ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    MDPI - Multidisciplinary Digital Publishing Institute
    Publication Date: 2024-04-11
    Description: River catchments and reservoirs play a central role in water security, food supply, flood risk management, hydropower generation, and ecosystem services; however, they are now under increasing pressure from population growth, economic activities, and changing climate means and extremes in many parts of the world. Adaptive management of river catchments and reservoirs requires an in-depth understanding of the impacts of future uncertainties and thus the development of robust, sustainable solutions to meet the needs of various stakeholders and the environment. To tackle the huge challenges in moving towards adaptive catchment management, this book presents the latest developments in cutting-edge knowledge, novel methodologies, innovative management strategies, and case studies, focusing on the following themes: reservoir dynamics and impact analysis of dam construction, optimal reservoir operation, climate change impacts on hydrological processes and water management, and integrated catchment management.
    Keywords: TA1-2040 ; T1-995 ; downscaling ; suspended sediment concentration ; modeling ; South-to-North Water Transfer Project ; sensitivity analysis ; simulation ; protection zone ; reservoirs ; mussel ; sediment regime ; resilience and robustness ; optimal flood control operation ; multi-objective model ; optimization ; scenario analysis ; floodplain vertical shape index ; aftereffect ; lentic habitats ; energy ; stochastic linear programming ; ?-constrained method ; Tekeze basin ; runoff ; cascade reservoirs ; costs and benefits ; sediment flushing efficiency ; vulnerability ; Heihe River Basin ; TB-MPC ; heating impact ; flushing efficiency ; system dynamics ; Indian Monsoon ; shaft spillway pipe ; integrated supply system modeling ; seasonal rainfall ; sediment management ; design and operation of the multipurpose reservoir ; Kappa distribution ; CO2 ; reliability ; uncertainty ; Yangtze River ; Markov chain ; the Yangtze River ; Environmental Fluid Dynamics Code (EFDC) model ; land and water resources ; integrated surface water-groundwater model ; Heilongjiang ; Kurobe River ; flow regime ; numerical simulation ; long distance water diversion ; tropical reservoir ; multi-stage stochastic optimization ; direct policy search ; inverted siphon ; environmental flow ; parameterization ; accompanying progressive optimality algorithm ; integrated management ; hydropower stations ; differential evolution algorithm ; sediment flushing of empty storage ; back propagation neural network ; NSGA-II ; two-dimensional bed evolution model ; real-time control ; upper Chao Phraya River Basin ; CMIP5 ; genetic algorithm ; dam ; irrigation ; CMIP3 ; water energy ; discharge ; the Jingjiang River Reach ; water environmental capacity (WEC) ; climate change ; shortage ratio: Vulnerability ; optimal scheduling ; hydrology ; Siemianówka ; ungauged basin ; game theory ; power function ; SWAT ; Dokan Dam ; natural flow regime ; bitterling ; reservoir flushing ; vertical profiles of concentration ; ratio curve ; partial gauged basin ; sediment load ; adaptive management ; water deficit ; the upper Yangtze River Basin ; Miyun Reservoir ; parameter relation ; stochastic dynamic programming ; NPP ; runoff response ; Narew River ; coupling model ; Langcang-Mekong River ; drinking water resources ; the Huangshi Reservoir ; reverse regulation ; nutrient uptake ; water resources allocation ; multi-agent of river basin ; HEC-ResPRM ; dynamic programming with progressive optimality algorithm (DP-POA) ; reservoir operation ; sea surface temperatures ; reservoir simulation model ; SWAT model ; El Niño/Southern Oscillation ; CORDEX-Africa ; hedging policy ; multi-objective optimization NSGA II ; reservoir ; general regression neural network ; flood control ; Jingjiang River Reach ; catchment modelling ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 73 (1998), S. 111-113 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Measurements of the frequency dependence of the complex admittance are used to separate the ionic and electronic contributions in polymer light-emitting electrochemical cells (LECs). At zero bias, a large polarizability, attributed to salt molecules in the electrolyte, is observed at low frequencies. Ions are generated when the LEC is biased at voltages above the threshold for electrochemical redox doping. Because of the slow ionic response, a novel pulsed drive scheme is proposed: the mean value stabilizes the induced p-i-n junction, while the peak value controls the carrier injection and the brightness of the electroluminescent emission. LECs operated in this way exhibit fast emissive response and improved operating life. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 84 (1998), S. 1579-1582 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report on pure white light emission from GaN/conjugated polymer hybrid light emitting diodes (LEDs) using a single layer of conjugated polymer. When the conjugated polymer is properly encapsulated, the hybrid LEDs can operate at least 5000 h, with decay in output luminosity comparable to that of commercial blue GaN lamps. By using different conjugated polymers, emission with a full range of colors is demonstrated with the hybrid LED. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 83 (1994), S. 406-416 
    ISSN: 1437-3262
    Keywords: Cenozoic tectonic ; Tien Shan ; Plate tectonics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Cenozoic deformation within the Tien Shan of central Asia has accommodated part of the post-collisional indentation of the Indian plate into Asia. Within the Urumgi—Korla region of the Chinese Tien Shan this occurred dominantly on thrusts, with secondary strike-slip faulting. The gross pattern of deformation is of moderate to steeply dipping thrusts that have overthrust foreland basins to the north and south of the range, the Junggar and Tarim basins, respectively. Smaller foreland basins lie within the margins of the range itself (Turfan, Chai Wo Pu, Korla and Qumishi basins); these lie in the footwalls of local thrust systems. Both the Turfan and the Korla basins contain major thrusts within them; they are complex foreland basins. Deformation has progressively affected regions further into the interior of the Junggar Basin, and propagated into the interiors of the intermontane basins. No unidirectional deformation front has passed across the Tien Shan in the Neogene and Quaternary. An Oligocene unconformity may indicate the time of the onset of the Cenozoic deformation, but most of the Cenozoic molasse has been deposited after the Palaeogene. The rate of deposition in basins next to the uplifted ranges has increased since the onset of deformation. There has been at least about 80 km of Cenozoic shortening across this part of the Tien Shan. Cenozoic shortening is greater in sections of the range further west; these are nearer to the northern margin of the Indian indenter. Cenozoic compression has reactivated structures created by the two late Palaeozoic collisions that created the ancestral Tien Shan. These Palaeozoic structures have exerted a strong control over the style and location of the Cenozoic deformation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 397 (1999), S. 414-417 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Some conjugated polymers have luminescence properties that are potentially useful for applications such as light-emitting diodes, whose performance is ultimately limited by the maximum quantum efficiency theoretically attainable for electroluminescence, ,. If the lowest-energy excited states ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Macromolecular Chemistry and Physics 195 (1994), S. 2023-2037 
    ISSN: 1022-1352
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: New fluorescent polymers for electroluminescent devices were synthesized and characterized. In order to obtain polymers for blue light emitting diodes (LEDs), two different structural concepts based on isolation of the active chromophore units within the polymer main chain were investigated. In the first approach non-coplanar units were used to reduce the conjugation length in poly(arylenevinylene)s. In a second approach copolymers having isolated chromophore units in the polymers main chain were investigated. For this purpose, copolyesters containing isolated 1,2-dinaphthylethene chromophore units were synthesized and characterized. The influence of the chemical structure on the photo- and electroluminescence is discussed. On the example of copolyester 2b, which shows bluegreen electroluminescence (λmax = 497 nm) in a LED configuration, it was demonstrated that these polyesters can be used as light emitting layer in electrooptical devices.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 98 (2010): 139-151, doi:10.1007/s10533-009-9382-0.
    Description: Inspired by previous studies that have indicated consistent or even well-constrained relationships among carbon (C), nitrogen (N) and phosphorus (P) in soils, we have endeavored to explore general soil C:N:P ratios in China on a national scale, as well as the changing patterns of these ratios with soil depth, developmental stages and climate; we also attempted to determine if well-constrained C:N:P stoichiometrical ratios exist in China’s soil. Based on an inventory data set of 2,384 soil profiles, our analysis indicated that the mean C:N, C:P and N:P ratios for the entire soil depth (as deep as 250 cm for some soil profiles) in China were 11.9, 61 and 5.2, respectively, showing a C:N:P ratio of ~60:5:1. C:N ratios showed relatively small variation among different climatic zones, soil orders, soil depth and weathering stages, while C:P and N:P ratios showed a high spatial heterogeneity and large variations in different climatic zones, soil orders, soil depth and weathering stages. No well-constrained C:N:P ratios were found for the entire soil depth in China. However, for the 0-10 cm organic-rich soil, where has the most active organism-environment interaction, we found a well-constrained C:N ratio (14.4, molar ratio) and relatively consistent C:P (136) and N:P (9.3) ratios, with a general C:N:P ratio of 134:9:1. Finally, we suggested that soil C:N, C:P and N:P ratios in organic-rich topsoil could be a good indicator of soil nutrient status during soil development.
    Description: This study was supported by NASA Interdisciplinary Science Program (NNG04GM39C), NASA Land Cover and Land Use Change Program (NNX08AL73G_S01), and the Chinese Academy of Science ODS Program.
    Keywords: Carbon ; Nitrogen ; Phosphorus ; Stoichiometry ; China
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): D22S09, doi:10.1029/2007JD008521.
    Description: We investigated the potential effects of elevated ozone (O3) along with climate variability, increasing CO2, and land use change on net primary productivity (NPP) and carbon storage in China's terrestrial ecosystems for the period 1961–2000 with a process-based Dynamic Land Ecosystem Model (DLEM) forced by the gridded data of historical tropospheric O3 and other environmental factors. The simulated results showed that elevated O3 could result in a mean 4.5% reduction in NPP and 0.9% reduction in total carbon storage nationwide from 1961 to 2000. The reduction of carbon storage varied from 0.1 Tg C to 312 Tg C (a decreased rate ranging from 0.2% to 6.9%) among plant functional types. The effects of tropospheric O3 on NPP were strongest in east-central China. Significant reductions in NPP occurred in northeastern and central China where a large proportion of cropland is distributed. The O3 effects on carbon fluxes and storage are dependent upon other environmental factors. Therefore direct and indirect effects of O3, as well as interactive effects with other environmental factors, should be taken into account in order to accurately assess the regional carbon budget in China. The results showed that the adverse influences of increasing O3 concentration across China on NPP could be an important disturbance factor on carbon storage in the near future, and the improvement of air quality in China could enhance the capability of China's terrestrial ecosystems to sequester more atmospheric CO2. Our estimation of O3 impacts on NPP and carbon storage in China, however, must be used with caution because of the limitation of historical tropospheric O3 data and other uncertainties associated with model parameters and field experiments.
    Description: This research is funded by NASA Interdisciplinary Science Program (NNG04GM39C).
    Keywords: Air pollution ; Carbon storage ; China ; Climate change ; Net primary productivity ; Tropospheric ozone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: © IOP Publishing, 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Research Letters 7 (2012): 044020, doi:10.1088/1748-9326/7/4/044020.
    Description: Chemical nitrogen (N) fertilizer has long been used to help meet the increasing food demands in China, the top N fertilizer consumer in the world. Growing concerns have been raised on the impacts of N fertilizer uses on food security and climate change, which is lack of quantification. Here we use a carbon–nitrogen (C–N) coupled ecosystem model, to quantify the food benefit and climate consequence of agronomic N addition in China over the six decades from 1949 to 2008. Results show that N fertilizer-induced crop yield and soil C sequestration had reached their peaks, while nitrous oxide (N2O) emission continued rising as N was added. Since the early 2000s, stimulation of excessive N fertilizer uses to global climate warming through N2O emission was estimated to outweigh their climate benefit in increasing CO2 uptake. The net warming effect of N fertilizer uses, mainly centered in the North China Plain and the middle and lower reaches of Yangtze River Basin, with N2O emission completely counteracting or even exceeding, by more than a factor of 2, the CO2 sink. If we reduced the current N fertilizer level by 60% in 'over-fertilized' areas, N2O emission would substantially decrease without significantly influencing crop yield and soil C sequestration.
    Description: This study has been supported by NASA IDS Program (NNG04GM39C), NASA LCLUC Program (NNX08AL73G), and the National Basic Research Program of China (2010CB950900) and (2010CB950604).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB1007, doi:10.1029/2010GB003838.
    Description: The magnitude, spatial, and temporal patterns of the terrestrial carbon sink and the underlying mechanisms remain uncertain and need to be investigated. China is important in determining the global carbon balance in terms of both carbon emission and carbon uptake. Of particular importance to climate-change policy and carbon management is the ability to evaluate the relative contributions of multiple environmental factors to net carbon source and sink in China's terrestrial ecosystems. Here the effects of multiple environmental factors (climate, atmospheric CO2, ozone pollution, nitrogen deposition, nitrogen fertilizer application, and land cover/land use change) on net carbon balance in terrestrial ecosystems of China for the period 1961–2005 were modeled with newly developed, detailed historical information of these changes. For this period, results from two models indicated a mean land sink of 0.21 Pg C per year, with a multimodel range from 0.18 to 0.24 Pg C per year. The models' results are consistent with field observations and national inventory data and provide insights into the biogeochemical mechanisms responsible for the carbon sink in China's land ecosystems. In the simulations, nitrogen deposition and fertilizer applications together accounted for 61 percent of the net carbon storage in China's land ecosystems in recent decades, with atmospheric CO2 increases and land use also functioning to stimulate carbon storage. The size of the modeled carbon sink over the period 1961–2005 was reduced by both ozone pollution and climate change. The modeled carbon sink in response to per unit nitrogen deposition shows a leveling off or a decline in some areas in recent years, although the nitrogen input levels have continued to increase.
    Description: This study has been supported by NASA IDS Program (NNG04GM39C), NASA LCLUC Pr o g ram (NNX08AL73G_S01), and China’s Ministry of Science and Technology (MOST) 973 Program (2002CB412500).
    Keywords: China ; Terrestrial carbon sink ; Ecosystem model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...