismic creep. Although there is no consensus regarding the underlying cause of aseismic creep, aqueous fluids and mechanically weak, velocity-strengthening minerals appear to play a central role. This study integrates field observations and thermodynamic modeling to examine possible relationships between the occurrence of serpentinite, silica-carbonate rock, and CO2-rich aqueous fluids in creeping faults of California. Our models predict that carbonation of serpentinite leads to the formation of talc and magnesite, followed by silica-carbonate rock. While abundant exposures of silica-carbonate rock indicate complete carbonation, serpentinite-hosted CO2-rich spring fluids are strongly supersaturated with talc at elevated temperatures. Hence, carbonation of serpentinite is likely ongoing in parts of the San Andres Fault system and operates in conjunction with other modes of talc formation that may further enhance the potential for aseismic creep, thereby limiting the potential for large earthquakes.
    Description: This work was supported by National Science Foundation (NSF) grants NSF-EAR-1220280 to F. K. and J. L., NSF-EAR-1219908 to D. G., and NSF-OCE-2001728 to J. L.
    Keywords: Mineral carbonation ; Serpentinite ; Talc ; CO2 ; Aseismic creep ; San Andreas Fault
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2023-02-21
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marsay, C. M., Landing, W. M., Umstead, D., Till, C. P., Freiberger, R., Fitzsimmons, J. N., Lanning, N. T., Shiller, A. M., Hatta, M., Chmiel, R., Saito, M., & Buck, C. S. Does sea spray aerosol contribute significantly to aerosol trace element loading? a case study from the US GEOTRACES Pacific Meridional Transect (GP15). Global Biogeochemical Cycles, 36(8), (2022): e2022GB007416. https://doi.org/10.1029/2022GB007416.
    Description: Atmospheric deposition represents a major input for micronutrient trace elements (TEs) to the surface ocean and is often quantified indirectly through measurements of aerosol TE concentrations. Sea spray aerosol (SSA) dominates aerosol mass concentration over much of the global ocean, but few studies have assessed its contribution to aerosol TE loading, which could result in overestimates of “new” TE inputs. Low-mineral aerosol concentrations measured during the U.S. GEOTRACES Pacific Meridional Transect (GP15; 152°W, 56°N to 20°S), along with concurrent towfish sampling of surface seawater, provided an opportunity to investigate this aspect of TE biogeochemical cycling. Central Pacific Ocean surface seawater Al, V, Mn, Fe, Co, Ni, Cu, Zn, and Pb concentrations were combined with aerosol Na data to calculate a “recycled” SSA contribution to aerosol TE loading. Only vanadium was calculated to have a SSA contribution averaging 〉1% along the transect (mean of 1.5%). We derive scaling factors from previous studies on TE enrichments in the sea surface microlayer and in freshly produced SSA to assess the broader potential for SSA contributions to aerosol TE loading. Maximum applied scaling factors suggest that SSA could contribute significantly to the aerosol loading of some elements (notably V, Cu, and Pb), while for others (e.g., Fe and Al), SSA contributions largely remained 〈1%. Our study highlights that a lack of focused measurements of TEs in SSA limits our ability to quantify this component of marine aerosol loading and the associated potential for overestimating new TE inputs from atmospheric deposition.
    Description: This research was supported by the National Science Foundation (NSF) grants OCE-1756103 to C. S. Buck, OCE-1756104 to W. M. Landing, OCE-1737024 to A.M. Shiller, OCE-1736906 to M. Hatta, OCE-1736875 to C. P. Till, OCE-1737167 to J. N. Fitzsimmons, and OCE-1736599 to M. Saito. In addition, N. T. Lanning was supported by the NSF Graduate Research Fellowship Program award 1746932.
    Keywords: Aerosols ; Trace elements ; GEOTRACES ; Sea spray aerosol ; Pacific Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2023-02-21
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 127(8), (2022): e2022JB024497, https://doi.org/10.1029/2022JB024497.
    Description: During plastic deformation, strain weakening can be achieved, in part, via strain energy reduction associated with intragranular boundary development and grain boundary formation. Grain boundaries (in 2D) are segments between triple junctions, that connect to encircle grains; every boundary segment in the encircling loop has a high (〉10°) misorientation angle. Intragranular boundaries terminate within grains or dissect grains, usually containing boundary segments with a low (〈10°) misorientation angle. We analyze electron backscatter diffraction (EBSD) data from ice deformed at −30°C (Th≈ 0.9). Misorientation and weighted Burgers vector (WBV) statistics are calculated along planar intragranular boundaries. Misorientation angles change markedly along each intragranular boundary, linking low- (〈10°) and high-angle (10–38°) segments that exhibit distinct misorientation axes and WBV directions. We suggest that these boundaries might be produced by the growth and intersection of individual intragranular boundary segments comprising dislocations with distinct slip systems. There is a fundamental difference between misorientation axis distributions of intragranular boundaries (misorientation axes mostly confined to ice basal plane) and grain boundaries (no preferred misorientation axis). These observations suggest during progressive subgrain rotation, intragranular boundaries remain crystallographically controlled up to large misorientation angles (〉〉10°). In contrast, the apparent lack of crystallographic control for grain boundaries suggests misorientation axes become randomized, likely due to the activation of additional mechanisms (such as grain boundary sliding) after grain boundary formation, linking boundary segments to encircle a grain. Our findings on ice intragranular boundary development and grain boundary formation may apply more broadly to other rock-forming minerals (e.g., olivine, quartz).
    Description: This work was supported by a NASA fund (Grant No. NNX15AM69G) to David L. Goldsby and two Marsden Funds of the Royal Society of New Zealand (Grant Nos. UOO1116, UOO052) to David J. Prior. Sheng Fan was supported by the University of Otago doctoral scholarship, the Antarctica New Zealand doctoral scholarship, a research grant from New Zealand Ministry of Business, Innovation and Employment through the Antarctic Science Platform (ANTA1801) (Grant No. ASP-023-03), and a New Zealand Antarctic Research Institute (NZARI) Early Career Researcher Seed Grant (Grant No. NZARI 2020-1-5). Open access publishing facilitated by University of Otago, as part of the Wiley – University of Otago agreement via the Council of Australian University Librarians.
    Keywords: High temperature deformation ; Misorientation ; Weighted Burgers vector ; Intragranular boundary ; Grain boundary ; Boundary geometry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2023-02-16
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fabbrizzi, A., Parnell‐Turner, R., Gregg, P., Fornari, D., Perfit, M., Wanless, V., & Anderson, M. Relative timing of off‐axis volcanism from sediment thickness estimates on the 8°20’N seamount chain, East Pacific Rise. Geochemistry, Geophysics, Geosystems, 23(9), (2022): e2022GC010335, https://doi.org/10.1029/2022gc010335.
    Description: Volcanic seamount chains on the flanks of mid-ocean ridges record variability in magmatic processes associated with mantle melting over several millions of years. However, the relative timing of magmatism on individual seamounts along a chain can be difficult to estimate without in situ sampling and is further hampered by Ar40/Ar39 dating limitations. The 8°20’N seamount chain extends ∼170 km west from the fast-spreading East Pacific Rise (EPR), north of and parallel to the western Siqueiros fracture zone. Here, we use multibeam bathymetric data to investigate relationships between abyssal hill formation and seamount volcanism, transform fault slip, and tectonic rotation. Near-bottom compressed high-intensity radiated pulse, bathymetric, and sidescan sonar data collected with the autonomous underwater vehicle Sentry are used to test the hypothesis that seamount volcanism is age-progressive along the seamount chain. Although sediment on seamount flanks is likely to be reworked by gravitational mass-wasting and current activity, bathymetric relief and Sentry vehicle heading analysis suggest that sedimentary accumulations on seamount summits are likely to be relatively pristine. Sediment thickness on the seamounts' summits does not increase linearly with nominal crustal age, as would be predicted if seamounts were constructed proximal to the EPR axis and then aged as the lithosphere cooled and subsided away from the ridge. The thickest sediments are found at the center of the chain, implying the most ancient volcanism there, rather than on seamounts furthest from the EPR. The nonlinear sediment thickness along the 8°20’N seamounts suggests that volcanism can persist off-axis for several million years.
    Description: This work was supported by National Science Foundation awards OCE-1356610, OCE-1356822, OCE-1357150, OCE-1754419, OCE-1834797, OCE-2001314, and OCE-2001331.
    Keywords: Off-axis seamounts ; East Pacific Rise ; Sediment thickness ; Seafloor morphology ; Autonomous underwater vehicle ; Eruption history
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2023-02-25
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 127(8), (2022): e2021JB023814, https://doi.org/10.1029/2021jb023814.
    Description: Early arrival traveltime tomography and full waveform inversion were conducted on downward continued streamer seismic data at Dante's Domes oceanic core complex (OCC), providing unprecedented details of shallow P wave velocity structure. Together with reverse time migration images, seafloor morphology, in situ geological samples, magnetic and gravity data, the seismic constraints are used to infer the lithological distribution along the seismic profiles. Based on the striking similarity in velocity structure beneath the corrugated domes with other OCCs and drilling results from Atlantis Massif, we confidently reconfirmed the Southern Dome as dominantly gabbroic rocks, and the Northern Dome as serpentinized peridotites. A series of isolated gabbroic bodies embedded in the diabase and basaltic layers is observed in the breakaway zone, suggesting that the initiation of Dante's Domes OCC occurred over a long period during which there were several failed attempts to form a long-lived detachment fault. This early development of the OCC probably occurred under a regime of alternating magma starvation and magma replenishment. The predominantly gabbroic section, beneath the Southern Dome and extending to termination, indicates the OCC has been created with relatively high magma flux. We also imaged distinct shallow subseafloor reflections which are also termed as D reflectors underneath the corrugated domes. The location of the D reflectors is similar to those in the Atlantis Massif, with depths well correlated with the top of exhumed gabbroic bodies and the discontinuities in the D reflectors between gabbroic bodies. Our findings contribute to the understanding of processes controlling the OCCs initiation and evolution at slow spreading ridges.
    Description: This research was supported by the National Natural Science Foundation of China (91858207), Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (GML2019ZD0205), and Guangdong Basic and Applied Basic Research Foundation (2021B1515020023). M. X. acknowledges support from Special Foundation for National Science and Technology Basic Research Program of China (2018FY100505), Guangdong NSF research team project (2017A030312002), K. C. Wong Education Foundation (GJTD-2018-13), and the Chinese Academy of Sciences (Y4SL021001, QYZDY-SSWDQC005, 133244KYSB20180029, 131551KYSB20200021, and ISEE2021PY03). J. P. C. acknowledges support from the Independent Research and Development Program at WHOI.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2023-02-25
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(8),(2022): e2022JC018737, https://doi.org/10.1029/2022jc018737.
    Description: Gulf Stream Warm Core Rings (WCRs) have important influences on the New England Shelf and marine ecosystems. A 10-year (2011–2020) WCR dataset that tracks weekly WCR locations and surface areas is used here to identify the rings' path and characterize their movement between 55 and 75°W. The WCR dataset reveals a very narrow band between 66 and 71°W along which rings travel almost due west along ∼39°N across isobaths – the “Ring Corridor.” Then, west of the corridor, the mean path turns southwestward, paralleling the shelfbreak. The average ring translation speed along the mean path is 5.9 cm s−1. Long-lived rings (lifespan 〉150 days) tend to occupy the region west of the New England Seamount Chain (NESC) whereas short-lived rings (lifespan 〈150 days) tend to be more broadly distributed. WCR vertical structures, analyzed using available Argo float profiles indicate that rings that are formed to the west of the NESC have shallower thermoclines than those formed to the east. This tendency may be due to different WCR formation processes that are observed to occur along different sections of the Gulf Stream. WCRs formed to the east of the NESC tend to form from a pinch-off mechanism incorporating cores of Sargasso Sea water and a perimeter of Gulf Stream water. WCRs that form to the west of the NESC, form from a process called an aneurysm. WCRs formed through aneurysms comprise water mostly from the northern half of the Gulf Stream and are smaller than the classic pinch-off rings.
    Description: AS and AG are grateful for financial support from NOAA (NA11NOS0120038), NSF (OCE-1851242 and OCE-2123283), SMAST, and UMass Dartmouth. GG was supported by NSF under grant OCE-1657853. MA was supported by NSF under grant OCE-2122726 and by ONR under grant N00014-22-1-2112.
    Keywords: Gulf Stream ; Warm core rings ; Trajectories ; Eddies ; Aneurysm ; Ring formation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2023-02-25
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biasi, J., Asimow, P., Horton, F., & Boyes, X. Eruption rates, tempo, and stratigraphy of Paleocene flood basalts on Baffin Island, Canada. Geochemistry, Geophysics, Geosystems, 23(9), (2022): e2021GC010172, https://doi.org/10.1029/2021gc010172.
    Description: High-temperature melting in mantle plumes produces voluminous eruptions that are often temporally coincident with mass extinctions. Paleocene Baffin Island lavas—products of early Iceland mantle plume activity—are exceptionally well characterized geochemically but have poorly constrained stratigraphy, geochronology, and eruptive tempos. To provide better geologic context, we measured seven stratigraphic sections of the volcanic deposits and collected paleomagnetic data from 38 sites in the lavas and underlying Cretaceous sediments (Quqaluit Fm.). The average paleomagnetic pole from this study does not overlap with the expected pole for a stable North American locality at 60 Ma, yet the data have sufficient dispersion to average out secular variation. After ruling out other possibilities, we find that the picrites were probably erupted during a polarity transition, over less than 5 kyr. If so, the average eruption interval was ∼67 years per flow for the thickest sequence of exposed lavas. We also calculate that the flood basalts had a minimum total volume of ∼176 km3 (excluding submerged lavas in Baffin Bay). This implies a minimum eruption rate of ∼0.035 km3 yr−1, which is similar to rates found in West Greenland lavas but less than rates found in larger flood basalts. Despite this, the Baffin and West Greenland lavas temporally correlate with the “End C27n event” (a period of ∼2°C global warming) and may be its underlying cause.
    Description: his work was supported by the National Science Foundation (award #1911699 to F. Horton and award #2052963 to J. Biasi), Woods Hole Oceanographic Institution (WHOI) Andrew W. Mellon Foundation Endowed Fund for Innovative Research, a National Geographic Society grant (#CP4-144R-18), and internal funding from the Caltech Geological and Planetary Sciences Division.
    Keywords: Baffin island ; North Atlantic ; Flood basalt ; Paleomagnetism ; Volcanology ; Secular variation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Communications Earth & Environment, Springer Nature, 4(1), pp. 26-26, ISSN: 2662-4435
    Publication Date: 2023-02-20
    Description: In recent decades, Europe has experienced more frequent flood and drought events. However, little is known about the long-term, spatiotemporal hydroclimatic changes across Europe. Here we present a climate field reconstruction spanning the entire European continent based on tree-ring stable isotopes. A pronounced seasonal consistency in climate response across Europe leads to a unique, well-verified spatial field reconstruction of European summer hydroclimate back to AD 1600. We find three distinct phases of European hydroclimate variability as possible fingerprints of solar activity (coinciding with the Maunder Minimum and the end of the Little Ice Age) and pronounced decadal variability superimposed by a long-term drying trend from the mid-20th century. We show that the recent European summer drought (2015–2018) is highly unusual in a multi-century context and unprecedented for large parts of central and western Europe. The reconstruction provides further evidence of European summer droughts potentially being influenced by anthropogenic warming and draws attention to regional differences.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2023-02-17
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(19), (2021): e2021GL095088, https://doi.org/10.1029/2021GL095088.
    Description: The physical circulation of the Southern Ocean sets the surface concentration and thus air-sea exchange of CO2. However, we have a limited understanding of the three-dimensional circulation that brings deep carbon-rich waters to the surface. Here, we introduce and analyze a novel high-resolution ocean model simulation with active biogeochemistry and online Lagrangian particle tracking. We focus our attention on a subset of particles with high dissolved inorganic carbon (DIC) that originate below 1,000 m and eventually upwell into the near-surface layer (upper 200 m). We find that 71% of the DIC-enriched water upwelling across 1,000 m is concentrated near topographic features, which occupy just 33% of the Antarctic Circumpolar Current. Once particles upwell to the near-surface layer, they exhibit relatively uniform pCO2 levels and DIC decorrelation timescales, regardless of their origin. Our results show that Southern Ocean bathymetry plays a key role in delivering carbon-rich waters to the surface.
    Description: Riley X. Brady was supported by the Department of Energy's Computational Science Graduate Fellowship (DE-FG02-97ER25308), and particularly benefited from the fellowship's summer practicum at Los Alamos National Lab. Nicole S. Lovenduski and Riley X. Brady were further supported by the U.S. Department of Energy Biological and Environmental Research program (DE-SC0022243) and by the National Science Foundation (NSF-PLR 1543457; NSF-OCE 1924636; NSF-OCE 1752724; NSF-OCE 1558225). Mathew E. Maltrud and Phillip J. Wolfram were supported as part of the Energy Exascale Earth System Model (E3SM) project, funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research. This research used resources provided by the Los Alamos National Laboratory Institutional Computing Program, which is supported by the U.S. Department of Energy National Nuclear Security Administration under Contract No. 89233218CNA000001.
    Keywords: Southern Ocean ; Carbon cycle ; Upwelling ; Lagrangian modeling ; Ocean biogeochemistry ; Climate modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Scientific Reports, Springer Nature, 13(1), pp. 2593-2593, ISSN: 2045-2322
    Publication Date: 2023-03-07
    Description: Little is known about the biology of cold‑water corals (CWCs), let alone the reproduction and early life stages of these important deep‑sea foundation species. Through a three‑year aquarium experiment, we described the reproductive mode, larval release periodicity, planktonic stage, larval histology, metamorphosis and post‑larval development of the solitary scleractinian CWC Caryophyllia (Caryophyllia) huinayensis collected in Comau Fjord, Chilean Patagonia. We found that C. huinayensis is a brooder releasing 78.4 ± 65.9 (mean ± standard deviation [SD]) planula larvae throughout the year, a possible adaptation to low seasonality. Planulae had a length of 905 ± 114 μm and showed a well‑ developed gastrovascular system. After 8 ± 9.3 days (d), the larvae settled, underwent metamorphosis and developed the first set of tentacles after 2 ± 1.5 d. Skeletogenesis, zooplankton feeding and initiation of the fourth set of tentacles started 5 ± 2.1 d later, 21 ± 12.9 d, and 895 ± 45.9 d after settlement, respectively. Our study shows that the ontogenetic timing of C. huinayensis is comparable to that of some tropical corals, despite lacking zooxanthellae.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Communications, Springer Nature, 14(1), 4 p., pp. 1-4, ISSN: 2041-1723
    Publication Date: 2023-04-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2023-04-25
    Description: In this study, we utilize a generalization of Monin–Obukhov similarity theory to construct first order turbulent closures for single-column models of the atmospheric boundary layer (ABL). A set of widely used universal functions for dimensionless gradients is evaluated. Two test cases based on Large-Eddy Simulations (LES) experimental setups are considered – weakly stable ABL (GABLS1; Beare et al. in Bound Layer Meteorol 118(2):247–272,2006), and very strongly stratified ABL (van der Linden et al. in Bound Layer Meteorol 173(2):165–192, 2019). The comparison shows that approximations obtained using a linear dimensionless velocity gradient tend to match the LES data more closely. In particular, the EFB (Energy- and Flux- Budget) closure proposed by Zilitinkevich et al. (Bound Layer Meteorol 146(3):341–373, 2013) has the best performance for the tests considered here. We also test surface layer “bulk formulas” based on these universal functions. The same LES data are utilized for comparison. The setup showcases the behavior of surface scheme, when one assumes that the velocity and temperature profiles in ABL are represented correctly. The advantages and disadvantages of different surface schemes are revealed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2023-07-03
    Description: The 79 CE eruption of Vesuvius is the first documented Plinian eruption, also famous for the archaeological ruins of Pompeii and Herculaneum. Although much is known regarding the eruption dynamics and magma reservoir, little is known about the reservoir shape and growth, and related ground deformation. Numerical modelling by Finite Element Method was carried out, aimed at simulating the reservoir growth and ground deformation with respect to the reservoir shape (prolate, spherical, oblate) and magma overpressure. The modelling was tuned with volcanological, petrological and paleoenvironmental ground deformation con straints. Results indicate that the highest magma overpressure is achieved considering a prolate reservoir, making it as the most likely shape that led to eruption. Similar deformations but lower overpressures are obtained considering spherical and oblate reservoirs. These results demonstrate that ground deformation may not be indicative of eruption probability, style/size, and this has direct implications on surveillance at active explosive volcanoes
    Description: Published
    Description: 211
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Pompeii eruption ; ground deformation ; surveillance ; magma reservoir
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2023-10-19
    Description: The dynamic mass loss of ice sheets constitutes one of the biggest uncertainties in projections of ice-sheet evolution. One central, understudied aspect of ice flow is how the bulk orientation of the crystal orientation fabric translates to the mechanical anisotropy of ice. Here we show the spatial distribution of the depth-averaged horizontal anisotropy and corresponding directional flow-enhancement factors covering a large area of the Northeast Greenland Ice Stream onset. Our results are based on airborne and ground-based radar surveys, ice-core observations, and numerical ice-flow modelling. They show a strong spatial variability of the horizontal anisotropy and a rapid crystal reorganisation on the order of hundreds of years coinciding with the ice-stream geometry. Compared to isotropic ice, parts of the ice stream are found to be more than one order of magnitude harder for along-flow extension/compression while the shear margins are potentially softened by a factor of two for horizontal-shear deformation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Reviews Earth & Environment, Springer Nature, 4(3), pp. 141-141, ISSN: 2662-138X
    Publication Date: 2024-01-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2023-11-23
    Description: Krill (Euphausia superba) and salps (Salpa thompsoni) are key macrozooplankton grazers in the Southern Ocean ecosystem. However, due to differing habitat requirements, both species previously exhibited little spatial overlap. With ongoing climate change-induced seawater temperature increase and regional sea ice loss, salps can now extend their spatial distribution into historically krill-dominated areas and increase rapidly due to asexual reproduction when environmental conditions are favorable. Understanding the potential effects on krill is crucial, since krill is a species of exceptional trophic significance in the Southern Ocean food web. Negative impacts on krill could trigger cascading effects on its predators and prey. To address this question, we combined two individual-based models on salps and krill, which describe the whole life cycle of salp individuals and the dynamic energy budget of individual krill. The resulting new model PEKRIS (PErformance of KRIll vs. Salps) simulates a krill population for 100 years under varying chlorophyll-a concentrations in the presence or absence of salps. All of the investigated krill population properties (abundance, mean length, and yearly egg production) were significantly impacted by the presence of salps. On the other hand, salp density was not impacted if krill were present. The medians of krill population properties deviated during variable maximum chlorophyll-a density per year when salps were introduced by − 99.9% (− 234 individuals per 1000 m3) for krill density, − 100% (− 22,062 eggs per 1000 m3) for krill eggs and − 0.9% (− 0.3 mm) for mean length of krill. If both species compete for the same food resource in a closed space, salps seem to inhibit krill populations. Further simulation studies should investigate whether this effect prevails if different phytoplankton sizes and consumption preferences of krill are implemented. Furthermore, direct predation of the two species or consumption of krill fecal pellets by salps could change the impact size of the food competition.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2024-01-30
    Description: Industrial contaminants accumulated in Arctic permafrost regions have been largely neglected in existing climate impact analyses. Here we identify about 4500 industrial sites where potentially hazardous substances are actively handled or stored in the permafrost-dominated regions of the Arctic. Furthermore, we estimate that between 13,000 and 20,000 contaminated sites are related to these industrial sites. Ongoing climate warming will increase the risk of contamination and mobilization of toxic substances since about 1100 industrial sites and 3500 to 5200 contaminated sites located in regions of stable permafrost will start to thaw before the end of this century. This poses a serious environmental threat, which is exacerbated by climate change in the near future. To avoid future environmental hazards, reliable long-term planning strategies for industrial and contaminated sites are needed that take into account the impacts of cimate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Scientific Reports, Springer Nature, 13(1), pp. 11861-11861, ISSN: 2045-2322
    Publication Date: 2024-01-31
    Description: Since the attribution of the bio-duck call to Antarctic minke whales (AMW Balaenoptera bonaerensis), different studies have retrospectively identified several bio-duck call types at various sites throughout the Southern Hemisphere. The function of their vocal behavior however, remains largely unknown. Further insights into their repertoire usage may help to reveal the function of their calls. Here, we use passive acoustic monitoring (PAM) data collected across six locations throughout the Weddell Sea (WS) in 2013 and from PALAOA Station (Ekström Ice Shelf, eastern WS) in 2015, 2016 and 2017. In 2013, we detected 11 bio-duck call types throughout the WS between May and December, with additional acoustic activity in February on the western recorder AMW calls fell into four general call clusters. Seasonal patterns of calls showed variability between locations and years. Furthermore, this is the first study to show that similar to other baleen whale species, AMWs also produce songs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2024-01-31
    Description: The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) was a yearlong expedition supported by the icebreaker R/V Polarstern, following the Transpolar Drift from October 2019 to October 2020. The campaign documented an annual cycle of physical, biological, and chemical processes impacting the atmosphere-ice-ocean system. Of central importance were measurements of the thermodynamic and dynamic evolution of the sea ice. A multi-agency international team led by the University of Colorado/CIRES and NOAA-PSL observed meteorology and surface-atmosphere energy exchanges, including radiation; turbulent momentum flux; turbulent latent and sensible heat flux; and snow conductive flux. There were four stations on the ice, a 10 m micrometeorological tower paired with a 23/30 m mast and radiation station and three autonomous Atmospheric Surface Flux Stations. Collectively, the four stations acquired ~928 days of data. This manuscript documents the acquisition and post-processing of those measurements and provides a guide for researchers to access and use the data products.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2024-03-21
    Description: Among the photosynthetically active dinophytes, the Kryptoperidiniaceae are unique in having a diatom as endosymbiont instead of the widely present peridinin chloroplast. Phylogenetically, it is unresolved at present how the endosymbionts are inherited, and the taxonomic identities of two iconic dinophyte names, Kryptoperidinium foliaceum and Kryptoperidinium triquetrum, are also unclear. Multiple strains were newly established from the type locality in the German Baltic Sea off Wismar and inspected using microscopy as well as molecular sequence diagnostics of both host and endosymbiont. All strains were bi-nucleate, shared the same plate formula (i.e., po, X, 4′, 2a, 7′′, 5c, 7s, 5′′′, 2′′′′) and exhibited a narrow and characteristically L-shaped precingular plate 7′′. Within the molecular phylogeny of Bacillariaceae, endosymbionts were scattered over the tree in a highly polyphyletic pattern, even if they were gained from different strains of a single species, namely K. triquetrum. Notably, endosymbionts from the Baltic Sea show molecular sequences distinct from the Atlantic and the Mediterranean Sea, which is the first report of such a spatial fragmentation in a planktonic species of dinophytes. The two names K. foliaceum and K. triquetrum are taxonomically clarified by epitypification, with K. triquetrum having priority over its synonym K. foliaceum. Our study underlines the need of stable taxonomy for central questions in evolutionary biology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2024-03-28
    Description: The Arctic Ocean is experiencing unprecedented changes because of climate warming, necessitating detailed analyses on the ecology and dynamics of biological communities to understand current and future ecosystem shifts. Here, we generated a four-year, high-resolution amplicon dataset along with one annual cycle of PacBio HiFi read metagenomes from the East Greenland Current (EGC), and combined this with datasets spanning different spatiotemporal scales (Tara Arctic and MOSAiC) to assess the impact of Atlantic water influx and sea-ice cover on bacterial communities in the Arctic Ocean. Densely ice-covered polar waters harboured a temporally stable, resident microbiome. Atlantic water influx and reduced sea-ice cover resulted in the dominance of seasonally fluctuating populations, resembling a process of “replacement” through advection, mixing and environmental sorting. We identified bacterial signature populations of distinct environmental regimes, including polar night and high-ice cover, and assessed their ecological roles. Dynamics of signature populations were consistent across the wider Arctic; e.g. those associated with dense ice cover and winter in the EGC were abundant in the central Arctic Ocean in winter. Population- and community-level analyses revealed metabolic distinctions between bacteria affiliated with Arctic and Atlantic conditions; the former with increased potential to use bacterial- and terrestrial-derived substrates or inorganic compounds. Our evidence on bacterial dynamics over spatiotemporal scales provides novel insights into Arctic ecology and indicates a progressing Biological Atlantification of the warming Arctic Ocean, with consequences for food webs and biogeochemical cycles.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2024-04-03
    Description: Background: Changes in microbial community composition as a function of human health and disease states have sparked remarkable interest in the human gut microbiome. However, establishing reproducible insights into the determinants of microbial succession in disease has been a formidable challenge. Results: Here we use fecal microbiota transplantation (FMT) as an in natura experimental model to investigate the association between metabolic independence and resilience in stressed gut environments. Our genome-resolved metagenomics survey suggests that FMT serves as an environmental filter that favors populations with higher metabolic independence, the genomes of which encode complete metabolic modules to synthesize critical metabolites, including amino acids, nucleotides, and vitamins. Interestingly, we observe higher completion of the same biosynthetic pathways in microbes enriched in IBD patients. Conclusions: These observations suggest a general mechanism that underlies changes in diversity in perturbed gut environments and reveal taxon-independent markers of “dysbiosis” that may explain why widespread yet typically low-abundance members of healthy gut microbiomes can dominate under inflammatory conditions without any causal association with disease.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2024-04-03
    Description: Host–microbe interactions have been linked to health and disease states through the use of microbial taxonomic profiling, mostly via 16S ribosomal RNA gene sequencing. However, many mechanistic insights remain elusive, in part because studying the genomes of microbes associated with mammalian tissue is difficult due to the high ratio of host to microbial DNA in such samples. Here we describe a microbial-enrichment method (MEM), which we demonstrate on a wide range of sample types, including saliva, stool, intestinal scrapings, and intestinal mucosal biopsies. MEM enabled high-throughput characterization of microbial metagenomes from human intestinal biopsies by reducing host DNA more than 1,000-fold with minimal microbial community changes (roughly 90% of taxa had no significant differences between MEM-treated and untreated control groups). Shotgun sequencing of MEM-treated human intestinal biopsies enabled characterization of both high- and low-abundance microbial taxa, pathways and genes longitudinally along the gastrointestinal tract. We report the construction of metagenome-assembled genomes directly from human intestinal biopsies for bacteria and archaea at relative abundances as low as 1%. Analysis of metagenome-assembled genomes reveals distinct subpopulation structures between the small and large intestine for some taxa. MEM opens a path for the microbiome field to acquire deeper insights into host–microbe interactions by enabling in-depth characterization of host-tissue-associated microbial communities.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2024-04-10
    Description: Sedimentary DNA-based studies revealed the effects of human activity on lake cyanobacteria communities over the last centuries, yet we continue to lack information over longer timescales. Here, we apply high-resolution molecular analyses on sedimentary ancient DNA to reconstruct the history of cyanobacteria throughout the Holocene in a lake in north-eastern Germany. We find a substantial increase in cyanobacteria abundance coinciding with deforestation during the early Bronze Age around 4000 years ago, suggesting increased nutrient supply to the lake by local communities settling on the lakeshore. The next substantial human-driven increase in cyanobacteria abundance occurred only about a century ago due to intensified agricultural fertilisation which caused the dominance of potentially toxic taxa (e.g., Aphanizomenon). Our study provides evidence that humans began to locally impact lake ecology much earlier than previously assumed. Consequently, managing aquatic systems today requires awareness of the legacy of human influence dating back potentially several millennia.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2024-04-10
    Description: The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2024-04-10
    Description: Sea ice is a key factor for the functioning and services provided by polar marine ecosystems. However, ecosystem responses to sea-ice loss are largely unknown because time-series data are lacking. Here, we use shotgun metagenomics of marine sedimentary ancient DNA off Kamchatka (Western Bering Sea) covering the last ~20,000 years. We traced shifts from a sea ice-adapted late-glacial ecosystem, characterized by diatoms, copepods, and codfish to an ice-free Holocene characterized by cyanobacteria, salmon, and herring. By providing information about marine ecosystem dynamics across a broad taxonomic spectrum, our data show that ancient DNA will be an important new tool in identifying long-term ecosystem responses to climate transitions for improvements of ocean and cryosphere risk assessments. We conclude that continuing sea-ice decline on the northern Bering Sea shelf might impact on carbon export and disrupt benthic food supply and could allow for a northward expansion of salmon and Pacific herring.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Journal of Bionic Engineering, Springer Nature, 20(5), pp. 1996-2017, ISSN: 1672-6529
    Publication Date: 2024-04-11
    Description: Lightweight structures are widely used across different industry sectors. However, they get easily excited by external influences, such as vibrations. Undesired high vibration amplitudes can be avoided by shifting the structural eigenfrequencies, which can be achieved adapting the structural design considering optimisation procedures and structures primarily inspired by diatoms. This procedures has been applied to the development process of a girder structure installed in a synchrotron radiation facility to support heavy magnets and other components. The objective was to design a 2.9 m long girder structure with high eigenfrequencies, a high stiffness and a low mass. Based on a topology optimisation result, a parametric beam–shell model including biologically inspired structures (e.g., Voronoi combs, ribs, and soft and organic-looking transitions) was built up. The subsequent cross-sectional optimisation using evolutionary strategic optimisation revealed an optimum girder structure, which was successfully manufactured using the casting technology. Eigenfrequency measurements validated the numerical models. Future changes in the specifications can be implemented in the bio-inspired development process to obtain adapted girder structures.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Analytical and Bioanalytical Chemistry, Springer Nature, 415(15), pp. 2869-2871, ISSN: 1618-2642
    Publication Date: 2024-04-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Scientific Reports, Springer Nature, 13(1), pp. 21921-21921, ISSN: 2045-2322
    Publication Date: 2024-04-22
    Description: The extreme 2018 and 2022 droughts pose as recent examples of a series of drought events that have hit Europe over the last decades with wide ranging social, environmental and economic impacts. Although the link between atmospheric circulation and meteorological drought is clear and often highlighted during major drought events, there is a lack of in-depth studies linking historical changes in meteorological drought indices and prevailing large-scale atmospheric patterns in Europe. To meet this shortfall, we investigated the relation between changes in large-scale atmospheric patterns and meteorological drought, as indicated by the geopotential height at 500mb (Z500) and the Standardised Precipitation-Evapotranspiration Index (SPEI), respectively. Calculations were done separately for four climate regions (North, West, Central-East and Mediterranean) over the growing season (March–September). Coherent patterns of significant changes towards higher pressure (increasing Z500) and drier conditions (decreasing SPEI) over 1979–2021 are found over West in spring and Central-East in summer. Z500 and SPEI are strongly linked, reflected by both significant (1979–2021) correlations and high co-occurrences (69-96%) between meteorological drought and high-pressure anomaly occurrences since 1900. North shows the most heterogeneous trend patterns and weakest links, but constitutes a hotspot of significantly increasing Z500 in September. Finally, we performed an ensemble-based, European wide analysis of future Z500, based on CMIP6 low-end (SSP126) and high-end (SSP585) 21st century emission scenarios. According to the projected changes, anomalously high-pressure systems will be the new normal regardless of scenario, and well exceeding the 2018 and 2022 levels in the case of the high-end emission scenario. However, due to the limitations of the model ensemble to represent the spatial heterogeneity in historical Z500 variability and trends (1979–2014), projected changes in large-scale circulation, and associated meteorological droughts, are highly uncertain. This paper provides new insight into significant trends in atmospheric circulation over Europe, their strong links to the observed drying trends, and the inability of a CMIP6 ensemble to reproduce the spatial heterogeneity of the circulation changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Scientific Reports, Springer Nature, 13(1), pp. 18100-18100, ISSN: 2045-2322
    Publication Date: 2024-04-22
    Description: Climate indices are often used as a climate monitoring tool, allowing us to understand how the frequency, intensity, and duration of extreme weather events are changing over time. Here, based on complex statistical analysis we identify highly correlated significant pairs of compound events at the highest spatial resolution, on a monthly temporal scale across Europe. Continental-scale monthly analysis unleashes information on compound events such as high-risk zones, hotspots, monthly shifts of hotspots and trends, risk exposure to land cover and population, and identification of maximum increasing trends. While there are many studies on single or compound climate extremes there are only a few studies that addresses the relationship between pairs of hazards, the incorporation of bioclimatic indices, the determination of a grid best-fit copula approach, and the outlining relevance of this work of compound event risks with exposures. In this respect, here, using 27-bivariate and 10-trivariate copula models, we show that the different hazard pairs have high combined risks of indices related to radiation, temperature, evapotranspiration, bioclimatic-based indices, such as the universal thermal climate index, wind chill index, and heat index, mainly over the northern and eastern European countries. Furthermore, we show that over the last 7 decades, agricultural and coastal areas are highly exposed to the risks of defined hotspots of compound events. In some of the hotspots of compound events-identified by clusters, there is no monthly shifts of hotspots, leading to higher impacts when compounded. Future work needs to integrate the framework and process to identify other compound pairs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Communications Earth & Environment, Springer Nature, 4(1), pp. 324-324, ISSN: 2662-4435
    Publication Date: 2024-04-22
    Description: The warm Atlantic Water transported into the Barents Sea plays a crucial role in winter sea ice extent, marine ecosystems, and mid-latitude weather. The North Atlantic Oscillation is known to be an important driver for the Atlantic Water transport variability in the Barents Sea Opening. Here, we find that the dependence of the Barents Sea Opening ocean volume transport variability on the North Atlantic Oscillation is non-stationary. Our results indicate that for the period 1995 to 2005, the link between the North Atlantic Oscillation and the transport variability in the Barents Sea Opening temporarily weakened before an eventual recovery. During this period, synoptic cyclones with unusual trajectories as a consequence of pronounced atmospheric blocking in the North Atlantic sector altered the large-scale and local wind patterns. This temporarily caused a state that the Barents Sea Opening transport variability is largely locally driven instead of being driven by the North Atlantic Oscillation. Our study suggests that an adequate representation of both the North Atlantic Oscillation and cyclone activity is necessary for climate models to better predict future changes in poleward ocean heat transport and Arctic climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2024-04-22
    Description: The richness and structure of symbiont assemblages are shaped by many factors acting at different spatial and temporal scales. Among them, host phylogeny and geographic distance play essential roles. To explore drivers of richness and structure of symbiont assemblages, feather mites and seabirds are an attractive model due to their peculiar traits. Feather mites are permanent ectosymbionts and considered highly host-specific with limited dispersal abilities. Seabirds harbour species-rich feather mite communities and their colonial breeding provides opportunities for symbionts to exploit several host species. To unravel the richness and test the influence of host phylogeny and geographic distance on mite communities, we collected feather mites from 11 seabird species breeding across the Atlantic Ocean and Mediterranean Sea. Using morphological criteria, we identified 33 mite species, of which 17 were new or recently described species. Based on community similarity analyses, mite communities were clearly structured by host genera, while the effect of geography within host genera or species was weak and sometimes negligible. We found a weak but significant effect of geographic distance on similarity patterns in mite communities for Cory’s shearwaters Calonectris borealis. Feather mite specificity mainly occurred at the host-genus rather than at host-species level, suggesting that previously inferred host species-specificity may have resulted from poorly sampling closely related host species. Overall, our results show that host phylogeny plays a greater role than geography in determining the composition and structure of mite assemblages and pinpoints the importance of sampling mites from closely-related host species before describing mite specificity patterns.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Frontiers of Earth Science, Springer Nature, 17(4), pp. 1037-1048, ISSN: 2095-0195
    Publication Date: 2024-03-19
    Description: Plant environmental DNA extracted from lacustrine sediments (sedimentary DNA, sedDNA) has been increasingly used to investigate past vegetation changes and human impacts at a high taxonomic resolution. However, the representation of vegetation communities surrounding the lake is still unclear. In this study, we compared plant sedDNA metabarcoding and pollen assemblages from 27 lake surface-sediment samples collected from alpine meadow on the central-eastern Tibetan Plateau to investigate the representation of sedDNA data. In general, the identified components of sedDNA are consistent with the counted pollen taxa and local plant communities. Relative to pollen identification, sedDNA data have higher taxonomic resolution, thus providing a potential approach for reconstructing past plant diversity. The sedDNA signal is strongly influenced by local plants while rarely affected by exogenous plants. Because of the overrepresentation of local plants and PCR bias, the abundance of sedDNA sequence types is very variable among sites, and should be treated with caution when investigating past vegetation cover and climate based on sedDNA data. Our finding suggests that sedDNA analysis can be a complementary approach for investigating the presence/absence of past plants and history of human land-use with higher taxonomic resolution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2024-03-19
    Description: In Central Yakutia (Siberia) livelihoods of local communities depend on alaas (thermokarst depression) landscapes and the lakes within. Development and dynamics of these alaas lakes are closely connected to climate change, permafrost thawing, catchment conditions, and land use. To reconstruct lake development throughout the Holocene we analyze sedimentary ancient DNA (sedaDNA) and biogeochemistry from a sediment core from Lake Satagay, spanning the last c. 10,800 calibrated years before present (cal yrs BP). SedaDNA of diatoms and macrophytes and microfossil diatom analysis reveal lake formation earlier than 10,700 cal yrs BP. The sedaDNA approach detected 42 amplicon sequence variants (ASVs) of diatom taxa, one ASV of Eustigmatophyceae (Nannochloropsis), and 12 ASVs of macrophytes. We relate diatom and macrophyte community changes to climate-driven shifts in water level and mineral and organic input, which result in variable water conductivity, in-lake productivity, and sediment deposition. We detect a higher lake level and water conductivity in the Early Holocene (c. 10,700–7000 cal yrs BP) compared to other periods, supported by the dominance of Stephanodiscus sp. and Stuckenia pectinata. Further climate warming towards the Mid-Holocene (7000–4700 cal yrs BP) led to a shallowing of Lake Satagay, an increase of the submerged macrophyte Ceratophyllum, and a decline of planktonic diatoms. In the Late Holocene (c. 4700 cal yrs BP–present) stable shallow water conditions are confirmed by small fragilarioid and staurosiroid diatoms dominating the lake. Lake Satagay has not yet reached the final stage of alaas development, but satellite imagery shows an intensification of anthropogenic land use, which in combination with future warming will likely result in a rapid desiccation of the lake.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2024-03-01
    Description: Black carbon emitted by incomplete combustion of fossil fuels and biomass has a net warming effect in the atmosphere and reduces the albedo when deposited on ice and snow; accurate knowledge of past emissions is essential to quantify and model associated global climate forcing. Although bottom-up inventories provide historical Black Carbon emission estimates that are widely used in Earth System Models, they are poorly constrained by observations prior to the late 20th century. Here we use an objective inversion technique based on detailed atmospheric transport and deposition modeling to reconstruct 1850 to 2000 emissions from thirteen Northern Hemisphere ice-core records. We find substantial discrepancies between reconstructed Black Carbon emissions and existing bottom-up inventories which do not fully capture the complex spatial-temporal emission patterns. Our findings imply changes to existing historical Black Carbon radiative forcing estimates are necessary, with potential implications for observation-constrained climate sensitivity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2024-03-13
    Description: The cold Last Glacial Maximum, around 20,000 years ago, provides a useful test case for evaluating whether climate models can simulate climate states distinct from the present. However, because of the indirect and uncertain nature of reconstructions of past environmental variables such as sea surface temperature, such evaluation remains ambiguous. Instead, here we evaluate simulations of Last Glacial Maximum climate by relying on the fundamental macroecological principle of decreasing community similarity with increasing thermal distance. Our analysis of planktonic foraminifera species assemblages from 647 sites reveals that the similarity-decay pattern that we obtain when the simulated ice age seawater temperatures are confronted with species assemblages from that time differs from the modern. This inconsistency between the modern temperature dependence of plankton species turnover and the simulations arises because the simulations show globally rather uniform cooling for the Last Glacial Maximum, whereas the species assemblages indicate stronger cooling in the subpolar North Atlantic. The implied steeper thermal gradient in the North Atlantic is more consistent with climate model simulations with a reduced Atlantic meridional overturning circulation. Our approach demonstrates that macroecology can be used to robustly diagnose simulations of past climate and highlights the challenge of correctly resolving the spatial imprint of global change in climate models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2024-02-07
    Description: A key driving factor behind rapid Arctic climate change is black carbon, the atmospheric aerosol that most efficiently absorbs sunlight. Our knowledge about black carbon in the Arctic is scarce, mainly limited to long-term measurements of a few ground stations and snap-shots by aircraft observations. Here, we combine observations from aircraft campaigns performed over nine years, and present vertically resolved average black carbon properties. A factor of four higher black carbon mass concentration (21.6 ng m−3 average, 14.3 ng m−3 median) was found in spring, compared to summer (4.7 ng m−3 average, 3.9 ng m−3 median). In spring, much higher inter-annual and geographic variability prevailed compared to the stable situation in summer. The shape of the black carbon size distributions remained constant between seasons with an average mass mean diameter of 202 nm in spring and 210 nm in summer. Comparison between observations and concentrations simulated by a global model shows notable discrepancies, highlighting the need for further model developments and intensified measurements.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2024-04-16
    Description: An author of the paper was omitted in the original version (Ted Conroy, University of Waikato, New Zealand). This has been corrected in the pdf and HTML versions of the paper, and the associated metadata.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2024-04-09
    Description: “Red tides” are harmful algal blooms caused by dinoflagellate microalgae that accumulate toxins lethal to other organisms, including humans via consumption of contaminated seafood. These algal blooms are driven by a combination of environmental factors including nutrient enrichment, particularly in warm waters, and are increasingly frequent. The molecular, regulatory, and evolutionary mechanisms that underlie the heat stress response in these harmful bloom-forming algal species remain little understood, due in part to the limited genomic resources from dinoflagellates, complicated by the large sizes of genomes, exhibiting features atypical of eukaryotes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature, Springer Nature, ISSN: 0028-0836
    Publication Date: 2024-04-29
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2024-04-29
    Description: We present a dataset of reconstructed three-dimensional (3D) englacial stratigraphic horizons in northern Greenland. The data cover four different regions representing key ice-dynamic settings in Greenland: (i) the onset of Petermann Glacier, (ii) a region upstream of the 79° North Glacier (Nioghalvfjerdsbræ), near the northern Greenland ice divide, (iii) the onset of the Northeast Greenland Ice Stream (NEGIS) and (iv) a 700 km wide region extending across the central ice divide over the entire northern part of central Greenland. In this paper, we promote the advantages of a 3D perspective of deformed englacial stratigraphy and explain how 3D horizons provide an improved basis for interpreting and reconstructing the ice-dynamic history. The 3D horizons are provided in various formats to allow a wide range of applications and reproducibility of results.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature, Springer Nature, 613(7944), pp. 503-507, ISSN: 0028-0836
    Publication Date: 2024-04-29
    Description: The Greenland Ice Sheet has a central role in the global climate system owing to its size, radiative effects and freshwater storage, and as a potential tipping point1. Weather stations show that the coastal regions are warming2, but the imprint of global warming in the central part of the ice sheet is unclear, owing to missing long-term observations. Current ice-core-based temperature reconstructions3–5 are ambiguous with respect to isolating global warming signatures from natural variability, because they are too noisy and do not include the most recent decades. By systematically redrilling ice cores, we created a high-quality reconstruction of central and north Greenland temperatures from ad 1000 until 2011. Here we show that the warming in the recent reconstructed decade exceeds the range of the pre-industrial temperature variability in the past millennium with virtual certainty (P < 0.001) and is on average 1.5 ± 0.4 degrees Celsius (1 standard error) warmer than the twentieth century. Our findings suggest that these exceptional temperatures arise from the superposition of natural variability with a long-term warming trend, apparent since ad 1800. The disproportionate warming is accompanied by enhanced Greenland meltwater run-off, implying that anthropogenic influence has also arrived in central and north Greenland, which might further accelerate the overall Greenland mass loss.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2024-04-24
    Description: Mesopelagic fish (meso-fish) are central species within the Southern Ocean (SO). However, their ecosystem role and adaptive capacity to climate change are rarely integrated into marine protected area (MPAs) assessments. This is a pity given their importance as crucial prey and predators in food webs, coupled with the impacts of climate change. Here, we estimate the habitat distribution of nine meso-fish using an ensemble model approach (MAXENT, random forest, and boosted regression tree). Four climate model simulations were used to project their distribution under two representative concentration pathways (RCP4.5 and RCP8.5) for short-term (2006–2055) and long-term (2050–2099) periods. In addition, we assess the ecological representativeness of established and proposed MPAs under climate change scenarios using meso-fish as indicator species. Our models show that all species shift poleward in the future. Lanternfishes (family Myctophidae) are predicted to migrate poleward more than other families (Paralepididae, Nototheniidae, Bathylagidae, and Gonostomatidae). In comparison, lanternfishes were projected to increase habitat area in the eastern SO but lose area in the western SO; the opposite was projected for species in other families. Important areas (IAs) of meso-fish are mainly distributed near the Antarctic Peninsula and East Antarctica. Proposed MPAs cover 23% of IAs at present and 38% of IAs in the future (RCP8.5, long-term future). Many IAs of meso-fish still need to be included in MPA proposals, such as the Prydz Bay and the seas around the Antarctic Peninsula. Our results provide a framework for designing new MPAs incorporating climate change adaptation strategies for MPA management.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2024-05-03
    Description: The information system PANGAEA provides targeted support for research data management as well as long-term data archiving and publication. PANGAEA is operated as an open access library for archiving, publishing, and distributing georeferenced data from earth and environmental sciences. It focuses on observational and experimental data. Citability, comprehensive metadata descriptions, interoperability of data and metadata, a high degree of structural and semantic harmonization of the data inventory as well as the commitment of the hosting institutions ensures the long-term usability of archived data. PANGAEA is a pioneer of FAIR and open data infrastructures to enable data intensive science and an integral component of national and international science and technology activities. This paper provides an overview of the recent organisational, structural, and technological advancements in developing and operating the information system.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2024-05-08
    Description: In this article the author name Matthew Mazloff was incorrectly written as Matthew Mazloeff. The original article has been corrected.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2024-05-08
    Description: Correction to: Scientific Data, published online 22 June 2023 The original version showed the wrong image for Figure 3, with the image for Figure 4 used for both. This has been corrected in the pdf and HTML versions of the article, with the correct version of Figure 3 replacing the duplicated figure. The dates in the figure captions were also incorrect and have been amended as follows: Figure 3 caption: “from 2019-10-25 - 2020-07-30” modified to “from 2019-10-25 - 2020-05-15” Figure 4 caption: “from 2020-02-25 - 2020-07-30” modified to “from 2020-06-13 - 2020-07-30”.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2024-05-08
    Description: Snow plays an essential role in the Arctic as the interface between the sea ice and the atmosphere. Optical properties, thermal conductivity and mass distribution are critical to understanding the complex Arctic sea ice system’s energy balance and mass distribution. By conducting measurements from October 2019 to September 2020 on the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, we have produced a dataset capturing the year-long evolution of the physical properties of the snow and surface scattering layer, a highly porous surface layer on Arctic sea ice that evolves due to preferential melt at the ice grain boundaries. The dataset includes measurements of snow during MOSAiC. Measurements included profiles of depth, density, temperature, snow water equivalent, penetration resistance, stable water isotope, salinity and microcomputer tomography samples. Most snowpit sites were visited and measured weekly to capture the temporal evolution of the physical properties of snow. The compiled dataset includes 576 snowpits and describes snow conditions during the MOSAiC expedition.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2024-05-08
    Description: Coastal polynyas in Antarctica are a window of air-sea energy exchange and an important source of Antarctic Bottom Water production. However, the relationship between the polynya area variation and the surrounding marine environment is yet to be fully understood. Here we quantify the influence of the volume of transiting consolidated ice on the Terra Nova Bay Polynya area with ice thickness data. Changes in transiting consolidated ice volume are shown to dominate the evolution and variation of the polynya during a typical polynya shrinking event that occurred between 19 June to 03 July, 2013, rather than katabatic winds or air temperature, which are commonly assumed to be the main drivers. Over the cold seasons from 2013 to 2020, the Terra Nova Bay Polynya area is highly correlated to the transiting consolidated ice volume. We demonstrate that thick transiting ice limits the polynya area by blocking the newly-formed sea ice from leaving.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2024-05-08
    Description: Atmospheric gaseous elemental mercury (GEM) concentrations in the Arctic exhibit a clear summertime maximum, while the origin of this peak is still a matter of debate in the community. Based on summertime observations during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition and a modeling approach, we further investigate the sources of atmospheric Hg in the central Arctic. Simulations with a generalized additive model (GAM) show that long-range transport of anthropogenic and terrestrial Hg from lower latitudes is a minor contribution (~2%), and more than 50% of the explained GEM variability is caused by oceanic evasion. A potential source contribution function (PSCF) analysis further shows that oceanic evasion is not significant throughout the ice-covered central Arctic Ocean but mainly occurs in the Marginal Ice Zone (MIZ) due to the specific environmental conditions in that region. Our results suggest that this regional process could be the leading contributor to the observed summertime GEM maximum. In the context of rapid Arctic warming and the observed increase in width of the MIZ, oceanic Hg evasion may become more significant and strengthen the role of the central Arctic Ocean as a summertime source of atmospheric Hg.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2024-05-07
    Description: Subsea permafrost carbon pools below the Arctic shelf seas are a major unknown in the global carbon cycle. We combine a numerical model of sedimentation and permafrost evolution with simplified carbon turnover to estimate accumulation and microbial decomposition of organic matter on the pan-Arctic shelf over the past four glacial cycles. We find that Arctic shelf permafrost is a globally important long-term carbon sink storing 2822 (1518–4982) Pg OC, double the amount stored in lowland permafrost. Although currently thawing, prior microbial decomposition and organic matter aging limit decomposition rates to less than 48 Tg OC/yr (25–85) constraining emissions due to thaw and suggesting that the large permafrost shelf carbon pool is largely insensitive to thaw. We identify an urgent need to reduce uncertainty in rates of microbial decomposition of organic matter in cold and saline subaquatic environments. Large emissions of methane more likely derive from older and deeper sources than from organic matter in thawing permafrost.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Communications, Springer Nature, 14(1), pp. 1648-1648, ISSN: 2041-1723
    Publication Date: 2024-05-07
    Description: Alkalinity generation from rock weathering modulates Earth’s climate at geological time scales. Although lithology is thought to dominantly control alkalinity generation globally, the role of other first-order controls appears elusive. Particularly challenging remains the discrimination of climatic and erosional influences. Based on global observations, here we uncover the role of erosion rate in governing riverine alkalinity, accompanied by areal proportion of carbonate, mean annual temperature, catchment area, and soil regolith thickness. We show that the weathering flux to the ocean will be significantly altered by climate warming as early as 2100, by up to 68% depending on the environmental conditions, constituting a sudden feedback of ocean CO2 sequestration to climate. Interestingly, warming under a low-emissions scenario will reduce terrestrial alkalinity flux from mid-latitudes (–1.6 t(bicarbonate) a−1 km−2) until the end of the century, resulting in a reduction in CO2 sequestration, but an increase (+0.5 t(bicarbonate) a−1 km−2) from mid-latitudes is likely under a high-emissions scenario, yielding an additional CO2 sink.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2024-05-06
    Description: The Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition took place between October 2019 and September 2020 giving the rare opportunity to monitor sea-ice properties over a full annual cycle. Here we present 24 high-resolution orthomosaics and 14 photogrammetric digital elevation models of the sea-ice surface around the icebreaker RV Polarstern between March and September 2020. The dataset is based on 〉34.000 images acquired by a helicopter-borne optical camera system with survey flights covering areas between 1.8 and 96.5 km2 around the vessel. Depending on the flight pattern and altitude of the helicopter, ground resolutions of the orthomosaics range between 0.03 and 0.5 m. By combining the photogrammetric products with contemporaneously acquired airborne laser scanner reflectance measurements selected orthomosaics could be corrected for cloud shadows which facilitates their usage for sea-ice and melt pond classification algorithms. The presented dataset is a valuable data source for the interdisciplinary MOSAiC community building a temporal and spatially resolved baseline to accompany various remote sensing and in situ research projects.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2022-02-21
    Description: The stability of the West Antarctic Ice Sheet is threatened by the incursion of warm Circumpolar Deepwater which flows southwards via cross-shelf troughs towards the coast there melting ice shelves. However, the onset of this oceanic forcing on the development and evolution of the West Antarctic Ice Sheet remains poorly understood. Here, we use single- and multichannel seismic reflection profiles to investigate the architecture of a sediment body on the shelf of the Amundsen Sea Embayment. We estimate the formation age of this sediment body to be around the Eocene-Oligocene Transition and find that it possesses the geometry and depositional pattern of a plastered sediment drift. We suggest this indicates a southward inflow of deep water which probably supplied heat and, thus, prevented West Antarctic Ice Sheet advance beyond the coast at this time. We conclude that the West Antarctic Ice Sheet has likely experienced a strong oceanic influence on its dynamics since its initial formation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2022-02-10
    Description: Muography represents a recent and innovative tool for investigating the interior of active volcanoes. However, when dealing with frequently erupting open-vent volcanoes such as Stromboli, any result should take into con- sideration the structural and morphology changes caused by the eruptive activity. This may cause either summit collapses by magma withdrawal, or morphology growth by the accumulations of a fallout from the explosive activity, or more often a combination of both. In this chapter, we present an integration of various techniques, comprising muography and digital elevation model reconstruction, together with GBInSAR ground deformation and volcano seismicity, to reconstruct the geometry of the shallow magma supply system of the volcano and its changes in time. We show how muography can display the interior of the volcano as well as its outer growth, being sensitive to all volume changes that occurred between the framed surface and the detector. This was discovered in Stromboli by comparing digital topography in the interval between 2010 and 2012, when the rapid growth of the volcano summit by the accumulation of ballistic products in the area between the crater zone and the muon detec- tor occurred. This deposit, together with the filling in of the graben-like depression, formed during the 2007 eruption, by fallout during the persistent explosive activity, contributed to generating a remarkable anomaly in the summit area of the volcano visualized by muography. In addition, the shallow feeding system of the volcano was surveyed by GBInSAR and seismicity, which allowed us to reconstruct its path up to a depth of a few hundred meters.
    Description: Published
    Description: 75-91
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Keywords: Stromboli volcano ; Shallow supply system ; Muography of active volcanoes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...